JP2005291112A - Temperature difference power generation device - Google Patents

Temperature difference power generation device Download PDF

Info

Publication number
JP2005291112A
JP2005291112A JP2004108222A JP2004108222A JP2005291112A JP 2005291112 A JP2005291112 A JP 2005291112A JP 2004108222 A JP2004108222 A JP 2004108222A JP 2004108222 A JP2004108222 A JP 2004108222A JP 2005291112 A JP2005291112 A JP 2005291112A
Authority
JP
Japan
Prior art keywords
cycle
power generation
temperature difference
heat source
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004108222A
Other languages
Japanese (ja)
Inventor
Takeo Saito
武雄 齋藤
Noboru Yamada
昇 山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004108222A priority Critical patent/JP2005291112A/en
Publication of JP2005291112A publication Critical patent/JP2005291112A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/16Combined cycle power plant [CCPP], or combined cycle gas turbine [CCGT]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy

Abstract

<P>PROBLEM TO BE SOLVED: To solve a problem wherein thermal efficiency of a device driven by low temperature difference about several tens of °C or less such as various waste temperature or ocean temperature difference in conventional thermal power generation devices generating power using a high temperature heat source and a low temperature heat source is extremely low. <P>SOLUTION: Solar heat or the like as a high temperature heat source of a temperature difference power generation conventionally driven by temperature difference of several tens of °C or less is compoundly used to make temperature difference 100°C or more and increase thermal efficiency. Possibility of use in industry is increased by compounding with a conventional gas turbine power generator, an internal combustion engine power generator and a fuel cell. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、高温熱源と低温熱源を利用して発電する温度差発電装置に関する。   The present invention relates to a temperature difference power generation apparatus that generates power using a high-temperature heat source and a low-temperature heat source.

高温熱源と低温熱源を利用して発電する従来の熱発電装置のうち、数十℃以下の低温度差で駆動するものは熱効率が極端に低くなるという欠点があった。その例としては、海洋温度差発電OTEC(Ocean Thermal Energy Conversion)が挙げられる。たとえば、発電効率が最も高いとされるウエハラサイクルを用いたOTECでも、発電効率は5〜6%であった。本発明は、太陽エネルギーなどを複合して用いることにより効率を20%近くまで飛躍的に向上させうる。   Among conventional thermoelectric generators that generate electricity using a high-temperature heat source and a low-temperature heat source, those that are driven at a low temperature difference of several tens of degrees C. or less have a drawback that the thermal efficiency becomes extremely low. One example is ocean thermal energy conversion OTEC (Ocean Thermal Energy Conversion). For example, even in OTEC using Uehara cycle, which is said to have the highest power generation efficiency, the power generation efficiency was 5 to 6%. The present invention can dramatically improve the efficiency to nearly 20% by using a combination of solar energy and the like.

海洋温度差エネルギーのような低温度差エネルギーは賦存量が非常に大きな再生可能エネルギーであり、これを有効することは近年の地球温暖化などの環境問題の緩和に非常に有効である。   Low temperature difference energy, such as ocean temperature difference energy, is a renewable energy with a very large abundance, and its effective use is very effective in mitigating environmental problems such as global warming in recent years.

A.I.Kalina and H.M.Leibowitz, The Design of a 3MW Kalina Cycle Experimental Plant, ASME 88-GT-140, Amsterdam, June 1988, pp.1-7.A.I.Kalina and H.M.Leibowitz, The Design of a 3MW Kalina Cycle Experimental Plant, ASME 88-GT-140, Amsterdam, June 1988, pp.1-7. 齋藤武雄、安藤啓文、山田昇、若嶋振一郎、ソーラーオーガニックランキンサイクルシステムに関する研究、太陽エネルギー, 30-1 (2004), 55-60.Takeo Saito, Hirofumi Ando, Noboru Yamada, Shinichiro Wakashima, Research on Solar Organic Rankine Cycle System, Solar Energy, 30-1 (2004), 55-60. 特開平7−91361号公報Japanese Patent Laid-Open No. 7-91361

本発明では、太陽熱などを複合化することにより、低温度差で駆動する従来の温度差発電装置の高効率化を課題とする。   An object of the present invention is to increase the efficiency of a conventional temperature difference power generator that is driven at a low temperature difference by combining solar heat and the like.

以上の課題を解決するために、請求項1および請求項2記載の発明では、低温度差で駆動していた温度差発電の高温熱源として太陽熱などを複合的に利用することにより、温度差を100℃以上に大きくし、熱効率を高めることができる。   In order to solve the above problems, in the inventions according to claim 1 and claim 2, by using solar heat or the like as a high-temperature heat source for temperature difference power generation that has been driven at a low temperature difference, the temperature difference is reduced. The thermal efficiency can be increased by increasing the temperature to 100 ° C. or higher.

請求項3および請求項4の発明では、請求項1および請求項2記載の温度差発電装置において、さらに高温な燃焼熱を補助熱源にすること、または、高温域で駆動するガスタービン発電機、ディーゼル発電機、燃料電池を複合化してその高温排熱を利用することにより、さらなる高効率化が可能となる。また、請求項5の発明は、より具体的な例として海洋温度差発電に太陽熱発電サイクルを複合化した例である。さらに、請求項6の発明は、各サイクルの動力取り出し部として、低温度差においてタービン効率の高いシンラタービン(SHINLA TURBINE)をして、高効率を図るものである。   According to a third and fourth aspect of the invention, in the temperature difference power generation device according to the first and second aspects of the present invention, a gas turbine generator that uses a higher temperature combustion heat as an auxiliary heat source or is driven in a high temperature range, By combining a diesel generator and a fuel cell and utilizing the high-temperature exhaust heat, it is possible to further increase the efficiency. Further, the invention of claim 5 is an example in which a solar thermal power generation cycle is combined with ocean temperature difference power generation as a more specific example. Furthermore, the invention of claim 6 is to achieve high efficiency by using a SHINLA TURBINE with high turbine efficiency at a low temperature difference as a power take-out part of each cycle.

この発明の一実施形態を、図1および図2に示す。
図1は本発明のエネルギーフロー図である。太陽エネルギー10から得られた高温熱源(温度T1)は、まず上位のCYCLE Aにより発電(発電量P12)し、温度T2となる。次いで、中位のCYCLE Bにより再び発電(発電量P23)し、温度T3となる。さらに、下位のCYCLE Cにより発電(発電量P34)し、温度T4となる。現状を考えると、各段階での温度は、それぞれT1=250℃、T2=150℃、T3=35℃、T4=5℃程度が考えられる。太陽エネルギー10からの取得熱量は不安定な場合が多いので、場合によって温度T1を維持するようにバイオガス、水素などの各種の高温燃焼熱を利用して補助加熱11を加える。さらに下位のCYCLE Cにおいて工場排熱、海洋温度差、温泉などの低温度差12を利用する。
One embodiment of the present invention is shown in FIGS.
FIG. 1 is an energy flow diagram of the present invention. The high-temperature heat source (temperature T1) obtained from the solar energy 10 is first generated by the higher-order CYCLE A (power generation amount P12), and becomes a temperature T2. Next, power generation (power generation amount P23) is performed again by the middle CYCLE B, and the temperature becomes T3. Furthermore, power is generated by the lower CYCLE C (power generation amount P34), and the temperature becomes T4. Considering the current situation, the temperatures at each stage may be about T1 = 250 ° C., T2 = 150 ° C., T3 = 35 ° C., and T4 = 5 ° C., respectively. Since the amount of heat acquired from the solar energy 10 is often unstable, the auxiliary heating 11 is applied using various high-temperature combustion heats such as biogas and hydrogen so as to maintain the temperature T1. Furthermore, low temperature difference 12 such as factory exhaust heat, ocean temperature difference, hot spring, etc. is used in the lower CYCLE C.

上記の温度設定の場合、CYCLE Aとしては作動流体に水を用いた水蒸気発電サイクルが適当である。また、CYCLE Bには有機熱媒体や自然冷媒を用いたオーガニック発電サイクルが適当である。また、CYCLE Cには従来の海洋温度差発電サイクルであるカリーナサイクル(非特許文献1参照)もしくはウエハラサイクル(特許文献1参照)用いた実施形態が一般的である。   In the case of the above temperature setting, a steam power generation cycle using water as a working fluid is appropriate as CYCLE A. Moreover, an organic power generation cycle using an organic heat medium or a natural refrigerant is suitable for CYCLE B. Further, the CYCLE C generally uses an embodiment using a carina cycle (see Non-Patent Document 1) or a Wafer cycle (see Patent Document 1), which is a conventional ocean temperature difference power generation cycle.

図2は本発明の装置構成の一例である。太陽エネルギー10はソーラーコレクタ(太陽熱温水器)により集熱され、温度T1となり蓄熱タンク2に貯蔵される。蓄熱タンク2内には潜熱蓄熱カプセル3が充填されており、単位体積辺りのエネルギー貯蔵量が大幅に向上されている。蓄熱タンク2は高圧蒸気を貯えるアキュムレータとしても機能し、高温高圧の蒸気が蒸気タービン4に送られ発電する。蒸気タービン4を出た蒸気は温度T2となり熱交換器HXにおいて、CYCLE Bの作動流体の高温熱源として利用される。CYCLE Bでも同様にオーガニックタービン5で発電し、温度T3となる。図2に示したCYCLE Cは海洋温度差発電に用いられているウエハラサイクルであり、海洋表層の温海水8と海洋深層水の冷海水9を熱源としている。このウエハラサイクルの蒸発器EVに直列接続した熱交換器EXにより、太陽熱発電サイクルであるCYCLE Bからの排熱T3によってウエハラサイクルの作動流体を加熱もしくは過熱することにより、熱効率を向上させることができる。図2では蒸気タービン4、オーガニックタービン5およびウエハラサイクルのアンモニアタービン6は単一の出力軸に連結され発電機7を駆動しているが、それぞれのタービンに発電機が連結されている場合も考えられる。   FIG. 2 shows an example of the apparatus configuration of the present invention. The solar energy 10 is collected by a solar collector (solar water heater), becomes a temperature T1, and is stored in the heat storage tank 2. The heat storage tank 2 is filled with a latent heat storage capsule 3, and the amount of energy stored per unit volume is greatly improved. The heat storage tank 2 also functions as an accumulator that stores high-pressure steam, and high-temperature and high-pressure steam is sent to the steam turbine 4 to generate electricity. The steam exiting the steam turbine 4 has a temperature T2, and is used as a high-temperature heat source for the working fluid of the CYCLE B in the heat exchanger HX. Similarly, in CYCLE B, electric power is generated by the organic turbine 5 and the temperature becomes T3. CYCLE C shown in FIG. 2 is a Uehara cycle used for ocean thermal power generation, and uses hot seawater 8 on the surface of the ocean and cold seawater 9 on the deep ocean as heat sources. The heat exchanger EX connected in series with the evaporator EV of the Uehara cycle can improve the thermal efficiency by heating or overheating the working fluid of the Ueper cycle with the exhaust heat T3 from the CYCLE B that is a solar thermal power generation cycle. . In FIG. 2, the steam turbine 4, the organic turbine 5, and the ammonia turbine 6 of the Uehara cycle are connected to a single output shaft to drive the generator 7, but it is also conceivable that a generator is connected to each turbine. It is done.

以上のように、本実施形態では、熱をカスケード利用することができ、発電効率が大幅に向上できるという特長がある。また、各発電サイクルの作動温度に応じた各種の熱源を有効利用することができる。   As described above, the present embodiment is characterized in that heat can be used in cascade and power generation efficiency can be greatly improved. Moreover, various heat sources according to the operating temperature of each power generation cycle can be used effectively.

図3は実施例1のエネルギーフロー図である。
他の実施例1として、前述の実施形態では、太陽エネルギーを最上位とする構成を示したが、すでに実用化されているガスタービン発電機(マイクロガスタービン含む)、ディーゼルエンジンなどの内燃機関発電機、さらに将来的には燃料電池13などを最上位とする構成例が考えられる。これらの排熱の温度は200℃以上の場合が多く、太陽エネルギー10はCYCLE Aのプレヒーティングに利用するのが一般的である。
FIG. 3 is an energy flow diagram of the first embodiment.
As another example 1, the configuration in which the solar energy is the highest in the above-described embodiment has been shown, but internal combustion engine power generation such as gas turbine generators (including micro gas turbines) and diesel engines that have already been put into practical use. In this case, a configuration example in which the fuel cell 13 or the like is the highest in the future can be considered. The temperature of these waste heats is often 200 ° C. or higher, and solar energy 10 is generally used for CYCLE A preheating.

さらに他の実施例2として、前述の実施形態および実施例1において、作動流体からの動力取り出し部に”重ね合わせの概念”に基づくシンラタービン(SHINLA TURBINE)(非特許文献3参照)を適用する場合がある。シンラタービンは比較的単純なディスク状のディスクを軸方向に稠密に多数重ね合わせた構造を有するタービンで、作動流体蒸気から粘性・衝動・反動を複合して高効率に動力を取り出すことのできるタービン機関である。   As yet another example 2, a SHINLA TURBINE (see Non-Patent Document 3) based on the “superposition concept” is applied to the power take-out unit from the working fluid in the above-described embodiment and example 1. There is a case. A thin turbine is a turbine that has a structure in which a large number of relatively simple disk-shaped disks are densely stacked in the axial direction, and can extract power from a working fluid vapor by combining viscosity, impulse, and reaction with high efficiency. Is an institution.

以上説明したように、本発明の温度差発電装置は、従来の工場排熱を利用した低温度差発電や海洋温度差発電の効率を太陽エネルギーなどの複合化により向上することができる。さらに様々な熱源を有効に利用することができるため、産業上の利用可能性は高い。とくに低緯度の熱帯・亜熱帯地方の島国において有効である。     As described above, the temperature difference power generation device of the present invention can improve the efficiency of low temperature difference power generation and ocean temperature difference power generation using conventional factory exhaust heat by combining solar energy and the like. Furthermore, since various heat sources can be used effectively, industrial applicability is high. This is especially effective in low-latitude tropical and subtropical island countries.

温度差発電装置の実施形態を示した説明図である。It is explanatory drawing which showed embodiment of a temperature difference electric power generating apparatus. 温度差発電装置の構成を示した説明図である。It is explanatory drawing which showed the structure of the temperature difference electric power generating apparatus. 温度差発電装置の実施例を示した説明図である。It is explanatory drawing which showed the Example of the temperature difference electric power generating apparatus.

符号の説明Explanation of symbols

1 ソーラーコレクタ(太陽集熱器)
2 蓄熱タンク
3 潜熱蓄熱カプセル
4 蒸気タービン
5 オーガニックタービン
6 アンモニアタービン
7 発電機
8 温水
9 冷水
10 太陽エネルギー
11 補助加熱
12 海洋温度差、各種排熱など
13 ガスタービン発電機など
1 Solar collector (solar collector)
2 Heat storage tank 3 Latent heat storage capsule 4 Steam turbine 5 Organic turbine 6 Ammonia turbine 7 Generator 8 Hot water 9 Cold water 10 Solar energy 11 Auxiliary heating 12 Ocean temperature difference, various exhaust heat, etc. 13 Gas turbine generator, etc.

Claims (6)

低温度差の高温熱源および低温熱源から動力を得て発電する熱機関のうち、カリーナサイクルもしくはウエハラサイクルに対して、太陽熱による熱発電サイクルを複合化するという特徴を有する温度差発電装置。   A temperature difference power generation apparatus characterized by combining a solar thermoelectric power generation cycle with respect to a carina cycle or a weirer cycle among heat engines that generate power by generating power from a high temperature heat source and a low temperature heat source with a low temperature difference. カリーナサイクルもしくはウエハラサイクルの上位サイクルとして、太陽熱発電サイクルを複合化するという特徴を有する請求項1記載の温度差発電装置。この場合、太陽熱発電サイクルの低温熱源として、カリーナサイクルもしくはウエハラサイクルの高温熱源を利用する。   The temperature difference power generation device according to claim 1, wherein a solar thermal power generation cycle is combined as a higher cycle of a carina cycle or a weirer cycle. In this case, as a low-temperature heat source for the solar thermal power generation cycle, a high-temperature heat source for a carina cycle or a wafer-cycle is used. バイオガス、水素などの各種の高温燃焼熱を補助熱源とするという特徴を有する請求項1記載の温度差発電装置。   The temperature difference power generation device according to claim 1, wherein various high-temperature combustion heats such as biogas and hydrogen are used as auxiliary heat sources. ガスタービン発電機、ディーゼルエンジン発電機、または、燃料電池を複合利用し、これらの高温排熱を利用するという特徴を有する請求項1記載の温度差発電装置。   The temperature difference power generation device according to claim 1, wherein a gas turbine generator, a diesel engine generator, or a fuel cell is used in combination and the high-temperature exhaust heat is used. 海洋表層における温海水を高温熱源に利用し、海洋深層における冷海水を低温熱源に利用する従来の海洋温度差発電サイクルの上位サイクルとして、太陽熱発電サイクルを複合化するという特徴を有する請求項1記載の温度差発電装置。この場合、太陽熱発電サイクルの低温熱源として、海洋温度差発電サイクルの高温熱源である海洋表層における温海水を利用する。   The solar thermal power generation cycle is combined as a high-order cycle of a conventional ocean thermal power generation cycle in which warm seawater in the ocean surface is used as a high-temperature heat source and cold seawater in the deep ocean is used as a low-temperature heat source. Temperature difference power generator. In this case, warm seawater in the ocean surface layer, which is a high temperature heat source of the ocean thermal power generation cycle, is used as a low temperature heat source of the solar thermal power generation cycle. 各熱機関サイクルの作動流体蒸気から動力を取り出す膨張機(エキスパンダ)として、”重ね合わせの概念”に基づくシンラタービン(SHINLA TURBINE)を採用するという特徴を有する請求項1、請求項2、請求項3、請求項4および請求項5記載の温度差発電装置。   The present invention is characterized by adopting a SHINLA TURBINE based on the "superposition concept" as an expander (expander) for extracting power from the working fluid vapor of each heat engine cycle. The temperature difference power generator according to claim 3, claim 4, and claim 5.
JP2004108222A 2004-03-31 2004-03-31 Temperature difference power generation device Pending JP2005291112A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004108222A JP2005291112A (en) 2004-03-31 2004-03-31 Temperature difference power generation device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004108222A JP2005291112A (en) 2004-03-31 2004-03-31 Temperature difference power generation device

Publications (1)

Publication Number Publication Date
JP2005291112A true JP2005291112A (en) 2005-10-20

Family

ID=35324321

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004108222A Pending JP2005291112A (en) 2004-03-31 2004-03-31 Temperature difference power generation device

Country Status (1)

Country Link
JP (1) JP2005291112A (en)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540837A (en) * 2007-10-04 2010-12-24 ユナイテッド テクノロジーズ コーポレイション Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
WO2011028402A2 (en) * 2009-08-27 2011-03-10 Mcalister Roy E Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems
CN102007293A (en) * 2008-04-16 2011-04-06 阿尔斯托姆科技有限公司 Solar steam generator having a standby heat supply system
WO2011148649A1 (en) * 2010-05-28 2011-12-01 日東電工株式会社 Fluid membrane separation power generation method and fluid membrane separation power generation system
CN102384048A (en) * 2011-07-21 2012-03-21 中国科学院广州能源研究所 Low-temperature-difference solar energy and ocean energy combined power generation system
JP2013040606A (en) * 2011-08-17 2013-02-28 Kazuhiko Nagashima Method and device for highly-efficiently recovering ordinary temperature heat energy
JP2014088868A (en) * 2012-10-29 2014-05-15 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Multifunctional solar energy cogeneration system
KR101452885B1 (en) 2010-09-29 2014-10-22 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. Solar energy generation method and system using biomass boiler as auxiliary heat source
US8991182B2 (en) 2009-02-17 2015-03-31 Mcalister Technologies, Llc Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
CN105089954A (en) * 2015-08-16 2015-11-25 江翠珍 Solar energy and thermal power composite generator unit
CN105156285A (en) * 2015-09-16 2015-12-16 中国科学院工程热物理研究所 Non-energy-storage wide-irradiation condensation solar-Karina generating system and method
CN106401888A (en) * 2016-05-30 2017-02-15 罗振波 Temperature differential power generation device
CN106438242A (en) * 2016-12-25 2017-02-22 上海空泰能源科技有限公司 Hydraulicpower generation system utilizing ocean thermal energy conversion
CN110848098A (en) * 2019-09-24 2020-02-28 浙江中光新能源科技有限公司 Biogas-tower type photo-thermal complementary power generation system
CN111322773A (en) * 2020-03-05 2020-06-23 宁***新能源科技有限公司 Peak-shaving energy storage system for solar power generation of new energy source
CN111486068A (en) * 2020-04-06 2020-08-04 武汉理工大学 Solar-assisted ocean thermoelectric power generation system
CN112664418A (en) * 2021-01-28 2021-04-16 中国石油大学(华东) Closed ocean temperature difference energy power generation system
CN113067009A (en) * 2021-03-22 2021-07-02 中国船舶科学研究中心 Efficient utilization system for composite energy of underwater equipment and use method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010540837A (en) * 2007-10-04 2010-12-24 ユナイテッド テクノロジーズ コーポレイション Cascade type organic Rankine cycle (ORC) system using waste heat from reciprocating engine
CN102007293A (en) * 2008-04-16 2011-04-06 阿尔斯托姆科技有限公司 Solar steam generator having a standby heat supply system
CN102007293B (en) * 2008-04-16 2013-07-17 阿尔斯托姆科技有限公司 Solar steam generator having a standby heat supply system
US8991182B2 (en) 2009-02-17 2015-03-31 Mcalister Technologies, Llc Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
CN102713282A (en) * 2009-08-27 2012-10-03 麦卡利斯特技术有限责任公司 Increasing the efficiency of supplemented ocean thermal energy conversion (SOTEC) systems
WO2011028402A3 (en) * 2009-08-27 2011-06-16 Mcalister Roy E Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems
WO2011028402A2 (en) * 2009-08-27 2011-03-10 Mcalister Roy E Increasing the efficiency of supplemented ocean thermal energy conversion (sotec) systems
WO2011148649A1 (en) * 2010-05-28 2011-12-01 日東電工株式会社 Fluid membrane separation power generation method and fluid membrane separation power generation system
KR101452885B1 (en) 2010-09-29 2014-10-22 우한 카이디 엔지니어링 테크놀로지 리서치 인스티튜트 코오퍼레이션 엘티디. Solar energy generation method and system using biomass boiler as auxiliary heat source
CN102384048B (en) * 2011-07-21 2013-04-24 中国科学院广州能源研究所 Low-temperature-difference solar energy and ocean energy combined power generation system
CN102384048A (en) * 2011-07-21 2012-03-21 中国科学院广州能源研究所 Low-temperature-difference solar energy and ocean energy combined power generation system
JP2013040606A (en) * 2011-08-17 2013-02-28 Kazuhiko Nagashima Method and device for highly-efficiently recovering ordinary temperature heat energy
JP2014088868A (en) * 2012-10-29 2014-05-15 Gyoseiin Genshino Iinkai Kakuno Kenkyusho Multifunctional solar energy cogeneration system
CN105089954B (en) * 2015-08-16 2018-10-16 浙江欧托电气有限公司 A kind of solar energy and thermoelectricity compound power-generating unit
CN105089954A (en) * 2015-08-16 2015-11-25 江翠珍 Solar energy and thermal power composite generator unit
CN105156285A (en) * 2015-09-16 2015-12-16 中国科学院工程热物理研究所 Non-energy-storage wide-irradiation condensation solar-Karina generating system and method
CN106401888A (en) * 2016-05-30 2017-02-15 罗振波 Temperature differential power generation device
CN106438242A (en) * 2016-12-25 2017-02-22 上海空泰能源科技有限公司 Hydraulicpower generation system utilizing ocean thermal energy conversion
CN110848098A (en) * 2019-09-24 2020-02-28 浙江中光新能源科技有限公司 Biogas-tower type photo-thermal complementary power generation system
CN111322773A (en) * 2020-03-05 2020-06-23 宁***新能源科技有限公司 Peak-shaving energy storage system for solar power generation of new energy source
CN111322773B (en) * 2020-03-05 2021-02-09 宁***新能源科技有限公司 Peak-shaving energy storage system for solar power generation of new energy source
CN111486068A (en) * 2020-04-06 2020-08-04 武汉理工大学 Solar-assisted ocean thermoelectric power generation system
CN111486068B (en) * 2020-04-06 2021-12-21 武汉理工大学 Solar-assisted ocean thermoelectric power generation system
CN112664418A (en) * 2021-01-28 2021-04-16 中国石油大学(华东) Closed ocean temperature difference energy power generation system
CN113067009A (en) * 2021-03-22 2021-07-02 中国船舶科学研究中心 Efficient utilization system for composite energy of underwater equipment and use method

Similar Documents

Publication Publication Date Title
Powell et al. Hybrid concentrated solar thermal power systems: A review
Stein et al. Advanced power cycles for concentrated solar power
Markides Low-concentration solar-power systems based on organic Rankine cycles for distributed-scale applications: Overview and further developments
JP2005291112A (en) Temperature difference power generation device
GOPAL et al. Thermodynamic analysis of a diesel engine integrated with a PCM based energy storage system
Ayub et al. Exergetic optimization and comparison of combined gas turbine supercritical CO2 power cycles
Iqbal et al. Power generation from low grade heat using trilateral flash cycle
Maraver et al. Efficiency enhancement in existing biomass organic Rankine cycle plants by means of thermoelectric systems integration
Koc et al. First and second law-based thermal optimisation of the Kalina cycle integrated into an existing burner-based cogeneration system using waste chips as fuel
Rabbani et al. Thermodynamic assessment of a wind turbine based combined cycle
Wang et al. Renewable energy from the sea-organic Rankine Cycle using ocean thermal energy conversion
Hoseinzadeh et al. Thermodynamic analysis of heat storage of ocean thermal energy conversion integrated with a two-stage turbine by thermal power plant condenser output water
JP2002122006A (en) Power generation equipment utilizing low-temperature exhaust heat
Cruz et al. A Literature Review of the Kalina Cycle and Trends
JP2004232571A (en) Various/multiple cycle power generation system
Balli et al. Energetic analyses of the combined heat and power (CHP) system
Zhu et al. Thermo-economic analysis of biomass-fired ORC combined heat and power system versus pinch point location
Kaviri et al. Exergy analysis of a cogeneration heat and power (CHP) system (first and second law analysis)
Khan et al. Energy and Exergy Analysis of Supercritical Rankine Cycle
Milewski et al. Prospects for the use of supercritical CO2 cycles
Zaferanlo Evaluation and Optimization of Efficiency of Power Plants
Safarian et al. Exergy recovery in gas pressure compression stations (GPCSs)
Amirhoushang Evaluation and optimization of efficiency of power plants/Amirhoushang Zaferanlo
Alshammari et al. Optimization of Combined Thermal Power Plant and Performance Analysis using Matlab/Simulink using Real Data: Kuwait as a Case Study
Szwaja et al. Conversion of exhaust gases from the internal combustion engine to electrical power at small scale