JPH05223268A - Cogeneration system - Google Patents

Cogeneration system

Info

Publication number
JPH05223268A
JPH05223268A JP5626992A JP5626992A JPH05223268A JP H05223268 A JPH05223268 A JP H05223268A JP 5626992 A JP5626992 A JP 5626992A JP 5626992 A JP5626992 A JP 5626992A JP H05223268 A JPH05223268 A JP H05223268A
Authority
JP
Japan
Prior art keywords
hot water
water
hot
mixing valve
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5626992A
Other languages
Japanese (ja)
Inventor
Masaya Ichikawa
雅弥 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denso Corp
Original Assignee
NipponDenso Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NipponDenso Co Ltd filed Critical NipponDenso Co Ltd
Priority to JP5626992A priority Critical patent/JPH05223268A/en
Publication of JPH05223268A publication Critical patent/JPH05223268A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

PURPOSE:To furnish a cogeneration system which can supply hot water of a stable temperature at all times and which is small in size and has high performance, by storing hot water by a quantity being necessary at the time when a hot water supply capacity is insufficient and by using it, when a surplus hot water supply capacity exists. CONSTITUTION:The title apparatus has a generator 5 driven by an engine 4, and electric utilities 53. Besides, it comprises an engine cooling water circulation circuit 7, a hot-water heat exchanger 71 provided in this circuit, and a hot-water circulation circuit 1 provided between a hot-water storage tank 21 and the hot-water heat exchanger 71. In the hot-water circulation circuit 1, a mixing valve 3 connected to the hot-water heat exchanger 71 and a mixing valve control device 3A such as a thermostat provided for controlling opening and closure of the mixing valve 3. According to this constitution, hot water in the hot-water storage tank 21 is mixed with low-temperature water of a flowing water circuit 10 by the mixing valve 3 and the hot water of a stable temperature can be supplied at all times.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,余剰電力を有効利用し
て常時安定した温度の湯を供給でき,小型で高性能の熱
電併給装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a small-sized and high-performance combined heat and power supply device that can effectively supply surplus power to supply hot water having a stable temperature.

【0002】[0002]

【従来技術】近年,コージェネレーションシステム(熱
電併給装置)は,発電機により発生した電力(電力負荷
R)を店舗や家庭で使用すると共に,エンジンや発電機
の駆動に伴う冷却水,排ガスの熱源を有効利用する,比
較的小型の給湯システムとして普及しつつある。上記熱
電併給装置は,図9に示すごとく,エンジン4によって
駆動される発電機5と,該発電機5によって出力される
電力を制御するための電力制御装置50と,該電力制御
装置50に電気的に接続された電気ユーティリティ53
とを有する。また,該電力制御装置50は,中央演算処
理装置(CPU)51とエンジン制御回路52を有す
る。
2. Description of the Related Art In recent years, a cogeneration system (cogeneration unit) uses electric power (electric power load R) generated by a generator at a store or at home, and also heat sources of cooling water and exhaust gas accompanying the driving of an engine or a generator. It is becoming widespread as a relatively small hot water supply system that effectively uses water. As shown in FIG. 9, the combined heat and power supply device includes a generator 5 driven by the engine 4, a power control device 50 for controlling the power output by the generator 5, and an electric power control device 50. Electrically connected utility 53
Have and. Further, the power control device 50 has a central processing unit (CPU) 51 and an engine control circuit 52.

【0003】また,上記熱電併給装置は,エンジン4の
冷却水を冷却水ポンプ73により循環させるエンジン冷
却水循環回路7と,この回路内に設けた温水熱交換器7
1と,排ガス熱交換器74とを有する。そして,熱電併
給装置は,上記温水熱交換器71によって加熱された温
水を貯えておくための温水貯蔵タンク91と,これと温
水熱交換器71との間に設けた温水循環回路8とを有す
る。
Further, the above combined heat and power supply system includes an engine cooling water circulation circuit 7 for circulating cooling water for the engine 4 by a cooling water pump 73, and a hot water heat exchanger 7 provided in this circuit.
1 and an exhaust gas heat exchanger 74. The combined heat and power supply device has a hot water storage tank 91 for storing hot water heated by the hot water heat exchanger 71, and a hot water circulation circuit 8 provided between the hot water storage tank 91 and the hot water heat exchanger 71. ..

【0004】また,上記温水貯蔵タンク91は,水道用
減圧弁92と,温水センサー93とを有する。また,上
記温水循環回路8は,温水循環用ポンプ81と,上記温
水熱交換器71と,水栓98と,補助熱源装置99を有
する。上記熱電併給装置においては,図9,図10に示
すごとく,エンジン4によって駆動される発電機5が電
気を発生する。そして,エンジン4に用いられた燃料よ
り発生する1次エネルギーの約30%が,電力負荷Rと
して,工場,家庭,店舗等の電気ユーティリティ53に
おいて使用される。
The hot water storage tank 91 has a water supply pressure reducing valve 92 and a hot water sensor 93. The hot water circulation circuit 8 includes a hot water circulation pump 81, the hot water heat exchanger 71, a faucet 98, and an auxiliary heat source device 99. In the combined heat and power supply device, as shown in FIGS. 9 and 10, the generator 5 driven by the engine 4 generates electricity. Then, about 30% of the primary energy generated from the fuel used for the engine 4 is used as the electric power load R in the electric utility 53 of the factory, home, store or the like.

【0005】また,エンジン4を冷却して昇温した冷却
水は,上記エンジン冷却水循環回路7内に設けた温水熱
交換器71により,温水を加温するために用いられる。
これには,上記1次エネルギーの約40%に当るエネル
ギーが利用されている。また,エンジン4より発生する
排ガス630の熱により,1次エネルギー量の約20%
が給湯のための熱源として有効利用されている。なお,
1次エネルギー量の約10%は未利用エネルギーとして
放熱されている。
The cooling water which has cooled the engine 4 and has been heated is used for heating the warm water by the hot water heat exchanger 71 provided in the engine cooling water circulation circuit 7.
Energy equivalent to about 40% of the primary energy is used for this. Also, due to the heat of the exhaust gas 630 generated from the engine 4, about 20% of the primary energy amount
Is effectively used as a heat source for hot water supply. In addition,
About 10% of the primary energy is radiated as unused energy.

【0006】また,上記発電機5は,4極モータを有
し,その回転数が約1500又は1800rpm(回/
分)となるよう,上記エンジン制御回路52によって制
御されている。これにより,50又は60Hzの周波数
の電流が発生し,工場,店舗,家庭等における,電気ユ
ーティリティ53の照明や動力源として使用される。ま
た,上記排ガス630の熱は,上記排ガス熱交換器74
により回収され給湯に有効利用される。しかしながら,
温水が不要で,温水熱交換器71において,エンジン冷
却水の冷却が不足する場合は,三方弁72が作動し,エ
ンジン4の冷却水及び排ガス630によって供給された
熱は,エンジン冷却水循環回路7において,ラジエータ
61及び送風機62によって外部へ放熱される(図9,
図10参照)。
Further, the generator 5 has a 4-pole motor, the rotation speed of which is about 1500 or 1800 rpm (times / cycle).
Min) is controlled by the engine control circuit 52. As a result, a current having a frequency of 50 or 60 Hz is generated and used as a light source or a power source for the electric utility 53 in a factory, a store, a home or the like. The heat of the exhaust gas 630 is generated by the exhaust gas heat exchanger 74.
It is collected by and used effectively for hot water supply. However,
When hot water is not needed and the cooling water of the engine is insufficient in the hot water heat exchanger 71, the three-way valve 72 operates and the heat supplied by the cooling water of the engine 4 and the exhaust gas 630 is transferred to the engine cooling water circulation circuit 7 In, the radiator 61 and the blower 62 radiate heat to the outside (FIG. 9,
(See FIG. 10).

【0007】一方,上記温水は,上記温水貯蔵タンク9
1内に貯えられる。そして,該温水貯蔵タンク91内の
温水は,温水センサ93により水温Tが検知される。そ
して,温水が設定温度TL (例えば65℃)以下になっ
た時には,温水は温水循環ポンプ81により矢印のごと
く,温水循環回路8内を循環される。そして,上記温水
熱交換器71によって加温される。次いで,加温された
温水は,再び温水貯蔵タンク91内に貯えられる。ま
た,温水は,温水センサ93により検温され,設定温度
H (例えば70℃)まで達したとき,上記温水循環ポ
ンプ81が停止する。
On the other hand, the hot water is the hot water storage tank 9
It can be stored in 1. The water temperature T of the hot water in the hot water storage tank 91 is detected by the hot water sensor 93. Then, when the temperature of the hot water becomes equal to or lower than the set temperature T L (for example, 65 ° C.), the hot water is circulated in the hot water circulation circuit 8 by the hot water circulation pump 81 as shown by an arrow. Then, it is heated by the hot water heat exchanger 71. Next, the heated warm water is stored again in the warm water storage tank 91. The hot water is detected by the hot water sensor 93, and when it reaches a set temperature T H (for example, 70 ° C.), the hot water circulation pump 81 is stopped.

【0008】ところで,温水を使用するに当っては,水
道用減圧弁92が作動する。これにより,水道用減圧弁
92から水栓98に至るまでの回路は,適正圧力(例え
ば約0.9kgf/cm2 位)に保たれる。この状態に
おいて,水栓98を開けることにより,設定温度TH
温水を使用することができる。
When hot water is used, the water pressure reducing valve 92 operates. As a result, the circuit from the water pressure reducing valve 92 to the faucet 98 is maintained at an appropriate pressure (for example, about 0.9 kgf / cm 2 ). In this state, by opening the faucet 98, hot water of the set temperature T H can be used.

【0009】[0009]

【解決しようとする課題】しかしながら,図11に示す
ごとく,上記熱電併給装置においては,電力負荷(使用
量)Rと給湯負荷Qとが1日の全時間帯では大きく変動
する。一方,発電された電力は,電気ユーティリティ5
3における需要量により常に変動している。そのため,
給湯用の電力量が小さくなる時には,給湯能力Pがこれ
に伴って低下することになり,給湯能力不足を生じる。
そこで,上記電力量が小さくなると,エンジン4の出力
を低下させるため,エンジン冷却水の温度が低下する。
そのため,温水熱交換器71における供給熱量が低下
し,給湯の温度が低下する。
However, as shown in FIG. 11, in the above-mentioned combined heat and power supply device, the electric power load (usage amount) R and the hot water supply load Q greatly fluctuate during the whole day. On the other hand, the generated electric power is the electric utility 5
It always fluctuates according to the demand volume in 3. for that reason,
When the amount of electric power for hot water supply is reduced, the hot water supply capacity P is accordingly reduced, resulting in insufficient hot water supply capacity.
Therefore, when the amount of electric power is reduced, the output of the engine 4 is reduced, so that the temperature of the engine cooling water is reduced.
Therefore, the amount of heat supplied to the hot water heat exchanger 71 is reduced, and the temperature of hot water is reduced.

【0010】そこで,電力負荷Rが存在し,給湯負荷Q
のない時間帯(例えば0〜6時)に余剰の給湯能力を利
用して多量の温水を得ておく必要がある。そのため,比
較的大きな温水貯蔵タンク91(例えば,400リット
ル以上)を準備しておき,その中に温水を貯えておかな
ければならない。それ故,この方法においては,熱電併
給装置が必然的に大型化する。そのため,大きな設置場
所が必要となる。ここで,貯蔵タンク91の容量は,理
論的には図11に示すごとく,給湯負荷(点散部分)の
不足分だけあれば良い。
Therefore, there is an electric power load R and a hot water supply load Q.
It is necessary to obtain a large amount of hot water by utilizing the surplus hot water supply capacity during a non-existent time zone (for example, 0 to 6 o'clock). Therefore, it is necessary to prepare a relatively large hot water storage tank 91 (for example, 400 liters or more) and store hot water in it. Therefore, in this method, the cogeneration unit inevitably becomes large. Therefore, a large installation place is required. Here, theoretically, the capacity of the storage tank 91 may be the shortage of the hot water supply load (scattered portion) as shown in FIG.

【0011】しかしながら,図9に示すごとく,ポンプ
81により水を循環して入口95よりタンク91内に湯
を戻し,タンク91内の湯温を徐々に上昇させるため,
給湯時には出口94から市水温度の水が供給される。そ
のため,入口95からは低温の湯がタンク91に供給さ
れるので,水栓98への給湯温度が変動してしまう。そ
こで,タンク91内は,その上部に温度の高い湯が層状
に貯えられる。これを利用して,タンク91の中央部に
入口95を設け,上記不具合を解消している。この時,
前記給湯負荷(点散部分)は,入口95より上層部とな
り,図11に示す余剰能力(斜線部分,約100リット
ル程度)が実際の安定供給には必要となる。そのため,
貯湯槽の容量が大型化する。
However, as shown in FIG. 9, water is circulated by the pump 81 to return the hot water into the tank 91 from the inlet 95, and the hot water temperature in the tank 91 is gradually increased.
At the time of hot water supply, water having the city water temperature is supplied from the outlet 94. Therefore, since low-temperature hot water is supplied to the tank 91 from the inlet 95, the hot water supply temperature to the faucet 98 fluctuates. Therefore, hot water having a high temperature is stored in layers inside the tank 91. By utilizing this, the inlet 95 is provided in the central portion of the tank 91 to eliminate the above-mentioned problem. At this time,
The hot water supply load (scattered portion) is located above the inlet 95, and the surplus capacity (hatched portion, about 100 liters) shown in FIG. 11 is required for actual stable supply. for that reason,
The capacity of the hot water storage tank increases.

【0012】また,これを避けるため,図9に示すごと
く,タンク91の下流に補助熱源99を設け,タンク9
1からの給湯温度の変動をカバーする方法も考えられ
る。しかしながら,この方法は,経済性と設置性の点で
問題がある。一方,上記問題を解決するために,図9に
示すごとく,上記電力負荷Rの不足を補足する目的で,
補助電源装置99としてのブースタヒータ装置を温水循
環回路の下流側に配設する提案がなされている(例え
ば,特開平1−296042号公報)。しかしながら,
上記提案においては,上記ブースタヒータ装置をセラミ
ック材又はプラスチック材からなる不導体の筒体によっ
て構成している。
In order to avoid this, as shown in FIG. 9, an auxiliary heat source 99 is provided downstream of the tank 91 so that the tank 9
A method of covering the fluctuation of the hot water supply temperature from 1 can also be considered. However, this method has problems in terms of economy and installation. On the other hand, in order to solve the above problem, as shown in FIG. 9, for the purpose of supplementing the shortage of the power load R,
It has been proposed to arrange a booster heater device as an auxiliary power supply device 99 on the downstream side of the hot water circulation circuit (for example, Japanese Patent Laid-Open No. 1-296042). However,
In the above proposal, the booster heater device is formed of a non-conductive tubular body made of a ceramic material or a plastic material.

【0013】そのため,上記ブースタヒータ装置は,そ
の熱消費量が多くならざるを得ず,上記公報に示された
ごとく,高電圧(400〜3000Volt)の電源を
使用しなればならない。それ故,上記熱電併給装置にお
いては,通常の電圧(例えば100〜200Volt)
の電力を使用することができない。そのため,家庭用,
業務用として用いられる比較的小型の熱電併給装置にお
いては,上記従来技術を応用することができない。した
がって,上記従来技術は,実用性に乏しい。本発明は,
かかる従来の問題点に鑑みてなされたもので,余剰電力
を有効利用して常時安定した温度の湯を供給でき,小型
で高性能の熱電併給装置を提供しようとするものであ
る。
Therefore, the booster heater device inevitably consumes a large amount of heat, and as shown in the above publication, must use a high voltage (400 to 3000 Volt) power source. Therefore, in the above-mentioned combined heat and power device, a normal voltage (for example, 100 to 200 Volt) is used.
Can not use the power of. Therefore, for home use,
The above-mentioned conventional technique cannot be applied to a comparatively small heat and power cogeneration device used for business use. Therefore, the above-mentioned conventional technique is not practical. The present invention is
The present invention has been made in view of such conventional problems, and it is an object of the present invention to provide a small-sized and high-performance combined heat and power supply device that can effectively use excess power to supply hot water having a stable temperature at all times.

【0014】[0014]

【課題の解決手段】本発明は,エンジンによって駆動さ
れる発電機と,該発電機に接続された電気ユーティリテ
ィとを有し,またエンジンの冷却水を冷却するためのエ
ンジン冷却水循環回路と,該エンジン冷却水循環回路内
に設けた温水熱交換器と、温水貯蔵タンクと,該温水貯
蔵タンクと上記温水熱交換器との間に設けた温水循環回
路とよりなる熱電併給装置において,上記温水循環回路
内には,上記温水熱交換器に接続した混合弁と,該混合
弁の開閉を制御するための混合弁制御装置を設けたこと
を特徴とする熱電併給装置にある。
The present invention has an engine driven water generator and an electric utility connected to the electric generator, and an engine cooling water circulation circuit for cooling engine cooling water; A combined heat and power supply device comprising a hot water heat exchanger provided in an engine cooling water circulation circuit, a hot water storage tank, and a hot water circulation circuit provided between the hot water storage tank and the hot water heat exchanger, the hot water circulation circuit comprising: A combined heat and power supply device is characterized in that a mixing valve connected to the hot water heat exchanger and a mixing valve control device for controlling opening / closing of the mixing valve are provided therein.

【0015】本発明において最も注目すべきことは,温
水循環回路内には,上記温水熱交換器に接続した混合弁
と,該混合弁の開閉を制御するための混合弁制御装置を
設けたことである。上記温水熱交換器としては,例えば
2重管式又は多板式の熱交換器を用いる。上記混合弁と
しては,例えばサーモスタット付き混合栓(図2参照)
を用いる。また,上記混合弁3には,バイパス回路を設
けて湯を使用しない時,即ち非給湯時には,そのバイパ
ス回路を開く電磁弁等を設ける。
What is most noticeable in the present invention is that a mixing valve connected to the hot water heat exchanger and a mixing valve control device for controlling opening / closing of the mixing valve are provided in the hot water circulation circuit. Is. As the hot water heat exchanger, for example, a double pipe type or multi-plate type heat exchanger is used. As the mixing valve, for example, a mixing stopper with a thermostat (see FIG. 2)
To use. Further, the mixing valve 3 is provided with an electromagnetic valve or the like for opening the bypass circuit when the bypass circuit is provided and hot water is not used, that is, when hot water is not supplied.

【0016】[0016]

【作用及び効果】本発明において,温水循環回路内に
は,温水熱交換器に接続した混合弁と,該混合弁の開閉
を制御するため混合弁制御装置を設けてある。そのた
め,余剰電力等の余剰能力を利用して,予め設定した貯
湯温度の温水を温水貯蔵タンク内に貯蔵しておくことが
できる。
In the present invention, in the hot water circulation circuit, the mixing valve connected to the hot water heat exchanger and the mixing valve control device for controlling the opening / closing of the mixing valve are provided. Therefore, hot water having a preset hot water storage temperature can be stored in the hot water storage tank by utilizing the surplus capacity such as surplus power.

【0017】それ故,給湯不足時(図11参照)には,
上記温水貯蔵タンクより送り出された温水と低温水(例
えば市水)とを,上記混合弁内で制御しながら混合し
て,一定の温度の温水を使用することができる。それ
故,温水の使用時には,常時安定した温度の湯(設定温
度TH の温水)を提供することができる。更に,混合弁
においては,特定の湯温制御を行うことにより,熱交換
器において不足した給湯能力分のみ,温水貯蔵タンク内
の湯を利用することができる。そのため,上記効果によ
り,従来の温水貯蔵タンクの容量よりも,温水貯蔵タン
クを小型化し,ミニタンクシステムを提供することがで
きる。
Therefore, when the hot water supply is insufficient (see FIG. 11),
The hot water and low temperature water (for example, city water) sent from the hot water storage tank can be mixed while being controlled in the mixing valve to use the hot water having a constant temperature. Therefore, when using the hot water, it is possible to provide a constantly stable temperature of the hot water (the hot water set temperature T H). Furthermore, by performing a specific hot water temperature control in the mixing valve, the hot water in the hot water storage tank can be used only for the hot water supply capacity that is insufficient in the heat exchanger. Therefore, due to the above effects, the hot water storage tank can be made smaller than the capacity of the conventional hot water storage tank, and a mini tank system can be provided.

【0018】また,本熱電併給装置においては,補助熱
源(図9の符号99)としての補助ボイラーや高電圧を
使用しなければならないブースターヒータ装置等が不要
である。そのため,比較的小型の熱電併給装置とするこ
とができる。以上のごとく,本発明によれば,余剰電力
を有効利用して常時安定した温度の湯を供給でき,小型
で高性能の熱電併給装置を提供することができる。
Further, the present combined heat and power supply apparatus does not require an auxiliary boiler as an auxiliary heat source (reference numeral 99 in FIG. 9) or a booster heater device which must use a high voltage. Therefore, a relatively small combined heat and power supply device can be obtained. As described above, according to the present invention, it is possible to provide a compact and high-performance combined heat and power supply device that can effectively use excess power to supply hot water having a stable temperature at all times.

【0019】[0019]

【実施例】本発明にかかる実施例の熱電併給装置につ
き,図1〜図8を用いて説明する。本例の熱電併給装置
は,図1に示すごとく,エンジン4によって駆動される
発電機5と,CPU51と,電気ユーティリティ53と
を有する。また,上記熱電併給装置は,同図に示すごと
く,エンジン4の冷却水を循環するためのエンジン冷却
水循環回路7と,該エンジン冷却水循環回路7内に設け
た温水熱交換器71と,温水貯蔵タンク21と,該温水
貯蔵タンク21と温水熱交換器71との間に設けた温水
循環回路1とよりなる。
EXAMPLE A combined heat and power supply apparatus according to an example of the present invention will be described with reference to FIGS. As shown in FIG. 1, the combined heat and power supply device of this example includes a generator 5 driven by an engine 4, a CPU 51, and an electric utility 53. Further, as shown in the figure, the combined heat and power supply apparatus includes an engine cooling water circulation circuit 7 for circulating cooling water for the engine 4, a hot water heat exchanger 71 provided in the engine cooling water circulation circuit 7, and a hot water storage. It comprises a tank 21 and a hot water circulation circuit 1 provided between the hot water storage tank 21 and the hot water heat exchanger 71.

【0020】上記温水循環回路1内には,図1に示すご
とく,上記温水熱交換器71に接続した混合弁3と,該
混合弁3の開閉を制御するための混合弁制御装置3Aを
設けてなる。該混合弁制御装置3Aは,混合弁3のケー
シング3Bの中に組みこまれている。上記混合弁3は,
図2に示すごとく,三方(スリーウェイ)バルブよりな
る。そして,該混合弁3は,略T字形の流路を有し,該
流路は水流入路3Lと,湯流入路3Hと,混合湯流出路
3Mとよりなる。上記水流入路3Lは,水ポート352
に,湯流入路3Hは湯ポート351に,混合湯流出路3
Mは混合湯ポート353に接続してある。
As shown in FIG. 1, the hot water circulation circuit 1 is provided with a mixing valve 3 connected to the hot water heat exchanger 71 and a mixing valve control device 3A for controlling the opening and closing of the mixing valve 3. It becomes. The mixing valve control device 3A is incorporated in the casing 3B of the mixing valve 3. The mixing valve 3 is
As shown in FIG. 2, it consists of a three-way valve. The mixing valve 3 has a substantially T-shaped flow passage, and the flow passage includes a water inflow passage 3L, a hot water inflow passage 3H, and a mixed hot water outflow passage 3M. The water inflow passage 3L is connected to the water port 352.
The hot water inlet 3H is connected to the hot water port 351 and the mixed hot water outlet 3
M is connected to the mixed hot water port 353.

【0021】上記混合弁制御装置3Aは,図3に示すご
とく,サーモスタット30とスライド弁35とバネ受け
部38とを有する。上記サーモスタット30は,図5に
示すごとく,ワックス301が充填された筒状カップ3
02と,これらの上方に配置したスリーブ303と,該
スリーブ303の上方に突出したピストン304と,該
ピストン304をスライド可能に支承するカバー305
と,上記筒状カップ302を覆うカートリッジ状のケー
ス306とよりなる。
The mixing valve control device 3A has a thermostat 30, a slide valve 35, and a spring receiving portion 38, as shown in FIG. As shown in FIG. 5, the thermostat 30 has a cylindrical cup 3 filled with wax 301.
02, a sleeve 303 arranged above them, a piston 304 projecting above the sleeve 303, and a cover 305 slidably supporting the piston 304.
And a cartridge-shaped case 306 that covers the cylindrical cup 302.

【0022】上記ワックス301は,銅粉を混入したパ
ラフィンよりなる。また,上記スリーブ303は,フッ
素系合成ゴムよりなる。そして,上記筒状カップ30
2,ピストン304,カバー305は,いずれも熱伝導
性に優れた真ちゅう等の金属よりなる。
The wax 301 is made of paraffin mixed with copper powder. The sleeve 303 is made of fluorine synthetic rubber. And the cylindrical cup 30
2, the piston 304 and the cover 305 are all made of metal such as brass having excellent heat conductivity.

【0023】上記サーモスタット30には,図2〜図4
に示すごとく,開口部353を有する,プッシュリング
346が頭部300に固定されており,ピストンの出入
により生じる動きをスライド弁35に伝達する。また,
該サーモスタット30の側面には,スライド弁35をプ
ッシュリング346に押し付ける,パイロットスプリン
グ380およびバネ受け部38が配設してある。そし
て,該バネ受け部38は,混合弁3のケーシング3Bに
固定してある。
The thermostat 30 is shown in FIGS.
As shown in FIG. 5, a push ring 346 having an opening 353 is fixed to the head portion 300, and the movement caused by the movement of the piston is transmitted to the slide valve 35. Also,
A pilot spring 380 and a spring receiving portion 38 for pressing the slide valve 35 against the push ring 346 are provided on the side surface of the thermostat 30. The spring receiving portion 38 is fixed to the casing 3B of the mixing valve 3.

【0024】上記サーモスタット30には,図2〜図4
に示すごとく,調整ハンドル部343を有する。該調整
ハンドル343は,温水温度設定ねじ344に連結して
ある。そして,該温水温度設定ねじ344は,温度調整
パイプ345内にスライド可能に配置してある。図1に
おいて,上記温水熱交換器71としては,上記エンジン
4の冷却水を熱交換するための熱交換器を用いる。
The thermostat 30 is shown in FIGS.
As shown in FIG. The adjusting handle 343 is connected to the hot water temperature setting screw 344. The hot water temperature setting screw 344 is slidably arranged in the temperature adjusting pipe 345. In FIG. 1, as the hot water heat exchanger 71, a heat exchanger for exchanging heat of the cooling water of the engine 4 is used.

【0025】上記温水貯蔵タンク21は,従来の熱電併
給装置における温水貯蔵タンク9に比して容量が小さ
い,比較的小型の温水槽を用いる。これにより,熱電併
給装置全体をコンパクト化して,温水貯蔵タンク21の
設置面積の低減化(省スペース),配(設)置性の向上
が可能になる。これにより,ミニタンクシステム2を得
ることができる。その他は,従来と同様である。
As the hot water storage tank 21, a relatively small hot water tank having a smaller capacity than the hot water storage tank 9 in the conventional combined heat and power device is used. This makes it possible to reduce the installation area of the hot water storage tank 21 (space saving) and improve the dispositionability (installation) by making the entire combined heat and power unit compact. Thereby, the mini tank system 2 can be obtained. Others are the same as the conventional one.

【0026】次に作用効果につき説明する。まず,本例
にかかる熱電併給装置の基本的なフローにつき,図8の
フローチャートを用いて説明する。まず,給湯の設定温
度TH (例えば65℃)が,給湯使用者によって設定さ
れる。また,温水貯蔵タンク21内に貯蔵する温水の貯
湯温度TW (例えば75℃)が設定される。同図におい
て,S(ステップ)101では,図1に示すごとく,給
湯使用者によって 水栓15が開けられ,給湯開始と共
にこのフローがスタートする。次いで,S102では,
温水循環回路1内の流れ検知センサー14により温水の
流れが開始したことが検知される。
Next, the function and effect will be described. First, the basic flow of the combined heat and power supply apparatus according to this example will be described with reference to the flowchart of FIG. First, the hot water supply set temperature T H (for example, 65 ° C.) is set by the hot water supply user. Further, a hot water storage temperature T W (for example, 75 ° C.) stored in the hot water storage tank 21 is set. In the figure, in S (step) 101, as shown in FIG. 1, the water tap 15 is opened by the hot water supply user, and this flow starts when hot water supply is started. Then, in S102,
The flow detection sensor 14 in the hot water circulation circuit 1 detects that the flow of hot water has started.

【0027】次に,S103では,混合弁3及び混合弁
制御装置3Aとしてのサーモスタット30が作動する。
即ち,サーモスタット30は,図6,図7に示すごと
く,ピストン304の作動により,スライド弁35及び
プッシュリング346を作動させ給湯の設定温度TH
温水と市水とを適量づつ混合する。即ち,図2,図4に
示すごとく,上記混合弁3内で温水と低温水とを適量づ
つ混合し,水栓15側の混合湯路12へ混合温水Mを送
り出す。この時,上記フローは終了(エンド)する。
Next, in S103, the mixing valve 3 and the thermostat 30 as the mixing valve control device 3A are operated.
That is, as shown in FIGS. 6 and 7, the thermostat 30 operates the slide valve 35 and the push ring 346 by the operation of the piston 304 to mix hot water and city water in appropriate amounts to the set temperature T H for hot water supply. That is, as shown in FIGS. 2 and 4, hot water and low temperature water are mixed in appropriate amounts in the mixing valve 3, and the mixed hot water M is sent to the mixing hot water passage 12 on the faucet 15 side. At this time, the above flow ends.

【0028】一方,上記S102において,検知センサ
ー14が温水の流れを検知しない時,即ち水栓15が開
けられない時は,S104へ進む。そして,S104で
は,温水センサー23(図1)により,温水の水温Tが
読み取られる。ここで,水温Tが貯湯温度TW よりも低
い時(Y)には,S105へ進む。次に,S105で
は,電磁弁13(図1)が作動(ON)して,バイパス
回路17を温水が通ることになる。そして,,S106
へ進む。
On the other hand, in S102, when the detection sensor 14 does not detect the flow of hot water, that is, when the faucet 15 cannot be opened, the process proceeds to S104. Then, in S104, the water temperature T of the hot water is read by the hot water sensor 23 (FIG. 1). Here, when the water temperature T is lower than the hot water storage temperature T W (Y), the process proceeds to S105. Next, in S105, the solenoid valve 13 (FIG. 1) is operated (ON), and hot water passes through the bypass circuit 17. Then, S106
Go to.

【0029】S106では,温水循環ポンプ16が作動
し,温水循環回路1において温水が循環される。そし
て,温水は,温水循環回路1内を循環し,温水熱交換器
71により加温されて上記貯湯温度TW (例えば75
℃)に至るまで,この作動が繰り返される。一方,上記
S104において,水温Tが貯湯温度TW よりも高い時
(N)は,S108へ進む。これにより,上記フローは
終了する。
In S106, the hot water circulation pump 16 is operated and hot water is circulated in the hot water circulation circuit 1. Then, the hot water circulates in the hot water circulation circuit 1 and is heated by the hot water heat exchanger 71 so that the hot water storage temperature T W (for example, 75
This operation is repeated until (° C) is reached. On the other hand, in S104, when the water temperature T is higher than the hot water storage temperature T W (N), the process proceeds to S108. This ends the above flow.

【0030】以下,上記フローを,図1〜図7を用い
て,その主要部分を具体的に説明する。まず,上記設定
温度TH は,温水使用者がその使用目的により決定す
る。通常生活用の給湯として使用する場合は,TH が6
5℃に設定される。ところで,一時的に大量の給湯量を
必要としたり,図11に示すごとく,給湯不足の場合が
生ずる。この場合においては,次のごとく,サーモスタ
ット30が該混合弁3の開閉を制御することになる。
The main part of the above flow will be described in detail below with reference to FIGS. First, the set temperature T H is determined by the user of hot water according to the purpose of use. If you want to use as hot water for a normal life, T H 6
Set to 5 ° C. By the way, there may occur a case where a large amount of hot water supply is required temporarily or there is a shortage of hot water supply as shown in FIG. In this case, the thermostat 30 controls the opening / closing of the mixing valve 3 as follows.

【0031】ここで,まず温水の水温Tが設定温度TH
に比して低い場合には,上記混合弁1に内蔵したサーモ
スタット30が次のように作動する。上記サーモスタッ
ト30には,図2に示すごとく,混合弁3内に矢印方向
より温水H,低温水Lが入ってくると,その温度に応じ
てワックス301が熱膨張する。これにより,図6に示
すごとく,ピストン304が伸長する。
Here, first, the water temperature T of the hot water is the set temperature T H.
If the temperature is lower than the above, the thermostat 30 built in the mixing valve 1 operates as follows. As shown in FIG. 2, when the hot water H and the low temperature water L enter the thermostat 30 in the mixing valve 3 from the direction of the arrow, the wax 301 thermally expands according to the temperature. As a result, the piston 304 extends as shown in FIG.

【0032】即ち,該ピストン304は,上記混合温水
Mが設定温度TH (65℃)よりも低いため,図6Eに
示すごとく,比較的短いHO のリフト量となる。これに
より,図4に示すごとく,貯湯回路11より貯湯Hが流
入するよう,スライド弁35が矢印方向に移動して貯湯
流入用の開口部351が開く。その結果,約75℃の貯
湯Hが上記低温水Lと適量づつ混合して,上記設定温度
H の混合温水Mが温水流出口3Mを経て,図1,図2
に示すごとく,供給パイプ12へ送り出される。
That is, since the mixed hot water M is lower than the set temperature T H (65 ° C.), the piston 304 has a relatively short lift amount of H O as shown in FIG. 6E. As a result, as shown in FIG. 4, the slide valve 35 moves in the direction of the arrow so that the hot water storage H flows in from the hot water storage circuit 11, and the hot water storage inflow opening 351 opens. As a result, the hot water storage H of about 75 ° C. are mixed at a time appropriate amount and the cold water L, mixing warm water M of the set temperature T H is via the hot water outlet 3M, 1, 2
As shown in FIG.

【0033】一方,上記混合温水Mが設定温度TH より
も高い時は,図6Gに示すごとく,ピストン304は前
記低温の場合よりも,比較的長いH(H1 +H2 )のリ
フト量となる。これにより,図3に示すごとく,貯湯H
が流入する開口部351が閉じる。これにより,貯湯温
度TW (75℃)の貯湯Hの流入は阻止される。これに
より,図3に示すごとく,低温水流入用の開口部352
が開き,混合弁3内に,流水回路10より低温水Lが流
入してくる。そのため,水温Tは下げられ,設定温度T
H になり,混合温水Mが混合湯回路12へ送り出され
る。
On the other hand, when the mixed hot water M is higher than the set temperature T H , as shown in FIG. 6G, the piston 304 has a lift amount of H (H 1 + H 2 ) which is relatively longer than that at the low temperature. Become. As a result, as shown in FIG.
The opening 351 through which the air flows is closed. As a result, the inflow of the hot water storage H at the hot water storage temperature T W (75 ° C.) is blocked. As a result, as shown in FIG. 3, the opening 352 for inflowing low temperature water is formed.
The low temperature water L flows into the mixing valve 3 from the flowing water circuit 10. Therefore, the water temperature T is lowered and the set temperature T
It becomes H , and the mixed hot water M is sent out to the mixed hot water circuit 12.

【0034】一方,上記温水熱交換器71は,エンジン
冷却水循環回路7内を循環している冷却水が,三方弁7
2の開放により温水熱交換器71まで送られてきた時に
作動する。これらの制御は,全て上記CPU51によっ
て行われる。そして,温水を加温する必要が生じた時に
は,上記温水熱交換器71により温水を優先的に加温度
するよう制御される。
On the other hand, in the hot water heat exchanger 71, the cooling water circulating in the engine cooling water circulation circuit 7 is
It is activated when it is sent to the hot water heat exchanger 71 by opening 2. All of these controls are performed by the CPU 51. Then, when it becomes necessary to heat the hot water, the hot water heat exchanger 71 is controlled to preferentially heat the hot water.

【0035】この時,上記三方弁72は,温水の水温T
を検知し,温水が設定温度TH まで加熱された時,補助
放熱手段であるラジエータ61へ冷却水が流れる。これ
も,上記CPU51により制御される。以上のごとく,
上記温水循環回路1内においては,混合弁3と該混合弁
3の開閉を制御するための混合弁制御装置としてのサー
モスタット30が設けてある。それ故,給湯不足時(図
11参照)には,上記混合弁3により温水貯蔵タンク2
1より取り出した温水と低温水(例えば市水)とを混合
して,一定温度(設定温度TH )の温水を給湯すること
ができる。
At this time, the three-way valve 72 causes the water temperature T of the hot water to rise.
Detects, when the hot water is heated to a set temperature T H, the cooling water flows into the radiator 61 is an auxiliary heat dissipating means. This is also controlled by the CPU 51. As mentioned above,
In the hot water circulation circuit 1, a mixing valve 3 and a thermostat 30 as a mixing valve control device for controlling opening / closing of the mixing valve 3 are provided. Therefore, when the hot water supply is insufficient (see FIG. 11), the mixing valve 3 causes the hot water storage tank 2 to
It is possible to mix hot water and low-temperature water (for example, city water) taken out from No. 1 to supply hot water having a constant temperature (set temperature TH ).

【0036】それ故,温水の使用時には,常時安定した
温度の湯を供給することができる。したがって,本例に
よれば,余剰給湯能力がある時に小型の貯湯槽内に必要
量の湯を貯めておき,給湯能力が不足した時に,貯めて
おいた湯を混合利用する。これにより,常時安定した温
度の湯を供給でき,小型で高性能の熱電併給装置を得る
ことができる。
Therefore, when hot water is used, hot water having a stable temperature can be constantly supplied. Therefore, according to this example, a required amount of hot water is stored in a small hot water storage tank when there is an excess hot water supply capacity, and when the hot water supply capacity is insufficient, the stored hot water is mixed and used. As a result, it is possible to constantly supply hot water at a stable temperature, and to obtain a compact and high-performance cogeneration unit.

【0037】本例によれば,常に熱交換器側の低温水を
100%利用でき,低温水に適量だけの貯湯温水を混合
すれば良い。そのため,従来のごとく,大きなタンクを
必要とすることなく,ほぼ理論通りの最低限の貯湯量を
確保すれば良いため,従来の温水貯蔵タンク91よりも
容量の小さい小型の温水貯蔵タンク21を用いることが
できる。そのため,温水貯蔵タンク21の設置性,施工
性が向上する。これにより,ミニタンクシステム2を得
ることができる。また,本例においては,従来例のごと
く,補助ボイラーやブースターヒータ装置等の補助熱源
を必要としないため,小型のミニタンクシステム2を有
する熱電併給装置とすることができる。
According to this example, 100% of the low-temperature water on the heat exchanger side can always be used, and it is sufficient to mix an appropriate amount of hot-water storage water with the low-temperature water. Therefore, unlike the conventional case, a small hot water storage tank 21 having a smaller capacity than that of the conventional hot water storage tank 91 is used because it is sufficient to secure a minimum theoretical amount of hot water storage without requiring a large tank. be able to. Therefore, the installability and workability of the hot water storage tank 21 are improved. Thereby, the mini tank system 2 can be obtained. Further, in the present example, unlike the conventional example, an auxiliary heat source such as an auxiliary boiler or a booster heater device is not required, so that a combined heat and power supply device having a small mini-tank system 2 can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例にかかる熱電併給装置の回路図。FIG. 1 is a circuit diagram of a combined heat and power supply device according to an embodiment.

【図2】実施例における,混合弁の断面図。FIG. 2 is a sectional view of a mixing valve according to an embodiment.

【図3】実施例における,混合水が高温である場合の混
合弁の作動説明図。
FIG. 3 is an operation explanatory view of the mixing valve when the mixed water has a high temperature in the embodiment.

【図4】実施例における,混合水が低温である場合の混
合弁の作動説明図。
FIG. 4 is an explanatory view of the operation of the mixing valve when the mixed water has a low temperature in the embodiment.

【図5】実施例における,サーモスタットの一部切欠側
面図。
FIG. 5 is a partially cutaway side view of the thermostat in the embodiment.

【図6】実施例における,サーモスタットの作動説明図FIG. 6 is an explanatory view of the operation of the thermostat in the embodiment.

【図7】実施例における,サーモスタットのピストンの
リフト量と温水の温度との関係を示すグラフ。
FIG. 7 is a graph showing the relationship between the lift amount of the thermostat piston and the temperature of hot water in the example.

【図8】実施例にかかる熱電併給装置のフローチャート
図。
FIG. 8 is a flowchart of the combined heat and power supply device according to the embodiment.

【図9】従来の熱電併給装置の回路図。FIG. 9 is a circuit diagram of a conventional combined heat and power supply device.

【図10】従来の熱電併給装置におけるエンジンに用い
られる燃料の1次発生エネルギーの利用率を示す説明
図。
FIG. 10 is an explanatory diagram showing a utilization rate of primary generated energy of fuel used for an engine in a conventional combined heat and power supply device.

【図11】給湯負荷Qと電力負荷Rと1日の全時間帯と
の関係を示すグラフ。
FIG. 11 is a graph showing the relationship between the hot water supply load Q, the electric power load R, and the total time of the day.

【符号の説明】[Explanation of symbols]

1...温水循環回路, 21...温水貯蔵タンク, 3...混合弁, 30...サーモスタット, 4...エンジン, 5...発電機, 53...電気ユーティリティ, 7...エンジン冷却水循環回路, 71...温水熱交換器, 1. . . Hot water circulation circuit, 21. . . Hot water storage tank, 3. . . Mixing valve, 30. . . Thermostat, 4. . . Engine, 5. . . Generator, 53. . . Electric utility, 7. . . Engine cooling water circulation circuit, 71. . . Hot water heat exchanger,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 F24H 8/00 9251−3L F24H 1/00 313 Z ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI Technical display location F24H 8/00 9251-3L F24H 1/00 313 Z

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 エンジンによって駆動される発電機と,
該発電機に接続された電気ユーティリティとを有し,ま
たエンジンの冷却水を冷却するためのエンジン冷却水循
環回路と,該エンジン冷却水循環回路内に設けた温水熱
交換器と、温水貯蔵タンクと,該温水貯蔵タンクと上記
温水熱交換器との間に設けた温水循環回路とよりなる熱
電併給装置において,上記温水循環回路内には,上記温
水熱交換器に接続した混合弁と,該混合弁の開閉を制御
するための混合弁制御装置を設けたことを特徴とする熱
電併給装置。
1. A generator driven by an engine,
An engine cooling water circulation circuit for cooling engine cooling water, an electric utility connected to the generator, a hot water heat exchanger provided in the engine cooling water circulation circuit, and a hot water storage tank, In a combined heat and power device comprising a hot water circulation circuit provided between the hot water storage tank and the hot water heat exchanger, a mixing valve connected to the hot water heat exchanger and the mixing valve in the hot water circulation circuit. A combined heat and power supply device, which is provided with a mixing valve control device for controlling opening and closing.
JP5626992A 1992-02-06 1992-02-06 Cogeneration system Pending JPH05223268A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5626992A JPH05223268A (en) 1992-02-06 1992-02-06 Cogeneration system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5626992A JPH05223268A (en) 1992-02-06 1992-02-06 Cogeneration system

Publications (1)

Publication Number Publication Date
JPH05223268A true JPH05223268A (en) 1993-08-31

Family

ID=13022372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5626992A Pending JPH05223268A (en) 1992-02-06 1992-02-06 Cogeneration system

Country Status (1)

Country Link
JP (1) JPH05223268A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364919A (en) * 2001-06-07 2002-12-18 Chofu Seisakusho Co Ltd Cogeneration system
KR20030088084A (en) * 2002-05-11 2003-11-17 황성용 Hot water Suppling System
WO2011028401A3 (en) * 2009-08-27 2011-06-16 Mcalister Roy E Energy system for dwelling support
US8313556B2 (en) 2009-02-17 2012-11-20 Mcalister Technologies, Llc Delivery systems with in-line selective extraction devices and associated methods of operation
US8940265B2 (en) 2009-02-17 2015-01-27 Mcalister Technologies, Llc Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes
US9097152B2 (en) 2009-02-17 2015-08-04 Mcalister Technologies, Llc Energy system for dwelling support
US9231267B2 (en) 2009-02-17 2016-01-05 Mcalister Technologies, Llc Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002364919A (en) * 2001-06-07 2002-12-18 Chofu Seisakusho Co Ltd Cogeneration system
JP4664533B2 (en) * 2001-06-07 2011-04-06 株式会社長府製作所 Cogeneration system
KR20030088084A (en) * 2002-05-11 2003-11-17 황성용 Hot water Suppling System
US8313556B2 (en) 2009-02-17 2012-11-20 Mcalister Technologies, Llc Delivery systems with in-line selective extraction devices and associated methods of operation
US8940265B2 (en) 2009-02-17 2015-01-27 Mcalister Technologies, Llc Sustainable economic development through integrated production of renewable energy, materials resources, and nutrient regimes
US9097152B2 (en) 2009-02-17 2015-08-04 Mcalister Technologies, Llc Energy system for dwelling support
US9231267B2 (en) 2009-02-17 2016-01-05 Mcalister Technologies, Llc Systems and methods for sustainable economic development through integrated full spectrum production of renewable energy
WO2011028401A3 (en) * 2009-08-27 2011-06-16 Mcalister Roy E Energy system for dwelling support

Similar Documents

Publication Publication Date Title
US8720388B2 (en) Demand management for water heaters
CN1740705B (en) Heat pump hot-water supply system
US5727396A (en) Method and apparatus for cooling a prime mover for a gas-engine driven heat pump
JP2005061711A (en) Exhaust heat recovering water heater
US20150184870A1 (en) System, module and valve for domestic hot water heaters
JP2008275182A (en) Exhaust heat recovering system and auxiliary heat storage tank
JPH05223268A (en) Cogeneration system
GB2426044A (en) Heating system and valve
JP2005164124A (en) Energy storage type heat pump water heater and its operation method
MX2010009714A (en) Water heater arrangement.
EP0921361A2 (en) Apparatus for heating and cooling
JPH09126547A (en) Heat pump type hot water supply apparatus
US20220074637A1 (en) Electric heating and cooling system
US20210190328A1 (en) Combined heating and cooling system
JP2940267B2 (en) Cogeneration system
CN205807599U (en) A kind of compound phase-change thermal storage type hot-water central heating system
US4562956A (en) Domestic hot water zone valve controlled external coil
EP1159567B1 (en) Heating plant
JP3890322B2 (en) Heat pump water heater
CA2753031C (en) Demand management for water heaters
KR200230516Y1 (en) Supplementary heating apparatus of boiler for combined use of electricity electric power
KR100245532B1 (en) Solar heating system
US20240142138A1 (en) Combined heating and cooling system
WO2018002875A1 (en) Thermal energy distribution kit or system for the production of domestic hot water and hot water for heating purposes and plant employing said kit
EP2570738A2 (en) Demand management for water heaters