JP2017001914A - 水素製造装置及び水素製造方法 - Google Patents

水素製造装置及び水素製造方法 Download PDF

Info

Publication number
JP2017001914A
JP2017001914A JP2015118455A JP2015118455A JP2017001914A JP 2017001914 A JP2017001914 A JP 2017001914A JP 2015118455 A JP2015118455 A JP 2015118455A JP 2015118455 A JP2015118455 A JP 2015118455A JP 2017001914 A JP2017001914 A JP 2017001914A
Authority
JP
Japan
Prior art keywords
hydrogen
heat
exhaust gas
combustion exhaust
heat medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2015118455A
Other languages
English (en)
Inventor
太一郎 加藤
Taichiro Kato
太一郎 加藤
延章 大栗
Nobuaki Oguri
延章 大栗
未来子 畑間
Mikiko Hatama
未来子 畑間
横山 尚伸
Naonobu Yokoyama
尚伸 横山
高野 洋
Hiroshi Takano
洋 高野
幸次郎 中川
Kojiro Nakagawa
幸次郎 中川
智三 永塚
Tomozo Nagatsuka
智三 永塚
暁 山本
Akira Yamamoto
暁 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fuji Electric Co Ltd
Eneos Corp
Original Assignee
Fuji Electric Co Ltd
JX Nippon Oil and Energy Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fuji Electric Co Ltd, JX Nippon Oil and Energy Corp filed Critical Fuji Electric Co Ltd
Priority to JP2015118455A priority Critical patent/JP2017001914A/ja
Publication of JP2017001914A publication Critical patent/JP2017001914A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】脱水素反応器を加熱する熱媒体を熱媒ボイラによって加熱した際に発生する燃焼排ガスの熱エネルギーを有効利用して装置全体のエネルギー効率を高めること。
【解決手段】MCHを加熱して水素と脱水素物質とに分解する脱水素反応器10が生成した脱水素反応物に対して水素精製器30が水素V31と第1水素含有物G31とに分離する水素製造装置であって、脱水素反応器10を加熱する熱媒体L11を加熱する熱媒ボイラ21と、熱媒ボイラ21の燃焼排ガスの熱エネルギーを水素精製器30のケース45内に供給して水素精製器30を保温する供給ラインLN40と、を備える。
【選択図】図1

Description

本発明は、脱水素反応器を加熱する熱媒体を熱媒ボイラによって加熱した際に発生する燃焼排ガスの熱エネルギーを有効利用して装置全体のエネルギー効率を高めることができる水素製造装置及び水素製造方法に関する。
従来から、有機ハイドライドの一種である芳香族炭化水素の水素化物を加熱して水素と脱水素物質とに分解する脱水素反応器によって生成された脱水素反応物を水素精製器によって水素を精製する水素ステーションなどの水素製造装置が知られている。水素精製器は、水素分離器と言う場合もある。
ここで、特許文献1には、冷却分離手段によって、脱水素反応後の脱水素反応物から水素を分離し、さらに膜分離手段によって水素と非透過ガスとに分離する高純度水素製造方法が記載されている。
特開2005−213087号公報
ところで、脱水素反応器は、吸熱反応であるため、脱水素反応器を加熱する必要がある。この脱水素反応器の加熱手段としては、熱媒体を介して脱水素反応器を加熱するものがある。熱媒ボイラは、脱水素反応器を経由して循環する熱媒体を加熱する。このような熱媒体を用いた加熱手段を採用すると、例えばバーナーにより直接加熱する加熱手段に比べて、より均一に脱水素反応器を加熱することができるため、脱水素反応器の温度制御をより安定して行うことができる。
この熱媒ボイラからは燃焼排ガスが導出される。この燃焼排ガスは、一般的に外気に放出されるが、燃焼排ガスの温度は、400℃近いため、燃焼排ガス経路に熱交換器としての空気予熱器を設け、熱媒ボイラに導入される空気温度を予熱するものがある。
しかし、空気予熱器を経由した燃焼排ガスの温度は、200℃程度もあり、この熱エネルギーを用いて装置全体のエネルギー効率を高めることが要望されている。
本発明は、上記に鑑みてなされたものであって、脱水素反応器を加熱する熱媒体を熱媒ボイラによって加熱した際に発生する燃焼排ガスの熱エネルギーを有効利用して装置全体のエネルギー効率を高めることができる水素製造装置及び水素製造方法を提供することを目的とする。
上述した課題を解決し、目的を達成するために、本発明にかかる水素製造装置は、脱水素反応器により、有機ハイドライドを加熱して水素と檀家水素を含有するガスを生成し、炭化水素を含有するガスから水素精製器によって高純度水素ガスを得る水素製造装置であって、脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラと、前記熱媒ボイラの燃焼排ガスの熱エネルギーを水素製造装置内の加熱機器に供給し、加熱機器を保温する供給ラインと、を備えたことを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、前記加熱機器は、前記水素精製器のケースであり、前記供給ラインは、前記熱媒ボイラの燃焼排ガスの熱エネルギーを前記水素精製器のケース内に供給して前記水素精製器を保温することを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、燃焼排ガスの経路に空気予熱器が設けられ、熱交換器は、空気予熱器の上流または下流に設けたことを特徴とする。
また、本発明にかかる水素製造装置は、上記の発明において、供給ラインは、燃焼排ガスを直接、水素分離器のケース内に供給して水素精製器を保温することを特徴とする。
また、本発明にかかる水素製造方法は、有機ハイドライドを加熱して水素と脱水素物質とに分解する脱水素反応器が生成した脱水素反応物に対して水素精製器が水素とオフガスとに分離する水素製造方法であって、脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラの燃焼排ガスの熱エネルギーを、加熱機器、例えば水素精製器のケース内に供給して前記水素精製器を保温することを特徴とする。
本発明によれば、脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラの燃焼排ガスの熱エネルギーを、加熱機器、例えば水素精製器のケース内に供給して水素精製器を保温するようにしているので、熱媒ボイラによって加熱した際に発生する燃焼排ガスの熱エネルギーを有効利用して装置全体のエネルギー効率を高めることができる。
図1は、本発明の実施の形態1である水素製造装置の構成を示す回路図である。 図2は、水素精製器の導入・導出成分流量の関係を示す模式図である。 図3は、本発明の実施の形態2である水素製造装置の構成を示す回路図である。 図4は、本発明の実施の形態3である水素製造装置の構成を示す回路図である。 図5は、本発明の実施の形態4である水素製造装置の構成を示す回路図である。
以下、添付図面を参照してこの発明を実施するための形態について説明する。
(実施の形態1)
[全体構成]
図1は、本発明の実施の形態1である水素製造装置1の構成を示す回路図である。この水素製造装置1は、脱水素反応により有機ハイドライドから水素を製造する装置であり、例えば燃料電池自動車や水素エンジン車などに水素を供給する水素ステーションに採用されるものである。図1に示すように、水素製造装置1は、脱水素反応系1Aと水素分離系1Bとを有する。脱水素反応系1Aは、脱水素反応器10によって有機ハイドライドを水素と脱水素物質とに分解し、当該水素および当該脱水素物質と分解されなかった未分解反応物とを含む脱水素反応物を導出する。水素分離系1Bは、脱水素反応系1Aから導出された脱水素反応物から水素分離器30によって水素を分離して外部に導出する。
有機ハイドライドは、不飽和結合を有する有機化合物の水素化物であり、脱水素触媒を用いて、水素と脱水素物質(不飽和結合を有する有機化合物)とを含む脱水素反応物に分解することができる。有機ハイドライドは、常温常圧下で液体状のものが好ましく、このようなものを採用する場合、ガソリンなどと同様に液体燃料としてローリーなどによって水素ステーションなどの水素製造装置1へ輸送することができる。本実施の形態1では、有機ハイドライドとして、メチルシクロヘキサン(以下、MCHと称する)を用いて説明するが、これには限られない。なお、不飽和結合を有する有機化合物とは、二重結合あるいは三重結合を分子内に一つ以上有し、常温常圧下で液状である有機化合物である。二重結合としては、炭素−炭素二重結合(C=C)、炭素−窒素二重結合(C=N)、炭素−酸素二重結合(C=O)、窒素−酸素二重結合(N=O)が例示される。三重結合としては、炭素−炭素三重結合、炭素−窒素三重結合が例示される。不飽和結合を有する有機化合物としては、貯蔵性および輸送性の観点から、常温常圧下で液体状の有機化合物であることが好ましい。
不飽和結合を有する有機化合物としては、例えばオレフィン類、ジエン類、アセチレン類、ベンゼン、炭素鎖置換芳香族類、へテロ置換芳香族類、多環芳香族類、シフ塩基類、ヘテロ芳香族類、ヘテロ5員環化合物類、キノン類、ケトン類などが挙げられる。オレフィン類としては、エチレン、プロピレン、ブテン、ペンテン、ヘキセン、ヘプテン、オクテン、ノネン、デセン、ウンデセン、ドデセンなどが挙げられる。ジエン類としては、アレン、ブタジエン、ペンタジエン、ヘキサジエン、へブタジエン、オクタジエン、ピペリレン,イソプレンなどが挙げられる。アセチレン類としては、アセチレン、プロピン、ビニルアセチレンなどが挙げられる。炭素鎖置換芳香族類としては、アルキル置換芳香族類などが挙げられる。アルキル置換芳香族類としては、トルエン、キシレン、トリメチルベンゼン、エチルベンゼン、クメン、安息香酸などが挙げられる。へテロ置換芳香族類としては、アニソール、ジメトキシベンゼン、フェノール、アニリン、N、N−ジメチルアニリンなどが挙げられる。多環芳香族類としては、ナフタレン、メチルナフタレン、アントラセン、テトラセン、フェナントレン、テトラリン、アズレンなどが挙げられる。シフ塩基類としては、2-aza-hept-1-en-1-yl-cyclohexaneなどが挙げられる。ヘテロ芳香族類としては、ピリジン、ピリミジン、キノリン、イソキノリンなどが挙げられる。ヘテロ5員環化合物類としては、フラン、チオフェン、ピロール、イミダゾールなどが挙げられる。キノン類としては、ベンゾキノン、ナフトキノンなどが挙げられる。ケトン類としては、アセトン、メチルエチルケトンなどが挙げられる。なお、言うまでもないことであるが、二酸化炭素や一酸化炭素は不飽和結合を有しているが一般に有機化合物とは見なされないので、本実施形態における不飽和結合を有する有機化合物から除外される。
上記の不飽和化合物の中でも、ベンゼン、トルエン、キシレン、エチルベンゼン、ナフタレン、メチルナフタレン、テトラリンなど(以下、「ベンゼン等」と記載する。)は、水素化の前後において非水溶性であり、水と相分離可能であるため、生成物としての回収が非常に容易である点において、アセトン等の水溶性の有機化合物よりも好ましい。これらベンゼン等として、純粋な化合物を用いても良いし、複数の化合物の混合物を用いても良い。
[脱水素反応系]
図1に示すように、ローリーなどによって輸送されたMCHは、タンクT1内に貯留される。貯留されたMCHは、ポンプP1によって吸い上げられる。ポンプP1からの吐出流量は、フローコントローラ100によって制御される。ポンプP1から吐出されたMCH(L1)は、予熱器11によって、例えば室温近くの20℃から、110℃〜120℃に昇温される。昇温された液状のMCH(L2)は、蒸発器12によって蒸発され、例えば170℃〜190℃、好ましくは180℃程度の気化されたMCH(V1)となる。MCH(V1)は、さらに加熱器13によって例えば290℃〜310℃、好ましくは300℃程度に昇温され、MCH(V2)として脱水素反応器10に導入される。
脱水素反応器10内には、熱媒油などの熱媒体が通る管が蛇行して配置される。また、脱水素反応器10内には、脱水素触媒が取り付けられる。MCH(V2)の脱水素反応は吸熱反応であるため、熱媒体としては例えば340℃〜360℃、好ましくは350℃程度のものを用いて、脱水素反応器10内を通過するMCH(V2)の脱水素触媒の熱による劣化が穏やかである290℃〜310℃、好ましくは300℃程度に維持できるように脱水素反応器10内を加熱する。脱水素反応器10内に導入されたMCH(V2)は、水素とトルエンとに分解され、水素とトルエンと未分解のMCHを含む脱水素反応物V3として例えば320℃〜340℃、好ましくは330℃程度で脱水素反応器10から導出される。
脱水素反応物V3は、加熱器13において、加熱器13に導入されるMCH(V1)と熱交換を行う。熱交換された脱水素反応物V3は、例えば200℃〜220℃、好ましくは215℃程度に降温した脱水素反応物V4となる。この脱水素反応物V4は、予熱器11において、予熱器11に導入されるMCH(L1)と熱交換を行う。この予熱器11において、脱水素反応物V4とMCH(L1)とを熱交換することによって、後段の蒸発器12での熱交換量を減らすことができる。すなわち、このような構成とすることによって、後述するように、熱媒体を加熱するためのエネルギー消費を抑制することができるため、装置全体のエネルギー効率を高めることができる。この予熱器11において熱交換されたMCH(V5)は、139℃まで降温し、その後、水素分離系1Bに導出される。
脱水素反応器10に導入される熱媒体L11は、熱媒ボイラ21において加熱される。脱水素反応器10内で吸熱された熱媒体L12は、蒸発器12においてMCH(L1)と熱交換してMCH(L1)を蒸発させて、例えば170℃〜190℃、好ましくは180℃まで昇温する。その後、降温した熱媒体L13は、ポンプP2によって再び熱媒ボイラ21に導入されて加熱される。本実施形態1において熱媒体は、伝熱効率の観点から熱媒油を採用しているが、これには限られない。なお、熱媒体は、タンクT2に貯留され、熱媒体の循環系において熱媒体が不足する場合には当該循環系を構成する管路に熱媒体が補給され、熱媒体が多い場合には当該循環系を構成する管路から引き抜かれる。
熱媒ボイラ21は、ラインLN11を流れるLPガスG1とラインLN12を流れる空気G2とが流入し、LPガスG1を燃焼することによって熱媒体L13を加熱する。空気G2は、ブロア22によって吸引され、空気予熱器23によって予熱された後、熱媒ボイラ21に導入される。熱媒ボイラ21で燃焼した燃焼排ガスG3は、空気予熱器23で空気G2と熱交換を行った後、燃焼排ガスとして大気に排出される。この空気予熱器23を用いた空気予熱によってエネルギー効率を高めることができる。なお、熱媒ボイラ21による熱媒体の加熱制御は、温度コントローラ200が脱水素反応器10内の温度を検出し、この検出温度をもとにポンプP2による熱媒ボイラ21への熱媒体流量を調整するとともに、温度コントローラ201が検出する脱水素反応器10に流入する熱媒体L11の温度を検出し、この検出温度をもとに、フローコントローラ103を介して、熱媒ボイラ21で燃焼するLPガスG1の流量を調整することによってなされる。フローコントローラ103は、バルブVL103の開閉制御を行う。
なお、本実施の形態1では、熱媒ボイラ21を用いて熱媒体を加熱し、この加熱された熱媒体によって脱水素反応器10の加熱を行っている。このような熱媒体を用いた加熱機構を採用すると、例えばバーナーにより直接加熱する加熱機構に比べて、より均一に加熱することができるため、脱水素反応器10の温度制御をより安定して行うことができる。熱媒体を用いた加熱機構としては、液体状の熱媒体を用いたものには限られず、例えばLPガスをバーナーなどによって燃焼した燃焼ガスを脱水素反応器10内の配管に流入してMCH(V2)を加熱するような気体状の熱媒体を用いたものでもよい。また、加熱機構としては、熱媒体を用いたものには限られず、同様の効果があれば他の機構を採用しても良い。
本実施の形態1による脱水素反応系1Aでは、脱水素反応器10から導出される脱水素反応物V3の熱エネルギーを用いて加熱器13で脱水素反応器10に流入するMCH(V1)を加熱するとともに、蒸発器12の前段に配置された予熱器11が、加熱器13による熱交換後の脱水素反応物V4の熱エネルギーを用いて、蒸発前の液状のMCH(L1)を予熱するようにしている。この結果、蒸発器12においてMCH(L1)の蒸発に消費される熱媒体L12の熱エネルギーを減少することができる。この熱媒体L12から失われる熱エネルギーの減少は、熱媒ボイラ21で消費されるエネルギーの減少をもたらし、結果的に装置全体のエネルギー効率を向上させることができる。
[水素精製系]
一方、予熱器11を介した脱水素反応物V5は、水素精製系1Bに流入する。脱水素反応物V5は、冷却器31で例えば135℃〜140℃から、40℃程度にまで冷却され、気液分離器35によって気液分離される。気液分離器35で液状物質として分離されない、水素含有量が高い脱水素反応物V6は、さらに冷却器32で40℃から15℃程度まで冷却され、気液分離器36によって気液分離される。気液分離器36で液状物質として分離されず、水素含有量がさらに高まった脱水素反応物V7は、コンプレッサP3によって加圧された脱水素反応物V30として水素精製器30に導入される。なお、コンプレッサP3によって加圧された脱水素反応物V30は、加圧によって温度上昇するため、水素精製器30に導入する前に、冷却器33によって例えば80〜100℃、好ましくは90℃まで冷却される。
水素精製器30は、脱水素反応物V30から水素を選択的に精製する機能を有するものであり、水素濃度が製品水素の基準濃度未満の第1水素含有物と、水素濃度が製品水素の基準濃度以上の第2水素含有物を外部に導出する。本実施の形態1では、水素精製器30は、膜分離機構を用いたものが採用される。膜分離機構に採用される水素分離膜としては、コンプレッサP3から導入される圧力に耐え得る(例えば900kPa以上の耐圧性がある)膜として、カーボン膜、パラジウム膜、ゼオライト膜などが挙げられるが、耐圧性や小さい差圧での実用化の観点ではカーボン膜およびゼオライト膜が比較的好ましく、中でもカーボン膜が振動に対する機械的強度の観点で特に好ましい。カーボン膜は、分子量の小さい水素を透過させ、トルエンや未分解物質などの相対的に分子量の大きいものを透過させない機能を有している。コンプレッサP3は、200kPaの脱水素反応物V7を900kPaまで昇圧した脱水素反応物V30として水素精製器30に導出する。水素精製器30における水素精製時の差圧は、200kPaであるため、精製された水素V31は、90℃で700kPaとなる。水素V31は、冷却器34で、40℃まで冷却し、フローコントローラ101で調整して700kPaの水素V32として外部に導出される。すなわち、要求された外部圧力及び温度をもつ製品水素として外部に供給される。
ここで、圧力コントローラ400は、コンプレッサP3が導出する圧力が所定圧となるように制御する。この所定圧は、圧力損失を考慮し、水素分離器30における水素分離により生じる差圧200kPaと、水素分離器30によって分離された水素V31の外部に導出する圧力700kPaとを合わせた圧力900kPaよりも高い圧力にする。コンプレッサP3が導出する圧力をこのような所定圧にすることによって、水素精製器30の後段に従来設けていた、製品水素として必要な圧力に昇圧するための製品水素の導出専用のコンプレッサを設ける必要がなくなる。この結果、装置全体をコンパクトにすることができる。また、コンプレッサを分散配置せず、大型のコンプレッサに集約することによって圧力効率を高めることができ、結果的に、水素精製器30による水素精製処理に必要なエネルギー及び製品水素の供給処理に必要なエネルギーのトータルエネルギーを削減することができる。
なお、気液分離器35,36において液状物質として分離されたトルエン含有量が大きく水素が含まれる液化不純物L21,L22は、タンクT3に捕集され、回収トルエンとして用いられる。回収トルエンは、再び水素と反応させることにより水素化物(MCH)として繰り返し使用することができる。
水素精製器30における膜分離機構の水素分離膜を透過しなかった第1水素含有物G31は、供給ラインLN1を介して脱水素反応器10の導入側に導入される。水素分離膜以外を用いた場合も、高純度水素以外の炭化水素を含むガスを第1水素含有物とする。本実施の形態1では、第1水素含有物G31の加熱を効果的に行うために、第1水素含有物G31は、蒸発器12と加熱器13との間の配管内に導入される。この第1水素含有物G31には水素分離膜を透過できなかった水素が含まれる。第1水素含有物G31内の水素が脱水素反応器10に導入されると、脱水素反応器10内の脱水素触媒の劣化を抑制することができる。特に、本実施の形態1で示すように、第1水素含有物G31を脱水素反応器10の導入側(上流側)から導入することにより、相対的に水素の存在量が少ない当該導入側におけるコーキング現象の発生をより効果的に抑制することができる。
図2は、水素精製器30の導入・導出成分流量の関係を示す模式図である。図2に示すように、水素精製器30に導入される脱水素反応物V30は、水素:16.5kmol/h、その他:0.2kmol/hの流量配分であり、水素含有量が高い。水素精製器30によって精製される水素V31は、水素:13.4kmol/hであり、水素精製器30によって精製されなかった第1水素含有物G31は、水素:3.1kmol/h、その他:0.2kmol/hの流量配分となる。すなわち、第1水素含有物G31には、水素分離膜を透過できなかった水素が含まれており、この水素を脱水素反応器10の導入側に導入することによって、脱水素反応器10内の脱水素触媒の劣化を抑制することができる。
なお、図1において、温度コントローラ202〜204は、冷却器31〜33から導出されたガス温度を検出し、各冷却器31〜33に流入する冷却水の流量を調整することによって温度制御を行っている。ここで、冷却器31,33,34は、必要冷却能力が小さいため、クーリングタワーを介して自然冷却した冷却水を用いており、冷却器32は、必要冷却能力が大きいため、チラーを介して強制的に電気冷却した冷却水を用いている。なお、クーリングタワーを有効活用し、冷却器31,32による多段冷却を行うことによって強制冷却による電力消費が抑えられるため、装置全体のエネルギー効率を高めることができる。
また、気液分離器35,36の液化したトルエンの排出は、それぞれレベルコントローラ301,302によって排出制御される。すなわち、レベルコントローラ301,302は、それぞれ検出する液面が所定高さ以上となった場合にバルブを開いてトルエンをタンクT3に排出する。また、フローコントローラ101は、水素V32の導出流量が所定流量となるように、バルブを制御する。さらに、フローコントローラ102は、第1水素含有物G31の流量が所定流量となるように、バルブを制御する。
[燃焼排ガス利用]
熱媒ボイラ21からの燃焼排ガスG3の温度は、約400℃であり、空気予熱器23の下流の温度は、約200℃である。そこで、熱媒ボイラ21の燃焼排ガスG3の経路上であって空気予熱器23の上流に熱交換器40を設ける。供給ラインLN40は、熱交換器40と水素精製器30のケース45内との間を接続して、熱交換された媒体の熱エネルギーをケース45内に供給する。膜分離方式の水素精製器30は、約90℃に保温すると、精製効率が高まる。
本実施の形態1では、燃焼排ガスG3の熱エネルギーを水素精製器30の保温に用いるとともに、この保温によって水素精製器30による水素精製処理効率が高まることになる。
(実施の形態2)
次に、実施の形態2について説明する。上述した実施の形態1では、熱交換器40を空気予熱器23の上流に配置したが、本実施の形態2では、図3に示すように、空気予熱器23の下流に熱交換器50を配置し、約200℃の燃焼排ガスG3の熱エネルギーを、供給ラインLN50を介して水素精製器30のケース45内に供給している。
本実施の形態2では、燃焼排ガスG3の温度が約200℃であり熱エネルギーは低いが、水素精製器30を約90℃に保温するには十分な熱エネルギーである。
(実施の形態3)
次に、実施の形態3について説明する。上述した実施の形態1,2では、熱交換器40,50を用いて熱エネルギーを水素精製器30側に供給していたが、本実施の形態3では、図4に示すように、熱交換器40,50及び媒体を用いず、直接、燃焼排ガスG3を、供給ラインLN60を介して水素精製器30側に供給している。燃焼排ガスG3は、気体であるが、燃焼排ガスG3が温度低下しても、水素精製器30の保温には十分な熱エネルギーを供給することができる。なお、この場合、燃焼排ガスG3は、熱媒ボイラ21から排出された直後の高温のものを用いることが好ましい。また、燃焼排ガスG3を引き出す位置は、水素精製器30の保温を制御しなくてもよい位置であることが好ましい。
(実施の形態4)
次に、実施の形態4について説明する。上述した実施の形態1〜3では、燃焼排ガスG3の熱エネルギーを水素精製器30に供給して水素精製器30の加熱に利用していたが、水素製造装置1内の他の加熱機器にも供給することができる。図5に示すように、加熱器13の周囲をケース55で覆い、ケース55に熱媒供給ラインLN70により燃焼排ガスG3の熱エネルギーを加熱器13に供給することが可能である。予熱器11や蒸発器12についても、ケース55と同様の構造を設置し、燃焼排ガスG3の熱エネルギーを供給することが可能である。また、実施の形態3のように、直接、燃焼排ガスG3を、供給ラインを介して、予熱器11や蒸発器12、加熱器13の加熱に利用してもよい。
(実施の形態5)
次に、実施の形態5について説明する。例えば、熱媒体L12のラインに熱交換器を設け、この熱交換器と燃焼排ガスG3とを接続する熱媒供給ラインを介して、燃焼排ガスG3の熱エネルギーを熱媒体L12の加熱に利用し、蒸発器12に熱を供給することができる。また、熱媒体L13のラインに熱交換器を設けて、燃焼排ガスG3の熱エネルギーを熱媒体L13に供給し、脱水素反応器10に供給される熱媒体L11の予熱に利用してもよい。
また、本システム内の熱バランスが取れる範囲であれば、空気予熱器23を不要とするシステムの場合、燃焼排ガスG3を、供給ラインを介して、脱水素反応器10の加熱に用いることも可能である。
なお、上述した実施の形態1〜5の構成要素は適宜選択して組み合わせても良い。また、空気予熱器23を削除した構成であってもよい。
1 水素製造装置
1A 脱水素反応系
1B 水素精製系
10 脱水素反応器
11 予熱器
12 蒸発器
13 加熱器
21 熱媒ボイラ
22 ブロア
23 空気予熱器
30 水素精製器
31,32,33,34 冷却器
35,36 気液分離器
40,50 熱交換器
45,55 ケース
100,101,102,103 フローコントローラ
200,201,202,203,204 温度コントローラ
301,302 レベルコントローラ
400 圧力コントローラ
S1 濃度センサ
G1 LPガス
G2 空気
G3 燃焼排ガス
G31 第1水素含有物
L11,L12,L13 熱媒体
L21,L22 液化不純物
P1,P2 ポンプ
P3 コンプレッサ
T1,T2,T3 タンク
V3,V4,V5,V6,V7,V30 脱水素反応物
V31,V32,V33 水素
VL103 バルブ
LN1,LN40,LN50,LN60,LN70 供給ライン
LN11,LN12 ライン

Claims (7)

  1. 脱水素反応器により、有機ハイドライドを加熱し、水素と炭化水素を含有するガスを生成し、前記炭化水素を含有するガスから水素精製器によって高純度水素ガスを得る水素製造装置であって、
    前記脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラと、
    前記熱媒ボイラの燃焼排ガスの熱エネルギーを水素製造装置内の加熱機器に供給して前記加熱機器を保温する供給ラインと、
    を備えたことを特徴とする水素製造装置。
  2. 前記加熱機器は、前記水素精製器のケースであり、
    前記供給ラインは、前記熱媒ボイラの燃焼排ガスの熱エネルギーを前記水素精製器のケース内に供給して前記水素精製器を保温することを特徴とする請求項1に記載の水素製造装置。
  3. 前記燃焼排ガスの経路に、前記燃焼排ガスの熱を採取する熱交換器を設けたことを特徴とする請求項1または2に記載の水素製造装置。
  4. 前記燃焼排ガスの経路に空気予熱器が設けられ、前記熱交換器は、前記空気予熱器の上流または下流に設けたことを特徴とする請求項1から3のいずれかに記載の水素製造装置。
  5. 前記供給ラインは、燃焼排ガスを直接、前記水素精製器のケース内に供給して前記水素精製器を保温することを特徴とする請求項2に記載の水素製造装置。
  6. 脱水素反応器により、有機ハイドライドを加熱し、水素と炭化水素を含有するガスを生成し、前記炭化水素を含有するガスから水素精製器によって高純度水素ガスを生成する水素製造方法であって、
    前記脱水素反応器を加熱する熱媒体を加熱する熱媒ボイラの燃焼排ガスの熱エネルギーを水素製造装置内の加熱機器に供給して前記加熱機器を保温することを特徴とする水素製造方法。
  7. 前記加熱機器は、前記水素製造装置のケースであり、前記熱媒ボイラの燃焼排ガスの熱エネルギーを前記水素精製器のケース内に供給して前記水素精製器を保温することを特徴とする請求項6に記載の水素製造方法。
JP2015118455A 2015-06-11 2015-06-11 水素製造装置及び水素製造方法 Pending JP2017001914A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015118455A JP2017001914A (ja) 2015-06-11 2015-06-11 水素製造装置及び水素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015118455A JP2017001914A (ja) 2015-06-11 2015-06-11 水素製造装置及び水素製造方法

Publications (1)

Publication Number Publication Date
JP2017001914A true JP2017001914A (ja) 2017-01-05

Family

ID=57753782

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015118455A Pending JP2017001914A (ja) 2015-06-11 2015-06-11 水素製造装置及び水素製造方法

Country Status (1)

Country Link
JP (1) JP2017001914A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483979A (zh) * 2020-04-30 2020-08-04 上海齐耀动力技术有限公司 原料气及钯膜纯化器独立加热的氢气纯化装置和方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500589A (ja) * 1987-09-03 1990-03-01 ナッセル,モハメド 液体水素化物の脱水素のための装置
JP2010006653A (ja) * 2008-06-27 2010-01-14 Japan Energy Corp 水素製造方法
WO2014054650A1 (ja) * 2012-10-03 2014-04-10 Jx日鉱日石エネルギー株式会社 水素供給システム
JP2016000679A (ja) * 2014-06-12 2016-01-07 Jx日鉱日石エネルギー株式会社 水素製造装置及び水素製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02500589A (ja) * 1987-09-03 1990-03-01 ナッセル,モハメド 液体水素化物の脱水素のための装置
JP2010006653A (ja) * 2008-06-27 2010-01-14 Japan Energy Corp 水素製造方法
WO2014054650A1 (ja) * 2012-10-03 2014-04-10 Jx日鉱日石エネルギー株式会社 水素供給システム
JP2016000679A (ja) * 2014-06-12 2016-01-07 Jx日鉱日石エネルギー株式会社 水素製造装置及び水素製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483979A (zh) * 2020-04-30 2020-08-04 上海齐耀动力技术有限公司 原料气及钯膜纯化器独立加热的氢气纯化装置和方法

Similar Documents

Publication Publication Date Title
JP5864393B2 (ja) 水素供給システム
JP2016175818A (ja) 水素の製造方法、および水素製造システム
JP2016000679A (ja) 水素製造装置及び水素製造方法
JP2014073922A (ja) 水素供給システム
JP2017065937A (ja) 水素製造装置及び水素製造方法
JP2018012610A (ja) 水素製造装置及び水素製造方法
JP2017001914A (ja) 水素製造装置及び水素製造方法
JP2018052768A (ja) 水素製造システム起動方法及び水素製造システム
JP2016040218A (ja) 脱水素化システム、及び脱水素化システムの運転方法
JP6376999B2 (ja) 水素製造装置及び水素製造方法
JP6830819B2 (ja) 水素製造装置
JP2016169134A (ja) 脱水素反応器
JP2018002486A (ja) 水素製造装置
JP2016169133A (ja) 水素製造装置及び水素製造方法
JP2016000678A (ja) 水素製造装置及び水素製造方法
US20230111727A1 (en) Hydrogen supply system
JP2018002487A (ja) 水素製造装置
JP2017039632A (ja) 水素製造装置及び水素製造方法
WO2021200665A1 (ja) 水素供給システム
JP2016000677A (ja) 水素製造装置及び水素製造方法
JP2016050145A (ja) 脱水素化システム
JP2018052778A (ja) 水素製造装置及び水素製造方法
JP2018002566A (ja) 水素製造装置
WO2014157133A1 (ja) 水素供給システムの運転方法、水素供給設備及び水素供給システム
JP2021155272A (ja) 水素供給システム

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170913

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20180511

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180605

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20181127