JP2889668B2 - Energy system - Google Patents

Energy system

Info

Publication number
JP2889668B2
JP2889668B2 JP2208872A JP20887290A JP2889668B2 JP 2889668 B2 JP2889668 B2 JP 2889668B2 JP 2208872 A JP2208872 A JP 2208872A JP 20887290 A JP20887290 A JP 20887290A JP 2889668 B2 JP2889668 B2 JP 2889668B2
Authority
JP
Japan
Prior art keywords
hydrogen
energy
hydrogen storage
heat
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2208872A
Other languages
Japanese (ja)
Other versions
JPH0492374A (en
Inventor
幸徳 桑野
修三 村上
和彦 黒木
継文 松岡
正人 西岡
孝広 米崎
晃治 西尾
正彦 蓮沼
邦穂 田中
直樹 広
晋吾 鷲見
親典 石橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Denki Co Ltd
Original Assignee
Sanyo Denki Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Denki Co Ltd filed Critical Sanyo Denki Co Ltd
Priority to JP2208872A priority Critical patent/JP2889668B2/en
Publication of JPH0492374A publication Critical patent/JPH0492374A/en
Application granted granted Critical
Publication of JP2889668B2 publication Critical patent/JP2889668B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E70/00Other energy conversion or management systems reducing GHG emissions
    • Y02E70/30Systems combining energy storage with energy generation of non-fossil origin
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Hydrogen, Water And Hydrids (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Fuel Cell (AREA)

Description

【発明の詳細な説明】 (イ)産業上の利用分野 本発明は、風力、水力、地熱、潮汐、温度差、太陽
熱、太陽光などの自然エネルギーに基づいて発電した電
力にて水素を発生させ、その水素を一旦水素吸蔵合金に
貯蔵すると共に、必要に応じてその貯蔵水素を燃料電池
に供給して発電するエネルギーシステムに関する。
DETAILED DESCRIPTION OF THE INVENTION (a) Industrial application field The present invention is to generate hydrogen by electric power generated based on natural energy such as wind power, hydro power, geothermal power, tide, temperature difference, solar heat, sunlight and the like. The present invention relates to an energy system that temporarily stores the hydrogen in a hydrogen storage alloy and supplies the stored hydrogen to a fuel cell as needed to generate power.

(ロ)従来の技術 化石エネルギーの枯渇と共に、温暖化、酸性雨の発生
などの地球環境の危機が叫ばれ始めて久しい。そのよう
な観点から風力、水力、地熱、潮汐、温度差、太陽熱、
太陽光などの無公害の自然エネルギーに着目したエネル
ギーシステムの開発が試みられているが、そのトータル
的な進展状況は遅々としたものと云わざるを得ない状態
にある。
(B) Conventional technology With the depletion of fossil energy, it has been a long time since global environmental crises such as global warming and acid rain began to be shouted. From such a viewpoint, wind, hydro, geothermal, tide, temperature difference, solar heat,
Attempts have been made to develop an energy system that focuses on non-polluting natural energy such as sunlight, but the overall progress has been slow.

そのような状況下においても、太陽光を直接電気エネ
ルギーに変換する太陽電池に関する技術開発は比較的進
んでおり、その変換効率だけを見ても一時期の2倍以上
を記録している。そして例えば、 「エコノミスト」'89.8.15,22合併号、或るいは「太陽
エネルギー Journal of JSES」'89 Vol.15 No.5などに
述べられているように、太陽電池を赤道近辺の砂漠地域
に配置し、その太陽電池で発電した電力を超電導ケーブ
ルを用いてエネルギー消費地へ送電しようとする雄大な
提案が為されている。
Even in such a situation, technical development of a solar cell that directly converts sunlight into electric energy is relatively advanced, and the conversion efficiency is twice as high as that of a single period. For example, as described in the “Economist” '89 .8.15,22 merger, or the 'Solar Energy Journal of JSES''89 Vol.15 No.5, solar cells can be used in desert areas near the equator. Has been proposed to transmit power generated by the solar cell to an energy consuming area using a superconducting cable.

一方、太陽電池で発電した電力を用いて水を電気分解
して水素と酸素とを発生させ、その水素をエネルギー源
としようとする提案も例えば、特開昭54−127890号、特
開昭55−116601号公報などに示されている。
On the other hand, proposals for electrolyzing water using power generated by a solar cell to generate hydrogen and oxygen and using the hydrogen as an energy source are also disclosed in, for example, JP-A-54-127890 and JP-A-55-127890. This is shown in, for example, JP-A-116601.

(ハ)発明が解決しようとする課題 ところが前者の提案は発電と消費とがリアルタイムの
ものであり、また提案の後者はエネルギー蓄積を前提と
したものであるが、単なる概念を示しているに過ぎな
い。
(C) Problems to be solved by the invention However, although the former proposal is based on real-time power generation and consumption, and the latter proposal is based on the premise of energy storage, it merely shows the concept. Absent.

(ロ)課題を解決するための手段 本発明はこのような課題に鑑みて為されたものであっ
て、自然エネルギーに基づいて発電した電力で水を電気
分解して水素を発生させて水素吸蔵合金に貯蔵すると共
に、その水素吸蔵合金から水素を放出させてその放出水
素を燃料として燃料電池を作動させて電力、並びに熱を
発生させるエネルギーシステムにおいて、水素吸蔵合金
に水素を貯蔵させるさせる際に発生する熱を、水を電気
分解する電気分解槽に供給するとともに、水の電気分解
熱、並びに燃料電池の作動熱は水素吸蔵合金から水素を
放出させるために用いようとするものである。
(B) Means for Solving the Problems The present invention has been made in view of the above problems, and has a hydrogen storage by electrolyzing water with electric power generated based on natural energy to generate hydrogen. When storing hydrogen in the hydrogen storage alloy in an energy system that releases hydrogen from the hydrogen storage alloy and operates the fuel cell using the released hydrogen as fuel to generate electric power and heat while storing the hydrogen in the alloy. The generated heat is supplied to an electrolysis tank that electrolyzes water, and the electrolysis heat of water and the operating heat of the fuel cell are to be used for releasing hydrogen from the hydrogen storage alloy.

(ホ)作用 本発明によれば、自然エネルギーに基づいて得られた
水素の水素吸蔵合金に対する吸収、放出が熱的な無駄が
なく効率的に行われる。
(E) Function According to the present invention, the absorption and release of hydrogen obtained based on natural energy to the hydrogen storage alloy can be performed efficiently without any thermal waste.

(ヘ)実施例 第1図は本発明エネルギーシステムの概念図であっ
て、1は自然エネルギーの収集手段として最も一般的な
太陽電池であって、赤道近辺の砂漠地域などに数km〜数
100km平方のオーダの大面積に渡って配置されている。
(F) Embodiment FIG. 1 is a conceptual diagram of the energy system of the present invention, where 1 is the most common solar cell as a means for collecting natural energy, which is several kilometers to several kilometers in a desert area near the equator.
It is located over a large area of the order of 100km square.

2はこの太陽電池1にて発電された直流電力によって
水を電気分解する水電解装置で、水電解のための単セル
には1.5V程度の低電圧を供給する必要があり、通常、そ
の単セルを10〜20セル程度を直列に接続してたものを必
要個数並置する構成が採られている。尚、この水電解装
置としては、ナフィオンなどのイオン交換膜を用いるPE
法や、ジルコニアなどの固体電解質を用いる方法など
が、電力効率、即ち電気−水素変換効率の点などからこ
の種システムのような大量の水電解に適している。
Reference numeral 2 denotes a water electrolysis device that electrolyzes water by DC power generated by the solar cell 1. A low voltage of about 1.5 V needs to be supplied to a single cell for water electrolysis. A configuration in which about 10 to 20 cells are connected in series and a required number of cells are juxtaposed is adopted. The water electrolysis device is a PE using an ion exchange membrane such as Nafion.
The method and the method using a solid electrolyte such as zirconia are suitable for a large amount of water electrolysis such as this type of system in terms of power efficiency, that is, electric-hydrogen conversion efficiency.

3はこの水電解装置2から得られる水素を貯える一次
水素貯蔵装置で、LaNi5で代表される希土類−Ni系合
金、Mg−Ni系合金、Fe−Ti系合金、Zr−Mn系合金などの
水素吸蔵合金から成っており、この一次水素貯蔵装置3
と水電解装置2とは距離的に近接した配置されていて熱
的に結合し易い状態に置かれている。
3 is a primary hydrogen storage device to store the hydrogen obtained from the water electrolysis device 2, earth -Ni alloy represented by LaNi 5, Mg-Ni-based alloy, Fe-Ti-based alloy, such as Zr-Mn based alloy This primary hydrogen storage device 3 is made of a hydrogen storage alloy.
And the water electrolysis device 2 are arranged close to each other in a distance, and are placed in a state where they are easily thermally coupled.

4はこの水素吸蔵合金から構成されている水素貯蔵装
置3から放出されて水素をエネルギー消費地5近傍まで
輸送するパイプラインで、水素輸送圧力2kg/cm2、ガス
流速4m/S程度が長距離パイプライン輸送に適している。
6はエネルギー消費地近傍に設けられた二次水素貯蔵装
置で、上記一次水素貯蔵装置3と同様に各種の水素吸蔵
合金から構成されている。
Reference numeral 4 denotes a pipeline for transporting hydrogen discharged from the hydrogen storage device 3 made of the hydrogen storage alloy to the vicinity of the energy consuming area 5 at a hydrogen transport pressure of 2 kg / cm 2 and a gas flow rate of about 4 m / S over a long distance. Suitable for pipeline transportation.
Reference numeral 6 denotes a secondary hydrogen storage device provided near the energy consuming area, and is made of various hydrogen storage alloys, like the primary hydrogen storage device 3.

7はこの二次水素貯蔵装置6から得られる水素を燃料
とする燃料電池発電所で、この燃料電池発電所7で発電
された電力はエネルギー消費地5に送電されると共に、
その発電の際に生じる熱エネルギーも消費地に送られ利
用される。尚、このエネルギー消費地5においても二次
水素貯蔵装置6と燃料電池発電所7とは熱的結合可能な
近接位置に配置するのが好ましい。
Reference numeral 7 denotes a fuel cell power plant that uses hydrogen obtained from the secondary hydrogen storage device 6 as fuel, and the electric power generated by the fuel cell power plant 7 is transmitted to the energy consuming area 5.
The thermal energy generated during the power generation is also sent to the consuming area and used. In this energy consuming area 5, it is preferable that the secondary hydrogen storage device 6 and the fuel cell power plant 7 are arranged at close positions where thermal coupling is possible.

ここでこの燃料電池発電所7の規模の一例を示す。約
100戸の住宅からなるマンションに必要な電力量とされ
ている2400KWh(200KW×12時間)を燃料電池発電所7で
発電させようとした場合、燃料電池と電力調整用のイン
バータとコントロールパネルとを含めた発電部の大きさ
は、幅2〜3m、奥行き3〜4m、高さ約2mで、またその時
必要とする水素量は約800m3、この水素量を貯蔵する水
素貯蔵部を構成する水素吸蔵合金の量としては4トン程
度が必要であろう。
Here, an example of the scale of the fuel cell power plant 7 is shown. about
When it is attempted to generate 2400KWh (200KW x 12 hours), which is required for a condominium consisting of 100 houses, in the fuel cell power plant 7, the fuel cell, the inverter for power adjustment and the control panel The size of the power generation unit including it is 2-3 m wide, 3-4 m deep and about 2 m high, and the amount of hydrogen required at that time is about 800 m 3 , and the hydrogen that constitutes the hydrogen storage unit that stores this amount of hydrogen About 4 tons of the storage alloy will be required.

このようにエネルギー消費地5の近傍にその消費地の
電力消費量に見合った規模の燃料電池発電所を設ける方
式のメリットは、発電電力のみならず、その発電の際に
生じる熱をも消費地で利用することができ、トータル的
なエネルギー効率を向上せしめることができる点であろ
う。即ち、燃料電池の発電機としての効率はせいぜい40
〜60%であるが、発電熱をも含めたエネルギー利用効率
は80%にも達することが期待できる。
As described above, the merit of providing a fuel cell power plant near the energy consuming area 5 in a scale commensurate with the power consumption of the consuming area is that not only the generated power but also the heat generated during the power generation is consumed. It would be possible to improve the total energy efficiency. That is, the efficiency of a fuel cell as a generator is at most 40.
Although it is about 60%, it is expected that the energy use efficiency including the heat generated will reach 80%.

尚、上記実施例においては、一次水素貯蔵装置3から
放出される水素をエネルギー消費地5近傍まで輸送する
手段としてパイプライン4を用いているが、一次水素貯
蔵装置3とエネルギー消費地5との距離が1000kmを越え
る場合は、パイプライン4に代えて、水素を吸収した水
素吸蔵合金を船舶による海上運搬の方が水素輸送効率は
高くなるので、この船舶輸送を採用すべきであろう。
In the above embodiment, the pipeline 4 is used as a means for transporting hydrogen released from the primary hydrogen storage device 3 to the vicinity of the energy consuming area 5. When the distance exceeds 1000 km, instead of the pipeline 4, transporting the hydrogen-absorbing alloy which has absorbed hydrogen by sea at sea is more effective in transporting hydrogen, so this ship transport should be adopted.

面して赤道近辺の砂漠地帯に設けられた太陽電池1に
て発電された電力は、水電解装置2に供給されて水素と
酸素とが生成され、そのうち水素は一次水素貯蔵装置3
に送られて貯蔵される。
The electric power generated by the solar cell 1 provided in the desert area near the equator is supplied to the water electrolysis device 2 to generate hydrogen and oxygen, of which hydrogen is the primary hydrogen storage device 3.
Sent to and stored.

またこの一次水素貯蔵装置3に貯えられた水素はパイ
プライン4を介して二次水素貯蔵装置6に送られ、再度
この水素貯蔵装置6に貯えられる。そしてエネルギー消
費地5が電力を必要とする時は、二次水素貯蔵装置6か
ら水素を放出せしめ、その水素が燃料電池発電所7に送
り込まれ、発電動作が行われてその電力が消費地5へ送
電されると同時に、その発電動作に伴って発生する熱も
エネルギー消費地5に供給される。
The hydrogen stored in the primary hydrogen storage device 3 is sent to the secondary hydrogen storage device 6 via the pipeline 4 and stored again in the hydrogen storage device 6. When the energy consuming area 5 needs electric power, the hydrogen is released from the secondary hydrogen storage device 6, and the hydrogen is sent to the fuel cell power plant 7. At the same time as the power is transmitted to the energy consuming area 5.

ここで一次、二次水素貯蔵装置3、6における水素の
吸収、放出について詳しく説明する。先ず水素吸蔵合金
に水素を吸収させるとその水素吸蔵合金は水素1モル当
り6〜8Kcal程度の発熱反応をする。一方、水電解装置
2における水電解温度としては理論的に高温が有利であ
り一般に150℃程度が適しているとされているが、水電
解に用いられる水の温度は通常10〜20℃であるので、効
率よく水電解反応を行わしめるにはその低温の水を僅か
でも昇温するのが好ましい。従って本発明においては水
素吸蔵合金へ水素を吸収させる時に発生する熱を水電解
装置に供給して分解用水を予熱して水電解の効率向上を
寄与せしめている。
Here, the absorption and release of hydrogen in the primary and secondary hydrogen storage devices 3 and 6 will be described in detail. First, when hydrogen is absorbed by the hydrogen storage alloy, the hydrogen storage alloy causes an exothermic reaction of about 6 to 8 Kcal per mole of hydrogen. On the other hand, as the water electrolysis temperature in the water electrolysis apparatus 2, a high temperature is theoretically advantageous and it is generally said that about 150 ° C. is suitable, but the temperature of water used for water electrolysis is usually 10 to 20 ° C. Therefore, in order to carry out the water electrolysis reaction efficiently, it is preferable to raise the temperature of the low-temperature water even slightly. Therefore, in the present invention, the heat generated when hydrogen is absorbed by the hydrogen storage alloy is supplied to the water electrolysis apparatus to preheat the decomposition water, thereby contributing to an improvement in the efficiency of water electrolysis.

また、一方、水素吸蔵合金から水素を放出させる時に
は吸熱反応をするため、一定圧力で連続的に水素を放出
するためには水素吸蔵合金に熱を与える必要がある。従
って一次水素貯蔵装置3においては、その熱は上記した
ように150℃程度にまで昇温されている水電解装置2の
分解熱が用いられる。
On the other hand, when hydrogen is released from the hydrogen storage alloy, an endothermic reaction occurs, so that it is necessary to apply heat to the hydrogen storage alloy to continuously release hydrogen at a constant pressure. Therefore, in the primary hydrogen storage device 3, as the heat, the decomposition heat of the water electrolysis device 2, which has been heated to about 150 ° C. as described above, is used.

更に二次水素貯蔵装置6においては水素吸蔵合金から
水素を放出させる際に必要とする熱は、燃料電池発電所
7からの発電熱の一部が流用され、二次水素貯蔵装置6
からスムーズな水素放出が行われる。
Further, in the secondary hydrogen storage device 6, part of the heat generated from the fuel cell power plant 7 is diverted as heat required for releasing hydrogen from the hydrogen storage alloy.
And smooth hydrogen release is performed.

ここで本発明に係るエネルギーシステムに関する試算
例について説明しておく。例えば2010年における全世界
の一次エネルギー消費量は石油換算で1.89×1010Kl/y
で、そのうち発電分は30%とされており、原油発電効率
35%として発電総電力は、2.13×1013KWh/y、この総電
力のうち、30%を本発明システムで賄うとすると、本発
明システムの燃料電池発電所7で発電する電力は、6.39
×1012KWh/yとなる。一方、この電力を発電するには、
燃料電池発電所7での発電効率を60%すると、その燃料
として必要な水素量は、5.17×1012m3/y、そしてこの水
素量を発生させるための必要とする水の量は、4.16×10
9Kl/yで、これは琵琶湖の水量の約1/7に該当する。更に
この量の水を水電解装置2で水素と酸素に分解するに要
する電気量は、水電解効率を90%と仮定すると、1.69×
1013KWh/7となる。一方、この値の電気量を発電効率15
%の太陽電池1で得ようとすると、太陽電池1を設置す
る面積は6.03×1010m2となる。この面積は246Km四方で
北海道の70%強の面積に該当する。
Here, a trial calculation example regarding the energy system according to the present invention will be described. For example, the world's primary energy consumption in 2010 was 1.89 × 10 10 Kl / y in oil equivalent.
Of which, the power generation is considered to be 30%, and crude oil power generation efficiency
Assuming that 35%, the total power generated is 2.13 × 10 13 KWh / y. If 30% of this total power is covered by the present invention system, the power generated by the fuel cell power plant 7 of the present system is 6.39.
× 10 12 KWh / y. On the other hand, to generate this power,
If the power generation efficiency at the fuel cell power plant 7 is 60%, the amount of hydrogen required for the fuel is 5.17 × 10 12 m 3 / y, and the amount of water required to generate this amount of hydrogen is 4.16. × 10
At 9 Kl / y, this is about 1/7 of the water volume of Lake Biwa. Further, the amount of electricity required to decompose this amount of water into hydrogen and oxygen in the water electrolysis device 2 is 1.69 ×
10 13 KWh / 7. On the other hand, this amount of electricity is
%, The area where the solar cell 1 is installed is 6.03 × 10 10 m 2 . This area is 246 km square, more than 70% of Hokkaido.

北海道の7割強の面積に太陽電池を敷き詰めるとなる
と膨大な規模ではあるが、赤道直下の砂漠地帯全域から
見れば僅かなもので、設置面積的には問題ない値であろ
う。
If solar cells are spread over more than 70% of the area in Hokkaido, the scale is enormous, but when viewed from the entire desert area just below the equator, it is small, and there is no problem in terms of installation area.

第2図は 第1図に基づいて説明したシステムを簡略
化したシステムを示しており、1、2、3、5、7はそ
れぞれ第1図の場合と同様に、太陽電池、水電解装置、
水素貯蔵装置、エネルギー消費地、燃料電池発電所であ
って、第1図と異なるところは、水素貯蔵系を単一とし
たところにある。即ち、水電解装置2で発生させた水素
は水素貯蔵装置2に送られて貯蔵され、またその水素貯
蔵装置2から放出される水素は直ちに燃料電池発電所7
に送られてその発電所の燃料として使用される。この実
施例の場合も、水素貯蔵装置2での水素吸収時の発熱は
水電解装置2へ供給される水素の予熱などに用いられ、
また水素貯蔵装置3から水素を放出する際に必要とする
熱は、水電解装置2における水電解熱と、燃料電池発電
所7の発電熱が用いられるところは第1図の実施例の場
合と同じである。尚、この実施例は、太陽電池1を設置
する個所とエネルギー消費地5とが比較的近接している
場合に適しており、上記した試算例のような大規模シス
テムではなく、例えば小さな村落を対象にした小規模な
エネルギーシステムに展開できるであろう。
FIG. 2 shows a simplified system of the system described on the basis of FIG. 1, and 1, 2, 3, 5, and 7 each show a solar cell, a water electrolysis device,
The hydrogen storage device, the energy consuming area, and the fuel cell power plant differ from FIG. 1 in that a single hydrogen storage system is used. That is, the hydrogen generated by the water electrolysis device 2 is sent to the hydrogen storage device 2 and stored therein, and the hydrogen released from the hydrogen storage device 2 is immediately consumed by the fuel cell power plant 7.
To be used as fuel for the power plant. Also in the case of this embodiment, the heat generated at the time of absorption of hydrogen in the hydrogen storage device 2 is used for preheating of hydrogen supplied to the water electrolysis device 2 and the like.
The heat required to release hydrogen from the hydrogen storage device 3 is the same as that in the embodiment of FIG. 1 in that the water electrolysis heat in the water electrolysis device 2 and the heat generated by the fuel cell power plant 7 are used. It is. This embodiment is suitable when the place where the solar cell 1 is installed and the energy consuming area 5 are relatively close to each other. It could be deployed in targeted small energy systems.

尚、以上の説明においては太陽エネルギーを直接電力
に変換する太陽電池を採用した場合について詳述した
が、風力発電、水力発電、地熱発電、潮汐発電、海水の
温度差発電、太陽熱発電など、太陽から供給されるエネ
ルギーに基づいて発生する各種の自然現象を利用した発
電手段も同様に利用することができる。
In the above description, the case where a solar cell that directly converts solar energy into electric power is adopted has been described in detail.However, wind power generation, hydroelectric power generation, geothermal power generation, tidal power generation, seawater temperature difference power generation, solar thermal power generation, etc. Power generation means utilizing various natural phenomena generated based on the energy supplied from the power source can also be used.

(ト)発明の効果 本発明は以上の説明から明らかなように、自然エネル
ギーに基づいて発電した電力で水を電気分解して水素を
発生させて水素吸蔵合金に貯蔵すると共に、その水素吸
蔵合金から水素を放出させてその放出水素を燃料として
燃料電池を作動させて電力、並びに熱を発生させるエネ
ルギーシステムにおいて、水素吸蔵合金に水素を貯蔵さ
せるさせる際に発生する熱を水を電気分解する電気分解
槽に供給するとともに、水の電気分解熱、並びに燃料電
池の作動熱を水素吸蔵合金から水素を放出させるために
用いているので、水素吸蔵合金に対する水素の吸収時に
発生する熱は水の電気分解の効率向上のために活用され
るとともに、水素吸蔵合金から水素を放出させるときに
必要とする熱は水の電気分解熱、並びに燃料電池の作動
熱などの排熱が有効に用いられ、トータル的なエネルギ
ーの無駄が極力排除されたシステムが得られ、化石エネ
ルギーの枯渇問題、地球の温暖化や酸性雨の発生などの
地球環境問題を抜本的に解決することができる。
(G) Effects of the present invention As is apparent from the above description, the present invention produces water by electrolyzing water with electric power generated based on natural energy and stores the hydrogen in a hydrogen storage alloy. In an energy system that generates hydrogen from a hydrogen storage alloy and generates hydrogen by operating a fuel cell using the released hydrogen as fuel, the heat generated when the hydrogen storage alloy stores hydrogen is used to electrolyze water. Since the heat is supplied to the cracking tank and the heat of electrolysis of water and the operating heat of the fuel cell are used to release hydrogen from the hydrogen storage alloy, the heat generated when the hydrogen storage alloy absorbs hydrogen is converted to electricity of water. The heat required to release hydrogen from the hydrogen storage alloy is used to improve the efficiency of decomposition, and the heat required for electrolysis of water and the operating heat of fuel cells A system that uses waste heat effectively and eliminates total energy waste as much as possible is obtained, drastically addressing global environmental problems such as fossil energy depletion, global warming and acid rain. Can be solved.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明システムの構成を示す概念図、第2図は
同じく本発明システムの異なった実施例を示す概念図で
ある。 1……太陽電池、2……水電解装置、 3、6……水素貯蔵装置、4……パイプライン、 5……エネルギー消費地、 7……燃料電池発電所。
FIG. 1 is a conceptual diagram showing the configuration of the system of the present invention, and FIG. 2 is a conceptual diagram showing a different embodiment of the system of the present invention. DESCRIPTION OF SYMBOLS 1 ... Solar cell, 2 ... Water electrolysis device, 3, 6 ... Hydrogen storage device, 4 ... Pipeline, 5 ... Energy consumption area, 7 ... Fuel cell power plant.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 松岡 継文 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 西岡 正人 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 米崎 孝広 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 蓮沼 正彦 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 田中 邦穂 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 広 直樹 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 鷲見 晋吾 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (72)発明者 石橋 親典 大阪府守口市京阪本通2丁目18番地 三 洋電機株式会社内 (56)参考文献 特開 昭50−101831(JP,A) 特開 昭60−207256(JP,A) 特開 昭63−231878(JP,A) 第4版電気化学便覧(昭和60年1月25 日発行)丸善株式会社 第273頁−第274 頁 (58)調査した分野(Int.Cl.6,DB名) H01M 8/00 - 8/24 F28D 20/00 C25B 1/04 H02J 15/00 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Tsutsubun Matsuoka 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Masato Nishioka 2--18-18 Keihanhondori, Moriguchi-shi, Osaka (72) Inventor Takahiro Yonezaki 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Koji Nishio 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Inside (72) Inventor Masahiko Hasunuma 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Kuniho 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. In-house (72) Inventor Naoki Hiro 2-18-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Shingo Sumimi 2--18 Keihanhondori, Moriguchi-shi, Osaka Inside Yo-Electric Co., Ltd. (72) Inventor Chinori Ishibashi 2--18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (56) References JP-A-50-101831 (JP, A) JP-A-60 207256 (JP, A) JP-A-63-231878 (JP, A) 4th edition Electrochemical Handbook (issued on January 25, 1985) Maruzen Co., Ltd. 273-274 (58) (Int.Cl. 6 , DB name) H01M 8/00-8/24 F28D 20/00 C25B 1/04 H02J 15/00

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】自然エネルギーに基づいて発電した電力で
水を電気分解して水素を発生させて水素吸蔵合金に貯蔵
すると共に、その水素吸蔵合金から水素を放出させてそ
の放出水素を燃料として燃料電池を作動させて電力、並
びに熱を発生させるエネルギーシステムにおいて、水素
吸蔵合金に水素を貯蔵させる際に発生する熱を、水を電
気分解する電気分解槽に供給するとともに、水の電気分
解熱、並びに燃料電池の作動熱は水素吸蔵合金から水素
を放出させるために用いられることを特徴としたエネル
ギーシステム。
The present invention relates to a method for producing hydrogen by electrolyzing water with electric power generated based on natural energy, storing hydrogen in a hydrogen storage alloy, releasing hydrogen from the hydrogen storage alloy, and using the released hydrogen as a fuel. In an energy system that generates electric power and heat by operating a battery, heat generated when hydrogen is stored in a hydrogen storage alloy is supplied to an electrolysis tank that electrolyzes water, and heat for electrolysis of water, An energy system wherein the operating heat of the fuel cell is used to release hydrogen from the hydrogen storage alloy.
【請求項2】上記自然エネルギーとしては風力エネルギ
ー、水分エネルギー、地熱エネルギー、潮汐エネルギ
ー、温度差エネルギー、太陽エネルギーのいずれか、若
しくはそれらの組み合わせであることを特徴とした請求
項(1)記載のエネルギーシステム。
2. The method according to claim 1, wherein the natural energy is any one of wind energy, moisture energy, geothermal energy, tidal energy, temperature difference energy, solar energy, or a combination thereof. Energy system.
JP2208872A 1990-08-06 1990-08-06 Energy system Expired - Lifetime JP2889668B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2208872A JP2889668B2 (en) 1990-08-06 1990-08-06 Energy system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2208872A JP2889668B2 (en) 1990-08-06 1990-08-06 Energy system

Publications (2)

Publication Number Publication Date
JPH0492374A JPH0492374A (en) 1992-03-25
JP2889668B2 true JP2889668B2 (en) 1999-05-10

Family

ID=16563518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2208872A Expired - Lifetime JP2889668B2 (en) 1990-08-06 1990-08-06 Energy system

Country Status (1)

Country Link
JP (1) JP2889668B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3101330B2 (en) * 1991-01-23 2000-10-23 キヤノン株式会社 Method and apparatus for continuously forming large-area functional deposited film by microwave plasma CVD
US20020114984A1 (en) * 2001-02-21 2002-08-22 Edlund David J. Fuel cell system with stored hydrogen
JP2003017083A (en) * 2001-06-29 2003-01-17 Toshiba Eng Co Ltd Micro hydraulic-fuel cell power generating system
JP4982038B2 (en) * 2004-06-04 2012-07-25 出光興産株式会社 FUEL CELL SYSTEM AND FUEL CELL SYSTEM CONTROL METHOD FOR PROVIDING QUICKLY AND SUPPLY OF HYDROGEN REQUIRED BY FUEL CELL
JP5194490B2 (en) * 2007-03-07 2013-05-08 株式会社リコー Power supply system
RU2012111666A (en) * 2009-08-27 2013-10-10 МАКЭЛИСТЕР ТЕКНОЛОДЖИЗ, ЭлЭлСи INCREASING EFFICIENCY OF TRANSFORMING SYSTEMS FOR TRANSFORMING OCEANIC HEAT ENERGY WITH ADDITIONAL MEANS
US11502322B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell with heat pump
US11502323B1 (en) 2022-05-09 2022-11-15 Rahul S Nana Reverse electrodialysis cell and methods of use thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
第4版電気化学便覧(昭和60年1月25日発行)丸善株式会社 第273頁−第274頁

Also Published As

Publication number Publication date
JPH0492374A (en) 1992-03-25

Similar Documents

Publication Publication Date Title
Widera Renewable hydrogen implementations for combined energy storage, transportation and stationary applications
Wang et al. Hydrogen fuel and electricity generation from a new hybrid energy system based on wind and solar energies and alkaline fuel cell
Palz Solar electricity
US20020182946A1 (en) Power generation plant ship
CA2492705A1 (en) Mobile wind and solar energy aggregate
US20080138675A1 (en) Hydrogen generation and storage method for personal transportation applications
CA2077880A1 (en) Method of supplying energy through medium of methanol
CN101892491A (en) Comprehensive application system for generating electricity by natural energy and electrolyzing seawater or brackish water
JP2005145218A (en) Hydrogen manufacturing facility and hydrogen manufacturing transportation system on ocean
JP2889668B2 (en) Energy system
CN112634082A (en) Island and reef integrated energy support system
JP2000054174A (en) Water electrolyzing device and water electrolysis storage battery
JP2007129850A (en) Power generation control system
JPH0491638A (en) Energy system
JP2002056880A (en) Water electrolysis device and solid polymer type fuel cell generating system
JPH05251105A (en) Solar electric power system
AU2021100419A4 (en) A hybrid solar pv, wind, mhd and pem fuel cell-based energy conversion system
JP2000340238A (en) Energy supply system of dwelling house or the like using photovoltaic power generation and fuel cell power generation
JP2001266923A (en) Electric power source device for remote areas
JP2000054173A (en) Battery by water electrolysis
JPH0491641A (en) Energy system
Goodenough The options for using the sun
JPH10153165A (en) Electric power supply system
JPH05262300A (en) Closed living space system
JPH0491640A (en) Energy system

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090219

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100219

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110219

Year of fee payment: 12