JP2013503310A - Apparatus and method for storing and / or filtering substances - Google Patents

Apparatus and method for storing and / or filtering substances Download PDF

Info

Publication number
JP2013503310A
JP2013503310A JP2012526835A JP2012526835A JP2013503310A JP 2013503310 A JP2013503310 A JP 2013503310A JP 2012526835 A JP2012526835 A JP 2012526835A JP 2012526835 A JP2012526835 A JP 2012526835A JP 2013503310 A JP2013503310 A JP 2013503310A
Authority
JP
Japan
Prior art keywords
layer
sorption
substance
medium
sorption medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012526835A
Other languages
Japanese (ja)
Inventor
イー.マクアリスター ロイ
Original Assignee
マクアリスター テクノロジーズ エルエルシー
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/707,651 external-priority patent/US8075748B2/en
Priority claimed from PCT/US2010/024498 external-priority patent/WO2010096504A1/en
Priority claimed from PCT/US2010/024499 external-priority patent/WO2010096505A1/en
Application filed by マクアリスター テクノロジーズ エルエルシー filed Critical マクアリスター テクノロジーズ エルエルシー
Publication of JP2013503310A publication Critical patent/JP2013503310A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting from exhaust energy the devices using heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • EFIXED CONSTRUCTIONS
    • E21EARTH DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • F03G3/08Other motors, e.g. gravity or inertia motors using flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/26Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/29Electrical devices, e.g. computers, servers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/30Friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/20Improvements relating to chlorine production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Abstract

収着媒体との間で物質をロードし及び/又はアンロードするための装置、システム、及び方法である。物質は、物質は、収着材料の平行な層を備える収着媒体の縁部で与えられる。物質を収着媒体の中にロードするために(すなわち、吸収及び/又は吸着を介して)、熱が収着媒体から離して伝達され、ロード電圧が収着媒体に印加され、及び/又は収着媒体に対して圧力が増加される。収着媒体から物質をアンロードするために、収着媒体の中に熱が伝達され、ロード電圧とは反対の極性の電圧が収着媒体に印加され、及び/又は圧力が収着媒体に対して減少される。幾つかの実施形態において、収着媒体は、物質の分子をロードしてもよい表面構造を含む。An apparatus, system, and method for loading and / or unloading material from and to a sorption medium. The substance is provided at the edge of the sorption medium with a parallel layer of sorption material. In order to load a substance into the sorption medium (ie, via absorption and / or adsorption), heat is transferred away from the sorption medium, a load voltage is applied to the sorption medium, and / or The pressure is increased against the landing medium. To unload the material from the sorption medium, heat is transferred into the sorption medium, a voltage of opposite polarity to the load voltage is applied to the sorption medium, and / or pressure is applied to the sorption medium. Will be reduced. In some embodiments, the sorption medium includes a surface structure that may be loaded with molecules of matter.

Description

関連出願への相互参照
本出願は、2010年2月13日に出願されたFULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCEと題する米国特許仮出願第61/304,403号、2010年2月17日に出願されたELECTROLYTIC CELL AND METHOD OF USE THEREOFと題する米国特許出願第12/707,651号、2010年2月17日に出願されたELECTROLYTIC CELL AND METHOD OF USE THEREOFと題するPCT出願番号PCT/US10/24497号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSISと題する米国特許出願第12/707,653号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSISと題するPCT出願番号PCT/US10/24498号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR GAS CAPTURE DURING ELECTROLYSISと題する米国特許出願第12/707,656号、2010年2月17日に出願されたAPPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSISと題するPCT出願番号PCT/US10/24499号、及び2009年8月27日に出願されたELECTROLYZER AND ENERGY INDEPENDENCE TECHNOLOGIESと題する米国特許仮出願第61/237,476号に基づく優先権及びその利益を主張するものである。これらの出願は、参照によりその全体が組み込まれる。
CROSS REFERENCE TO RELATED APPLICATIONS This application was filed on Feb. 17, 2010, US Provisional Application No. 61 / 304,403, FULL SPECTRUM ENERGY AND RESOURCE INDEPENDENCE filed on Feb. 13, 2010. US Patent Application No. 12 / 707,651 entitled ELECTROLYTIC CELL AND METHOD OF THE THEREOF, PCT Application No. PC97 / US101024 entitled ELECTROLYTIC CELL AND METHOD OF THE THEREOF filed on Feb. 17, 2010 APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLY filed on February 17, US Patent Application No. 12 / 707,653 entitled SIS, PCT application number PCT / US10 / 24498, February 2010, APPARATUS AND METHOD FOR CONTROLLING NUCLEATION DURING ELECTROLYSIS filed on February 17, 2010. U.S. Patent Application No. 12 / 707,656 entitled APPARATUS AND METHOD FOR CONTROLLING CONTROLLED NUMBERS APPLATUS AND METHODS FOR GAS CAPTURE DURING ELECTROLYSIS filed on February 17, 2010 US 10/24499 and 2009 Entitled ELECTROLYZER AND ENERGY INDEPENDENCE TECHNOLOGIES, filed Aug. 27, U.S. Pat which claims priority to and the benefit based on provisional application No. 61 / 237,476. These applications are incorporated by reference in their entirety.

本技術は、収着媒体を備える装置による物質の貯蔵及び/又は濾過に関する。   The present technology relates to the storage and / or filtration of substances by a device comprising a sorption medium.

再生可能資源に対する需要が増大しているが、世界は、そのエネルギー要求の多くを、石油を用いることで満たし続けている。石油の副産物燃料車、船、及び飛行機、並びに世界の多くにおいて、これは電気を発生させるために燃やされる。石油は非常に有用な物質であるが、地球が埋蔵するのは限られた量だけであり、石油が地面から引き出されるとき及びその副産物がエネルギーのために燃焼されるときに、地球の生息生物である植物と動物との両方が直接及び間接的に害される。環境を保全し、且つ増大している世界人口のエネルギー要求を満たすために、人々は石油の代わりに代替物質を代用しなければならない。   While demand for renewable resources is increasing, the world continues to meet many of its energy needs by using oil. In oil by-product fuel vehicles, ships and airplanes, and in many parts of the world, this is burned to generate electricity. Petroleum is a very useful substance, but the Earth reserves only a limited amount, and when the oil is withdrawn from the ground and its by-products are burned for energy, Both plants and animals are directly and indirectly harmed. In order to preserve the environment and meet the growing energy needs of the world's population, people must substitute alternatives for oil.

人類が石油を用いることから移り変わる必要があるにもかかわらず、石油と同じくらい安く且つ容易に、石油に対する需要に合致する量で得られる、処理できる、貯蔵できる、及び使用できる代替物はわずかである。したがって、石油は、世界経済において本質的な燃料のままである。石油が世界中で優勢である大きな要因は、その副産物の高い体積あたりのエネルギー密度であり、これは、炭化水素が社会の需要を満たすエネルギー容量で輸送され貯蔵されることを可能にする。ガソリンは、例えば、1キログラムあたり約44.4メガジュール(「MJ/kg」)を含有し、ディーゼル燃料は、約45.4MJ/kgを含有する。双方とも容易に入手可能な、ガソリン及びディーゼルへの代替燃料である、水素及びメタンは、それぞれ約143MJ/kg及び55.6MJ/kgを含有する。しかしながら、水素及びメタンは、室温及び大気圧では気体であり、したがって、ガソリン及びディーゼルのような液体炭化水素よりもずっと密度が低い。その結果、水素ガスは、1リットルあたりほんの約0.01079メガジュール(「MJ/l」)を含有し、メタンガスは、ほんの約0.0378MJ/lを含有し、一方、ガソリンは約32MJ/lを含有し、ディーゼルは約38.6MJ/lを含有する。水素及びメタンのような気体が世界レベルで炭化水素に置き換わる場合、それらは、それらの低いエネルギー密度を体積によって補償する状態で貯蔵できなければならない。   Despite the need for humanity to shift from using oil, there are few alternatives that can be obtained, processed, stored, and used as cheaply and easily as oil, in quantities that meet the demand for oil. is there. Thus, oil remains an essential fuel in the global economy. A major factor in the dominance of oil around the world is the high volumetric energy density of its by-products, which allows hydrocarbons to be transported and stored at an energy capacity that meets social demands. Gasoline, for example, contains about 44.4 megajoules (“MJ / kg”) per kilogram, and diesel fuel contains about 45.4 MJ / kg. Hydrogen and methane, both readily available alternative fuels to gasoline and diesel, contain about 143 MJ / kg and 55.6 MJ / kg, respectively. However, hydrogen and methane are gases at room temperature and atmospheric pressure and are therefore much less dense than liquid hydrocarbons such as gasoline and diesel. As a result, hydrogen gas contains only about 0.01079 megajoules per liter ("MJ / l"), methane gas contains only about 0.0378 MJ / l, while gasoline is about 32 MJ / l. And diesel contains about 38.6 MJ / l. When gases such as hydrogen and methane replace hydrocarbons at the world level, they must be able to be stored with their low energy density compensated by volume.

水素及び他のガスをより高い体積あたりのエネルギー密度で貯蔵するための多くの方法が開発されている。第1の手法は、ガスを超高圧で貯蔵することである。この方法は、パイプラインを通してガスを輸送することを含む多くの用途に有用であるが、ガスを圧縮することに多大なエネルギーが費やされるため、ほとんどの典型的な用途に対して実行不可能である。また、高圧に耐えることができるタンクは、圧縮ガスによって燃料供給される可能性があるほとんどの車両、飛行機、又は他の機械にとって重すぎる。別の手法は、ガスを液体又はスラッシュとして貯蔵することである。この手法は、莫大な貯蔵費用を含む多くの欠点に悩まされる。例えば、最も実行可能な石油代替物のうちの1つである水素のように、多くのガスは、非常に低い温度で沸点に達し、これはそれらが極低温で貯蔵されなければならないことを意味し、ガスを液体又はスラッシュに冷却し且つこれを冷却された状態に保つことには多大な量のエネルギーが費やされるであろう。   Many methods have been developed to store hydrogen and other gases at higher energy density per volume. The first approach is to store the gas at ultra high pressure. This method is useful for many applications, including transporting gas through pipelines, but it is not feasible for most typical applications due to the significant energy expended in compressing the gas. is there. Also, tanks that can withstand high pressures are too heavy for most vehicles, airplanes, or other machines that may be fueled by compressed gas. Another approach is to store the gas as a liquid or slush. This approach suffers from a number of drawbacks including enormous storage costs. For example, many gases reach boiling point at very low temperatures, such as hydrogen, which is one of the most viable oil substitutes, which means they must be stored at cryogenic temperatures However, a significant amount of energy will be spent cooling the gas to a liquid or slush and keeping it cooled.

水素及び他のガスはまた、吸収された物質として又は金属水素化物として、より高い体積あたりのエネルギー密度で貯蔵される場合がある。残念なことに、多くの金属水素化物は、レアアースメタルを含み、且つ貯蔵のために用いられる重金属に起因して炭化水素よりも低い質量あたりのエネルギー密度を有する。加えて、活性炭粒、炭化ティッシュ(carbonized tissue)、ゼオライト、及び水素化物粒子のような水素を受け入れる材料は、熱伝導性に乏しく、これらの材料がガスを吸収するために冷却される場合の速度と、これらの材料がガスを放出するために加熱される場合の速度との両方が制限されることを意味する。これらの材料はまた、劣化する又は粉塵及び破片を生じる場合があり、これは、放出されるガスを汚染し、貯蔵システムの送出管、取付具、弁、及びフィルタを詰まらせる場合がある。   Hydrogen and other gases may also be stored at higher energy densities per volume, either as absorbed materials or as metal hydrides. Unfortunately, many metal hydrides contain rare earth metals and have a lower energy density per mass than hydrocarbons due to the heavy metals used for storage. In addition, materials that accept hydrogen, such as activated carbon particles, carbonized tissue, zeolites, and hydride particles, have poor thermal conductivity and the rate at which these materials are cooled to absorb gas. And the rate at which these materials are heated to release gas is limited. These materials can also degrade or produce dust and debris, which can contaminate the released gas and clog the delivery system's delivery tubes, fittings, valves, and filters.

そのうえ、石油とその副産物を石油が精製される又はその副産物が消費される場所に輸送することに多大なエネルギーが費やされ、一方では、農場廃棄物のような燃料に変換することができる大量の再生可能資源が廃棄される。加えて、炭化水素が燃やされるときに、それらの副産物は一般に捨てられる。これらの副産物は地球の大気を暖めている。歴史的に、炭化水素の副産物を後で生産的に利用するために貯蔵する、処理する、又はフィルタするのはこれまで難しかった。例えば、車両製造業者は、排気がそれだけ大きな体積を占めるので、燃焼機関からの排気を貯蔵するのは実際的ではないと考えるかもしれない。同様に、炭化水素の副産物から粒子状物質を除去するフィルタが存在するが、第2の化合物から第1の化合物をフィルタする又は限られた量のスペースで副産物を別の化合物と反応させて有用な化合物をもたらすことは難しい。結果として、炭化水素の副産物は、空気中に放出され、潜在的に実りあるエネルギー源を無駄にし、地球を汚染している。   In addition, significant amounts of energy is spent transporting oil and its by-products to the location where the oil is refined or consumed, while on the other hand a large amount that can be converted into fuel such as farm waste Of renewable resources are discarded. In addition, when the hydrocarbons are burned, their by-products are generally discarded. These by-products warm the Earth's atmosphere. Historically, it has been difficult to store, process or filter hydrocarbon by-products for later productive use. For example, vehicle manufacturers may think it is impractical to store exhaust from a combustion engine because the exhaust occupies such a large volume. Similarly, filters exist that remove particulate matter from hydrocarbon by-products, but are useful by filtering the first compound from a second compound or reacting the by-product with another compound in a limited amount of space. It is difficult to bring about new compounds. As a result, hydrocarbon by-products are released into the air, wasting potentially productive energy sources and polluting the earth.

本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の略側断面図である。1 is a schematic cross-sectional side view of a container for storing and / or filtering material configured in accordance with embodiments of the present technology. FIG. 本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。2 is an enlarged schematic side cross-sectional view of parallel layers of a sorption medium including a surface structure configured in accordance with an embodiment of the present technology. FIG. 本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。2 is an enlarged schematic side cross-sectional view of parallel layers of a sorption medium including a surface structure configured in accordance with an embodiment of the present technology. FIG. 本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。2 is an enlarged schematic side cross-sectional view of parallel layers of a sorption medium including a surface structure configured in accordance with an embodiment of the present technology. FIG. 本技術の実施形態に従って構成される表面構造を含む収着媒体の平行な層の拡大略側断面図である。2 is an enlarged schematic side cross-sectional view of parallel layers of a sorption medium including a surface structure configured in accordance with an embodiment of the present technology. FIG. 本技術の実施形態に係る収着媒体の中に物質をロードするためのプロセスの流れ図である。2 is a flow diagram of a process for loading a substance into a sorption medium according to an embodiment of the present technology. 本技術の実施形態に係る収着媒体から物質をアンロードするためのプロセスの流れ図である。2 is a flow diagram of a process for unloading material from a sorption medium according to an embodiment of the present technology. 本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の側面図である。1 is a side view of a container for storing and / or filtering material configured in accordance with an embodiment of the present technology. FIG. 本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の略側断面図である。1 is a schematic cross-sectional side view of a container for storing and / or filtering material configured in accordance with embodiments of the present technology. FIG. 本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の領域の拡大略側断面図である。FIG. 6 is an enlarged schematic side cross-sectional view of a region of a container for storing and / or filtering material configured in accordance with embodiments of the present technology. 本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器の領域の拡大略側断面図である。FIG. 6 is an enlarged schematic side cross-sectional view of a region of a container for storing and / or filtering material configured in accordance with embodiments of the present technology. 本技術の実施形態に従って構成される物質をフィルタリングするための装置の略側断面図である。1 is a schematic cross-sectional side view of an apparatus for filtering material configured in accordance with an embodiment of the present technology. 本技術の実施形態に従って構成される物質をフィルタリングするための装置の等角図である。1 is an isometric view of an apparatus for filtering material configured in accordance with embodiments of the present technology. FIG. 本技術の実施形態に従って構成される物質を貯蔵する及び/又はフィルタリングするための容器及び関連するシステムの略側断面図である。1 is a schematic cross-sectional side view of a container and associated system for storing and / or filtering material configured in accordance with embodiments of the present technology.

本出願は、2004年11月9日に出願されたMULTIFUEL STORAGE,METERING AND IGNITION SYSTEMと題する米国特許仮出願第60/626,021号(代理人整理番号69545−8013US)、2009年2月17日に出願されたFULL SPECTRUM ENERGYと題する米国特許仮出願第61/153,253号(代理人整理番号69545−8001US)、及び2010年7月21日に出願されたMETHOD AND SYSTEM OF THERMOCHEMICAL REGENERATION TO PROVIDE OXYGENATED FUEL,FOR EXAMPLE,WITH FUEL−COOLED FUEL INJECTORSと題する米国特許出願第12/804,509号(代理人整理番号69545−8037US)の主題のその全体を参照により組み込む。本出願は、2010年8月16日に本出願と同時に出願された以下のタイトルの米国特許出願、すなわち、METHODS AND APPARATUSES FOR DETECTION OF PROPERTIES OF FLUID CONVEYANCE SYSTEMS(代理人整理番号69545−8003US)、COMPREHENSIVE COST MODELING OF AUTOGENOUS SYSTEMS AND PROCESSES FOR THE PRODUCTION OF ENERGY,MATERIAL RESOURCES AND NUTRIENT REGIMES(代理人整理番号69545−8025US)、ELECTROLYTIC CELL AND METHOD OF USE THEREOF(代理人整理番号69545−8026US)、SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED PRODUCTION OF RENEWABLE ENERGY,MATERIALS RESOURCES,AND NUTRIENT REGIMES(代理人整理番号69545−8040US)、SYSTEMS AND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE ENERGY(代理人整理番号69545−8041US)、SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE MATERIAL RESOURCES(代理人整理番号69545−8042US)、METHOD AND SYSTEM FOR INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION (SOTEC)(代理人整理番号69545−8044US)、GAS HYDRATE CONVERSION SYSTEM FOR HARVESTING HYDROCARBON HYDRATE DEPOSITS(代理人整理番号69545−8045US)、ENERGY SYSTEM FOR DWELLING SUPPORT(代理人整理番号69545−8047US)、ENERGY CONVERSION ASSEMBLIES AND ASSOCIATED METHODS OF USE AND MANUFACTURE(代理人整理番号69545−8048US)、及びINTERNALLY REINFORCED STRUCTURAL COMPOSITES AND ASSOCIATED METHODS OF MANUFACTURING(69545−8049US)の各々の主題のその全体を参照により組み込む。   This application is a US Provisional Application No. 60 / 626,021 (Attorney Docket No. 69545-8013 US), filed on November 9, 2004, entitled MULTIFUL STORE, METERING AND IGNITION SYSTEM, February 17, 2009. US Provisional Application No. 61 / 153,253 (Attorney Docket No. 69545-8001US) entitled FULL SPECTRUM ENERGY, filed on July 20, 2010, and METHOD AND SYSTEM OF THERMOCHEMICAL REPROGED OXYGENY filed on July 21, 2010 US patents titled FUEL, FOR EXAMPLE, WITH FUEL-COOLED FUEL INJECTORS The entire subject matter of No. 12 / 804,509 (Attorney Docket No. 69545-8037US) incorporated by reference. This application is a U.S. patent application filed at the same time as this application on August 16, 2010: METHODS AND APPARATES FOR DETECTION OF PROPERTIS OF FLUID CONVEYANCE SYSTEMS (Attorney Docket No. 69545-8003US), COMPREHENS COST MODELING OF AUTOGENOUS SYSTEM AND PROCESSES FOR THE PRODUCTION OF ENERGY, MATERIAL RESOURCES AND NUTRIENT REGIMES (Attorney Reference Number 69545-8025US) OF (Attorney Docket No. 69545-8026US), SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED PRODUCTION OF RENEWABLE ENERGY, MATERIALS RESOURCES, AND NUTRIENT REGIMES (Attorney Docket No. 69545-8040US), SYSTEMS AND METHODS FOR SUSTAINABLE ECONOMIC DEVELOPMENT THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE ENERGY (Attorney Docket No. 69545-8041US), SUSTAINABLE ECONOMIC DEVELOPmen THROUGH INTEGRATED FULL SPECTRUM PRODUCTION OF RENEWABLE MATERIAL RESOURCES (Attorney Docket No. 69545-8042US), METHOD AND SYSTEM FOR INCREASING THE EFFICIENCY OF SUPPLEMENTED OCEAN THERMAL ENERGY CONVERSION (SOTEC) (Attorney Docket No. 69545-8044US), GAS HYDRATE CONVERSION SYSTEM FOR HARVETING HYDROCARBON HYDRATE DEPOSITS (Attorney Docket Number 69545-8045US), ENERGY SYSTEM FOR DWELLIN SUPPORT (Attorney Docket No. 69545-8047US), ENERGY CONVERSION ASEMBLIES AND ASSOCIATED METHODS OF USE MANFACTOTH MANFACT RED Is incorporated by reference in its entirety.

物質を貯蔵する及び/又はフィルタリングするためのシステム、装置、及び方法が説明される。収着媒体は、或る距離又は様々な距離だけ離間される収着材料の平行な層を備える。物質は、収着媒体の縁部で与えられる。収着媒体の縁部は、収着媒体の層の間の区域へのアクセスを提供する。収着媒体の中への物質の分子のロード(すなわち吸収及び/又は吸着)を容易にするために及び/又はロードを引き起こすために、熱が収着媒体から離して伝達されてもよい。同様に、収着媒体が物質の分子をロードするのを容易にするために及び/又はロードを引き起こすために、収着媒体に第1の極性の電圧が印加されてもよい。同じように、収着媒体が物質の分子をロードするのを容易にするために及び/又はロードを引き起こすために、収着媒体によって経験される圧力が増加されてもよい。幾つかの実施形態において、収着媒体はまた、物質をロードする表面構造を備える。幾つかの実施形態において、触媒は、収着媒体に物質をロードするのを容易にする。物質は、収着媒体に熱を伝達すること、第1の極性とは反対の極性の電圧を収着媒体に印加すること、及び/又は収着媒体によって経験される圧力を低下させることによって、収着媒体からアンロードすることができる。   Systems, apparatus, and methods for storing and / or filtering materials are described. The sorption medium comprises parallel layers of sorption material that are separated by a distance or various distances. The material is provided at the edge of the sorption medium. The edge of the sorption medium provides access to the area between the layers of sorption medium. Heat may be transferred away from the sorption medium to facilitate and / or cause loading of the molecules of the substance into the sorption medium (ie, absorption and / or adsorption). Similarly, a first polarity voltage may be applied to the sorption medium to facilitate and / or cause loading of the molecules of matter. Similarly, the pressure experienced by the sorption medium may be increased in order to facilitate and / or cause loading of the molecules of matter. In some embodiments, the sorption medium also comprises a surface structure that loads the substance. In some embodiments, the catalyst facilitates loading the material into the sorption medium. The material transfers heat to the sorption medium, applies a voltage of a polarity opposite to the first polarity to the sorption medium, and / or reduces the pressure experienced by the sorption medium, It can be unloaded from the sorption medium.

幾つかの実施形態において、収着媒体は、容器の中に封入される。幾つかの実施形態において、収着媒体は管に構成される。幾つかの実施形態において、収着媒体は物質のすべての分子をロードし、一方、他の実施形態において、収着媒体は、物質の特定化合物の分子(単数又は複数)のみをロードする。幾つかの実施形態において、収着媒体は物質をフィルタする。幾つかの実施形態において、収着媒体は物質を貯蔵する。幾つかの実施形態において、収着媒体にロードされる物質と別の物質との間の化学反応に触媒作用を及ぼすために、収着媒体の少なくとも一部に触媒が適用される。   In some embodiments, the sorption medium is enclosed in a container. In some embodiments, the sorption medium is configured in a tube. In some embodiments, the sorption medium loads all molecules of the substance, while in other embodiments, the sorption medium loads only the molecule (s) of a particular compound of the substance. In some embodiments, the sorption medium filters the material. In some embodiments, the sorption medium stores the material. In some embodiments, a catalyst is applied to at least a portion of the sorption medium to catalyze a chemical reaction between a substance loaded into the sorption medium and another substance.

システム、装置、及び方法が種々の実施形態に関してここで説明されるであろう。以下の説明は、システム、装置、及び方法のこれらの実施形態の十分な理解のための具体的な詳細、及びそれを可能にする説明を提供する。しかしながら、これらの詳細なしにシステムが実施されてもよいことを当業者は理解するであろう。他の場合には、システムの実施形態の説明を不必要に不明瞭にすることを避けるために、周知の構造及び機能は詳細には図示又は説明されていない。   Systems, apparatus, and methods will now be described with respect to various embodiments. The following description provides specific details for a thorough understanding of these embodiments of the systems, apparatus, and methods, and descriptions that enable it. However, those skilled in the art will appreciate that the system may be implemented without these details. In other instances, well-known structures and functions have not been shown or described in detail to avoid unnecessarily obscuring the description of the system embodiments.

以下で提示される説明で用いられる用語は、システムの或る具体的な実施形態の詳細な説明と組み合わせて用いられていても、その最も広い妥当な様式で解釈されることを意図される。或る用語は、以下で強調される場合もあるが、任意の制約された様式で解釈されることを意図された任意の用語は、この詳細な説明のセクションで明白に及び具体的に定義されるであろう。   The terms used in the description presented below are intended to be interpreted in their broadest reasonable manner, even when used in combination with a detailed description of certain specific embodiments of the system. Certain terms may be highlighted below, but any terms intended to be interpreted in any constrained manner are clearly and specifically defined in this detailed description section. It will be.

図1は、本技術の実施形態に係る物質を貯蔵する及び/又はフィルタリングするための容器2の略側断面図である。容器2は、第1のポート10を通してガスのような物質を受け入れ、物質は、容器2内の収着媒体6を通して走る多孔通路4を通過する。第1の弁13と第2の弁18は、容器2に出入りする物質の量を制御するために様々な度合いに開かれ又は閉じられてもよい。物質は、多孔通路4の穿孔を通して収着媒体6の第1の縁部15に与えられ、収着媒体6は、収着材料の層上に及び層の間の区域に物質をロードする(すなわち、吸収する及び/又は吸着する)収着材料の平行な円盤形の層を備え、収着媒体の中にロードされる物質の体積を減少させる。その結果、容器2は、物質が大気温度及び圧力で出る密度よりもかなり高い密度で物質を貯蔵するように構成することができる。容器2は、収着媒体6から放出された後の物質を追い出す(expel)のに用いることができる第2のポート11を含む。幾つかの実施形態において、容器2は、物質の特定の化合物のみが収着媒体6によってロードされ、且つ物質の残りの化合物がロードされることなく容器2を通過するように構成される。その結果、容器2はまた、物質をフィルタするようにも構成することができる。   FIG. 1 is a schematic cross-sectional side view of a container 2 for storing and / or filtering substances according to embodiments of the present technology. The container 2 receives a substance such as a gas through the first port 10, and the substance passes through the porous passage 4 that runs through the sorption medium 6 in the container 2. The first valve 13 and the second valve 18 may be opened or closed to varying degrees to control the amount of material entering or leaving the container 2. The substance is applied to the first edge 15 of the sorption medium 6 through the perforations in the porous passage 4 and the sorption medium 6 loads the substance onto and between the layers of sorption material (i.e. A parallel disk-shaped layer of sorption material (which absorbs and / or adsorbs) to reduce the volume of material loaded into the sorption medium. As a result, the container 2 can be configured to store the material at a much higher density than the density at which the material exits at atmospheric temperature and pressure. The container 2 includes a second port 11 that can be used to expel the material after it has been released from the sorption medium 6. In some embodiments, the container 2 is configured such that only certain compounds of the substance are loaded by the sorption medium 6 and pass through the container 2 without loading the remaining compounds of the substance. As a result, the container 2 can also be configured to filter substances.

A.収着媒体と表面構造
容器2の収着媒体6は、物質の分子がその上に及びその間に吸着され及び吸収される、収着材料の平行な層を備える。平行な層に適した材料は、グラフェン、グラファイト、窒化ホウ素、セラミックス、金属、又はポリマーを含み、これらの材料の種々の組合せ及び順列を含む。以下で解説するように、幾つかの実施形態において、材料は、収着媒体6からの物質のロード又はアンロードを容易にするために熱が各層を通して伝達され及び各層から除去されることを可能にする、熱伝達のための高い利用可能性を有する。同様に、幾つかの実施形態において、材料は導電性であり、物質のロード又はアンロードを容易にするために平行な層のうちの層の両端に電圧が印加される。グラフェンは、それが導電性であり、熱伝達のための高い利用可能性を有することから、収着媒体6に適した材料の例である。幾つかの実施形態において、各々の平行な層は、1原子のみの厚さであり、一方、他の実施形態において、層のうちの幾つか又はすべては、1原子よりも大きい厚さである。幾つかの実施形態において、収着媒体6の層の熱伝導性及び電気伝導性は、層の厚さを変化させることによって調節される。
A. Sorption medium and sorption medium 6 of the surface structure container 2 comprise parallel layers of sorption material on which and between which molecules of matter are adsorbed and absorbed. Suitable materials for the parallel layers include graphene, graphite, boron nitride, ceramics, metals, or polymers, including various combinations and permutations of these materials. As discussed below, in some embodiments, the material allows heat to be transferred through and removed from each layer to facilitate loading or unloading of material from the sorption medium 6. Have high availability for heat transfer. Similarly, in some embodiments, the material is conductive and a voltage is applied across the layers of the parallel layers to facilitate loading or unloading of the material. Graphene is an example of a material that is suitable for the sorption medium 6 because it is conductive and has high availability for heat transfer. In some embodiments, each parallel layer is only one atom thick, while in other embodiments, some or all of the layers are thicker than one atom. . In some embodiments, the thermal and electrical conductivity of the layers of sorption media 6 are adjusted by changing the thickness of the layers.

収着媒体6は、多くの技術のうちのいずれかを用いて平行な層に製造し及び構成することができる。幾つかの実施形態において、収着媒体の平行な層は、単結晶から剥離される。例えば、幾つかの実施形態において、単結晶グラファイトが円盤のような所望の形状に成長され及び/又は機械加工され、原子と同じくらい薄い層が結晶から剥離される。剥離される前にグラファイト結晶を通した穴が開けられてもよく、結晶が剥離されている間、多孔通路4のような中央基体が結晶を定位置に保持してもよい。参照により本明細書に組み込まれる米国特許第6,503,584号及び米国特許仮出願第61/304,403号は、1原子と同じくらい薄い収着材料の層をもたらすために単結晶を剥離するのに適したシステム及び方法を説明する。マイカ、ゼオライトを形成する鉱物、及び窒化ホウ素のような化合物を含む多くの他の材料が類似の技術を用いて剥離されてもよい。   The sorption medium 6 can be manufactured and configured in parallel layers using any of a number of techniques. In some embodiments, parallel layers of sorption media are stripped from the single crystal. For example, in some embodiments, single crystal graphite is grown and / or machined to a desired shape, such as a disk, and a layer as thin as atoms is peeled off the crystal. A hole through the graphite crystal may be drilled before peeling, and a central substrate such as the porous passage 4 may hold the crystal in place while the crystal is peeling. US Pat. No. 6,503,584 and US Provisional Application No. 61 / 304,403, incorporated herein by reference, exfoliate single crystals to provide a layer of sorption material as thin as one atom. Systems and methods suitable for doing so are described. Many other materials, including mica, minerals that form zeolites, and compounds such as boron nitride, may be stripped using similar techniques.

収着媒体6の層はまた、化合物を脱水素化することによって形成することができる。例えば、炭化水素を解離させて炭素と水素を生じさせるために、メタンのような炭化水素にエネルギーを適用することができる。例えば、収着媒体の層にとって十分な炭素を生じるのに充分な時間だけメタンに電気を適用することができる。結果として得られる炭素を基体上に堆積し又は所望の形状に形作ることができる。これらのグラフェン堆積物は、互いに平行な基体上に構成されてもよい収着媒体の層に自己組織化(self−organize)するであろう。   The layer of sorption medium 6 can also be formed by dehydrogenating the compound. For example, energy can be applied to a hydrocarbon such as methane to dissociate the hydrocarbon to produce carbon and hydrogen. For example, electricity can be applied to methane for a time sufficient to produce enough carbon for the layer of sorption media. The resulting carbon can be deposited on the substrate or shaped into the desired shape. These graphene deposits will self-organize into layers of sorption media that may be constructed on mutually parallel substrates.

収着媒体6の平行な層は、収着媒体6の層の表面上及び収着媒体6の層の間の区域への物質の分子のロードを可能にする距離だけ互いから離間される。図2Aは、本技術の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。収着媒体6の平行な層22の表面上に種々の表面構造20が適用される。これらの表面構造20は、ナノチューブ20a、ナノスクロール(nano−scroll)20b、並びに多孔質ティッシュ、剥離されたティッシュ、炭化ティッシュ、ロッド20c、及び花状構造20dのような種々の他の高い表面ナノ構造を含むことができる。幾つかの実施形態において、表面構造は、収着媒体がより多くの物質をロードすることを可能にする。幾つかの実施形態において、表面構造は、収着媒体が物質の特定の化合物をロードすることを可能にする。幾つかの実施形態において、表面構造は、収着媒体が物質の分子をより迅速にロードし及び/又はアンロードできるようにする。幾つかの実施形態において、特定のタイプの表面構造が、別の表面構造よりも好ましい。例えば、幾つかの実施形態において、ナノスクロールは、ナノチューブよりも好ましい場合がある。ナノスクロールは物質の複数の分子を同時にロードでき及びアンロードできる場合があるが、一方、ナノチューブは一度に一分子だけをロードでき又はアンロードできる場合があるので、ナノスクロールは、ナノチューブが可能であるよりも迅速に物質の分子をロードでき及びアンロードできる場合がある。幾つかの実施形態において、第1のタイプの表面構造は第1の化合物をロードし、第2のタイプの表面構造は第2の化合物をロードする。幾つかの実施形態において、表面構造20は、導電性である及び/又は熱伝達のための高い利用可能性を有する材料からなる。幾つかの実施形態において、表面構造は炭素からなる。   The parallel layers of sorption media 6 are separated from each other by a distance that allows loading of molecules of matter onto the surface of the layer of sorption media 6 and to the area between the layers of sorption media 6. FIG. 2A shows an enlarged schematic side cross-sectional view of region 200 of sorption medium 6 according to an embodiment of the present technology. Various surface structures 20 are applied on the surface of the parallel layers 22 of the sorption medium 6. These surface structures 20 include nanotubes 20a, nano-scrolls 20b, and various other high surface nanos such as porous tissue, exfoliated tissue, carbonized tissue, rods 20c, and flower-like structures 20d. Structure can be included. In some embodiments, the surface structure allows the sorption medium to load more material. In some embodiments, the surface structure allows the sorption medium to load a particular compound of matter. In some embodiments, the surface structure allows the sorption medium to more quickly load and / or unload molecules of matter. In some embodiments, certain types of surface structures are preferred over other surface structures. For example, in some embodiments, nanoscrolls may be preferred over nanotubes. Nanoscrolls may be able to load and unload multiple molecules of matter simultaneously, while nanotubes may be able to load or unload only one molecule at a time, so nanoscrolls can be nanotubes. In some cases, molecules of a substance can be loaded and unloaded more quickly. In some embodiments, the first type of surface structure loads a first compound and the second type of surface structure loads a second compound. In some embodiments, the surface structure 20 is made of a material that is electrically conductive and / or has high availability for heat transfer. In some embodiments, the surface structure consists of carbon.

表面構造は、多くの異なる技術を用いて収着媒体6の層上に構成することができる。上記で参照される同時係属出願は、表面構造20を平行な層22の表面上に構成するための多くの方法を開示する。幾つかの実施形態において、表面構造は、それらが適用される層の格子構造によってエピタキシャルに配向される。幾つかの実施形態において、表面構造は、隣接する層が層の隣に構成される前に、収着材料の層上に被覆される。幾つかの実施形態において、化合物は、表面構造20を形成するために収着媒体6の層上で脱水素化される。幾つかの実施形態において、表面構造は、収着媒体6の平行な層の間でそれらを所望の距離だけ分離するスペーサとして働く。   The surface structure can be constructed on the layer of sorption media 6 using many different techniques. The above-referenced copending application discloses a number of methods for constructing the surface structure 20 on the surface of the parallel layers 22. In some embodiments, the surface structures are epitaxially oriented by the lattice structure of the layer to which they are applied. In some embodiments, the surface structure is coated on the layer of sorption material before the adjacent layer is constructed next to the layer. In some embodiments, the compound is dehydrogenated on the layer of sorption medium 6 to form surface structure 20. In some embodiments, the surface structure acts as a spacer that separates the parallel layers of sorption media 6 by a desired distance.

幾つかの実施形態において、平行な層の間の距離は、平行な層の各々の表面上に物質の1分子の厚さの層をロードするのに十分なだけの大きさである。他の実施形態において、距離は、平行な層の各々の表面上及び層の表面上ではなく平行な層の間の区域における物質の少なくとも1分子の厚さの層上に分子をロードするのに十分に大きい。例えば、物質の分子は、収着媒体6の層22の表面上及び層22の間の区域204にロードされてもよい。幾つかの実施形態において、収着媒体6の平行な層は、90Å離して構成される。収着媒体6の平行な層は、例えば、天然ガスをロードするために90Åだけ分離されてもよい。幾つかの実施形態において、収着媒体6の層は、90Å以上又は90Å未満の距離をおいて構成される。例えば、幾つかの実施形態において、距離は、120Å以上であり、他の実施形態において、距離は60Å未満である。   In some embodiments, the distance between the parallel layers is large enough to load a one molecule thick layer of material on the surface of each of the parallel layers. In other embodiments, the distance is used to load molecules onto each surface of the parallel layers and onto a layer of at least one molecule thickness of material in the area between the parallel layers but not on the surface of the layers. Big enough. For example, the molecules of the substance may be loaded into the area 204 on and between the layers 22 of the sorption medium 6. In some embodiments, the parallel layers of sorption media 6 are configured 90 degrees apart. The parallel layers of sorption medium 6 may be separated by 90 kg, for example, for loading natural gas. In some embodiments, the layers of sorption media 6 are configured at a distance of greater than or equal to 90 inches. For example, in some embodiments, the distance is 120 kilometers or more, and in other embodiments, the distance is less than 60 kilometers.

幾つかの実施形態において、収着媒体6の各層の間の距離は同じであり、一方、他の実施形態において、層の間の距離は、平行な層のうちの幾つかの間でのみ変化する又は同じである。例えば、平行な層のうちの幾つかは、メタンのような第1の化合物の分子をロードできるようにする距離で離間されてもよく、平行な層のうちの幾つかは、水素のような第2の化合物の分子をロードできるようにする距離に離間されてもよい。図2Bは、本技術の別の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。収着媒体6の平行な層22に表面構造20が適用される。平行な層22は、第1の区域210が第2の区域212のサイズとは異なるサイズであり、同じく第2の区域212のサイズは第3の区域214のサイズとは異なるサイズであるように、異なる距離だけ離間される。前述のように、変化される間隔は、種々の区域への異なる分子の優先的なロードを可能にする場合がある。例えば、第1の区域210は、メタンをロードするように構成されてもよく、第2の区域212は、水素をロードするように構成されてもよい。図2Cは、本技術の別の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。図2Cの実施形態において、収着媒体6の層22は、収着媒体が区域222のような第1のサイズの区域と区域224のような第2のサイズの区域とを備えるように距離を変化させることによって、互いから離間される。   In some embodiments, the distance between each layer of sorption media 6 is the same, while in other embodiments, the distance between layers varies only between some of the parallel layers, or The same. For example, some of the parallel layers may be separated by a distance that allows loading of molecules of a first compound such as methane, and some of the parallel layers such as hydrogen It may be separated by a distance that allows the molecules of the second compound to be loaded. FIG. 2B shows an enlarged schematic side cross-sectional view of region 200 of sorption medium 6 according to another embodiment of the present technology. A surface structure 20 is applied to the parallel layers 22 of the sorption medium 6. The parallel layers 22 are such that the first area 210 is a different size than the size of the second area 212, and the second area 212 is also a different size than the size of the third area 214. , Separated by a different distance. As mentioned above, the changed interval may allow preferential loading of different molecules into the various areas. For example, the first zone 210 may be configured to load methane and the second zone 212 may be configured to load hydrogen. FIG. 2C shows an enlarged schematic side cross-sectional view of region 200 of sorption medium 6 according to another embodiment of the present technology. In the embodiment of FIG. 2C, the layer 22 of sorption medium 6 is spaced such that the sorption medium comprises a first size area such as area 222 and a second size area such as area 224. By being changed, they are separated from each other.

幾つかの実施形態において、表面構造20はサイズが変化する。例えば、図2Bにおいて、幾つかのナノチューブ20aは、他のナノチューブ20aよりも長い。幾つかの実施形態において、表面構造のサイズを変化させることで、それらが物質をロードする及びアンロードする場合の速度が変化する。幾つかの実施形態において、表面構造のサイズは、第2の化合物よりも第1の化合物を優先的にロードするために又は収着媒体6の層の間の間隔を変化させるために増加され又は減少される。   In some embodiments, the surface structure 20 varies in size. For example, in FIG. 2B, some nanotubes 20a are longer than other nanotubes 20a. In some embodiments, changing the size of the surface structure changes the speed at which they load and unload materials. In some embodiments, the size of the surface structure is increased to preferentially load the first compound over the second compound or to change the spacing between layers of the sorption media 6 or Will be reduced.

幾つかの実施形態において、収着媒体の層の間の区域は第1のタイプの表面構造のみを含む。例えば、第3の区域214はナノチューブのみを含む。収着媒体の平行な層の間の区域は、特定化合物を収容するために特定のタイプの表面構造のみを含んでもよい。例えば、ナノチューブがナノスクロールよりも高密度で水素をロードできるので、第3の区域214はナノチューブ20aのみを含んでもよく、水素は第3の区域214にロードされることになる。幾つかの実施形態において、収着媒体の層の間の区域は、特定化合物(単数又は複数)を収容するために2つのタイプの表面構造のみを含む。例えば、ナノスクロールはメタンを高密度でロードでき、ロッドはメタンを高密度でロードすることができないがメタンを高速でロードでき及びアンロードできるので、第2の区域212はナノスクロール20b及びロッド20cのみを含んでもよい。したがって、ナノスクロール20bとロッド20cは、特定の用途において互いの弱さを補う可能性がある。幾つかの実施形態において、収着媒体の層上に構成される表面構造のすべては1つのタイプのものであってもよい。例えば、収着媒体は、特定の用途のためにナノチューブのみを含んでもよい。   In some embodiments, the area between the layers of sorption media includes only the first type of surface structure. For example, the third area 214 includes only nanotubes. The area between the parallel layers of the sorption medium may contain only a specific type of surface structure to accommodate a specific compound. For example, since the nanotubes can load hydrogen at a higher density than the nanoscroll, the third zone 214 may include only the nanotubes 20a and hydrogen will be loaded into the third zone 214. In some embodiments, the area between the layers of the sorption medium includes only two types of surface structures to accommodate the specific compound (s). For example, since the nanoscroll can load methane with high density and the rod cannot load methane with high density but can load and unload methane at high speed, the second area 212 includes the nanoscroll 20b and the rod 20c. May only be included. Accordingly, the nanoscroll 20b and the rod 20c may compensate for each other's weakness in certain applications. In some embodiments, all of the surface structures configured on the layer of sorption media may be of one type. For example, the sorption medium may include only nanotubes for a particular application.

幾つかの実施形態において、表面構造20は収着媒体の層22と垂直に配向される。他の実施形態において、表面構造20のうちの少なくとも幾つかは、収着媒体の層22と垂直に配向されず、代わりに異なる角度に配向される。図2Cにおいて、表面構造20は、層22から90度以上異なる角度に配向される。表面構造は、表面構造の表面積を増加させ、表面構造によって分子がロードされる速度を増加させ、表面構造のロード密度を増加させ、特定の化合物の分子を優先的にロードする、又は別の理由のために特定の角度に配向されてもよい。   In some embodiments, the surface structure 20 is oriented perpendicular to the layer 22 of sorption media. In other embodiments, at least some of the surface structures 20 are not oriented perpendicular to the layer 22 of sorption media, but instead are oriented at different angles. In FIG. 2C, the surface structure 20 is oriented at an angle different from the layer 22 by more than 90 degrees. Surface structure increases the surface area of the surface structure, increases the rate at which molecules are loaded by the surface structure, increases the load density of the surface structure, preferentially loads molecules of a particular compound, or for other reasons May be oriented at a certain angle.

幾つかの実施形態において、表面構造は、それが取り付けられる収着媒体6の層の材料とは異なる材料からなる。図2Dは、本技術の別の実施形態に係る収着媒体6の領域200の拡大略側断面図を示す。収着媒体の平行な層22は、グラフェンのような第1の材料からなる。表面構造20は、窒化ホウ素のような第2の材料からなる。幾つかの実施形態において、平行な層22に窒化ホウ素が堆積される前にグラフェンにホウ素界面が適用される。表面構造は、多くの異なる材料のいずれかからなってもよい。例えば、幾つかの実施形態において、ナノチューブ20a、ナノスクロール20b、ロッド20c、及び/又は花状構造20dは、水素化ホウ素、ジボラン(B26)、水素化アルミニウムナトリウム、MgH2、LiH、水素化チタン、及び/又は別の金属水素化物又は別の化合物からなる。ホウ素界面上の水素化ホウ素生成は吸熱であり、それが適用される平行な層を通して除去されなければならない生成熱を有する。水素は、例えば、同様に水素の迅速なアンロードを可能にする水素化ホウ素の優れた熱伝導率のために、迅速にロードされて比較的不安定な水素貯蔵を形成する場合がある。 In some embodiments, the surface structure comprises a material that is different from the material of the layer of sorption media 6 to which it is attached. FIG. 2D shows an enlarged schematic side cross-sectional view of region 200 of sorption medium 6 according to another embodiment of the present technology. The parallel layer 22 of the sorption medium is made of a first material such as graphene. The surface structure 20 is made of a second material such as boron nitride. In some embodiments, a boron interface is applied to the graphene before boron nitride is deposited on the parallel layers 22. The surface structure may consist of any of many different materials. For example, in some embodiments, the nanotubes 20a, nanoscrolls 20b, rods 20c, and / or flower-like structures 20d include borohydride, diborane (B 2 H 6 ), sodium aluminum hydride, MgH 2 , LiH, It consists of titanium hydride and / or another metal hydride or another compound. Boron hydride production on the boron interface is endothermic and has heat of formation that must be removed through the parallel layers to which it is applied. Hydrogen may be rapidly loaded to form a relatively unstable hydrogen storage, for example, due to the superior thermal conductivity of borohydride that also allows rapid unloading of hydrogen.

平行な層の間の距離は、多くの技術のうちのいずれかを用いて制御されてもよい。幾つかの実施形態において、表面構造は、収着媒体6の層の表面上に適用され、収着媒体6の平行な層を特定距離だけ分離するように構成される。図2Dにおいて、例えば、区域226における表面構造のような隣接する層からの表面構造20は、互いに接触し、区域226のサイズを調整する。幾つかの実施形態において、平行な層は、多孔通路4のような支持基体上に構成され、所望の分離を達成するために層を互いから反発させる電荷などが平行な層に印加される。平行な層はまた、製造中又は層が基体上に構成されている間に、層の間にスペーサとして働く原子又は化合物を堆積することによって所望の距離だけ分離されてもよい。例えば、化合物が脱水素化されるとき、生産される収着媒体6の各層の間にセパレータ原子又は分子が適用されてもよい。幾つかの実施形態において、収着媒体6の平行な層は、加熱され膨張させられて層の間にセパレータ原子又は化合物が挿入されることを可能にするホスト材料から形成され、これはセパレータ原子又は化合物を有する区域の中にホスト材料が収縮するのを防ぐ。収着媒体6の2つの層の間の距離はまた、層を所定の距離をおいて配置するのに必要な仕事を提供するのに十分な力を誘起する層の又は2つの層の間のスペーサの相変化によって、制御することができる。層の間の距離は、層との間での熱の伝達を容易にするため、層の間に光を通すため、触媒の目的で、及び/又は湿らせる(dampening)目的で、容器2に構造的支持を提供するように調節されてもよい。   The distance between the parallel layers may be controlled using any of a number of techniques. In some embodiments, the surface structure is applied on the surface of the layer of sorption media 6 and is configured to separate parallel layers of sorption media 6 by a specified distance. In FIG. 2D, surface structures 20 from adjacent layers, such as, for example, surface structures in area 226, contact each other and adjust the size of area 226. In some embodiments, the parallel layers are configured on a support substrate, such as a porous passage 4, and charges, etc., that repel the layers from each other to achieve the desired separation are applied to the parallel layers. Parallel layers may also be separated by a desired distance by depositing atoms or compounds that act as spacers between the layers during manufacture or while the layers are constructed on the substrate. For example, separator atoms or molecules may be applied between each layer of produced sorption medium 6 when the compound is dehydrogenated. In some embodiments, the parallel layers of sorption media 6 are formed from a host material that is heated and expanded to allow separator atoms or compounds to be inserted between the layers, which are separator atoms. Alternatively, the host material is prevented from shrinking into the area containing the compound. The distance between the two layers of the sorption medium 6 is also that of the layer or between the two layers that induces a force sufficient to provide the work necessary to place the layers at a predetermined distance. It can be controlled by the phase change of the spacer. The distance between the layers allows the container 2 to facilitate heat transfer to and from the layers, to allow light to pass between the layers, for catalytic purposes and / or for dampening purposes. It may be adjusted to provide structural support.

物質は、収着媒体6の平行な層の表面及び表面構造20上に吸着されることによって、及び表面構造20の中に及び収着媒体6の層の間の区域の中に吸収されることによって、収着媒体6の中にロードされる。図3は、収着媒体6の中に物質をロードするためのプロセスの流れ図である。ブロック300において、物質は、収着媒体の縁部で与えられる。収着媒体6の縁部は、収着媒体の層の間の区域へのアクセスを提供する領域を含む。例えば、図1の容器2は、円盤形の層を備え、収着媒体6の内縁部15は、収着媒体の層の間の区域へのアクセスを提供する。物質の分子は、収着媒体6の内縁部15からロードされてもよい。   The substance is adsorbed on the surface of the parallel layer of the sorption medium 6 and the surface structure 20 and absorbed in the surface structure 20 and in the area between the layers of the sorption medium 6. Is loaded into the sorption medium 6. FIG. 3 is a flow diagram of a process for loading a substance into the sorption medium 6. In block 300, material is provided at the edge of the sorption medium. The edge of the sorption medium 6 includes a region that provides access to the area between the layers of the sorption medium. For example, the container 2 of FIG. 1 comprises a disk-shaped layer, and the inner edge 15 of the sorption medium 6 provides access to the area between the layers of sorption medium. Substance molecules may be loaded from the inner edge 15 of the sorption medium 6.

ブロック310において、物質の分子が収着媒体6の層の表面上に吸着される。本明細書の全体を通して説明されるように、収着媒体6から熱が取り出されるとき、収着媒体6に電圧が印加されるとき、及び/又は収着媒体6によって経験される圧力が増加されるときに、収着媒体6は物質をロードする場合がある。幾つかの実施形態において、触媒は、物質のロードを容易にする又は引き起こす。   In block 310, material molecules are adsorbed onto the surface of the layer of sorption medium 6. As described throughout this specification, when heat is removed from the sorption medium 6, when voltage is applied to the sorption medium 6, and / or the pressure experienced by the sorption medium 6 is increased. In some cases, the sorption medium 6 may load a substance. In some embodiments, the catalyst facilitates or causes loading of the material.

ブロック320において、物質の分子が、収着媒体6の層上に構成される表面構造の表面上に吸着される。例えば、物質の分子は、収着媒体の層の表面上に構成されるナノロッドの表面上に吸着されてもよい。ブロック330において、物質の分子が表面構造の中に吸収される。例えば、物質の分子は、収着媒体6の層の表面上に位置するナノチューブの中に吸収されてもよい。   In block 320, the molecules of the substance are adsorbed onto the surface of the surface structure that is constructed on the layer of sorption medium 6. For example, molecules of matter may be adsorbed onto the surface of nanorods that are constructed on the surface of a layer of sorption media. In block 330, the molecules of the material are absorbed into the surface structure. For example, the molecules of the substance may be absorbed into nanotubes located on the surface of the layer of sorption medium 6.

ブロック340において、物質の分子が収着媒体6の層の間の区域の中に吸収される。幾つかの実施形態において、物質の分子は、分子がその上に吸着されることになるための残りの表面が存在しないような密度に分子が層の表面上に吸着されるまでは、収着媒体6の2つの層の間の区域の中にガス溶液として吸収されず、ロードされる残りの分子は2つの層の間の区域の中にガス溶液として吸収される。幾つかの実施形態において、物質の分子は、収着媒体6の縁部を介して吸着され、新たに吸着される分子からの力によって先に吸着された分子が収着媒体の層の間の区域の中に浮遊することとなり、吸収されるガス溶液の一部となるまで、先に吸着された分子を収着媒体6のより深くに押しやる。幾つかの実施形態において、物質の分子は物質の幾つかの分子が吸着される前に吸収され、又は物質の分子は物質の分子が吸着されるのと同時に吸収されることが当業者には分かるであろう。   In block 340, the molecules of the material are absorbed into the area between the layers of sorption medium 6. In some embodiments, the molecules of the material are sorbed until the molecules are adsorbed on the surface of the layer to a density such that there is no remaining surface for the molecules to be adsorbed on. Rather than being absorbed as a gas solution in the area between the two layers of the medium 6, the remaining molecules loaded are absorbed as a gas solution in the area between the two layers. In some embodiments, the molecules of the substance are adsorbed through the edge of the sorption medium 6 and the previously adsorbed molecules are absorbed between the layers of the sorption medium by forces from the newly adsorbed molecules. The previously adsorbed molecules are pushed deeper into the sorption medium 6 until they float in the zone and become part of the absorbed gas solution. It will be appreciated by those skilled in the art that in some embodiments, molecules of a substance are absorbed before some molecules of the substance are adsorbed, or molecules of a substance are absorbed at the same time as molecules of the substance are adsorbed. You will understand.

物質は、収着媒体6の平行な層の表面及び表面構造20上に吸着された状態から脱着されることによって、及び表面構造20に及び収着媒体6の層の間の区域の中に吸収された状態から脱着されることによって、収着媒体6からアンロードされる。図4は、収着媒体6から物質をアンロードするためのプロセスの流れ図である。ブロック400において、物質の分子は、収着媒体6の層の表面上に吸着された状態から脱着される。本明細書の全体を通して解説されるように、収着媒体の中にロードされている分子は、収着媒体に熱を伝達することによって、分子をロードするために印加される電圧とは反対の極性の電圧を収着媒体の両端に印加することによって、収着媒体によって経験される圧力を減少させることによって、及び/又は収着媒体を照射し、収着媒体を物理的に乱す機構のような他の機構によって、アンロードされてもよい。   The material is absorbed by desorption from the surface of the parallel layers of the sorption medium 6 and adsorbed on the surface structure 20 and into the area between the surface structure 20 and the layers of the sorption medium 6. The sorption medium 6 is unloaded from the sorption medium 6 by being desorbed. FIG. 4 is a flow diagram of a process for unloading material from the sorption medium 6. In block 400, the molecules of the material are desorbed from being adsorbed onto the surface of the layer of sorption media 6. As discussed throughout the specification, molecules loaded into the sorption medium are opposite to the voltage applied to load the molecules by transferring heat to the sorption medium. Like a mechanism that applies a polar voltage across the sorption medium, reduces the pressure experienced by the sorption medium, and / or irradiates the sorption medium and physically disturbs the sorption medium. It may be unloaded by any other mechanism.

ブロック410において、物質の分子は、収着媒体6の表面構造の表面上に吸着された状態から脱着される。ブロック420において、物質の分子は、収着媒体の表面構造6の内部に吸収された状態から脱着される。上記で説明されたように、異なる種類の表面構造が、吸収された物質の分子を異なる速度で脱着させることができる。例えば、幾つかの実施形態において、ナノ花状構造は、吸着された物質をナノチューブよりも速く脱着させ、一度に吸収された物質の1分子だけを脱着することができる場合がある。   In block 410, the substance molecules are desorbed from being adsorbed onto the surface of the surface structure of the sorption medium 6. In block 420, the molecules of the material are desorbed from being absorbed within the surface structure 6 of the sorption medium. As explained above, different types of surface structures can desorb molecules of absorbed material at different rates. For example, in some embodiments, a nanofloral structure may be able to desorb an adsorbed material faster than a nanotube and desorb only one molecule of material absorbed at a time.

ブロック430において、物質の分子は、収着媒体6の層の間の区域から吸収された状態から脱着される。ブロック440において、脱着される分子が、収着媒体から収着媒体の縁部の外に追い出される。幾つかの実施形態において、吸着された分子、したがって収着媒体と接触している分子が最初に脱着される。幾つかの実施形態において、吸収された分子が最初に脱着される。しかしながら、幾つかの実施形態において、収着媒体の層の表面上に吸着された分子、収着媒体の表面構造の表面上に吸着された分子、表面構造の中に吸収された分子、及び収着媒体の層の間の区域の中に吸収された分子が一緒に脱着される。収着媒体は、一般に、ロードされた物質の分子を大量にアンロードすることができる。例えば、収着媒体は、コンデンサが蓄積した電荷をアンロードする方法と同じように分子をアンロードしてもよい。   In block 430, the molecules of the material are desorbed from being absorbed from the area between the layers of the sorption medium 6. At block 440, the molecules to be desorbed are expelled from the sorption medium out of the edge of the sorption medium. In some embodiments, adsorbed molecules, and therefore molecules that are in contact with the sorption medium, are first desorbed. In some embodiments, absorbed molecules are first desorbed. However, in some embodiments, molecules adsorbed on the surface of the layer of sorption medium, molecules adsorbed on the surface of the surface structure of the sorption medium, molecules absorbed in the surface structure, and The molecules absorbed in the area between the layers of the deposition medium are desorbed together. Sorption media are generally capable of unloading large amounts of loaded material molecules. For example, the sorption medium may unload molecules in the same manner as the method of unloading the charge accumulated by the capacitor.

B.多孔通路と閉じ込め
図1に戻って参照すると、物質は、第1のポート10又は第2のポート11のいずれかを通して容器2の中に導入され、物質は、多孔通路4を介して収着媒体6に与えられる。幾つかの実施形態において、多孔通路4は多孔管である。他の実施形態において、多孔通路4はワイヤークロスである。多孔通路4は、容器2を長手方向に補強することができ、これはまた、収着媒体6を冷却又は加熱するために流体を循環させることができる。幾つかの実施形態において、容器2は、2つよりも多いポート又は少ないポートを含む。例えば、物質を貯蔵するための容器は、1つのポートのみを含んでもよい。
B. Perforated passage and containment Referring back to FIG. 1, material is introduced into the container 2 through either the first port 10 or the second port 11, and the material is sorbed through the porous passage 4. 6 is given. In some embodiments, the porous passage 4 is a porous tube. In other embodiments, the porous passage 4 is a wire cloth. The perforated passage 4 can reinforce the container 2 in the longitudinal direction, which can also circulate fluid to cool or heat the sorption medium 6. In some embodiments, the container 2 includes more or less than two ports. For example, a container for storing material may include only one port.

収着媒体6は、多孔通路4の穿孔を通して収着媒体の内縁部15に与えられる物質をロードする。収着媒体6は、収着媒体6の内縁部15から物質の分子をロードする。容器2は、容器2内に体積を含むために平行な層の外縁部17上のケーシング16を含み、これは、ロードされる物質の分子が平行な層の外縁部17を介して容器から逃げるのを防ぐ。   The sorption medium 6 loads a substance that is applied to the inner edge 15 of the sorption medium through the perforations of the porous passage 4. The sorption medium 6 loads molecules of matter from the inner edge 15 of the sorption medium 6. The container 2 includes a casing 16 on the outer edge 17 of the parallel layer to contain a volume within the container 2, which causes molecules of the substance to be loaded to escape from the container via the outer edge 17 of the parallel layer. To prevent.

ケーシング16は、低透過性膜14を備える。適した膜材料は、グラファイトホイル、ラップされる、深絞りされる、又はスピン成形されるチタン、アルミニウム、又はステンレス鋼、及び電鋳されるニッケルを含む。ポリエチレンテレフタレート、エチレンクロロトリフルオロエチレン、ポリフッ化ビニリデン、及びポリオレフィンの金属化された薄膜を含む種々の複合材が膜に用いられてもよい。金属化するために用いることができる材料は、鉄、アルミニウム、チタン、クロム、ニッケル、又はスパッタ合金を含む。幾つかの実施形態において、膜14は、導電性であり、及び/又は熱を伝達する高い能力を有する。   The casing 16 includes a low permeability membrane 14. Suitable membrane materials include graphite foil, wrapped, deep drawn or spin formed titanium, aluminum, or stainless steel, and electroformed nickel. Various composites may be used for the membrane, including metallized thin films of polyethylene terephthalate, ethylene chlorotrifluoroethylene, polyvinylidene fluoride, and polyolefins. Materials that can be used to metallize include iron, aluminum, titanium, chromium, nickel, or sputtered alloys. In some embodiments, the membrane 14 is electrically conductive and / or has a high ability to transfer heat.

膜14は、高強度接着剤又は拡散ろう付け配合物を用いて収着材料の平行な層の外縁部17に固定される。膜14を平行な層の外縁部17に固定するために、エポキシ(apoxis)、フェノール−ホルムアルデヒド、メラミン−ホルムアルデヒド、シリコン、及びシロキサンを含有するものを含む付加型ポリイミドのような熱硬化性樹脂と、芳香族ポリエステル、不飽和ポリエステル、及びポリエーテルイミドのような熱可塑性樹脂とを含む、種々の接着剤が用いられてもよい。膜14を平行な層の外縁部17上に拡散接合するために、外縁部17はまた、例えばダイヤモンド状物質を含む物質で被覆されてもよい。膜14を平行な層の外縁部17に固定するために種々の他の炭素堆積物を用いることもできる。   The membrane 14 is secured to the outer edge 17 of the parallel layers of sorbent material using a high strength adhesive or a diffusion braze formulation. Thermosetting resins such as addition-type polyimides, including those containing epoxy, phenol-formaldehyde, melamine-formaldehyde, silicon, and siloxane, for securing the membrane 14 to the outer edge 17 of the parallel layers; Various adhesives may be used, including thermoplastic resins such as aromatic polyesters, unsaturated polyesters, and polyetherimides. In order to diffusion bond the membrane 14 onto the outer edge 17 of the parallel layer, the outer edge 17 may also be coated with a material including, for example, a diamond-like material. Various other carbon deposits can also be used to secure the membrane 14 to the outer edges 17 of the parallel layers.

ケーシングはまた、膜14の上に適用される高強度ロービング、ヤーン、又はファイバを用いて、多孔通路4の半径方向の補強を横断する方向に容器2を補強してもよい。幾つかの実施形態において、米国特許第6,503,584号で説明される伝熱フィンのような長手方向の波形部が膜の上に適用されてもよい。膜14とフィンとの間の熱交換を妨害することを避けながら波形にされた表面のロードを膜14の上に拡散させるために、軸方向の補強ロービングが伝熱フィンの上に適用されてもよい。   The casing may also reinforce the container 2 in a direction transverse to the radial reinforcement of the porous passage 4 using high strength rovings, yarns or fibers applied over the membrane 14. In some embodiments, longitudinal corrugations such as heat transfer fins described in US Pat. No. 6,503,584 may be applied over the membrane. An axial reinforcing roving is applied over the heat transfer fins to diffuse the corrugated surface load over the membrane 14 while avoiding interfering with heat exchange between the membrane 14 and the fins. Also good.

C.熱交換
幾つかの実施形態において、物質のロードを容易にするために収着媒体6から熱が除去され、収着媒体6がロードした物質のアンロードを容易にするために収着媒体6に熱が加えられる。上記で解説されたように、収着媒体6の層は、熱伝達のための高い利用可能性を有する材料からなってもよく、これは、収着媒体6の層との間で、平行な層上に構成される表面構造20の中に及び外にでさえも熱を伝達できるようにする。
C. Heat Exchange In some embodiments, heat is removed from the sorption medium 6 to facilitate loading of the material, and the sorption medium 6 is loaded onto the sorption medium 6 to facilitate unloading of the loaded material. Heat is applied. As explained above, the layer of sorption medium 6 may consist of a material with high availability for heat transfer, which is parallel to the layer of sorption medium 6. Allow heat to be transferred into and out of the surface structure 20 constructed on the layer.

図1に描かれた容器2は、収着媒体6との間で熱を伝達するように設計される種々のコンポーネントを含む。例えば、容器2は、収着媒体6の平行な層との間で熱を伝達することができる、収着媒体6の周辺を取り囲む連続的な伝熱管8を含む。幾つかの実施形態において、ケーシング16は、容器2と伝熱管8を保護し且つ断熱する外側ケーシング19を含み、収着媒体と伝熱管8のための構造的支持を提供する。図5は、外側ケーシングなしの容器2の側面図を示す。伝熱管8は、容器2の周辺の周りにラップされ、膜14上に直接に位置決めされる。冷却要素と加熱要素とを含むポンプ21は、収着媒体6に熱を加える又は収着媒体6から熱を除去するために、加熱された又は冷却されたアルゴン、二酸化炭素、一酸化炭素、若しくは別のガス又は流体を、管8を通して循環させることができる。幾つかの実施形態において、熱はまた、加熱された又は冷却されたガス又は液体を多孔通路4に通すことによって収着媒体6との間で伝達される。   The container 2 depicted in FIG. 1 includes various components that are designed to transfer heat to and from the sorption medium 6. For example, the container 2 includes a continuous heat transfer tube 8 that surrounds the periphery of the sorption medium 6 that can transfer heat to and from parallel layers of the sorption medium 6. In some embodiments, the casing 16 includes an outer casing 19 that protects and insulates the vessel 2 and the heat transfer tube 8 and provides structural support for the sorption medium and the heat transfer tube 8. FIG. 5 shows a side view of the container 2 without an outer casing. The heat transfer tube 8 is wrapped around the periphery of the container 2 and positioned directly on the membrane 14. A pump 21 including a cooling element and a heating element may be heated or cooled with argon, carbon dioxide, carbon monoxide, or to add heat to or remove heat from the sorption medium 6. Another gas or fluid can be circulated through the tube 8. In some embodiments, heat is also transferred to and from the sorption medium 6 by passing a heated or cooled gas or liquid through the porous passage 4.

熱はまた、他の方法を用いて収着媒体6に適用することができる。幾つかの実施形態において、熱交換流体又はガスが通る付加的な管が、容器内に構成される。幾つかの実施形態において、収着媒体6に熱を伝達するために、抵抗加熱要素が容器内に構成される。幾つかの実施形態において、容器2のケーシング16と膜14は、実質的に透明であり、容器2に光が入って、光活性のある表面構造20に接触し、表面構造と収着媒体6の層を加熱することを可能にする。幾つかの実施形態において、光活性のある要素は、最大限の量の光を受けるために平行な層の外縁部17の間に配置される。   Heat can also be applied to the sorption medium 6 using other methods. In some embodiments, additional tubes through which the heat exchange fluid or gas passes are configured in the container. In some embodiments, a resistive heating element is configured in the container to transfer heat to the sorption medium 6. In some embodiments, the casing 16 and membrane 14 of the container 2 are substantially transparent so that light enters the container 2 and contacts the photoactive surface structure 20, and the surface structure and sorption medium 6. Makes it possible to heat the layer. In some embodiments, the photoactive element is placed between the outer edges 17 of the parallel layers to receive the maximum amount of light.

D.圧力スイング
幾つかの実施形態において、物質は、容器内の圧力をシフトすることによって収着媒体の中にロードされ又は収着媒体からアンロードされる。図1に戻ると、幾つかの実施形態において、容器2の内部の圧力は、第2の弁18を閉じ、収着媒体6が物質をロードし始める点に容器内の圧力が増加するまで第1のポート10を通して物質をポンピングすることによって調節される。幾つかの実施形態において、容器2は、高圧パイプライン内に接続され、容器内の圧力を収着媒体6が容器2を通る物質又は物質の特定のコンポーネントの幾らかをロードすることができるのに十分なだけ高いままにする。この詳細な説明の全体を通してより詳細に解説されるように、物質の特定の化合物のみをロードする容器2はフィルタとして用いられてもよい。
D. Pressure Swing In some embodiments, material is loaded into or unloaded from the sorption medium by shifting the pressure in the container. Returning to FIG. 1, in some embodiments, the pressure inside the container 2 is increased until the pressure in the container increases to a point where the second valve 18 closes and the sorption medium 6 begins to load material. It is regulated by pumping material through one port 10. In some embodiments, the container 2 is connected in a high pressure pipeline so that the pressure in the container can cause the sorption medium 6 to load a substance or some of the specific components of the substance through the container 2. Leave it high enough to. As will be explained in more detail throughout this detailed description, a container 2 that loads only certain compounds of matter may be used as a filter.

容器2内の圧力はまた、物質を収着媒体6内に高圧で貯蔵することによって、及び第1の弁13又は第2の弁18を開いて容器2内の圧力を低下させることによって調節することができる。例えば、天然ガスは、容器2内に高圧でロードされてもよく、第2の弁18は、容器2内の圧力を低下させて収着媒体6に天然ガスをアンロードさせるために開かれてもよい。幾つかの実施形態において、物質は、第1の弁13を通して容器2の中にロードされ、第2の弁18は、ある程度閉じられ、物質が容器2を通して流れるのを妨げ、容器2内の圧力を増加させて、収着媒体6に幾らかの物質をロードさせる。幾つかの実施形態において、圧力スイングは、収着媒体6に電荷を適用することによって引き起こされる。   The pressure in the container 2 is also adjusted by storing the substance at a high pressure in the sorption medium 6 and by opening the first valve 13 or the second valve 18 to reduce the pressure in the container 2. be able to. For example, natural gas may be loaded into the container 2 at high pressure, and the second valve 18 is opened to reduce the pressure in the container 2 and cause the sorption medium 6 to unload natural gas. Also good. In some embodiments, the substance is loaded into the container 2 through the first valve 13 and the second valve 18 is closed to some extent to prevent the substance from flowing through the container 2 and the pressure in the container 2. To cause the sorption medium 6 to load some material. In some embodiments, the pressure swing is caused by applying a charge to the sorption medium 6.

E.電位
幾つかの実施形態において、物質のロード又はアンロードを容易にするために収着媒体6の層の両端に電圧が印加される。収着媒体6に電圧が印加されるとき、収着媒体6は、物質をより速くロードする、電圧が印加されないときとは異なる物質の化合物をロードする、より低い温度又は圧力で物質をロードする、及び/又はより多くの物質を層の間の区域にロードすることができ、これにより容器2の貯蔵密度を増加する。
E. In some embodiments, a voltage is applied across the layer of sorption media 6 to facilitate loading or unloading of material. When a voltage is applied to the sorption medium 6, the sorption medium 6 loads the substance at a lower temperature or pressure, loading the substance faster, loading a compound of a different substance than when no voltage is applied. And / or more material can be loaded into the area between the layers, thereby increasing the storage density of the container 2.

図6Aは、収着媒体6の平行な層のうちの少なくとも幾つかに電圧を印加するために容器2に接続されてもよい回路と電源を備える電源装置601を含む容器2の略側断面図である。膜14は、グラフェンのような電気伝導性材料からなる。電源装置601の第1の端子605は、膜14に電気的に接続される。多孔通路4はまた、チタン、モネル400、又は銅のような電気伝導性材料からなる。第2の端子606は、多孔通路4に電気的に接続される。誘電体材料からなるガスケット602は、膜14と多孔通路4を電気的に分離する。膜14は、収着媒体6に電気的に接続され、同様に、多孔通路4は、収着媒体6の平行な層の内縁部15の各々に電気的に接続される。その結果、収着媒体6の平行な層の各々の両端に電荷が適用される。   6A is a schematic cross-sectional side view of a container 2 that includes a power supply 601 with a circuit and a power source that may be connected to the container 2 to apply a voltage to at least some of the parallel layers of the sorption medium 6. It is. The film 14 is made of an electrically conductive material such as graphene. The first terminal 605 of the power supply device 601 is electrically connected to the film 14. The porous passage 4 is also made of an electrically conductive material such as titanium, monel 400, or copper. The second terminal 606 is electrically connected to the porous passage 4. A gasket 602 made of a dielectric material electrically separates the membrane 14 and the porous passage 4. The membrane 14 is electrically connected to the sorption medium 6. Similarly, the porous passage 4 is electrically connected to each of the inner edges 15 of the parallel layers of the sorption medium 6. As a result, a charge is applied to each end of each parallel layer of sorption medium 6.

幾つかの実施形態において、膜は、種々の回路608を通じて収着媒体6の層を電気的に接続し、膜14と多孔通路4との間に電圧が印加されるときに異なる収着媒体6の層の両端に異なる電圧を印加させる。幾つかの実施形態において、回路608は、膜14と収着媒体6との間に構成される。幾つかの実施形態において、回路608は、膜14の一部として又は膜の外部に構成される。図6Bは、本技術の実施形態に係る容器の領域610の拡大略側断面図である。回路608は、収着媒体6の少なくとも幾つかの層に膜14を接続する種々のコンポーネントを含む。例えば、導電要素620は、膜14を幾つかの収着媒体の層に電気的に接続するが、他の収着媒体6の層には電気的に接続せず、膜14に電気的に接続される収着媒体の層の間の帯電した区域613と、膜14に電気的に接続されない収着媒体の層の間の帯電していない区域611とをもたらす。   In some embodiments, the membrane electrically connects layers of sorption media 6 through various circuits 608, and different sorption media 6 when a voltage is applied between membrane 14 and porous passage 4. Different voltages are applied across the layers. In some embodiments, the circuit 608 is configured between the membrane 14 and the sorption medium 6. In some embodiments, the circuit 608 is configured as part of the membrane 14 or external to the membrane. FIG. 6B is an enlarged schematic side cross-sectional view of a region 610 of a container according to an embodiment of the present technology. The circuit 608 includes various components that connect the membrane 14 to at least some layers of the sorption medium 6. For example, the conductive element 620 electrically connects the membrane 14 to several layers of sorption media, but does not electrically connect to other layers of sorption media 6 and electrically connects to the membrane 14. Resulting in a charged area 613 between the layers of sorption media being applied and an uncharged area 611 between the layers of sorption media not being electrically connected to the membrane 14.

幾つかの実施形態において、収着媒体6の複数の層の両端に電荷勾配が適用される。例えば、電荷勾配は、20個の隣接する収着媒体6の層の両端に適用されてもよく、この場合、各層には、次の隣接する層よりも少ない電荷が印加される。電荷勾配は、物質の群から特定の物質(単数又は複数)をフィルタリングするときに有用である。例えば、20個の連続的な層の両端に電荷勾配が適用され、且つ物質が容器2の中に導入される場合、高い絶縁耐力を有する物質の特定のコンポーネントは、電荷勾配が最も強い電荷勾配の中央にロードされるであろう。低い絶縁耐力を有する物質の特定のコンポーネントは、結果として、電荷勾配が最も弱い電荷勾配の端にロードされるであろう。実例として、電荷勾配が適用されるときに窒素と水素が収着媒体の中にロードされる場合、窒素は勾配の中央にロードされ、水素は勾配のいずれかの側にロードされるであろう。   In some embodiments, a charge gradient is applied across the layers of the sorption medium 6. For example, a charge gradient may be applied to both ends of a layer of 20 adjacent sorption media 6, where less charge is applied to each layer than the next adjacent layer. A charge gradient is useful when filtering a particular substance or substances from a group of substances. For example, if a charge gradient is applied across the 20 consecutive layers and the material is introduced into the container 2, certain components of the material having a high dielectric strength may have a charge gradient with the strongest charge gradient. Will be loaded in the middle of Certain components of the material with low dielectric strength will eventually be loaded at the end of the charge gradient where the charge gradient is the weakest. Illustratively, if nitrogen and hydrogen are loaded into the sorption medium when a charge gradient is applied, nitrogen will be loaded in the middle of the gradient and hydrogen will be loaded on either side of the gradient .

電荷勾配を適用するために、幾つかの実施形態において、膜と収着媒体6の各層との間に、抵抗値が変化する電気抵抗器が構成される。図6Cは、本技術の実施形態に係る容器の領域610の拡大略側断面図である。回路608は、収着媒体6の少なくとも幾つかの層に膜14を接続する種々のコンポーネントを含む。第1の抵抗器624は第1のインピーダンスを有し、第2の抵抗器625は第2のインピーダンスを有し、第3の抵抗器626は第3のインピーダンスを有し、第4の抵抗器627は第4のインピーダンスを有し、第5の抵抗器628は第5のインピーダンスを有し、第6の抵抗器630は第6のインピーダンスを有する。抵抗器は、膜14を収着媒体6の平行な層22に接続する。第1のインピーダンスは第2のインピーダンスよりも大きく、第2のインピーダンスは第3のインピーダンスよりも大きく、第3のインピーダンスは第4のインピーダンスよりも大きく、以下同様である。したがって、膜14に電荷が印加されるときに、第6の抵抗器630を介して膜14に接続される収着媒体の層は、第5の抵抗器628を介して膜14に接続される収着媒体の層よりも高い電圧を経験し、以下も同じである。第1の抵抗器624を介して膜14に接続される収着媒体の層は、描かれた層22の外へ最も低い電圧を経験するであろう。幾つかの実施形態において、収着媒体6の層は、誘電体材料によって電気的に分離されてもよい。   In order to apply the charge gradient, in some embodiments, an electrical resistor is constructed between the membrane and each layer of the sorption medium 6 that varies in resistance. FIG. 6C is an enlarged schematic cross-sectional side view of a region 610 of a container according to an embodiment of the present technology. The circuit 608 includes various components that connect the membrane 14 to at least some layers of the sorption medium 6. The first resistor 624 has a first impedance, the second resistor 625 has a second impedance, the third resistor 626 has a third impedance, and a fourth resistor. 627 has a fourth impedance, the fifth resistor 628 has a fifth impedance, and the sixth resistor 630 has a sixth impedance. The resistor connects the membrane 14 to the parallel layer 22 of the sorption medium 6. The first impedance is greater than the second impedance, the second impedance is greater than the third impedance, the third impedance is greater than the fourth impedance, and so on. Thus, when a charge is applied to the membrane 14, the layer of sorption media that is connected to the membrane 14 via the sixth resistor 630 is connected to the membrane 14 via the fifth resistor 628. Experience higher voltages than the layers of sorption media, and so on. The layer of sorption media connected to the membrane 14 via the first resistor 624 will experience the lowest voltage out of the depicted layer 22. In some embodiments, the layers of sorption media 6 may be electrically separated by a dielectric material.

幾つかの実施形態において、電源は、容器2に第1の極性の電圧を供給するように構成され、これはまた、容器に反対の極性の電圧を供給するようにも構成される。例えば、電源は、収着媒体にロードするために第1の端子605がカソードであり第2の端子606がアノードであってもよく、且つ収着媒体にアンロードするために第1の端子605がアノードに切り換えられ第2の端子606がカソードに切り換えられてもよいように構成される。   In some embodiments, the power source is configured to supply a voltage of a first polarity to the container 2, which is also configured to supply a voltage of the opposite polarity to the container. For example, the power source may be a first terminal 605 being a cathode and a second terminal 606 being an anode for loading into a sorption medium, and a first terminal 605 for unloading into a sorption medium. May be switched to the anode and the second terminal 606 may be switched to the cathode.

F.触媒
幾つかの実施形態において、物質のロード又はアンロードを容易にするために又は化学反応に触媒作用を及ぼすために、平行な層に触媒が適用される。図1に戻ると、触媒は、収着媒体6の層の表面上(すなわち、隣接する層に面する層の表面上)又は層の縁部上のみに適用されてもよい。幾つかの実施形態において、収着媒体6の第1の層は、第1の層に隣接する収着媒体6の第2の層が構成される前に触媒で被覆される。幾つかの実施形態において、触媒は、収着媒体6の内縁部15又は外縁部17上にのみ適用される。
F. Catalysts In some embodiments, catalysts are applied in parallel layers to facilitate loading or unloading of materials or to catalyze chemical reactions. Returning to FIG. 1, the catalyst may be applied only on the surface of the layer of sorption medium 6 (ie on the surface of the layer facing the adjacent layer) or on the edge of the layer. In some embodiments, the first layer of sorption medium 6 is coated with a catalyst before the second layer of sorption medium 6 adjacent to the first layer is constructed. In some embodiments, the catalyst is applied only on the inner edge 15 or outer edge 17 of the sorption medium 6.

幾つかの実施形態において、触媒は、収着媒体6への特定の物質のロードを容易にし、及び/又は物質を収着媒体6により速く又はより高密度にロードさせる。例えば、水素とメタンを含む物質が収着媒体の平行な層の内縁部15に与えられてもよい。炭化チタン又は炭化鉄(例えば、Fe3C)のような屈折性炭化物を備える触媒を平行な層の内縁部15上に適用し、それらにメタンではなく水素をロードさせてもよい。結果として、物質から水素をフィルタすることができる。別の例として、天然ガスの外への水素のロードを容易にするために、48%の鉄、49%のチタン、及び3%のイットリウムからなる触媒が収着媒体6に適用されてもよい。 In some embodiments, the catalyst facilitates loading of a particular material into the sorption medium 6 and / or causes the material to load faster or more densely into the sorption medium 6. For example, a substance containing hydrogen and methane may be applied to the inner edge 15 of the parallel layers of the sorption medium. A catalyst comprising a refractive carbide such as titanium carbide or iron carbide (eg Fe 3 C) may be applied on the inner edge 15 of the parallel layers, causing them to be loaded with hydrogen rather than methane. As a result, hydrogen can be filtered from the material. As another example, a catalyst consisting of 48% iron, 49% titanium, and 3% yttrium may be applied to the sorption medium 6 to facilitate the loading of hydrogen out of natural gas. .

幾つかの実施形態において、触媒は、2つの化合物の間の化学反応に触媒作用を及ぼし、反応生成物が収着媒体6の中にロードされる。例えば、イオン化する紫外線又は誘起される火花を用いて空気からオ区域が生成される場合がある。オ区域は、収着材料の層の内縁部15に適用されるクロミア(chromia)のような触媒を用いてメタンと反応して、酸素とメタノールを生成する場合があり、そのいずれかが収着媒体6によってロードされる。幾つかの実施形態において、第2の反応生成物が容器2を通して第2のポート11を出るが、一方、他の実施形態において、第2の生成物の少なくとも一部はまた収着媒体6によってロードされる。1つの例において、収着媒体6の層の内縁部15に与えられる物質は、メタンと水を含有し、収着媒体6の層の内縁部15上に炭化鉄触媒が適用される。収着媒体6にエネルギーが印加され、メタンと水との間に化学反応を引き起こして、メタノールと水を生成する。次いで、収着媒体はメタノールと水をロードする。   In some embodiments, the catalyst catalyzes a chemical reaction between two compounds and the reaction product is loaded into the sorption medium 6. For example, o zones may be generated from air using ionizing ultraviolet light or induced sparks. The zone E may react with methane using a catalyst such as chromia applied to the inner edge 15 of the layer of sorbent material to produce oxygen and methanol, one of which is sorbed. It is loaded by the medium 6. In some embodiments, the second reaction product exits the second port 11 through the vessel 2, while in other embodiments, at least a portion of the second product is also absorbed by the sorption medium 6. Loaded. In one example, the material provided to the inner edge 15 of the layer of sorption medium 6 contains methane and water, and an iron carbide catalyst is applied on the inner edge 15 of the layer of sorption medium 6. Energy is applied to the sorption medium 6 causing a chemical reaction between methane and water to produce methanol and water. The sorption medium is then loaded with methanol and water.

幾つかの実施形態において、容器がフィルタとして用いられるときに、ロードされる物質を容器2から空にすることができるように、容器を定期的に取り外さなければならない。例えば、メタンガスの流れから二酸化炭素がフィルタされる場合、収着媒体6は、二酸化炭素で飽和される場合があり、メタンガスからさらなる二酸化炭素がフィルタされる前に、二酸化炭素を収着媒体6から除去する必要がある場合がある。   In some embodiments, the container must be periodically removed so that the loaded material can be emptied from the container 2 when the container is used as a filter. For example, if carbon dioxide is filtered from a methane gas stream, the sorption medium 6 may be saturated with carbon dioxide, and carbon dioxide is removed from the sorption medium 6 before further carbon dioxide is filtered from the methane gas. May need to be removed.

化学反応を容易にするために収着媒体6の縁部に種々の触媒が適用されてもよい。例えば、適した触媒は、マンガンで助触媒作用を及ぼされる銅、亜鉛、又はジルコニア;銅又は亜鉛をドープされ且つ助触媒作用を及ぼされるジルコニウム又はマンガン;マンガンをドープされる銅、亜鉛、又はジルコニウム;又は鉄、マンガン、ニッケル、クロム、バナジウム、及び他の遷移金属の酸化物を含む。   Various catalysts may be applied to the edge of the sorption medium 6 to facilitate the chemical reaction. For example, suitable catalysts include copper, zinc, or zirconia that is co-catalyzed with manganese; zirconium or manganese that is doped with copper or zinc and co-catalyzed; copper, zinc, or zirconium that is doped with manganese Or oxides of iron, manganese, nickel, chromium, vanadium, and other transition metals.

G.向流フィルタ
図7は、ロードされる物質をアンロードする必要なしに物質の流れを連続的にフィルタすることができるフィルタ700の略側断面図である。フィルタ700は、管702の中に構成され、収着材料の平行な層からなる収着媒体708を含む。平行な層は、円盤状に形状設定され、その結果、フィルタ700は、平行な層の内縁部726によって囲まれる内側区域710と、収着媒体708の平行な層の外縁部728と管702内の管704によって囲まれる外側区域706とを含む。管702は、管702と管704との間のスペースにおいて空気又は耐火断熱のための閉じ込めシールドとして作用する。幾つかの実施形態において、平行な層の内縁部726に沿って多孔通路711が構成される。収着媒体708の層は、容器2に関して上記で解説された材料のいずれかからなってもよく、収着媒体708の層は、上記で解説された方法のいずれかを用いて生産され構成されてもよい。幾つかの実施形態において、収着材料708の平行な層の外縁部728上に膜(図示せず)が適用される。幾つかの実施形態において、収着材料の平行な層の内縁部726上又はこれらの層の表面上に触媒が適用される。幾つかの実施形態において、外側区域706での化学反応を容易にするために、収着材料の平行な層の外縁部728上に触媒が適用される。幾つかの実施形態において、抵抗加熱要素712は、管704内に含まれる。
G. Countercurrent Filter Figure 7 is a schematic side sectional view of a filter 700 which is capable of continuously filtering a flow of material without the need to unload the material to be loaded. Filter 700 includes a sorption medium 708 that is configured in a tube 702 and consists of parallel layers of sorption material. The parallel layers are shaped like a disk so that the filter 700 is contained within the inner zone 710 surrounded by the inner edge 726 of the parallel layer, the outer edge 728 of the parallel layer of the sorption medium 708 and the tube 702. And an outer area 706 surrounded by a tube 704. Tube 702 acts as a containment shield for air or refractory insulation in the space between tubes 702 and 704. In some embodiments, a porous passage 711 is configured along the inner edge 726 of the parallel layers. The layer of sorption medium 708 may be made of any of the materials described above with respect to container 2, and the layer of sorption medium 708 is produced and configured using any of the methods described above. May be. In some embodiments, a membrane (not shown) is applied over the outer edges 728 of the parallel layers of sorbent material 708. In some embodiments, the catalyst is applied on the inner edge 726 of the parallel layers of sorbent material or on the surface of these layers. In some embodiments, a catalyst is applied on the outer edge 728 of the parallel layer of sorbent material to facilitate chemical reaction in the outer section 706. In some embodiments, resistive heating element 712 is included in tube 704.

幾つかの実施形態において、多孔通路711は、管702内にフィルタ700を吊るすのを支援する構造的支持に接続される。図8は、本技術の実施形態に従って構成されるフィルタ700の等角図である。多孔通路711は、収着媒体708を越えて延び、支持部材830は、多孔通路711と管704(図8に描かれた管704は透明であり、管702は、明瞭にする目的のため描かれていない)の内部との間に構成される。支持部材830は、収着媒体708を管704内に浮遊されてもよいように支持する一助となる。   In some embodiments, the perforated passage 711 is connected to a structural support that assists in suspending the filter 700 within the tube 702. FIG. 8 is an isometric view of a filter 700 configured in accordance with an embodiment of the present technology. The porous passage 711 extends beyond the sorption medium 708, and the support member 830 includes a porous passage 711 and a tube 704 (the tube 704 depicted in FIG. 8 is transparent, and the tube 702 is drawn for purposes of clarity. It is configured between the inside). The support member 830 helps to support the sorption medium 708 so that it may float in the tube 704.

図7を再び参照すると、フィルタ700は、収着媒体708によって物質の特定のコンポーネントが内側区域711からロードされるときに物質をフィルタし、物質の残りはフィルタ700から追い出される。内側区域710は、フィルタ700の第1の端722から物質718を受け入れ、フィルタされた物質720をフィルタ700の第2の端724に通過させる。外側区域706は、フィルタ700の第2の端724上で反応物714を受け取り、化学反応の生成物716をフィルタ700の第1の端722に通過させる。物質718が多孔通路711に入るときに、収着媒体によって物質718の特定のコンポーネントがロードされる。ロードされる物質は、平行な層の外縁部728の方に半径方向に移動し、収着媒体によってロードされる付加的な分子の各々が、先にロードされた分子を外縁部728の方にさらに押す。ロードされる分子が収着媒体708の外縁部728に到達するときに、分子と反応物714との間で化学反応が起こり、収着材料の平行な層の外縁部上に適用された触媒によって容易にされる。   Referring back to FIG. 7, the filter 700 filters the material when a particular component of the material is loaded from the inner section 711 by the sorption medium 708, and the remainder of the material is expelled from the filter 700. Inner section 710 receives material 718 from first end 722 of filter 700 and passes filtered material 720 to second end 724 of filter 700. Outer section 706 receives reactant 714 on second end 724 of filter 700 and passes the product 716 of the chemical reaction to first end 722 of filter 700. As the material 718 enters the porous passage 711, the sorption medium loads a particular component of the material 718. The loaded material moves radially toward the outer edge 728 of the parallel layer, and each additional molecule loaded by the sorption medium causes the previously loaded molecule to move toward the outer edge 728. Press further. When the loaded molecule reaches the outer edge 728 of the sorption medium 708, a chemical reaction occurs between the molecule and the reactant 714 by a catalyst applied on the outer edge of the parallel layer of sorbent material. Made easy.

幾つかの実施形態において、フィルタ700は、燃焼機関の排気路に構成され、向流型熱交換器として作用し、エンジンの排気から有用な化合物をもたらすのに用いられる。燃焼機関からの排気は、フィルタ700の内側区域710におけるフィルタ700の第1の端722から供給される。再生可能な供給原料から提供することができるメタンは、外側区域706におけるフィルタ700の第2の端724から供給される。作動時には、ラジエータを通して普通は排出される熱を、吸熱反応のために熱が必要とされるフィルタ700に加えることができる。例えば、熱は、外側区域706に入る前にメタンに加えることができる。抵抗加熱要素712はまた、メタンを加熱してもよい。フィルタ700の収着媒体708は、排気中に存在する蒸気を吸収する。水分子は、収着媒体708の外縁部728の方に半径方向外向きに押される。収着媒体708の外縁部728は、48%の鉄、49%のチタン、及び3%のイットリウムからなる合金のような触媒を含んでもよい。触媒のサイトでの熱とメタンと水との組合せが、式1によって説明される化学反応を引き起こす。
CH4+H2O+熱→CO+3H2 (1)
結果として生じる一酸化炭素と水素は、外側区域706を通してフィルタ700の第1の側部722の外に流れ、貯蔵され又は燃料としてすぐに用いられてもよい。収着媒体708によってロードされた水を除くエンジンからの排気が、フィルタ700の第2の側部724を通してフィルタの外に流れる。残りの排気は、貯蔵され又はさらにフィルタされてもよい。例えば、排気は、フィルタされ排気がフィルタ700を通過した後で容器に貯蔵されてもよいアルゴンを含んでもよい。
In some embodiments, the filter 700 is configured in the exhaust path of a combustion engine and acts as a countercurrent heat exchanger and is used to provide useful compounds from the engine exhaust. Exhaust from the combustion engine is supplied from a first end 722 of the filter 700 in the inner section 710 of the filter 700. Methane, which can be provided from renewable feedstock, is supplied from the second end 724 of the filter 700 in the outer section 706. In operation, the heat normally discharged through the radiator can be added to the filter 700 where heat is required for the endothermic reaction. For example, heat can be added to the methane before entering the outer zone 706. Resistance heating element 712 may also heat methane. The sorption medium 708 of the filter 700 absorbs the vapor present in the exhaust. Water molecules are pushed radially outward toward the outer edge 728 of the sorption medium 708. The outer edge 728 of the sorption medium 708 may include a catalyst such as an alloy of 48% iron, 49% titanium, and 3% yttrium. The combination of heat at the catalyst site and methane and water causes the chemical reaction described by Equation 1.
CH 4 + H 2 O + heat → CO + 3H 2 (1)
The resulting carbon monoxide and hydrogen may flow out of the first side 722 of the filter 700 through the outer section 706 and be stored or used immediately as fuel. Exhaust from the engine, excluding water loaded by the sorption medium 708, flows out of the filter through the second side 724 of the filter 700. The remaining exhaust may be stored or further filtered. For example, the exhaust may include argon that may be filtered and stored in a container after the exhaust passes through the filter 700.

幾つかの実施形態において、物質718の特定の部分が収着媒体708によってロードされ、且つ化学反応における反応物であることなく、収着媒体708の外縁部728の外にアンロードされる。代わりに、収着媒体708によってロードされる物質718の特定の部分が、別のシステムに渡され、廃棄され、又は貯蔵される。同様に、フィルタされた物質720は、廃棄され、貯蔵され、又はどこかで用いられてもよい。幾つかの実施形態において、フィルタの第1の端722及び第2の端724は、物質718を生成物716から分離し、且つ反応物714をフィルタされた物質720から分離するノズルを含む。   In some embodiments, certain portions of the substance 718 are loaded by the sorption medium 708 and unloaded out of the outer edge 728 of the sorption medium 708 without being a reactant in the chemical reaction. Instead, a particular portion of material 718 loaded by sorption media 708 is passed to another system for disposal or storage. Similarly, filtered material 720 may be discarded, stored, or used elsewhere. In some embodiments, the first end 722 and the second end 724 of the filter include nozzles that separate the material 718 from the product 716 and the reactant 714 from the filtered material 720.

幾つかの実施形態において、フィルタ700は、物質のロード又はアンロードを支援する若しくは化学反応を容易にするために収着媒体708との間で熱を伝達する種々の伝熱コンポーネントを備える。フィルタ700は、例えば、加熱された又は冷却されたガス又は液体をポンプする抵抗加熱要素又は伝熱管を含む、上記で説明された伝熱コンポーネントのいずれかを含んでもよい。同様に、幾つかの実施形態において、フィルタ700は、物質のロード又はアンロードを容易にするために収着媒体708に電位を印加するコンポーネントを含む。フィルタ700は、収着媒体700の層に電位を印加するための上記で説明されたコンポーネントのいずれかを含んでもよい。加えて、物質718は、外側区域706に導入される反応物の圧力よりもかなり高い圧力で内側区域710に導入されてもよく、結果として、収着媒体708に物質718のコンポーネントをロードさせる圧力差が生じる。貯蔵材料の平行な層はまた、上記で説明された表面構造のような種々の表面構造を含んでもよい。   In some embodiments, the filter 700 includes various heat transfer components that transfer heat to and from the sorption media 708 to assist in loading or unloading materials or to facilitate chemical reactions. Filter 700 may include any of the heat transfer components described above, including, for example, resistive heating elements or heat transfer tubes that pump heated or cooled gas or liquid. Similarly, in some embodiments, the filter 700 includes a component that applies a potential to the sorption medium 708 to facilitate loading or unloading of material. Filter 700 may include any of the components described above for applying a potential to a layer of sorption media 700. In addition, material 718 may be introduced into inner region 710 at a pressure that is significantly higher than the pressure of the reactants introduced into outer region 706, resulting in a pressure that causes sorption media 708 to load components of material 718. There is a difference. The parallel layers of storage material may also include various surface structures such as those described above.

H.容器をロードする及びアンロードするためのシステム
図9は、収着媒体6の中にロードされるべき物質を多孔通路4を通して供給する、収着媒体6との間で熱を伝達して物質のロード又はアンロードを容易にするために加熱された又は冷却されたガス又は液体を多孔通路4に通す、且つ放出された物質を供給することができる付加的なシステム又は装置に容器2の出口ポートを接続するシステム900に接続される容器2の側断面図を示す。
H. System for Loading and Unloading Containers FIG. 9 shows the transfer of heat to and from the sorption medium 6 supplying material to be loaded into the sorption medium 6 through the perforated passage 4. The outlet port of the container 2 to an additional system or device that allows heated or cooled gas or liquid to pass through the perforated passage 4 and to supply the released material to facilitate loading or unloading. FIG. 3 shows a side cross-sectional view of the container 2 connected to the system 900 for connecting

弁7は、水素又は天然ガスのような物質が収着媒体6によってロードされるべき容器2の中に流れることを可能にするために開かれてもよい。伝熱管8は、収着媒体6よりも低温のガス又は液体を循環させることによって収着媒体6から熱を除去する。弁7が開かれ、収着媒体6が冷却されるとき、収着媒体6は物質をロードする。上述のように、幾つかの実施形態において、収着媒体6は表面構造を含む。幾つかの実施形態において、物質は、容器6に入る前に冷却される。幾つかの実施形態において、物質のロードを容易にするために、物質は、冷却された伝熱物質と混合される。例えば、冷却コンポーネント36は、収着媒体6の温度よりも低い温度に伝熱物質を冷却するように構成されてもよく、冷却された伝熱物質は、ロードされるべき物質と共に多孔通路4を通して循環されてもよい。   The valve 7 may be opened to allow a substance such as hydrogen or natural gas to flow into the container 2 to be loaded by the sorption medium 6. The heat transfer tube 8 removes heat from the sorption medium 6 by circulating a gas or liquid having a temperature lower than that of the sorption medium 6. When the valve 7 is opened and the sorption medium 6 is cooled, the sorption medium 6 loads the substance. As described above, in some embodiments, the sorption medium 6 includes a surface structure. In some embodiments, the material is cooled before entering the container 6. In some embodiments, the material is mixed with a cooled heat transfer material to facilitate loading of the material. For example, the cooling component 36 may be configured to cool the heat transfer material to a temperature lower than the temperature of the sorption medium 6, and the cooled heat transfer material passes through the porous passage 4 along with the material to be loaded. It may be circulated.

加熱される場合、収着媒体6は、ロードされた物質をアンロードすることができる。すでに述べたように、収着媒体6は、収着媒体6よりも熱い液体又はガスを伝熱管8に通すことによって加熱することができる。加えて、収着媒体6は、加熱されたガス又は液体を多孔通路4に通すことによって加熱することができる。システム900は、多孔通路4を通して循環されるガス又は液体を加熱する熱交換器34にエネルギーを供給する発電器40を含む。例えば、熱交換器34は、アルゴン、二酸化炭素、一酸化炭素、又は別の熱交換物質を加熱してもよく、これは次に、収着媒体6を加熱するために多孔通路4を通してポンプされてもよい。加熱された後で、収着媒体6がロードされた物質をアンロードするときに、収着媒体6を循環される熱交換物質と混合してもよい。幾つかの実施形態において、容器2は、ロードされる物質のアンロードを多孔通路4の中央管(図示せず)に又は周辺区域に方向付けることによって、ロードされる物質が循環される熱交換物質と混ざるのを防ぐ。   When heated, the sorption medium 6 can unload the loaded material. As already mentioned, the sorption medium 6 can be heated by passing a liquid or gas hotter than the sorption medium 6 through the heat transfer tube 8. In addition, the sorption medium 6 can be heated by passing a heated gas or liquid through the porous passage 4. The system 900 includes a generator 40 that supplies energy to a heat exchanger 34 that heats a gas or liquid circulated through the porous passage 4. For example, the heat exchanger 34 may heat argon, carbon dioxide, carbon monoxide, or another heat exchange material, which is then pumped through the porous passage 4 to heat the sorption medium 6. May be. After heating, the sorption medium 6 may be mixed with the circulated heat exchange material when unloading the loaded material. In some embodiments, the container 2 is a heat exchanger in which the loaded material is circulated by directing the unloading of the loaded material to the central tube (not shown) of the porous passage 4 or to the peripheral area. Prevent mixing with substances.

物質を混合する実施形態において、混合物は、容器2から追い出された後でフィルタされてもよい。容器から追い出されるときに、混合物は容器2の第2のポート11を通過し、混合物を浄化するためにマイクロフィルタ又は膜42からなるフィルタ30を通して送達されてもよい。適したマイクロフィルタ及び膜は、物質の放出を誘起するために電荷を確立することによって生産されるイオン透過性ポリマーなどの選択的ポリマーのような有機膜と、パラジウム、PdAg、又は鉄、チタン、銅、及びレニウムの合金のような無機膜とを含む。アンロードされた物質又は放出された物質と熱交換物質との混合物は、燃料電池32、火花噴射システム9(四方弁48及び弁38を通して)を含む他のシステム及び/又は貯蔵装置に、又は四方弁48を通して熱交換器34に供給され、そこでより高い温度に加熱され、多孔通路4を通して戻されてもよい。混合物はまた、別のポート(図示せず)を通してシステム900の外部に渡されてもよい。例えば、アンロードされる物質又は混合物は、パイプライン又は別のシステムに送達されてもよい。   In embodiments where the substances are mixed, the mixture may be filtered after being expelled from the container 2. When expelled from the container, the mixture may pass through the second port 11 of the container 2 and be delivered through a filter 30 consisting of a microfilter or membrane 42 to purify the mixture. Suitable microfilters and membranes include organic membranes such as selective polymers such as ion permeable polymers produced by establishing a charge to induce release of the substance and palladium, PdAg, or iron, titanium, And an inorganic film such as an alloy of copper and rhenium. The unloaded material or the mixture of released material and heat exchange material can be transferred to other systems and / or storage devices including fuel cell 32, spark injection system 9 (through four-way valve 48 and valve 38), or four-way. It may be supplied to heat exchanger 34 through valve 48 where it is heated to a higher temperature and returned through perforated passage 4. The mixture may also be passed outside the system 900 through another port (not shown). For example, the material or mixture to be unloaded may be delivered to a pipeline or another system.

収着媒体に物質をロードするのを容易にするために種々の装置及び方法が上記で説明される。例えば、収着媒体との間で熱を伝達してもよく、収着媒体の層に電荷を適用してもよく、若しくは容器内の又は収着媒体の区域の間の圧力を変化させてもよく、このすべては収着媒体への物質のロードを容易にすることができる。物質のロード又はアンロードを容易にするために1つだけのこうした方法を採用するものとして幾つかの実施形態が説明されるが、1つよりも多いロード又はアンロード方法が同時に採用されてもよいことが当業者には分かるであろう。例えば、物質をロードするために収着材料の層を冷却することができ、物質の分子がロードされる速度を増加させるために層に電荷を適用することができる。   Various devices and methods are described above to facilitate loading the material into the sorption medium. For example, heat may be transferred to and from the sorption medium, a charge may be applied to the layer of sorption medium, or the pressure in the container or between areas of the sorption medium may be changed. Well, all this can facilitate the loading of material into the sorption medium. Some embodiments are described as employing only one such method to facilitate loading or unloading of a material, although more than one loading or unloading method may be employed simultaneously. Those skilled in the art will appreciate that this is good. For example, a layer of sorption material can be cooled to load a substance, and a charge can be applied to the layer to increase the rate at which molecules of the substance are loaded.

幾つかの実施形態において、物質のロード又はアンロードを容易にするために容器の収着媒体又はフィルタに超音波振動が適用される。同様に、幾つかの実施形態において、物質のロード又はアンロードを容易にするために収着媒体は選択的に照射される。   In some embodiments, ultrasonic vibrations are applied to the sorption medium or filter of the container to facilitate loading or unloading of the material. Similarly, in some embodiments, the sorption medium is selectively irradiated to facilitate loading or unloading of the material.

そのうえ、円盤のような特定の形状を有するものとして収着媒体の種々の実施形態が説明されるが、収着媒体は他の形状を備えてもよいことが当業者には分かるであろう。例えば、収着媒体は、収着材料の平行な長方形の層を備えてもよい。幾つかの実施形態において、物質は、長方形の層の第1の縁部に与えられ、そこで長方形の層が物質をロードし、長方形の層は、層の第2の縁部で物質をアンロードし、そこで物質は化学反応における反応物とすることができる。   Moreover, although various embodiments of sorption media are described as having a particular shape, such as a disc, those skilled in the art will appreciate that the sorption media may have other shapes. For example, the sorption medium may comprise parallel rectangular layers of sorption material. In some embodiments, the material is provided at the first edge of the rectangular layer, where the rectangular layer loads the material and the rectangular layer unloads the material at the second edge of the layer. The substance can then be a reactant in a chemical reaction.

本技術の1つの利点は、天然ガス及び水素などのガスを炭化水素と比較できるエネルギー密度で貯蔵できるようにすることである。   One advantage of the present technology is that it allows natural gases and gases such as hydrogen to be stored at an energy density comparable to hydrocarbons.

本技術の別の利点は、エンジンの排気のような廃生成物をフィルタし、及び別の化合物と反応させて有用且つ再生可能な化合物をもたらしてもよいことである。   Another advantage of the present technology is that waste products such as engine exhaust may be filtered and reacted with another compound to yield a useful and renewable compound.

本技術の別の利点は、燃料がまた消費されるであろう場所で燃料を生産し、フィルタし、及び貯蔵することができ、燃料ソースから燃料が消費されるであろう場所に長距離にわたって燃料を輸送する必要をなくすことである。   Another advantage of the present technology is that fuel can be produced, filtered and stored where the fuel will also be consumed, over long distances from the fuel source to where the fuel will be consumed. To eliminate the need to transport fuel.

上記から、例証する目的で本発明の特定の実施形態が本明細書で説明されているが、本発明の精神及び範囲から逸脱することなく種々の修正がなされてもよいことが理解されるであろう。したがって、本発明は付属の請求項以外によって制限されない。   From the foregoing, it will be understood that although particular embodiments of the invention have been described herein for purposes of illustration, various modifications may be made without departing from the spirit and scope of the invention. I will. Accordingly, the invention is not limited except as by the appended claims.

Claims (62)

物質をロードするための装置であって、
収着材料の第1の層と、
収着材料の第2の層と、
を備え、
前記収着材料の前記第2の層が、前記収着材料の前記第1の層と平行に構成され、
前記収着材料の前記第1の層と前記第2の層が、前記収着材料の前記第1の層と前記第2の層との間に物質がロードされることを可能にする距離だけ分離され、
前記距離が、前記第1の層及び/又は前記第2の層の表面上への前記物質の一部の吸着と前記第1の層と前記第2の層との間の区域への前記物質の一部の吸収によって、前記物質が前記収着材料の前記第1の層と前記第2の層との間にロードされることを可能にする、装置。
An apparatus for loading a substance,
A first layer of sorption material;
A second layer of sorption material;
With
The second layer of the sorption material is configured in parallel with the first layer of the sorption material;
The first layer and the second layer of the sorption material are only a distance that allows a substance to be loaded between the first layer and the second layer of the sorption material. Separated,
The distance is the adsorption of a portion of the substance onto the surface of the first layer and / or the second layer and the substance into the area between the first layer and the second layer. An apparatus that allows the substance to be loaded between the first layer and the second layer of the sorption material by absorption of a portion of the sorbent.
前記収着材料の前記第1の層と前記第2の層が、円盤状に形状設定され、前記装置は、前記物質が前記収着材料の前記第1の層及び第2の層の内縁部を横切る第1の方向に流れ、且つ第2の物質が前記収着材料の前記第1の層と第2の層の外縁部を横切る第2の方向に流れように構成され、前記第1の方向と前記第2の方向が反対方向である、請求項1に記載の装置。   The first layer and the second layer of the sorption material are shaped like a disk, and the device is configured such that the substance is an inner edge of the first layer and the second layer of the sorption material. And a second substance is configured to flow in a second direction across the first layer and the outer edge of the second layer of the sorption material, The apparatus of claim 1, wherein a direction and the second direction are opposite directions. 前記装置が、前記物質が前記収着材料の前記第1の層と前記第2の層との間で前記前記収着材料の前記第1の層及び第2の層の内縁部を介してロードされ、且つ前記収着材料の前記第1の層及び第2の層の前記外縁部を介してアンロードされるように構成される、請求項2に記載の装置。   The apparatus is configured to load the substance between the first layer and the second layer of the sorption material via inner edges of the first layer and the second layer of the sorption material. 3. The apparatus of claim 2, wherein the apparatus is configured to be unloaded through the outer edges of the first and second layers of sorption material. 前記物質と前記第2の物質との間の化学反応を容易にするために前記第1の層及び/又は前記第2の層の少なくとも一部上に適用される触媒をさらに備える、請求項3に記載の装置。   The catalyst further comprises a catalyst applied on at least a portion of the first layer and / or the second layer to facilitate a chemical reaction between the material and the second material. The device described in 1. 前記第1の層及び前記第2の層のうちの少なくとも1つが、前記層の表面上に配向された表面構造を含む、請求項1に記載の装置。   The apparatus of claim 1, wherein at least one of the first layer and the second layer includes a surface structure oriented on a surface of the layer. 前記収着材料の前記第1の層と前記収着材料の前記第2の層が、電気伝導率を提供し、前記装置は、前記物質の前記ロードを引き起こす及び/又は容易にするために前記収着材料の前記第1の層及び/又は前記第2の層に電荷が印加されてもよいように構成される、請求項1に記載の装置。   The first layer of the sorption material and the second layer of the sorption material provide electrical conductivity, and the device is configured to cause and / or facilitate the loading of the substance. The apparatus of claim 1, configured to allow a charge to be applied to the first layer and / or the second layer of sorbent material. 前記収着材料の前記第1の層と前記収着材料の前記第2の層が、熱伝達のための高い利用可能性を有し、前記物質の前記ロードを容易にする及び/又は引き起こすために、伝熱コンポーネントと前記収着材料の前記第1の層及び前記第2の層との間で熱が伝達されてもよい、請求項1に記載の装置。   The first layer of the sorption material and the second layer of the sorption material have high availability for heat transfer, facilitating and / or causing the loading of the substance; The apparatus of claim 1, wherein heat may be transferred between the heat transfer component and the first layer and the second layer of the sorption material. 物質と別の物質との間の化学反応を容易にするために前記第1の層及び/又は前記第2の層の少なくとも一部上に適用される触媒をさらに備える、請求項1に記載の装置。   The catalyst of claim 1, further comprising a catalyst applied on at least a portion of the first layer and / or the second layer to facilitate a chemical reaction between a material and another material. apparatus. 前記収着材料の前記第1の層及び前記第2の層が円盤の形状であり、収着材料の前記第1の層及び第2の層の内縁部が、前記層が互いに隣接して構成されるときに内部区域を形成し、前記物質が、前記内部区域を介して前記第1の層及び前記第2の層に導入される、請求項1に記載の装置。   The first layer and the second layer of the sorption material are in the shape of a disk, and the inner edges of the first layer and the second layer of the sorption material are configured so that the layers are adjacent to each other. The device of claim 1, wherein when formed, an internal zone is formed and the material is introduced into the first layer and the second layer via the internal zone. 前記収着材料の前記第1の層及び第2の層が、グラフェン、窒化ホウ素、又はグラファイトを備える、請求項1に記載の装置。   The apparatus of claim 1, wherein the first and second layers of sorption material comprise graphene, boron nitride, or graphite. 前記表面構造が、ナノチューブ、ナノスクロール、ナノ花状構造、及び/又は剥離された炭化組織を備える、請求項5に記載の装置。   The apparatus of claim 5, wherein the surface structure comprises nanotubes, nanoscrolls, nanofloral structures, and / or exfoliated carbonized tissue. 前記装置が排気管に構成される、請求項4に記載の装置。   The apparatus of claim 4, wherein the apparatus is configured in an exhaust pipe. 前記収着材料の前記第1の層及び前記第2の層の各々が第1の縁部及び第2の縁部を含み、前記装置が、前記第1の層及び第2の層の前記第1の縁部に隣接する区域の圧力が前記第1の層及び第2の層の前記第2の縁部に隣接する区域の圧力とは異なるように構成される、請求項1に記載の装置。   Each of the first layer and the second layer of the sorption material includes a first edge and a second edge, and the device includes the first layer and the second layer of the first layer. The apparatus of claim 1, wherein the pressure in the area adjacent to one edge is configured to be different from the pressure in the area adjacent to the second edge of the first and second layers. . 前記物質が、第1の化合物の分子と第2の化合物の分子とを備え、前記装置は、前記第1の化合物の分子が前記収着材料の前記第1の層と前記第2の層との間にロードされ、前記第2の化合物の分子が前記収着材料の前記第1の層と前記第2の層との間にロードされないように構成される、請求項1に記載の装置。   The substance comprises a molecule of a first compound and a molecule of a second compound, and the device comprises the first layer and the second layer of the sorption material wherein the molecule of the first compound is The device of claim 1, wherein the device is configured to be loaded between and wherein no molecules of the second compound are loaded between the first layer and the second layer of the sorption material. 前記表面構造が、前記収着材料の前記第1の層及び第2の層とは異なる材料からなる、請求項5に記載の装置。   The apparatus of claim 5, wherein the surface structure is made of a material different from the first and second layers of the sorption material. 前記表面構造が窒化ホウ素からなり、前記収着材料の前記第1の層及び第2の層がグラフェンからなる、請求項15に記載の装置。   The apparatus of claim 15, wherein the surface structure comprises boron nitride and the first and second layers of the sorption material comprise graphene. 前記表面構造が、前記第1の層と前記第2の層とを分離する前記距離を支持する、請求項5に記載の装置。   The apparatus of claim 5, wherein the surface structure supports the distance separating the first layer and the second layer. 前記収着材料の前記第1の層及び前記第2の層と平行に構成される前記収着材料の第3の層及び前記収着材料の第4の層をさらに備え、前記収着材料の前記第3の層及び前記第4の層が、前記第1の距離とは異なる第2の距離だけ分離される、請求項1に記載の装置。   The sorption material further comprises a third layer of the sorption material and a fourth layer of the sorption material configured in parallel with the first layer and the second layer of the sorption material, The apparatus of claim 1, wherein the third layer and the fourth layer are separated by a second distance that is different from the first distance. 物質をロードするための装置であって、
少なくとも1つのポートを含む膜と、
収着材料の第1の層と、
前記収着材料の第2の層と、
を備え、
前記膜が、前記収着材料の前記第1の層及び第2の層を取り囲み、
前記収着材料の前記第2の層が、前記収着材料の前記第1の層と平行に構成され、
前記収着材料の前記第1の層と前記第2の層が、前記収着材料の前記第1の層と前記第2の層との間に物質がロードされることを可能にする距離だけ分離され、
前記第1の層及び/又は前記第2の層の表面上への前記物質の一部の吸着と、前記第1の層と前記第2の層との間の区域への前記物質の一部の吸収によって、前記物質が前記収着材料の前記第1の層と前記第2の層との間にロードされる、
装置。
An apparatus for loading a substance,
A membrane comprising at least one port;
A first layer of sorption material;
A second layer of the sorption material;
With
The membrane surrounds the first and second layers of the sorption material;
The second layer of the sorption material is configured in parallel with the first layer of the sorption material;
The first layer and the second layer of the sorption material are only a distance that allows a substance to be loaded between the first layer and the second layer of the sorption material. Separated,
Adsorption of a part of the substance onto the surface of the first layer and / or the second layer and a part of the substance into the area between the first layer and the second layer Absorption of the substance causes the substance to be loaded between the first layer and the second layer of the sorption material.
apparatus.
前記第1の層及び前記第2の層のうちの少なくとも1つが、前記層の表面上に配向された表面構造を含む、請求項19に記載の装置。   The apparatus of claim 19, wherein at least one of the first layer and the second layer comprises a surface structure oriented on a surface of the layer. 前記収着材料の前記第1の層と前記収着材料の前記第2の層が、電気伝導率を提供し、前記装置は、前記物質の前記ロード及び/又は前記アンロードを引き起こす及び/又は容易にするために前記収着材料の前記第1の層及び/又は前記第2の層に電荷が印加されてもよいように構成される、請求項19に記載の装置。   The first layer of the sorption material and the second layer of the sorption material provide electrical conductivity, and the device causes the loading and / or the unloading of the substance and / or 21. The apparatus of claim 19, configured to allow a charge to be applied to the first layer and / or the second layer of the sorption material for ease. 前記収着材料の前記第1の層と前記収着材料の前記第2の層が、熱伝達のための高い利用可能性を有し、前記物質の前記ロード及び/又は前記アンロードを容易にする及び/又は引き起こすために伝熱コンポーネントと前記収着材料の前記第1の層及び前記第2の層との間で熱が伝達されてもよい、請求項19に記載の装置。   The first layer of the sorption material and the second layer of the sorption material have high availability for heat transfer and facilitate the loading and / or unloading of the substance. 21. The apparatus of claim 19, wherein heat may be transferred between the heat transfer component and the first layer and the second layer of sorption material to do and / or cause. 物質と別の物質との間の化学反応を容易にするために前記第1の層及び/又は前記第2の層の少なくとも一部上に適用される触媒をさらに備える、請求項19に記載の装置。   20. The catalyst of claim 19, further comprising a catalyst applied on at least a portion of the first layer and / or the second layer to facilitate a chemical reaction between a material and another material. apparatus. 前記収着材料の前記第1の層及び前記第2の層が円盤の形状であり、前記収着材料の前記第1の層及び第2の層の内縁部が、前記層が互いに隣接して構成されるときに内部区域を形成し、前記物質が、前記ポートを介して前記第1の層と第2の層及び前記内部区域に導入される、請求項19に記載の装置。   The first layer and the second layer of the sorption material are in the shape of a disc, and the inner edges of the first layer and the second layer of the sorption material are adjacent to each other. 20. The apparatus of claim 19, wherein when configured, an interior zone is formed and the material is introduced to the first and second layers and the interior zone via the port. 前記収着材料の前記第1の層及び第2の層が、グラフェン、窒化ホウ素、又はグラファイトを備える、請求項19に記載の装置。   The apparatus of claim 19, wherein the first and second layers of sorption material comprise graphene, boron nitride, or graphite. 前記表面構造が、ナノチューブ、ナノスクロール、ナノ花状構造、及び/又は剥離された炭化組織を備える、請求項20に記載の装置。   21. The apparatus of claim 20, wherein the surface structure comprises nanotubes, nanoscrolls, nanofloral structures, and / or exfoliated carbonized tissue. 前記膜が実質的に透明であり、前記収着材料の前記第1の層が、光活性のある要素と熱連通するための高い能力を有する、請求項19に記載の装置。   20. The apparatus of claim 19, wherein the membrane is substantially transparent and the first layer of sorption material has a high ability to be in thermal communication with a photoactive element. 前記化学反応の生成物が、前記収着材料の前記第1の層と前記第2の層との間にロードされる、請求項23に記載の装置。   24. The apparatus of claim 23, wherein the product of the chemical reaction is loaded between the first layer and the second layer of the sorption material. 前記表面構造が、前記収着材料の前記第1の層及び第2の層とは異なる材料からなる、請求項20に記載の装置。   21. The apparatus of claim 20, wherein the surface structure comprises a material that is different from the first and second layers of the sorption material. 前記表面構造が窒化ホウ素からなり、前記収着材料の前記第1の層及び第2の層がグラフェンからなる、請求項29に記載の装置。   30. The apparatus of claim 29, wherein the surface structure comprises boron nitride and the first and second layers of the sorption material comprise graphene. 前記表面構造が、前記第1の層と前記第2の層とを分離する前記距離を支持する、請求項30に記載の装置。   32. The apparatus of claim 30, wherein the surface structure supports the distance separating the first layer and the second layer. 前記収着材料の前記第1の層及び前記第2の層と平行に構成される前記収着材料の第3の層及び前記収着材料の第4の層をさらに備え、前記収着材料の前記第3の層及び前記第4の層が、前記第1の距離とは異なる第2の距離だけ分離される、請求項19に記載の装置。   The sorption material further comprises a third layer of the sorption material and a fourth layer of the sorption material configured in parallel with the first layer and the second layer of the sorption material, The apparatus of claim 19, wherein the third layer and the fourth layer are separated by a second distance that is different from the first distance. 収着媒体に物質をロードする方法であって、
収着媒体の縁部に隣接する領域に物質を提供するステップであって、前記収着媒体が、収着材料の少なくとも2つの平行な層と、前記少なくとも2つの平行な層の間の区域へのアクセスを提供する収着媒体の縁部とを備える、ステップと、
前記物質の少なくとも一部を前記収着媒体にロードするステップと、
を含み、
前記物質の少なくとも幾つかの分子が、前記少なくとも2つの平行な層のうちの層の表面上に吸着され、
前記物質の少なくとも幾つかの分子が、前記少なくとも2つの平行な層の間の前記区域の中に吸収される、
方法
A method of loading a substance into a sorption medium, comprising:
Providing a substance to a region adjacent to an edge of the sorption medium, wherein the sorption medium is to at least two parallel layers of sorption material and to an area between the at least two parallel layers. A sorption medium edge providing access to
Loading at least a portion of the substance into the sorption medium;
Including
At least some molecules of the substance are adsorbed on the surface of the layer of the at least two parallel layers;
At least some molecules of the substance are absorbed into the area between the at least two parallel layers;
Method
前記物質の少なくとも一部が、前記収着材料の少なくとも2つの平行な層のうちの層の表面上に位置する表面構造によって吸収される、請求項33に記載の方法。   34. The method of claim 33, wherein at least a portion of the substance is absorbed by a surface structure located on a surface of a layer of at least two parallel layers of the sorption material. 前記収着媒体から熱を除去するステップをさらに含み、前記収着媒体から熱を除去するステップが、前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こす、請求項33に記載の方法。   34. The method of claim 33, further comprising removing heat from the sorption medium, wherein removing heat from the sorption medium facilitates and / or causes the loading of at least a portion of the material. Method. 前記収着材料の少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加するステップをさらに含み、前記電圧を印加するステップが、前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こす、請求項33に記載の方法。   Further comprising applying a voltage across at least one of the at least two parallel layers of the sorbent material, the applying the voltage facilitating the loading of at least a portion of the substance. 34. The method of claim 33, wherein the method is and / or causes. 収着媒体によって経験される圧力を増加させるステップをさらに含み、前記収着媒体によって経験される圧力を増加させるステップが、前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こす、請求項33に記載の方法。   Further comprising increasing the pressure experienced by the sorption medium, wherein increasing the pressure experienced by the sorption medium facilitates and / or causes the loading of at least a portion of the material. Item 34. The method according to Item 33. 前記物質の少なくとも一部を前記収着媒体にロードするステップが、
前記収着媒体から熱を除去するステップと、
前記少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加するステップと、
収着媒体によって経験される圧力を増加させるステップと、
のうちの少なくとも2つによって容易にされ及び/又は引き起こされる、
請求項33に記載の方法。
Loading at least a portion of the material into the sorption medium;
Removing heat from the sorption medium;
Applying a voltage across at least one of the at least two parallel layers;
Increasing the pressure experienced by the sorption medium;
Facilitated and / or caused by at least two of
34. The method of claim 33.
前記収着媒体の第2の縁部で前記収着媒体にロードされた前記物質の少なくとも一部をアンロードするステップをさらに含む、請求項33に記載の方法。   34. The method of claim 33, further comprising unloading at least a portion of the material loaded on the sorption medium at a second edge of the sorption medium. 前記収着媒体の第2の縁部が、前記物質の第1の化合物の分子と第2の化合物の分子との間の化学反応に触媒作用を及ぼす触媒を含む、請求項39に記載の方法。   40. The method of claim 39, wherein the second edge of the sorption medium comprises a catalyst that catalyzes a chemical reaction between a first compound molecule and a second compound molecule of the substance. . 前記物質が、少なくとも2つの化合物の分子を備える、請求項33に記載の方法。   34. The method of claim 33, wherein the substance comprises molecules of at least two compounds. 前記収着媒体に前記物質をロードするステップが、1つの化合物の分子のみを前記収着媒体にロードすることを含む、請求項41に記載の方法。   42. The method of claim 41, wherein loading the substance into the sorption medium comprises loading only one compound molecule into the sorption medium. 前記収着材料が、グラフェン、グラファイト、又は窒化ホウ素のうちの1つである、請求項33に記載の方法。   34. The method of claim 33, wherein the sorption material is one of graphene, graphite, or boron nitride. 前記物質の少なくとも一部の前記ロードを容易にする及び/又は引き起こすために前記吸収媒体の両端に電圧勾配を印加するステップをさらに含む、請求項33に記載の方法。   34. The method of claim 33, further comprising applying a voltage gradient across the absorbent medium to facilitate and / or cause the loading of at least a portion of the material. 収着媒体から物質をアンロードするための方法であって、
収着材料の少なくとも2つの平行な層を備え、且つ前記少なくとも2つの平行な層の間の区域へのアクセスを提供する縁部を有する収着媒体から、前記収着媒体にロードされている物質の分子をアンロードするステップを含み、
前記分子のうちの少なくとも幾つかが、前記少なくとも2つの平行な層のうちの層の表面上に吸着された状態からアンロードされ、
前記分子のうちの少なくとも幾つかが、前記少なくとも2つの平行な層の間の前記区域の中に吸収された状態からアンロードされ、
前記収着媒体の縁部を介して前記収着媒体から分子が追い出される、
方法。
A method for unloading a substance from a sorption medium, comprising:
A substance loaded into the sorption medium from a sorption medium comprising at least two parallel layers of sorption material and having an edge providing access to the area between the at least two parallel layers Unloading the molecule of
At least some of the molecules are unloaded from adsorbed on the surface of the layer of the at least two parallel layers;
At least some of the molecules are unloaded from being absorbed into the area between the at least two parallel layers;
Molecules are expelled from the sorption medium through edges of the sorption medium;
Method.
前記収着媒体が、前記収着材料の平行な層のうちの少なくとも1つの表面上に位置する表面構造をさらに備え、前記分子のうちの少なくとも幾つかが、前記表面構造において吸収された状態からアンロードされる、請求項45に記載の方法。   The sorption medium further comprises a surface structure located on the surface of at least one of the parallel layers of the sorbent material, wherein at least some of the molecules are absorbed from the surface structure. 46. The method of claim 45, wherein the method is unloaded. 前記収着媒体に熱を加えるステップをさらに含み、前記収着媒体に熱を加えるステップが、前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかの前記アンロードを容易にする及び/又は引き起こす、請求項45に記載の方法。   The method further includes the step of applying heat to the sorption medium, wherein the step of applying heat to the sorption medium facilitates the unloading of at least some of the molecules of the substance loaded on the sorption medium. 46. The method of claim 45, wherein and / or cause. 前記収着媒体に熱を加えるステップをさらに含み、前記平行な層のうちの少なくとも1つを通して及び前記表面構造の中に熱を伝達し、前記収着媒体に熱を加えるステップが、前記表面構造において吸収された状態からアンロードされる前記分子を含む前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかの前記アンロードを容易にする及び/又は引き起こす、請求項46に記載の方法。   Applying heat to the sorption medium further comprising transferring heat through at least one of the parallel layers and into the surface structure, and applying heat to the sorption medium. 47. Facilitates and / or causes said unloading of at least some of the molecules of matter loaded in said sorption medium comprising said molecules unloaded from being absorbed in the method of. 前記収着材料の少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加するステップをさらに含み、前記電圧を印加するステップが、前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかの前記アンロードを容易にする及び/又は引き起こす、請求項45に記載の方法。   Applying a voltage across at least one of the at least two parallel layers of the sorption material, wherein applying the voltage comprises molecules of a substance loaded on the sorption medium. 46. The method of claim 45, facilitating and / or causing the unloading of at least some of the. 収着媒体によって経験される圧力を減少させるステップをさらに含み、前記収着媒体によって経験される圧力を減少させるステップが、前記収着媒体にロードされている物質の分子のうちの少なくとも幾つかのアンロードを容易にする又は引き起こす、請求項45に記載の方法。   Further comprising reducing the pressure experienced by the sorption medium, the step of reducing the pressure experienced by the sorption medium comprising at least some of the molecules of matter loaded on the sorption medium. 46. The method of claim 45, which facilitates or causes unloading. 前記収着媒体にロードされている物質の分子をアンロードするステップが、
前記収着媒体に熱を加えること、
前記少なくとも2つの平行な層のうちの少なくとも1つの層の両端に電圧を印加すること、
前記収着媒体によって経験される圧力を減少させること、
のうちの少なくとも2つによって容易にされ又は引き起こされる、
請求項45に記載の方法。
Unloading molecules of the substance loaded on the sorption medium,
Applying heat to the sorption medium;
Applying a voltage across at least one of the at least two parallel layers;
Reducing the pressure experienced by the sorption medium;
Facilitated or caused by at least two of
46. The method of claim 45.
前記収着媒体にロードされている物質の分子をアンロードするステップが、前記収着媒体にロードされている第1の化合物の分子をアンロードすることを含み、前記収着媒体にロードされている第2の化合物の分子はアンロードされない、請求項45に記載の方法。   Unloading molecules of the substance loaded into the sorption medium comprises unloading molecules of a first compound loaded into the sorption medium, loaded into the sorption medium 46. The method of claim 45, wherein the second compound molecule is not unloaded. 前記収着材料が、ラフェン、グラファイト、又は窒化ホウ素のうちの1つである、請求項45に記載の方法。   46. The method of claim 45, wherein the sorption material is one of rafen, graphite, or boron nitride. 前記収着材料の少なくとも2つの平行な層のうちの少なくとも1つの層の両端の前記電圧が、前記収着媒体に前記物質の分子をロードするために印加された電圧の極性の反対の極性を有する、請求項49に記載の方法。   The voltage across at least one of the at least two parallel layers of the sorption material has a polarity opposite to the polarity of the voltage applied to load molecules of the substance into the sorption medium. 50. The method of claim 49, comprising: 物質を収着媒体にロードする及びアンロードするためのシステムであって、
ポートを含み、且つ収着媒体を収容する容器であり、収着媒体が収着材料の平行な層を備える、容器と、
前記ポートを通して及び前記容器の中に熱交換物質を循環させるように構成された伝熱コンポーネントと、
開かれたときに物質が前記ポートを通して及び前記容器の中に流れて前記収着媒体の中にロードされることを可能にする弁と、
を備え、収着媒体の中にロードされるときに、物質の少なくとも幾つかの分子が収着媒体の層の表面上に吸着され、物質の分子のうちの少なくとも幾つかが収着媒体の平行な層の間の区域の中に吸収される、
システム。
A system for loading and unloading material into a sorption medium, comprising:
A container comprising a port and containing a sorption medium, the sorption medium comprising parallel layers of sorption material;
A heat transfer component configured to circulate heat exchange material through the port and into the vessel;
A valve that, when opened, allows a substance to flow through the port and into the container to be loaded into the sorption medium;
And when loaded into the sorption medium, at least some molecules of the substance are adsorbed on the surface of the layer of the sorption medium, and at least some of the molecules of the substance are parallel to the sorption medium. Absorbed into the area between the layers,
system.
前記ポートから追い出される物質をフィルタするフィルタをさらに備える、請求項55に記載のシステム。   56. The system of claim 55, further comprising a filter that filters material expelled from the port. 収着媒体からアンロードされる物質を受け入れる燃料電池をさらに備える、請求項55に記載のシステム。   56. The system of claim 55, further comprising a fuel cell that receives material that is unloaded from the sorption medium. 前記収着媒体の平行な層のうちの層の表面上に位置する表面構造をさらに備える、請求項55に記載のシステム。   56. The system of claim 55, further comprising a surface structure located on a surface of a layer of the parallel layers of the sorption medium. 前記収着材料の平行な層が電気伝導率を提供し、前記容器は、前記収着材料の平行な層に電荷が印加されるように構成される、請求項55に記載のシステム。   56. The system of claim 55, wherein the parallel layers of sorbent material provide electrical conductivity and the container is configured to apply a charge to the parallel layers of sorbent material. 前記収着材料の平行な層が、熱伝達のための高い利用可能性を有し、前記ポートを介して前記収着媒体の中に熱が伝達されてもよい、請求項55に記載のシステム。   56. The system of claim 55, wherein the parallel layers of sorption material have high availability for heat transfer, and heat may be transferred into the sorption medium through the port. . 前記収着材料の平行な層が電気伝導率を提供し、前記容器が、前記収着材料の平行な層に電荷勾配を印加するように構成される、請求項55に記載のシステム。   56. The system of claim 55, wherein the parallel layers of sorption material provide electrical conductivity and the container is configured to apply a charge gradient to the parallel layers of sorption material. 前記物質をロードするために前記収着材料に第1の極性の電圧が印加され、物質をアンロードするために前記収着材料に第2の極性の電圧が印加される、請求項59に記載のシステム。   60. A first polarity voltage is applied to the sorption material to load the substance and a second polarity voltage is applied to the sorption material to unload a substance. System.
JP2012526835A 2009-08-27 2010-08-16 Apparatus and method for storing and / or filtering substances Pending JP2013503310A (en)

Applications Claiming Priority (17)

Application Number Priority Date Filing Date Title
US23747609P 2009-08-27 2009-08-27
US61/237,476 2009-08-27
US30440310P 2010-02-13 2010-02-13
US61/304,403 2010-02-13
USPCT/US2010/024497 2010-02-17
US12/707,651 US8075748B2 (en) 2009-02-17 2010-02-17 Electrolytic cell and method of use thereof
USPCT/US2010/024499 2010-02-17
US12/707,651 2010-02-17
USPCT/US2010/024498 2010-02-17
PCT/US2010/024497 WO2010096503A1 (en) 2009-02-17 2010-02-17 Electrolytic cell and method of use thereof
PCT/US2010/024498 WO2010096504A1 (en) 2009-02-17 2010-02-17 Apparatus and method for controlling nucleation during electrolysis
US12/707,653 US8172990B2 (en) 2009-02-17 2010-02-17 Apparatus and method for controlling nucleation during electrolysis
US12/707,656 2010-02-17
PCT/US2010/024499 WO2010096505A1 (en) 2009-02-17 2010-02-17 Apparatus and method for gas capture during electrolysis
US12/707,653 2010-02-17
US12/707,656 US8075749B2 (en) 2009-02-17 2010-02-17 Apparatus and method for gas capture during electrolysis
PCT/US2010/045668 WO2011102851A1 (en) 2009-08-27 2010-08-16 Apparatuses and methods for storing and/or filtering a substance

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2013181500A Division JP2014025587A (en) 2009-08-27 2013-09-02 Apparatuses and methods for storing and/or filtering substance

Publications (1)

Publication Number Publication Date
JP2013503310A true JP2013503310A (en) 2013-01-31

Family

ID=49302451

Family Applications (6)

Application Number Title Priority Date Filing Date
JP2012537875A Expired - Fee Related JP5852576B2 (en) 2009-08-27 2010-08-16 Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
JP2012526834A Expired - Fee Related JP5922577B2 (en) 2009-08-27 2010-08-16 Energy system for residential facilities support
JP2012526836A Pending JP2013503299A (en) 2009-08-27 2010-08-16 Increased efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
JP2012526835A Pending JP2013503310A (en) 2009-08-27 2010-08-16 Apparatus and method for storing and / or filtering substances
JP2013181500A Pending JP2014025587A (en) 2009-08-27 2013-09-02 Apparatuses and methods for storing and/or filtering substance
JP2014163086A Pending JP2015028339A (en) 2009-08-27 2014-08-08 Increasing efficiency of supplemented ocean thermal energy conversion (sotec) systems

Family Applications Before (3)

Application Number Title Priority Date Filing Date
JP2012537875A Expired - Fee Related JP5852576B2 (en) 2009-08-27 2010-08-16 Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
JP2012526834A Expired - Fee Related JP5922577B2 (en) 2009-08-27 2010-08-16 Energy system for residential facilities support
JP2012526836A Pending JP2013503299A (en) 2009-08-27 2010-08-16 Increased efficiency of supplemented ocean thermal energy conversion (SOTEC) systems

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2013181500A Pending JP2014025587A (en) 2009-08-27 2013-09-02 Apparatuses and methods for storing and/or filtering substance
JP2014163086A Pending JP2015028339A (en) 2009-08-27 2014-08-08 Increasing efficiency of supplemented ocean thermal energy conversion (sotec) systems

Country Status (11)

Country Link
EP (7) EP2470786A4 (en)
JP (6) JP5852576B2 (en)
KR (1) KR101547007B1 (en)
CN (9) CN102713281B (en)
AU (1) AU2010289904A1 (en)
BR (1) BR112012004093A2 (en)
CA (1) CA2770510A1 (en)
IL (1) IL217860A (en)
RU (4) RU2562336C2 (en)
WO (8) WO2011028233A2 (en)
ZA (1) ZA201200791B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200769A (en) * 2013-04-09 2014-10-27 日東電工株式会社 Adsorbing material

Families Citing this family (48)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147599B2 (en) 2009-02-17 2012-04-03 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
CZ304079B6 (en) * 2011-06-23 2013-10-02 Gascontrol, Spolecnost S R.O. Energy system employing connection of hydrogen and oxygen generator with a system of gas microturbine in combination with organic Rankin cycle
JP2013040606A (en) * 2011-08-17 2013-02-28 Kazuhiko Nagashima Method and device for highly-efficiently recovering ordinary temperature heat energy
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
EP2578379A1 (en) * 2011-10-05 2013-04-10 Sumika Polymer Compounds (France) SA Solar thermal solutions using blow moulding technologies
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
NL2010039C2 (en) 2012-12-21 2014-06-24 S4 Energy B V Device for reducing the load on a supporting structure, in particular an inertial energy accumulating device.
US9366238B2 (en) 2013-03-13 2016-06-14 Lockheed Martin Corporation System and process of cooling an OTEC working fluid pump motor
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
WO2014145882A1 (en) 2013-03-15 2014-09-18 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
FR3006681B1 (en) 2013-06-11 2015-07-17 Faurecia Sys Echappement AMMONIA STORAGE CARTRIDGE WITH OPTIMIZED FILL TIME, IN PARTICULAR FOR A GAS EXHAUST SYSTEM OF A MOTOR VEHICLE
CN103615357B (en) * 2013-11-15 2016-05-25 韩树君 A kind of wind energy, solar energy, sea wave energy circulation complemental power-generation and seawater desalination system
CN104674291A (en) * 2013-11-28 2015-06-03 哈尔滨市三和佳美科技发展有限公司 Mixed hydrogen-oxygen generator
JP2015168971A (en) * 2014-03-06 2015-09-28 古河機械金属株式会社 Marine mineral lifting method and marine mineral lifting system
DK3183051T3 (en) 2014-08-19 2020-06-02 Nortek Air Solutions Canada Inc LIQUID-TO-LUFTMEMBRANENERGIVEKSLERE
CN107683385B (en) * 2015-03-13 2020-02-07 先能驹解决有限公司 Pressure vessel for increasing gas storage capacity
WO2016205750A1 (en) * 2015-06-18 2016-12-22 Kevin Kremeyer Directed energy deposition to facilitate high speed applications
AU2016281963A1 (en) * 2015-06-26 2018-02-15 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
FR3038456B1 (en) * 2015-06-30 2019-10-18 Jomi Leman ELECTROCHEMICAL DEVICE FOR STORING ELECTRIC ENERGY.
RU2617215C1 (en) * 2015-11-16 2017-04-24 Юрий Владимирович Семынин Heat engine
CN105570672A (en) * 2015-12-22 2016-05-11 重庆市高新技术产业开发区潞翔能源技术有限公司 Natural gas adsorption tank heat exchange system
EA201900243A1 (en) * 2016-11-28 2019-09-30 Евгений Иванович КАСАТКИН METHOD FOR CARBON GAS DISPOSAL
WO2018191806A1 (en) 2017-04-18 2018-10-25 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
CN107514823B (en) * 2017-08-10 2019-12-31 中广核工程有限公司 Rotary photo-thermal power station heat absorber and uniform heat absorption control method
WO2019031966A1 (en) 2017-08-10 2019-02-14 L2 Consultancy B.V. Refueling station for supplying energy carriers to vehicles
NL2019407B1 (en) * 2017-08-10 2019-02-21 L2 Consultancy B V Refueling station for supplying energy carriers to vehicles
CN107559161B (en) * 2017-10-09 2019-05-31 上海海事大学 A kind of thermal and electric two way system of combination chemical heat accumulation and power generation with sea water
CN107989681A (en) * 2017-12-06 2018-05-04 佛山早稻田环保节能科技有限公司 A kind of vehicle tail gas treater
CN107893243A (en) * 2017-12-20 2018-04-10 中科京投环境科技江苏有限公司 A kind of device and removal methods of eddy flow in-pulp electrolysis removing heavy metal
US10619794B2 (en) 2018-03-13 2020-04-14 Ford Global Technologies, Llc Pressurized-fluid storage device
CA3023875C (en) 2018-05-08 2023-04-11 Enginuity Power Systems, Inc. Combination systems and related methods for providing power, heat and cooling
EP3802735A4 (en) * 2018-05-30 2022-03-02 Royal Melbourne Institute Of Technology A pyrolysis reaction system and method of pyrolysing an organic feed
RU2688061C1 (en) * 2018-06-05 2019-05-17 Николай Артёмович Седых Arctic wind-driven power plant
RU196410U1 (en) * 2018-07-27 2020-02-28 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Дагестанский Государственный Технический Университет" (Дгту) GEOTHERMAL POWER PLANT
RU2689488C1 (en) * 2018-11-01 2019-05-28 Александр Алексеевич Соловьев Biogas aerodynamic plant
RU2697274C1 (en) * 2018-11-21 2019-08-13 Владимир Алексеевич Чернорот Method of processing solid municipal and industrial wastes
KR102431612B1 (en) * 2019-02-26 2022-08-12 한국자동차연구원 Water removal device for hydrogen filling station
AT17434U1 (en) * 2019-08-07 2022-04-15 Oleksandrovych Riepkin Oleksandr Method of creating and using an energetic system with the integration into the system of hydrogen produced using renewable energy sources
WO2021203176A1 (en) * 2020-04-09 2021-10-14 Woodside Energy Technologies Pty Ltd Renewable energy hydrocarbon processing method and plant
CN112302892A (en) * 2020-11-24 2021-02-02 房盼盼 Method and device for improving sea temperature difference power generation
WO2022150302A1 (en) * 2021-01-08 2022-07-14 Alakai Technologies Corporation Method and system for an off-grid variable state hydrogen refueling infrastructure
CN112600139A (en) * 2021-01-20 2021-04-02 深圳市红越电子科技有限公司 Conductive cable interface detection post-processing terminal
CN112871332B (en) * 2021-02-04 2022-11-11 台州锐祥机械设备有限公司 Production process of high-strength shock absorption and shock absorption part of automobile
CN113546951A (en) * 2021-07-13 2021-10-26 东方电气集团东方锅炉股份有限公司 Landfill treatment and recycling method and system suitable for hydrogen energy development and utilization
DE102022104030A1 (en) 2022-02-21 2023-08-24 Stablegrid Engineers GmbH Arrangement for stabilizing electricity grids with a cavern for gas storage
WO2023195158A1 (en) * 2022-04-08 2023-10-12 日本電信電話株式会社 Heat conversion system and heat conversion method
WO2023239792A1 (en) * 2022-06-07 2023-12-14 Koloma, Inc. Integration of natural hydrogen reservoir storage capacity or suitable subsurface reservoirs with other hydrogen sources and sinks

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001254897A (en) * 2000-03-10 2001-09-21 Honda Motor Co Ltd Hydrogen storage device
JP2002128501A (en) * 2000-10-18 2002-05-09 Sony Corp Method for gas storage and fuel cell
US6503584B1 (en) * 1997-08-29 2003-01-07 Mcalister Roy E. Compact fluid storage system
JP2004268022A (en) * 2003-02-18 2004-09-30 Nissan Motor Co Ltd Hydrogen occluding material, production method therefor, hydrogen storage tank, hydrogen storage system, and fuel cell automobile
JP2006035174A (en) * 2004-07-29 2006-02-09 Toyota Motor Corp Hydrogen occlusion material and manufacture and utilization of the same
WO2006095800A1 (en) * 2005-03-11 2006-09-14 Nissan Motor Co., Ltd. Hydrogen storage material, hydrogen storage structure, hydrogen storer, hydrogen storage apparatus, fuel cell vehicle, and process for producing hydrogen storage material
JP2007077265A (en) * 2005-09-14 2007-03-29 Nippon Oil Corp Porous substance and its production method
WO2008069590A1 (en) * 2006-12-06 2008-06-12 Electronics And Telecommunications Research Institute Gas storage medium, gas storage apparatus and method thereof

Family Cites Families (128)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB991581A (en) * 1962-03-21 1965-05-12 High Temperature Materials Inc Expanded pyrolytic graphite and process for producing the same
JPS5216468Y1 (en) * 1969-06-14 1977-04-13
US4060988A (en) * 1975-04-21 1977-12-06 Texaco Inc. Process for heating a fluid in a geothermal formation
JPS5213048A (en) * 1975-07-22 1977-02-01 Ebara Corp Operation method of a marine generating set
JPS52168347U (en) * 1976-06-14 1977-12-20
US4091313A (en) * 1976-08-23 1978-05-23 Salvatore Genovese Current recycling electric motor system
US4170878A (en) * 1976-10-13 1979-10-16 Jahnig Charles E Energy conversion system for deriving useful power from sources of low level heat
DE2934647A1 (en) * 1979-08-28 1981-03-12 Fritz Ing.(grad.) 7612 Haslach Thoma Heating system using IC engine in insulated enclosure - driving generator supplying electrical heating element with waste heat recovered by heat exchangers
JPS56105244A (en) * 1980-01-24 1981-08-21 Hiroyuki Morita Hot water feeder
JPS56138468A (en) * 1980-03-13 1981-10-29 Mitsubishi Heavy Ind Ltd Ocean temperature difference generator
DE3014357A1 (en) 1980-04-15 1981-10-22 Küppersbusch AG, 4650 Gelsenkirchen Water heater with IC-engine - has engine in capsule protruding into boiler with exhaust connected to heat exchanger
DE3016410A1 (en) * 1980-04-29 1981-11-05 Wilhelm 5000 Köln Jülich Combined heating hot water boiler and IC engine - drives electricity generator and uses engine waste heat
DE3044666A1 (en) * 1980-11-27 1982-07-08 Morath, Karl Günther, 6670 St. Ingbert Small scale energy generation plant for domestic use - has heat transfer medium selectively fed through heat exchanger using combustion engine waste heat
JPS5791384A (en) * 1980-11-27 1982-06-07 Toshiba Corp Evaporator
US4437963A (en) * 1981-09-10 1984-03-20 Yeoman David R Apparatus for electrolyzing water
US4490232A (en) * 1981-10-29 1984-12-25 The Laitram Corporation Wave-powered electrolysis of water
JPS5897461U (en) * 1981-12-23 1983-07-02 株式会社 ト−タルシステム Heat exchanger with tank and bow tube
JPS5946375A (en) * 1982-09-08 1984-03-15 Mitsubishi Electric Corp Power generator by sea water
JPS59110872A (en) * 1982-12-17 1984-06-26 Mitsubishi Heavy Ind Ltd Compound generation device which utilizes sea temperature difference and solar heat
JPS59165873A (en) * 1983-03-09 1984-09-19 Toshiba Corp Sea temperature difference power plant
JPS59188058A (en) * 1983-04-08 1984-10-25 Yamaha Motor Co Ltd Waste heat recovery device for internal-combustion engine
JPS6321366A (en) * 1986-07-16 1988-01-28 Kajima Corp Heat accumulating type marine thermal difference power generating plant
JPH0661195B2 (en) * 1986-12-25 1994-08-17 三菱重工業株式会社 High production sea area creation system
JPS63243463A (en) * 1987-03-30 1988-10-11 Agency Of Ind Science & Technol Electric power generator
JP2680674B2 (en) * 1989-04-12 1997-11-19 財団法人電力中央研究所 Ocean / waste heat temperature difference power generation system
US6155212A (en) * 1989-06-12 2000-12-05 Mcalister; Roy E. Method and apparatus for operation of combustion engines
JPH0346161U (en) * 1989-09-09 1991-04-26
JP2587297B2 (en) * 1989-09-27 1997-03-05 富士電機株式会社 Cogeneration system
JPH03173788A (en) * 1989-12-01 1991-07-29 Tanaka Kikinzoku Kogyo Kk Method for synthesizing ammonia
JPH03175136A (en) * 1989-12-05 1991-07-30 Sanden Corp Device for utilizing exhaust heat of internal combustion engine
FI89969C (en) * 1989-12-21 1993-12-10 Waertsilae Diesel Int Procedure and arrangement for improving the utilization of exhaust gas heat energy in large diesel engines
JPH0476211A (en) * 1990-07-19 1992-03-11 Meidensha Corp Heat/electric power cogenerating device
JP2889668B2 (en) * 1990-08-06 1999-05-10 三洋電機株式会社 Energy system
JPH0816475B2 (en) * 1990-11-27 1996-02-21 工業技術院長 Temperature difference power generation method and device, and temperature difference power generation / marine organism aquaculture combined device
US5167786A (en) * 1991-01-25 1992-12-01 Eberle William J Wave-power collection apparatus
JPH0678713U (en) * 1991-04-24 1994-11-04 国立環境研究所長 Home cogeneration
JPH05223268A (en) * 1992-02-06 1993-08-31 Nippondenso Co Ltd Cogeneration system
JP2527288B2 (en) * 1992-06-16 1996-08-21 株式会社新燃焼システム研究所 Ammonia separation method using fuel cell reaction
JPH06147098A (en) * 1992-11-11 1994-05-27 Ikeda Takeshi Convection type temperature gradient prime mover
JPH06234502A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Energy storing method using hydrogen occluding alloy slurry
EP0686114B1 (en) * 1993-04-20 1998-10-14 Widenhammar, Rustan Boat hull cleaning apparatus
JP2942852B2 (en) * 1993-10-15 1999-08-30 株式会社テイエルブイ Evaporative cooling engine of cogeneration
JPH07238866A (en) * 1994-02-28 1995-09-12 Hazama Gumi Ltd Cogeneration system
GT199600032A (en) * 1995-06-07 1997-11-28 OCEAN THERMAL ENERGY CONVERSION SYSTEM (OTEC SISTEMA)
JPH0925871A (en) * 1995-07-07 1997-01-28 Mitsubishi Heavy Ind Ltd Solar energy collecting device
CN1163988A (en) * 1997-01-21 1997-11-05 罗伊·麦克埃里斯特 Method and apparatus for wave generation of electricity
US5950732A (en) * 1997-04-02 1999-09-14 Syntroleum Corporation System and method for hydrate recovery
JPH1193826A (en) * 1997-09-18 1999-04-06 Nkk Corp Natural energy best mix system
CA2320274C (en) * 1998-02-09 2008-11-04 Whisper Tech Limited Improvements in co-generation systems
US6126726A (en) * 1998-07-06 2000-10-03 Siemens Westinghouse Power Corporation Generator hydrogen purge gas economizer with membrane filter
US6295827B1 (en) * 1998-09-24 2001-10-02 Exxonmobil Upstream Research Company Thermodynamic cycle using hydrostatic head for compression
DE19859654A1 (en) * 1998-12-15 2000-06-29 Mannesmann Ag Device for storing compressed gas
JP2000205044A (en) 1999-01-19 2000-07-25 Shigeaki Kimura Cogeneration system
US6104097A (en) * 1999-03-04 2000-08-15 Lehoczky; Kalman N. Underwater hydro-turbine for hydrogen production
JP3620701B2 (en) * 1999-04-14 2005-02-16 本田技研工業株式会社 Cogeneration equipment
EP1224418A1 (en) * 1999-08-11 2002-07-24 Hennara Investments Limited Gas storage on an adsorbent with exfoliated laminae
WO2001056938A1 (en) * 2000-02-01 2001-08-09 Marsden John Christopher Process for production of hydrogen from anaerobically decomposed organic material
FR2805410B1 (en) * 2000-02-23 2002-09-06 Andre Rene Georges Gennesseaux SELF-CONTAINED ELECTRICITY AND HEAT COGENERATION SYSTEM INCLUDING ENERGY STORAGE BY FLYWHEEL
JP2001295995A (en) * 2000-04-11 2001-10-26 Honda Motor Co Ltd Hydrogen storage tank
JP2001338672A (en) * 2000-05-26 2001-12-07 Shinko Pantec Co Ltd Home-use electric power supply system
JP2002098412A (en) * 2000-09-26 2002-04-05 Noritz Corp Heating hot water storing device
JP2002147867A (en) * 2000-11-07 2002-05-22 Honda Motor Co Ltd Water-electrolyzing system
US6669919B1 (en) * 2000-11-16 2003-12-30 Advanced Energy Technology Inc. Intercalated graphite flakes exhibiting improved expansion characteristics and process therefor
JP2002180902A (en) * 2000-12-14 2002-06-26 Sagami Sekiyu Kk Cogeneration system
US6516754B2 (en) * 2001-02-20 2003-02-11 Thomas Chadwick Convective heating system for liquid storage tank
GB0106358D0 (en) * 2001-03-13 2001-05-02 Printable Field Emitters Ltd Field emission materials and devices
CN2489098Y (en) * 2001-06-11 2002-05-01 郭广明 Residual-heat re-using device for heat engine
US6603069B1 (en) * 2001-09-18 2003-08-05 Ut-Battelle, Llc Adaptive, full-spectrum solar energy system
US6984305B2 (en) 2001-10-01 2006-01-10 Mcalister Roy E Method and apparatus for sustainable energy and materials
CN1417527A (en) * 2001-11-02 2003-05-14 量子能技术股份有限公司 Improved water heater
GB2383978B (en) * 2002-01-11 2004-09-08 Dominic Michaelis Platform provided with renewable energy converter systems
JP3903798B2 (en) * 2002-01-22 2007-04-11 株式会社デンソー Fuel cell system
RU2232914C2 (en) * 2002-02-04 2004-07-20 Открытое акционерное общество "Заволжский моторный завод" Method of operation and design of steam generator of internal combustion piston engine
JP3882664B2 (en) * 2002-04-15 2007-02-21 日産自動車株式会社 Fuel cell system
GB2387641A (en) * 2002-04-19 2003-10-22 Gasforce Ltd Combined heat and power unit
JP2004154762A (en) * 2002-09-10 2004-06-03 Sanyo Electric Co Ltd Waste treatment system
JP2004239149A (en) * 2003-02-05 2004-08-26 Osaka Gas Co Ltd Engine system and heat source system
US7201841B2 (en) * 2003-02-05 2007-04-10 Water Visions International, Inc. Composite materials for fluid treatment
JP2004245049A (en) * 2003-02-10 2004-09-02 Osaka Gas Co Ltd Heat source system
WO2004086585A2 (en) 2003-03-24 2004-10-07 Ion America Corporation Sorfc system and method with an exothermic net electrolysis reaction
JP4167521B2 (en) * 2003-03-25 2008-10-15 トヨタ自動車株式会社 Gas storage tank and manufacturing method thereof
KR100620303B1 (en) * 2003-03-25 2006-09-13 도요다 지도샤 가부시끼가이샤 Gas storage tank and its manufacturing method
JP4163541B2 (en) * 2003-03-25 2008-10-08 トヨタ自動車株式会社 Method for manufacturing gas storage tank
US7575822B2 (en) * 2003-04-09 2009-08-18 Bloom Energy Corporation Method of optimizing operating efficiency of fuel cells
US7364810B2 (en) 2003-09-03 2008-04-29 Bloom Energy Corporation Combined energy storage and fuel generation with reversible fuel cells
CN1813371A (en) * 2003-06-05 2006-08-02 太阳能反应器技术公司 Method for processing stack gas emissions
US6956300B2 (en) * 2003-08-04 2005-10-18 Andrew Roman Gizara Gimbal-mounted hydroelectric turbine
US7758842B2 (en) * 2003-09-02 2010-07-20 Kaneka Corporation Filmy graphite and process for producing the same
CN2644957Y (en) * 2003-09-04 2004-09-29 柳溪立 Air-conditioning plant by utilizing ground temperature
US7378188B2 (en) * 2003-09-18 2008-05-27 Enernext, Llc Storage device and method for sorption and desorption of molecular gas contained by storage sites of nano-filament laded reticulated aerogel
KR20060120033A (en) * 2003-09-30 2006-11-24 제너럴 일렉트릭 캄파니 Hydrogen storage compositions and methods of manufacture thereof
RO121819B1 (en) * 2003-10-01 2008-05-30 Petru Baciu Process and installation for collecting free methane gas from the sea bottom
US6994159B2 (en) * 2003-11-04 2006-02-07 Charles Wendland System for extracting natural gas hydrate
US7605326B2 (en) * 2003-11-24 2009-10-20 Anderson Christopher M Solar electrolysis power co-generation system
US7152675B2 (en) * 2003-11-26 2006-12-26 The Curators Of The University Of Missouri Subterranean hydrogen storage process
JP4203810B2 (en) * 2003-12-08 2009-01-07 富士電機ホールディングス株式会社 Organic waste treatment method and system
JP2005291112A (en) * 2004-03-31 2005-10-20 Takeo Saito Temperature difference power generation device
US20050269211A1 (en) * 2004-06-07 2005-12-08 Zachar Oron D Method of and apparatus for producing hydrogen using geothermal energy
JP2006009713A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Cogeneration system and energy supply system
KR100550573B1 (en) * 2004-08-17 2006-02-10 엘지전자 주식회사 Cogeneration system
US7254944B1 (en) * 2004-09-29 2007-08-14 Ventoso Systems, Llc Energy storage system
JP4741718B2 (en) * 2004-10-20 2011-08-10 株式会社豊田自動織機 How to replace the open / close valve
US7178337B2 (en) * 2004-12-23 2007-02-20 Tassilo Pflanz Power plant system for utilizing the heat energy of geothermal reservoirs
CN1297744C (en) * 2005-03-24 2007-01-31 上海交通大学 Ocean temperature difference energy and solar energy reheat circulating electric generating method
US7948101B2 (en) * 2005-09-02 2011-05-24 John Christopher Burtch Apparatus for production of hydrogen gas using wind and wave action
US7658901B2 (en) * 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
US7233079B1 (en) 2005-10-18 2007-06-19 Willard Cooper Renewable energy electric power generating system
JP2007205645A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Solar heat collector and solar heat utilization device having the same
KR20060096413A (en) * 2006-02-28 2006-09-11 카네카 코포레이션 Filmy graphite and process for producing the same
US7448214B2 (en) * 2006-03-24 2008-11-11 Erik Monostory Geothermal hydrogen production facility and method
US20070228739A1 (en) * 2006-03-31 2007-10-04 John Troy Kraczek Offshore Energy Capture and Storage Device
RU2319893C1 (en) * 2006-08-01 2008-03-20 Институт физики им. Л.В. Киренского Сибирского отделения РАН Method and device for storing gas inside solid carrier
US20090077969A1 (en) * 2007-09-25 2009-03-26 Prueitt Melvin L Heat Transfer Methods for Ocean Thermal Energy Conversion and Desalination
US20080135403A1 (en) * 2006-12-11 2008-06-12 Jang Bor Z Home hydrogen fueling station
JP2008151282A (en) * 2006-12-19 2008-07-03 Honda Motor Co Ltd Gas storage vessel
CA2696818A1 (en) * 2007-03-19 2008-09-25 Doty Scientific, Inc. Hydrocarbon and alcohol fuels from variable, renewable energy at very high efficiency
US7456512B2 (en) * 2007-03-23 2008-11-25 Bernard Nadel Portable sea-powered electrolysis generator
US20080245660A1 (en) * 2007-04-03 2008-10-09 New Sky Energy, Inc. Renewable energy system for hydrogen production and carbon dioxide capture
RU2342542C1 (en) * 2007-04-04 2008-12-27 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Power generation plant
US9966763B2 (en) * 2007-06-07 2018-05-08 Allen L. Witters Integrated multiple fuel renewable energy system
JP2009047052A (en) * 2007-08-17 2009-03-05 Honda Motor Co Ltd Co-generation apparatus
JP5306621B2 (en) * 2007-09-12 2013-10-02 高砂熱学工業株式会社 Power supply system
JP2009077457A (en) * 2007-09-18 2009-04-09 Tokyo Gas Co Ltd Operation system of distributed type power supply and its operation method
JP5127385B2 (en) * 2007-09-28 2013-01-23 学校法人同志社 Ammonia electrosynthesis system
CN201103949Y (en) * 2007-10-17 2008-08-20 李建军 Solar nano-warming low temperature supplying floor board radiation heating equipment
KR101042299B1 (en) * 2007-12-13 2011-06-17 기아자동차주식회사 Hydrogen storing system for fuel cell vehicle
JP2009293447A (en) * 2008-06-03 2009-12-17 Honda Motor Co Ltd Co-generation apparatus
CN101614198A (en) * 2009-07-30 2009-12-30 江苏亿隆新能源科技发展有限公司 Pressure electric generator

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6503584B1 (en) * 1997-08-29 2003-01-07 Mcalister Roy E. Compact fluid storage system
JP2001254897A (en) * 2000-03-10 2001-09-21 Honda Motor Co Ltd Hydrogen storage device
JP2002128501A (en) * 2000-10-18 2002-05-09 Sony Corp Method for gas storage and fuel cell
JP2004268022A (en) * 2003-02-18 2004-09-30 Nissan Motor Co Ltd Hydrogen occluding material, production method therefor, hydrogen storage tank, hydrogen storage system, and fuel cell automobile
JP2006035174A (en) * 2004-07-29 2006-02-09 Toyota Motor Corp Hydrogen occlusion material and manufacture and utilization of the same
WO2006095800A1 (en) * 2005-03-11 2006-09-14 Nissan Motor Co., Ltd. Hydrogen storage material, hydrogen storage structure, hydrogen storer, hydrogen storage apparatus, fuel cell vehicle, and process for producing hydrogen storage material
JP2007077265A (en) * 2005-09-14 2007-03-29 Nippon Oil Corp Porous substance and its production method
WO2008069590A1 (en) * 2006-12-06 2008-06-12 Electronics And Telecommunications Research Institute Gas storage medium, gas storage apparatus and method thereof

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014200769A (en) * 2013-04-09 2014-10-27 日東電工株式会社 Adsorbing material

Also Published As

Publication number Publication date
JP2013503299A (en) 2013-01-31
CN102713154A (en) 2012-10-03
WO2011028400A3 (en) 2013-05-02
WO2011028401A3 (en) 2011-06-16
AU2010289904A1 (en) 2012-02-23
EP2470786A1 (en) 2012-07-04
CN103124692A (en) 2013-05-29
EP2470786A4 (en) 2015-03-04
JP2013503298A (en) 2013-01-31
KR20120026141A (en) 2012-03-16
EP2470788A2 (en) 2012-07-04
CN102713282A (en) 2012-10-03
CN102884361B (en) 2015-04-15
CN102884361A (en) 2013-01-16
EP2625031A4 (en) 2016-06-08
WO2012047187A2 (en) 2012-04-12
WO2011028233A2 (en) 2011-03-10
WO2011102851A1 (en) 2011-08-25
WO2011028402A3 (en) 2011-06-16
RU2012111666A (en) 2013-10-10
JP2014025587A (en) 2014-02-06
JP5852576B2 (en) 2016-02-03
CN102713281B (en) 2015-08-19
WO2011028401A2 (en) 2011-03-10
CA2770510A1 (en) 2011-03-10
KR101547007B1 (en) 2015-08-24
CN102712020A (en) 2012-10-03
EP2567066A4 (en) 2017-02-08
EP2470752A2 (en) 2012-07-04
CN102713282B (en) 2016-01-06
RU2537321C2 (en) 2015-01-10
EP2567066A2 (en) 2013-03-13
JP2015028339A (en) 2015-02-12
CN104848032A (en) 2015-08-19
WO2012047187A3 (en) 2013-03-28
EP2470822A1 (en) 2012-07-04
RU2012111668A (en) 2013-10-10
CN102713280B (en) 2015-11-25
EP2470752A4 (en) 2015-08-05
WO2011034677A3 (en) 2011-05-12
RU2499949C1 (en) 2013-11-27
EP2470787A4 (en) 2014-04-16
JP5922577B2 (en) 2016-05-24
RU2562336C2 (en) 2015-09-10
WO2011028402A2 (en) 2011-03-10
EP2470788A4 (en) 2017-04-05
RU2012111665A (en) 2013-10-10
ZA201200791B (en) 2013-05-29
CN102712020B (en) 2015-04-01
JP2013503457A (en) 2013-01-31
EP2470822A4 (en) 2013-07-31
CN102713281A (en) 2012-10-03
CN103124692B (en) 2016-01-13
CN104912705A (en) 2015-09-16
EP2470787A2 (en) 2012-07-04
IL217860A (en) 2016-03-31
RU2012111681A (en) 2013-10-10
WO2011034677A2 (en) 2011-03-24
EP2625031A2 (en) 2013-08-14
WO2012047188A1 (en) 2012-04-12
WO2011028400A2 (en) 2011-03-10
IL217860A0 (en) 2012-03-29
BR112012004093A2 (en) 2016-03-08
CN102713280A (en) 2012-10-03
WO2011028233A3 (en) 2011-06-23

Similar Documents

Publication Publication Date Title
US9409126B2 (en) Apparatuses and methods for storing and/or filtering a substance
JP2014025587A (en) Apparatuses and methods for storing and/or filtering substance
JP5814267B2 (en) Chemical processes and reactors for efficiently producing hydrogen fuel and structural materials, and related systems and methods
US6508862B1 (en) Apparatus and methods for separation/purification utilizing rapidly cycled thermal swing sorption
US6824592B2 (en) Apparatus for hydrogen separation/purification using rapidly cycled thermal swing sorption
JP4990267B2 (en) Hydrogen generator based on ammonia and method of use thereof
US8926719B2 (en) Method and apparatus for generating hydrogen from metal
JP2008239451A (en) Hydrogen-feeding unit and its manufacture method, and dispersed power source and automobile using it
US8033255B2 (en) Engine system
US20160252278A1 (en) Adsorption heat exchanger devices
EP1392414B1 (en) Apparatus and method for separation/purification of fluids utilizing rapidly cycled thermal swing sorption
JP2005239479A (en) Hydrogen gas separating equipment and hydrogen gas generation equipment
CN214693318U (en) Hydrogen production system
JP4663839B2 (en) Hydrogen recovery / storage container
JP2005152854A (en) Dehydrogenation/hydrogenation apparatus of organic hydride, and carrier used for it
JP2004231468A (en) Hydrogen gas generation apparatus
TW202300676A (en) Heat generation cell, heat generation device, and heat utilization system
JP2001313049A (en) Hydrogen supply device for fuel cell
JP2005273717A (en) Adsorption type natural gas fuel storage device
JP2004175629A (en) Apparatus for producing gaseous hydrogen

Legal Events

Date Code Title Description
A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20121129

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20121221

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130104

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20130121

A602 Written permission of extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A602

Effective date: 20130128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130220

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130902

RD13 Notification of appointment of power of sub attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7433

Effective date: 20130903

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130903

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20131107

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20140214

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150306

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150409

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150727

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150828

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20150928