KR20120026141A - Energy system for dwelling support - Google Patents

Energy system for dwelling support Download PDF

Info

Publication number
KR20120026141A
KR20120026141A KR1020127004326A KR20127004326A KR20120026141A KR 20120026141 A KR20120026141 A KR 20120026141A KR 1020127004326 A KR1020127004326 A KR 1020127004326A KR 20127004326 A KR20127004326 A KR 20127004326A KR 20120026141 A KR20120026141 A KR 20120026141A
Authority
KR
South Korea
Prior art keywords
fluid
tank
heat
energy system
residence
Prior art date
Application number
KR1020127004326A
Other languages
Korean (ko)
Other versions
KR101547007B1 (en
Inventor
로이 이 맥알리스터
Original Assignee
맥알리스터 테크놀로지즈 엘엘씨
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US12/707,656 external-priority patent/US8075749B2/en
Priority claimed from US12/707,651 external-priority patent/US8075748B2/en
Priority claimed from US12/707,653 external-priority patent/US8172990B2/en
Application filed by 맥알리스터 테크놀로지즈 엘엘씨 filed Critical 맥알리스터 테크놀로지즈 엘엘씨
Publication of KR20120026141A publication Critical patent/KR20120026141A/en
Application granted granted Critical
Publication of KR101547007B1 publication Critical patent/KR101547007B1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N5/00Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy
    • F01N5/02Exhaust or silencing apparatus combined or associated with devices profiting by exhaust energy the devices using heat
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/22Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of gaseous or liquid organic compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/20Graphite
    • C01B32/21After-treatment
    • C01B32/22Intercalation
    • C01B32/225Expansion; Exfoliation
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10LFUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
    • C10L3/00Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
    • C10L3/06Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
    • C10L3/10Working-up natural gas or synthetic natural gas
    • C10L3/108Production of gas hydrates
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/02Hydrogen or oxygen
    • C25B1/04Hydrogen or oxygen by electrolysis of water
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B1/00Electrolytic production of inorganic compounds or non-metals
    • C25B1/01Products
    • C25B1/24Halogens or compounds thereof
    • C25B1/26Chlorine; Compounds thereof
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B11/00Electrodes; Manufacture thereof not otherwise provided for
    • C25B11/02Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form
    • C25B11/03Electrodes; Manufacture thereof not otherwise provided for characterised by shape or form perforated or foraminous
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B13/00Diaphragms; Spacing elements
    • C25B13/02Diaphragms; Spacing elements characterised by shape or form
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B15/00Operating or servicing cells
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B3/00Electrolytic production of organic compounds
    • CCHEMISTRY; METALLURGY
    • C25ELECTROLYTIC OR ELECTROPHORETIC PROCESSES; APPARATUS THEREFOR
    • C25BELECTROLYTIC OR ELECTROPHORETIC PROCESSES FOR THE PRODUCTION OF COMPOUNDS OR NON-METALS; APPARATUS THEREFOR
    • C25B9/00Cells or assemblies of cells; Constructional parts of cells; Assemblies of constructional parts, e.g. electrode-diaphragm assemblies; Process-related cell features
    • C25B9/17Cells comprising dimensionally-stable non-movable electrodes; Assemblies of constructional parts thereof
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21CMINING OR QUARRYING
    • E21C50/00Obtaining minerals from underwater, not otherwise provided for
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02GHOT GAS OR COMBUSTION-PRODUCT POSITIVE-DISPLACEMENT ENGINE PLANTS; USE OF WASTE HEAT OF COMBUSTION ENGINES; NOT OTHERWISE PROVIDED FOR
    • F02G5/00Profiting from waste heat of combustion engines, not otherwise provided for
    • F02G5/02Profiting from waste heat of exhaust gases
    • F02G5/04Profiting from waste heat of exhaust gases in combination with other waste heat from combustion engines
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03BMACHINES OR ENGINES FOR LIQUIDS
    • F03B13/00Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates
    • F03B13/12Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy
    • F03B13/14Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy
    • F03B13/16Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem"
    • F03B13/18Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore
    • F03B13/1885Adaptations of machines or engines for special use; Combinations of machines or engines with driving or driven apparatus; Power stations or aggregates characterised by using wave or tide energy using wave energy using the relative movement between a wave-operated member, i.e. a "wom" and another member, i.e. a reaction member or "rem" where the other member, i.e. rem is fixed, at least at one point, with respect to the sea bed or shore and the wom is tied to the rem
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G3/00Other motors, e.g. gravity or inertia motors
    • F03G3/08Other motors, e.g. gravity or inertia motors using flywheels
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03GSPRING, WEIGHT, INERTIA OR LIKE MOTORS; MECHANICAL-POWER PRODUCING DEVICES OR MECHANISMS, NOT OTHERWISE PROVIDED FOR OR USING ENERGY SOURCES NOT OTHERWISE PROVIDED FOR
    • F03G7/00Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for
    • F03G7/04Mechanical-power-producing mechanisms, not otherwise provided for or using energy sources not otherwise provided for using pressure differences or thermal differences occurring in nature
    • F03G7/05Ocean thermal energy conversion, i.e. OTEC
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B33/00Steam-generation plants, e.g. comprising steam boilers of different types in mutual association
    • F22B33/18Combinations of steam boilers with other apparatus
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D11/00Central heating systems using heat accumulated in storage masses
    • F24D11/002Central heating systems using heat accumulated in storage masses water heating system
    • F24D11/005Central heating systems using heat accumulated in storage masses water heating system with recuperation of waste heat
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24HFLUID HEATERS, e.g. WATER OR AIR HEATERS, HAVING HEAT-GENERATING MEANS, e.g. HEAT PUMPS, IN GENERAL
    • F24H8/00Fluid heaters characterised by means for extracting latent heat from flue gases by means of condensation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S10/00Solar heat collectors using working fluids
    • F24S10/40Solar heat collectors using working fluids in absorbing elements surrounded by transparent enclosures, e.g. evacuated solar collectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S20/00Solar heat collectors specially adapted for particular uses or environments
    • F24S20/20Solar heat collectors for receiving concentrated solar energy, e.g. receivers for solar power plants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/30Arrangements for concentrating solar-rays for solar heat collectors with lenses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/0656Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by electrochemical means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/18Regenerative fuel cells, e.g. redox flow batteries or secondary fuel cells
    • H01M8/184Regeneration by electrochemical means
    • H01M8/186Regeneration by electrochemical means by electrolytic decomposition of the electrolytic solution or the formed water product
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0205Processes for making hydrogen or synthesis gas containing a reforming step
    • C01B2203/0211Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step
    • C01B2203/0216Processes for making hydrogen or synthesis gas containing a reforming step containing a non-catalytic reforming step containing a non-catalytic steam reforming step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/0283Processes for making hydrogen or synthesis gas containing a CO-shift step, i.e. a water gas shift step
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/04Integrated processes for the production of hydrogen or synthesis gas containing a purification step for the hydrogen or the synthesis gas
    • C01B2203/042Purification by adsorption on solids
    • C01B2203/043Regenerative adsorption process in two or more beds, one for adsorption, the other for regeneration
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/06Integration with other chemical processes
    • C01B2203/061Methanol production
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/80Aspect of integrated processes for the production of hydrogen or synthesis gas not covered by groups C01B2203/02 - C01B2203/1695
    • C01B2203/84Energy production
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F1/00Treatment of water, waste water, or sewage
    • C02F1/46Treatment of water, waste water, or sewage by electrochemical methods
    • C02F1/461Treatment of water, waste water, or sewage by electrochemical methods by electrolysis
    • C02F1/46104Devices therefor; Their operating or servicing
    • CCHEMISTRY; METALLURGY
    • C02TREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02FTREATMENT OF WATER, WASTE WATER, SEWAGE, OR SLUDGE
    • C02F2303/00Specific treatment goals
    • C02F2303/10Energy recovery
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/26Internal combustion engine
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/29Electrical devices, e.g. computers, servers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24DDOMESTIC- OR SPACE-HEATING SYSTEMS, e.g. CENTRAL HEATING SYSTEMS; DOMESTIC HOT-WATER SUPPLY SYSTEMS; ELEMENTS OR COMPONENTS THEREFOR
    • F24D2200/00Heat sources or energy sources
    • F24D2200/16Waste heat
    • F24D2200/30Friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24SSOLAR HEAT COLLECTORS; SOLAR HEAT SYSTEMS
    • F24S23/00Arrangements for concentrating solar-rays for solar heat collectors
    • F24S23/70Arrangements for concentrating solar-rays for solar heat collectors with reflectors
    • F24S23/71Arrangements for concentrating solar-rays for solar heat collectors with reflectors with parabolic reflective surfaces
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28DHEAT-EXCHANGE APPARATUS, NOT PROVIDED FOR IN ANOTHER SUBCLASS, IN WHICH THE HEAT-EXCHANGE MEDIA DO NOT COME INTO DIRECT CONTACT
    • F28D7/00Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall
    • F28D7/10Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically
    • F28D7/103Heat-exchange apparatus having stationary tubular conduit assemblies for both heat-exchange media, the media being in contact with different sides of a conduit wall the conduits being arranged one within the other, e.g. concentrically consisting of more than two coaxial conduits or modules of more than two coaxial conduits
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B10/00Integration of renewable energy sources in buildings
    • Y02B10/20Solar thermal
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/52Heat recovery pumps, i.e. heat pump based systems or units able to transfer the thermal energy from one area of the premises or part of the facilities to a different one, improving the overall efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/10Geothermal energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/30Energy from the sea, e.g. using wave energy or salinity gradient
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/44Heat exchange systems
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/40Solar thermal energy, e.g. solar towers
    • Y02E10/46Conversion of thermal power into mechanical power, e.g. Rankine, Stirling or solar thermal engines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/16Mechanical energy storage, e.g. flywheels or pressurised fluids
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/133Renewable energy sources, e.g. sunlight
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/20Improvements relating to chlorine production
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P80/00Climate change mitigation technologies for sector-wide applications
    • Y02P80/20Climate change mitigation technologies for sector-wide applications using renewable energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/33Wastewater or sewage treatment systems using renewable energies using wind energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W10/00Technologies for wastewater treatment
    • Y02W10/30Wastewater or sewage treatment systems using renewable energies
    • Y02W10/37Wastewater or sewage treatment systems using renewable energies using solar energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T137/00Fluid handling
    • Y10T137/0318Processes
    • Y10T137/0391Affecting flow by the addition of material or energy

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Sustainable Energy (AREA)
  • General Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Mining & Mineral Resources (AREA)
  • Geology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Oceanography (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)
  • Engine Equipment That Uses Special Cycles (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Heat-Pump Type And Storage Water Heaters (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Heat Treatment Of Water, Waste Water Or Sewage (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Processing Of Solid Wastes (AREA)
  • Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
  • Fuel Cell (AREA)
  • Separation Of Gases By Adsorption (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Manufacture Of Alloys Or Alloy Compounds (AREA)

Abstract

본 발명은 거주지에 에너지를 제공하는 시스템 및 방법에 관한 것이다. 엔진은 내부탱크 내부에 수용되고, 내부탱크는 다시 외부탱크 내부에 수용된다. 엔진은 거주지에 사용되는 전기를 제공한다. 엔진 배기가스는 일련의 열-교환 튜브를 통하여 외부탱크 내부로 이송되어 외부탱크 내부에 있는 상수를 가열시킨다. 물은 탱크 바닥에 있는 상수탱크로 진입하고 외부탱크를 통하여 최상부 가까이 출구로 상승되면서 가온 된다. 뜨거운 상수는 외부탱크 최상부로부터 거주지에 제공된다. 배기가스 응축물이 포획되고 상수로 사용된다. 엔진으로부터의 열, 진동 및 음향에너지는 내부탱크 내부 유체에 의해 포획되고 외부탱크로 전달된다.The present invention relates to a system and method for providing energy to a residence. The engine is housed inside the inner tank and the inner tank is again housed inside the outer tank. The engine provides electricity for the residence. Engine exhaust is transported into the outer tank through a series of heat-exchange tubes to heat the constants inside the outer tank. Water enters the water tank at the bottom of the tank and warms up as it rises through the outer tank to the outlet near the top. Hot water is provided to the residence from the top of the outer tank. Exhaust condensate is captured and used as a constant. Heat, vibration and acoustic energy from the engine are captured by the fluid inside the inner tank and transferred to the outer tank.

Description

주거 지원을 위한 에너지 시스템{ENERGY SYSTEM FOR DWELLING SUPPORT}Energy system for residential support {ENERGY SYSTEM FOR DWELLING SUPPORT}

본 출원은, 2010.2.13 출원된 전 영역 에너지 및 자원 자립 명칭의 미국가출원번호 61/ 304, 403; 2010. 2.17 출원된 전해전지 및 이의 사용방법 명칭의 미국특허출원번호 12/707, 651; 2010.2.7 출원된 전해전지 및 이의 사용방법 명칭의 PCT 출원번호 PCT/US10/24497; 2010. 2.17 출원된 전기분해 과정에서의 핵 형성 제어를 위한 장치 및 방법 명칭의 미국특허출원번호 12/707,653; 2010.2.17 출원된 전기분해 과정에서의 핵 형성 제어를 위한 장치 및 방법 명칭의 PCT 출원번호 PCT/US10/24498; 2010.2.17 출원된 전기분해 과정에의 가스 포획을 위한 장치 및 방법 명칭의 미국특허출원번호 12/707,656; 2010. 2.17 출원된 전기분해 과정에서의 핵 형성 제어를 위한 장치 및 방법 명칭의 PCT 출원번호 PCT/US10/24499; 및 2009.8.27 출원된 전해조 및 에너지 자립 기술 명칭의 미국가출원번호 61/237,476의 우선권 이익을 주장한다. 이들 각각의 출원은 전체가 참조로써 포함된다.This application is directed to US Provisional Application Nos. 61/304, 403, entitled All Field Energy and Resource Independence, filed Feb. 2010; US patent application Ser. No. 12/707, 651, filed February 17, 2010, entitled Electrolytic Cells and Methods of Use thereof; PCT Application No. PCT / US10 / 24497, entitled "Electrolytic Cells and Methods of Use," filed 2010.2.7; US patent application Ser. No. 12 / 707,653, filed February 17, 2010, titled Apparatus and Method for Controlling Nucleation in Electrolysis; 2010.2.17 PCT Application No. PCT / US10 / 24498, entitled Apparatus and Methods for Controlling Nucleation in Electrolysis Processes; US patent application Ser. No. 12 / 707,656, entitled Apparatus and Methods for Gas Capture in an Applied Electrolysis Process; PCT Application No. PCT / US10 / 24499, entitled Apparatus and Method for Controlling Nucleation in Electrolysis Process, filed February 17, 2010; And US Provisional Application No. 61 / 237,476, entitled Electrolyzer and Energy Independence Technology, filed Aug. 27, 2009. Each of these applications is incorporated by reference in their entirety.

세계 경제는 석탄, 천연가스 및 석유와 같은 백 만년 이상 축적된 화석연료를 매년 연소하여 생성되는 에너지에 의존하고 있다. 화석 및 핵 연료의 중앙 발전소에서 전기를 생산하는 과정은 매우 비효율이다. 대부분의 전기는 석탄을 연료로, 보다 낮은 비율로는 천연가스, 석유, 또는 핵 연료로 증기터빈 또는 가스터빈과 같은 열 엔진으로 발전기를 운전하여 생산된다. The world economy relies on the energy generated by annual combustion of fossil fuels accumulated over one million years, such as coal, natural gas and oil. The process of producing electricity from fossil and nuclear fuel central power plants is very inefficient. Most of the electricity is produced by running a generator on a heat engine, such as a steam or gas turbine, with coal as fuel and, at lower rates, natural gas, petroleum, or nuclear fuel.

석탄, 석유 및 천연가스와 같은 화석 탄화수소의 원천적 생성은 6천만년 내지 5억년 전의 먼 과거에 광합성으로 시작되었다. 광합성에 의한 바이오매스 생성 효율은 1 % 미만이고, 소량의 바이오매스만이 지질학적 환경에서 혐기적으로 처리되어 화석연료로 보존된다. 따라서 40 % 내지 60% 효율이라고 주장하는 발전소에서의 화석연료 연소로는 태양에너지를 전기로 전환하는 비율이 실제로는 0.5 % 미만이다.The native production of fossil hydrocarbons such as coal, oil and natural gas began with photosynthesis in the distant past of 60 million to 500 million years ago. The efficiency of biomass production by photosynthesis is less than 1%, and only a small amount of biomass is anaerobicly treated in a geological environment and preserved as fossil fuels. Thus, fossil fuel combustion furnaces in power plants claiming to be 40% to 60% efficient actually convert solar energy to electricity at less than 0.5%.

어마어마한 화석연료의 소비로 미국은 세계경제 발전을 이끌 수 있었다. 약 2000억 배럴의 국내 석유 및 비슷한 정도의 천연가스 및 석탄 에너지가 연소되었다. 세계 60억 인구의 약 5 %인 미국은 세계 생산 석유의 25 %를 소비하지만, 미국의 매장량은 세계 총 매장량의 2 %로만 고갈되었다. 석유로부터 수요가 옮겨지는 천연가스 생산은 수요를 맞추지 못한다. 석탄은 현재 환경 보호 기준을 충족하기 위한 노력으로 더 청결해진 광산으로부터 철도 차량 및 슬러리 파이프라인에 의해 장거리 이송된다.The huge consumption of fossil fuels has allowed the United States to lead the world economy. About 200 billion barrels of domestic oil and about the same amount of natural gas and coal energy were burned. About 5 percent of the world's 6 billion people consume 25 percent of the world's oil, but US reserves are depleted at only 2 percent of the world's total reserves. Natural gas production, where demand shifts from oil, does not meet demand. Coal is now transported over long distances by rail vehicles and slurry pipelines from cleaner mines in an effort to meet environmental protection standards.

노후화된 미국 발전소는 핵 연료를 수입하고 핵분열 연료의 세계적인 공급은 화석 탄화수소 연료와 유사한 상관 관계로 감소하고 있다. 현재 매년 미국에서 소비되는 에너지의 95 쿼즈 (Quads)를 생산하려면 1600개 이상의 핵 발전소가 필요하다. 핵 발전은 가능한 옵션이 아니다.Aging US power plants import nuclear fuel, and the global supply of fission fuel is decreasing in a similar correlation with fossil hydrocarbon fuels. Currently, more than 1600 nuclear plants are needed to produce 95 quads of energy consumed in the United States each year. Nuclear power is not a possible option.

가정, 사무실 건물 및 제조 공장과 같은 주거지는 일반적으로 화석 연료식 중앙 발전소에서 전기를 구매하고 공간 난방 및 급탕을 위한 천연가스 또는 프로판과 같은 유체 연료를 사용한다. 전형적인 중앙 발전소는 전기 설비들에 의해 활용되는 열역학적 사이클의 허용 필요성으로 화석 연료 연소로 방출되는 열 중 50-70%을 폐기한다. 주거지에서 원격 중앙 발전소로부터 폐기되는 에너지를 이용할 수 있다면, 공간 난방 및 급탕 요구를 맞추기 위하여 거주지에서 화석 연료를 연소함으로써 발생하는 비용, 환경 오염, 자원 고갈 없이도 거의 모든 공간 난방 및 급탕이 가능할 것이다.Dwellings such as homes, office buildings, and manufacturing plants generally purchase electricity from fossil fueled central power plants and use fluid fuels such as natural gas or propane for space heating and hot water supply. A typical central power plant disposes of 50-70% of the heat released by fossil fuel combustion as a need for thermodynamic cycles utilized by electrical installations. If residential energy is available from remote central power plants, nearly all space heating and hot water supply will be possible without the cost, environmental pollution, and resource depletion associated with burning fossil fuels in residential areas to meet space heating and hot water demands.

중앙 발전소, 액화 석유 또는 석유 연료식 급탕기, 및 전기 구동 에어컨에 의해 제공되는 전기 생산, 급탕 및 공조의 고비용으로 인하여 세계 인구의 대부분은 미국에서의 전형적인 생활 수준을 영위하지 못한다. 용이하게 개발될 수 있는 화석 연료 공급이 고갈되면서, 에너지 보존은 모든 국가에서 점차 중요하게 여겨진다.Due to the high costs of electricity production, hot water supply and air conditioning provided by central power plants, liquefied petroleum or petroleum fueled water heaters, and electric powered air conditioners, most of the world's population does not live up to the standard of living in the United States. As the supply of fossil fuels that can be easily developed is depleted, energy conservation is becoming increasingly important in all countries.

많은 세계 사람들이 공중 및 수인성 병원균 및 다른 경우에는 라돈, 비소 및 기타 중금속과 같은 독극물로 인하여 간헐적 또는 지속적인 질환을 앓고 있다. 또는 설치류 동물, 벌레 및 부적절한 식품 보존 공정들로 식품 가치가 상실하고 오염에 이르며 질환 및 영양 부족의 원인이 된다. 이러한 문제는 해결하기 매우 어려운 것으로 보인다.Many people around the world suffer from intermittent or persistent diseases due to toxins such as airborne and waterborne pathogens and in other cases radon, arsenic and other heavy metals. Or rodents, worms and improper food preservation processes result in loss of food value, contamination, and disease and malnutrition. This problem seems to be very difficult to solve.

다음 10년 내에 세계 경제는 신속하게 지속 가능한 에너지 공급을 개발하거나 그렇지 않으면 추락하는 생산성 손실을 받아들여야 한다. 지속적인 경제 발전이 없는 고난을 받아들일 수는 없는 것이다.Within the next decade, the global economy must quickly develop sustainable energy supplies or accept falling productivity losses. We cannot accept suffering without constant economic development.

본 발명은 내부탱크 및 내부탱크 내 발전기를 포함하는 거주지 에너지 시스템에 관한 것이다. 내부탱크는 발전기의 최소한 일부를 둘러싸는 제1 유체를 포함하고, 발전기는 거주지에 필요한 전기를 생산하도록 구성된다. 일부 실시예들에서, 에너지 시스템은 제2 유체 내에 최소한 일부가 잠기는 내부탱크의 최소한 일부를 포함하는 외부탱크, 및 발전기로부터 배기가스를 수용하도록 발전기와 작동적으로 연결되는 배기포트를 포함한다. 배기포트는 배기가스의 열을 제2유체와 교환하도록 제2유체를 통과한다. 또한 에너지 시스템은 외부탱크에서 나오는 가열 제2유체가 거주지에 사용되도록 외부탱크와 작동적으로 연결되는 유체 출구를 더욱 포함한다.The present invention relates to a residential energy system comprising an inner tank and a generator in the inner tank. The inner tank includes a first fluid that surrounds at least a portion of the generator, and the generator is configured to produce electricity for the residence. In some embodiments, the energy system includes an outer tank including at least a portion of an inner tank at least partially submerged in the second fluid, and an exhaust port operatively connected with the generator to receive exhaust gas from the generator. The exhaust port passes through the second fluid to exchange heat of the exhaust gas with the second fluid. The energy system further includes a fluid outlet operatively connected to the outer tank such that the heated second fluid from the outer tank is used in the residence.

또한 본 발명은 거주지에 에너지를 제공하는 방법에 관한 것이다. 본 방법은 제1 유체를 포함하는 제1 탱크 내에 배치되는 엔진을 작동하는 단계를 포함한다. 제1 유체는 엔진으로부터 음향, 진동 및 열에너지 형태로 에너지를 흡수한다. 또한 본 방법은 배기포트를 통하여 엔진에서 나오는 배기가스를 통과시키는 단계, 및 배기가스로부터 열을 제2 탱크 내부에 있는 제2유체와 열 교환하는 단계를 포함한다. 제1 탱크의 최소한 일부는 제2 탱크 내부 제2 유체에 잠긴다. 일부 실시예들에서, 제2 유체는 제1 탱크 내부의 제1 유체로부터 에너지를 흡수하도록 구성된다. The invention also relates to a method of providing energy to a residence. The method includes operating an engine disposed in a first tank containing a first fluid. The first fluid absorbs energy from the engine in the form of sound, vibration and thermal energy. The method also includes passing exhaust gas from the engine through the exhaust port, and heat exchanging heat from the exhaust gas with a second fluid in the second tank. At least a portion of the first tank is submerged in a second fluid inside the second tank. In some embodiments, the second fluid is configured to absorb energy from the first fluid inside the first tank.

또한 본 발명은 엔진 및 전기 및 열을 발생시키는 발전기, 및 엔진으로부터 배기가스를 수용하는 배기라인을 포함하는 에너지 시스템에 관한 것이다. 또한 시스템은 배기라인이 통과하여 유체저장탱크 내의 유체와 열을 교환하는 유체를 저장하는 유체저장탱크를 포함한다. 시스템은 배기라인 내에 응축되는 물을 수집하는 응축수 수집기, 및 유체저장탱크와 작동적으로 연결되며 유체저장탱크로부터 유체를 수용하고 유체로부터 열을 거주지에 전달하는 열교환기를 더욱 포함한다.The invention also relates to an energy system comprising an engine and a generator for generating electricity and heat, and an exhaust line for receiving exhaust gas from the engine. The system also includes a fluid storage tank that stores fluid for passing heat through the exhaust line to exchange heat with fluid in the fluid storage tank. The system further includes a condensate collector for collecting water condensed in the exhaust line, and a heat exchanger operatively connected to the fluid storage tank and receiving fluid from the fluid storage tank and transferring heat from the fluid to the residence.

도 1은 본 발명의 여러 실시예들에 따른 주거지를 위한 에너지 시스템의 부분 개략 회로도이다.
도 2는 본 발명의 여러 실시예들에 따른 배기 튜브의 단면도이다.
도 3은 본 발명의 여러 실시예들에 따른 주거를 위한 에너지 시스템의 부분 개략 회로도이다.
도 4는 본 발명에 의한 에너지 시스템과 함께 사용되는 탱크 단면도이다.
도 5는 본 발명의 여러 실시예들에 따른 에너지 시스템의 부분적 개략도이다.
1 is a partial schematic circuit diagram of an energy system for a residential area in accordance with various embodiments of the present invention.
2 is a cross-sectional view of an exhaust tube in accordance with various embodiments of the present invention.
3 is a partial schematic circuit diagram of an energy system for a residential according to various embodiments of the present invention.
4 is a cross-sectional view of a tank used with the energy system according to the present invention.
5 is a partial schematic diagram of an energy system in accordance with various embodiments of the present invention.

본 발명은, 2004.11.9 출원된 다중연료 보광, 계량 및 점화 시스템 명칭의 미국가출원번호 60/626,021 (대리인 서류번호 69545-8013US) 및 2009.2.17 출원된 전 영역 에너지 명칭의 미국가출원번호 61/153,253 (대리인 서류번호 69545-8001 US)의 주제를 전체적으로 참조로써 포함한다. 또한 본 발명은, 다음과 같은 명칭으로 2010.8.16 동시에 출원된 미국특허출원들의 주제를 전체적으로 참조로써 포함한다: 유체 이송 시스템 특성 검출을 위한 방법 및 장치 (대리인 서류번호 69545-8003US); 에너지, 물질 자원 및 영양학적 분야의 자가 생산 공정 및 시스템에 대한 종합적 비용 모델링 (대리인 서류번호 69545-8025US); 전해전지 및 이의 이용방법 (대리인 서류번호 69545-8026US); 재생 에너지, 물질 자원 및 영양학적 분야의 통합적 생산을 통한 지속 가능한 경제적 개발 (대리인 서류번호 69545-8040US); 재생 에너지의 전 영역을 통한 지속 가능한 경제적 개발을 위한 시스템 및 방법 (대리인 서류번호 69545-8041 US); 재생 물질 자원의 통합적 전 영역 생산을 통한 지속 가능한 경제적 개발 (대리인 서류번호 69545-8042US); 보충적 해양 열에너지 전환 (SOTEC) 효율 증대를 위한 방법 및 시스템 (대리인 서류번호 69545-8044US); 탄화수소 수화물 저장체 획득을 위한 가스수화물 전환시스템 (대리인 서류번호 69545-8045US); 물리 보관 및/또는 여과 장치 및 방법 (대리인 서류번호 69545-8046US); 에너지 전환 어셈블리 및 관련 적용 방법 및 제조물 (대리인 서류번호 69545-8048US); 및 내적 보강된 구조 복합체 및 관련 제조방법 (69545-8049US).The present invention discloses US Provisional Application No. 60 / 626,021 (Representative Document No. 69545-8013US), filed with multi-fuel supplementation, metering and ignition system, filed Nov. 9, 2004, and US Provisional Application No. 61 / 153,253, for full-area energy designation, filed Feb. 7, 2009. (Attorney Docket No. 69545-8001 US) is incorporated by reference in its entirety. The invention also encompasses by reference the subject-matter of US patent applications, filed concurrently on August 16, 2010 under the following designation: Methods and apparatus for detecting fluid transfer system characteristics (agent document number 69545-8003US); Comprehensive cost modeling for self-producing processes and systems in the energy, material resources and nutrition sectors (Representative Document No. 69545-8025US); Electrolytic cells and methods of use thereof (representative document No. 69545-8026US); Sustainable economic development through the integrated production of renewable energy, material resources and nutrition (agent 6969-8040US); Systems and methods for sustainable economic development throughout the entire spectrum of renewable energy (Agent Representative Document No. 69545-8041 US); Sustainable economic development through integrative full-area production of renewable material resources (Representative Document No. 69545-8042US); Methods and systems for increasing complementary marine thermal energy conversion (SOTEC) efficiency (agent no. 69545-8044US); Gas hydrate conversion system for acquiring hydrocarbon hydrate storage (agent document number 69545-8045US); Physical storage and / or filtration apparatus and method (representative document No. 69545-8046US); Energy conversion assemblies and related application methods and articles of manufacture (agent document No. 69545-8048US); And internally reinforced structural composites and related preparation methods (69545-8049US).

도면에 도시된 많은 상세사항, 치수, 각도, 형상, 및 기타 특징부들은 본 발명의 특정 실시예들의 예시만을 위한 것이다. 따라서 기타 실시예들은 본 발명의 사상 또는 범위를 이탈하지 않고 다른 상세사항, 치수, 각도, 형상, 및 기타 특징부들을 가질 수 있다. 또한, 본 분야의 숙련가들은 하기 여러 상세사항들 없이도 본 발명의 추가적인 실시예가 구현될 수 있다는 것을 이해할 것이다.Many of the details, dimensions, angles, shapes, and other features shown in the drawings are for illustration of specific embodiments of the present invention only. Accordingly, other embodiments may have other details, dimensions, angles, shapes, and other features without departing from the spirit or scope of the invention. In addition, those skilled in the art will understand that additional embodiments of the present invention may be implemented without various details below.

본 명세서를 통하여 '일 실시예'또는 '실시예'를 참조한다는 것은 실시예와 관련되어 기술된 특정 특징부, 구조체 또는 특성이 최소한 하나의 본 발명의 다른 실시예에 포함된다는 것을 의미한다. 따라서 본 명세서 전반에서 '일 실시예' 또는 '실시예'라는 구문이 나타나는 것은 반드시 동일한 실시예를 언급하는 것은 아니다. 또한 하나 이상의 실시예들에서 특정한 특징부, 구조체, 또는 특성은 임의의 적합한 방식으로 조합될 수 있다. 추가로 본원의 소제목은 편의상 기재된 것이고 본 발명의 범위 또는 의미로 해석되지 않는다.Reference throughout this specification to “one embodiment” or “an embodiment” means that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least one other embodiment of the invention. Thus, the appearance of the phrase 'one embodiment' or 'an embodiment' throughout this specification does not necessarily refer to the same embodiment. Also, in one or more embodiments certain features, structures, or properties may be combined in any suitable manner. In addition, the subheadings herein are set forth for convenience and are not to be construed as the scope or meaning of the present invention.

도 1은 본 발명의 여러 실시예들에 따른 에너지 시스템 (100)을 도시한다. 에너지 시스템 (100)은 내부 탱크 (114) 내부에 유지되는 엔진 (10) 및 발전기 (112)를 포함한다. 엔진 (110)은 내부 탱크 (114) 외부로 연장되어 연료 및 공기와 같은 필요한 재료를 엔진 (110)으로 제공하는 연료라인 (118) 및 공기흡입구 (120)를 포함할 수 있다. 연료라인 (118)은 적합한 밸브 (118a) 및 유량조절기 (118b), 및 기타 적합한 연료 관리 기구를 포함할 수 있다. 연료 이송 및 관리 기구에 대한 추가적인 상세 사항들은 동시 계속 출원 상태인 에너지 전환시스템 명칭의 미국특허출원번호 09/128,673에 개시되고, 이는 전체가 참조로 본원에 포함된다. 공기흡입구 (120)는 상향 연장 파이프 (120a) 및 파이프 (120a) 일단에 공기필터 (120b)를 포함할 수 있다. 일부 실시예들에서, 엔진 (110)은 내연기관 (110)을 포함한다. 엔진 (110) 및 발전기 (112)는 엔진 (110) 회전을 개시하고 안정화하며, 엔진 (110)이 원하는 운전 속도에 도달한 후 전기를 제공하기 위한 플라이휠을 포함한다. 엔진 (110) 및 발전기 (112)는 거주지 또는 상점 또는 외딴 건물과 같은 소규모 또는 중간 규모의 소모 단위에 전기 형태로 에너지를 제공할 수 있다. 인버터 (115)는 발전기 (112)로부터 전기를 받아 거주지에서 사용되는 적합한 형태로 전환시킨다. 내부 탱크 (114)는 엔진 (110) 상부로 상향 연장되는 관형 벽들 (114a)을 포함할 수 있다. 내부 탱크 (114)는 최상부에 벤트 (114b)를 포함할 수 있고, 벤트 (114) 상부에 지붕 (미도시) 또는 기타 덮개를 포함할 수 있다.1 illustrates an energy system 100 in accordance with various embodiments of the present invention. The energy system 100 includes an engine 10 and a generator 112 that are maintained inside the inner tank 114. The engine 110 may include a fuel line 118 and an air intake 120 that extend outside the inner tank 114 to provide the engine 110 with necessary materials such as fuel and air. Fuel line 118 may include suitable valves 118a and flow regulators 118b, and other suitable fuel management mechanisms. Further details of the fuel transport and management mechanism are disclosed in US patent application Ser. No. 09 / 128,673, titled Energy Conversion System, which is filed in simultaneous and pending application, which is incorporated herein by reference in its entirety. The air inlet 120 may include an air extension 120b at one end of the upwardly extending pipe 120a and the pipe 120a. In some embodiments, the engine 110 includes an internal combustion engine 110. Engine 110 and generator 112 include a flywheel for initiating and stabilizing engine 110 rotation and providing electricity after engine 110 reaches a desired operating speed. Engine 110 and generator 112 may provide energy in the form of electricity to small or medium-scale consumption units, such as residences or shops or derelict buildings. The inverter 115 receives electricity from the generator 112 and converts it into a suitable form for use in the residence. The inner tank 114 may include tubular walls 114a extending upwardly above the engine 110. The inner tank 114 may include a vent 114b on top, and may include a roof (not shown) or other cover over the vent 114.

내부 탱크 (114)는 적합한 저 증기압 유체와 같은 유체 (116)로 충전 (또는 실질적으로 충전)될 수 있다. 예를들면, 유체 (116)는 감음 및 열-전달을 제공할 수 있는 고온의 실리콘, 탄화불소, 또는 적합한 공융용액 (또는 이들의 혼합물)일 수 있다. 일부 실시예들에서, 유체 (116)는 엔진 (110)에서 나오는 배기 유체 또는 누출 연료 또는 윤활유를 유체 (116) 표면으로 부유시켜 시스템 (100) 외부로 방출하는 자기 소화성 유체, 또는 내화성 유체를 포함할 수 있다. 또한 유체 (116)는 발전기 (112) 고압 리드 및 수반 회로 및 케이블의 추가적인 절연을 위한 유전 유체를 포함할 수 있다. 또한 유체 (116)는 6불화유황, 모래, 알루미늄 또는 강 재질의 볼들 (balls), 수산화칼륨, 또는 기타 누출 증기를 강제 배출하고 공기 또는 기타 산화 물질을 배출하여 소화하고 (smothering), 급랭 (quenching) 성능을 제공하여 어셈블리의 소음 감쇠 및 내화 증진을 제공할 수 있는 매질을 포함할 수 있다. 본원에 사용되는 용어 '유체'는 액체 및 모래 또는 금속재질의 볼들과 같은 입자상 고체를 포함한다. 입자상 고체를 포함하는 실시예들에서, 다양한 크기의 입자들은 내부 탱크 (114) 내부 다양한 크기의 공간들 및 개구들에 끼워져 사용될 수 있다.The inner tank 114 may be filled (or substantially filled) with a fluid 116 such as a suitable low vapor pressure fluid. For example, the fluid 116 can be hot silicon, fluorine carbide, or a suitable eutectic solution (or mixture thereof) that can provide attenuation and heat-transfer. In some embodiments, the fluid 116 includes a self-extinguishing fluid, or a refractory fluid, which floats exhaust fluid or leaking fuel or lubricant from the engine 110 onto the surface of the fluid 116 to release it out of the system 100. can do. Fluid 116 may also include a dielectric fluid for generator 112 high voltage leads and additional isolation of accompanying circuits and cables. The fluid 116 also forcibly drains sulfur, hexafluoride, sand, aluminum or steel balls, potassium hydroxide, or other leaking vapors, and smothers and quenchs air or other oxidants. Media) which can provide performance and provide improved noise attenuation and fire resistance of the assembly. The term "fluid" as used herein includes liquid and particulate solids such as sand or metallic balls. In embodiments involving particulate solids, particles of various sizes may be used to fit in spaces and openings of various sizes inside the inner tank 114.

내부 탱크 (114)는 유체 (152)가 충전되는 외부 탱크 (150) 내부에 배치될 수 있다. 일부 실시예들에서, 유체 (152)는 상수 (potable water)일 수 있다. 외부 탱크 (150)는 고강도 유리섬유, 탄소 또는 중합체 와인딩으로 보강된 중합체-내벽의 복합체로 제조된다. 이러한 제법으로 탱크 (150 )는 본질적으로 절연성이고 오랜 사용 기간 동안 내부식성을 가진다. 외부 탱크 (150)는 외부 탱크 (150) 기저에 입구 (154), 및 탱크 (150) 최상부에 출구 (156)를 포함한다. 엔진 (110)은 열교환 튜브 (160)와 연결되는 배기포트 (158)를 포함한다. 튜브 (160)는 외부 탱크 (150) 전체에 걸쳐 나선 또는 기타 적합한 방식으로 권취되어 튜브 (160) 내의 배기가스로부터 외부 탱크 (150) 내의 유체 (152)로 열을 전달한다. 도 1에 도시된 실시예에서, 대체로 원통인 외부 탱크 (150) 내부에서 열교환 튜브 (160)는 대체로 수직 축 주위로 나선으로 감긴다. 다른 실시예들에서, 튜브 (160) 내의 배기가스 및 탱크 (150) 내의 유체 (152) 사이 적합한 수준의 열교환을 달성하기 위한 다른 배열도 가능하다.The inner tank 114 may be disposed inside the outer tank 150 in which the fluid 152 is filled. In some embodiments, the fluid 152 may be potable water. The outer tank 150 is made of a composite of polymer-inner wall reinforced with high strength fiberglass, carbon or polymer windings. In this way, the tank 150 is insulated and corrosion resistant for long service life. The outer tank 150 includes an inlet 154 underneath the outer tank 150, and an outlet 156 on top of the tank 150. The engine 110 includes an exhaust port 158 connected to the heat exchange tube 160. The tube 160 is wound in a spiral or other suitable manner throughout the outer tank 150 to transfer heat from the exhaust gas in the tube 160 to the fluid 152 in the outer tank 150. In the embodiment shown in FIG. 1, inside the generally cylindrical outer tank 150, the heat exchange tube 160 is spirally wound around a generally vertical axis. In other embodiments, other arrangements are possible to achieve a suitable level of heat exchange between the exhaust gas in tube 160 and the fluid 152 in tank 150.

또한 외부 탱크 (150)는 튜브 (160) 출구에 응축수 수집기 (162)를 포함하여 배기가스로부터 응축수 (161)를 수집한다. 연료로써 수소를 사용하는 엔진 (110)의 실시예들에서, 엔진 (110) 연료로써 1 파운드의 수소를 사용하면 약 9 파운드의 증류 품질의 물이 생성된다. 일부 실시예들에서, 엔진 (10)은 하기 식 1 및 2에 따라 물 및 열을 발생시킨다:The outer tank 150 also includes a condensate collector 162 at the outlet of the tube 160 to collect condensate 161 from the exhaust gas. In embodiments of engine 110 using hydrogen as fuel, using 1 pound of hydrogen as engine 110 fuel produces about 9 pounds of distillation quality water. In some embodiments, engine 10 generates water and heat according to equations 1 and 2 below:

H2 + 1/2O2 → H2O + 열 1 식 1H 2 + 1/2 O 2 → H 2 O + Column 1 Formula 1

1 파운드 수소 + 8 파운드 산소 → 9 파운드 물 식 2 1 pound hydrogen + 8 pounds oxygen → 9 pounds water Equation 2

다른 실시예들에서, 하수, 쓰레기, 농업폐기물 및 기타 자원으로부터 생산되는 알코올, 액화석유, 오일 또는 메탄과 같은 탄화수소 연료가 사용된다. 식 3 및 4에 요약된 공정에 나타난 바와 같이, 연소 생성물로부터 물이 응축될 수 있다.In other embodiments, hydrocarbon fuels such as alcohol, liquefied petroleum, oil or methane produced from sewage, waste, agricultural waste and other resources are used. As shown in the process summarized in Equations 3 and 4, water may condense from the combustion products.

HxCy + yO2 → xH2O + yCO2 + 열 3 식 3H x C y + yO 2 ≧ xH 2 O + yCO 2 + column 3

CH4 + 2O2 → 2H2O + CO2 + 열 4 식 4CH 4 + 2O 2 → 2H 2 O + CO 2 + Heat 4 Formula 4

저질수로 인한 만성 질환 및 수명 단축의 결과로 전 세계 여러 지역에서 심각한 생산성 손실 및 고통을 겪고 있다. 에너지 절약 공정의 배기 생성물로부터 물을 회수하는 것은 수인성 병원균으로 고통받거나 지하수가 비소, 납, 라돈 또는 기타 무기질 독극물로 적합하지 않은 지역사회에 극히 중요하다. 시스템 (100)은 연료 전지 또는 엔진 연료로 사용되는 수소 1 파운드 당 약 1 갤런의 안전하고도 청결한 물을 에너지 활용 과정에서 연속적으로 제공하여 삶의 질을 크게 개선시키면서도 에너지 공급원을 절약할 수 있다.As a result of chronic diseases and shortened lifespans due to poor water, many regions of the world suffer from severe loss of productivity and suffering. Recovery of water from the exhaust products of energy-saving processes is extremely important for communities suffering from waterborne pathogens or where groundwater is not suitable for arsenic, lead, radon or other mineral poisons. System 100 can provide about 1 gallon of safe and clean water per pound of hydrogen used as fuel cell or engine fuel continuously in the energy utilization process to save energy sources while significantly improving quality of life.

내부 탱크 (114) 및 외부 탱크 (150) 배치구조는 바람직하게는 엔진 (110)에서 나오는 에너지를 포집하고 에너지를 탱크들 (114, 150) 내에 있는 유체들 (116, 152)로 전달할 수 있다. 외부 탱크 (150)는 실린더, 또는 차폐판들을 가지는 실린더와 같은 용기, 또는 내부 및 외부에 열전달 핀들을 가지는 용기, 또는 탱크 (150) 내 가열 유체 대류를 방지하기 위한 장치들을 구비한 용기일 수 있다. 따라서 열, 소리, 및 진동은 시스템 (100) 외부로 실질적으로 전달되지 않고, 외부 탱크 (150) 내부 유체 (152) 가열 및/또는 가압에 사용된다. 일부 실시예들에서, 유체 (152)는 거주지에서 사용될 수 있는 뜨거운 상수일 수 있다. 출구 (156)는 거주지의 적합한 배관포트와 연결될 수 있다. 출구 (156)는 외부 탱크 (150) 압력 또는 온도가 한계 압력에 달하면 탱크로부터 압력을 방출하도록 출구 (156)를 작동시키는 센서 (미도시)를 포함할 수 있다.The inner tank 114 and outer tank 150 configurations are preferably capable of capturing energy from the engine 110 and transferring the energy to the fluids 116, 152 in the tanks 114, 150. The outer tank 150 may be a container, such as a cylinder, or a cylinder with shield plates, or a container with heat transfer fins inside and outside, or a container with devices for preventing heating fluid convection in the tank 150. . Thus, heat, sound, and vibration are not substantially transmitted outside the system 100, but are used to heat and / or pressurize the fluid 152 inside the outer tank 150. In some embodiments, the fluid 152 may be a hot constant that may be used at the residence. The outlet 156 may be connected to a suitable piping port of the residence. The outlet 156 may include a sensor (not shown) that activates the outlet 156 to release pressure from the tank when the outer tank 150 pressure or temperature reaches a threshold pressure.

본 시스템 (100)에 의해 여러 특정한 상승효과 및 유리한 결과가 제공된다. 예를들면, 펄스연소뿐 아니라 소리에 의해 유발되는 열 및 진동에너지는 생산적 사용을 위하여 유체 (152)에 열로써 실질적으로 포집된다. 추가로, 일부 연소과정에서 배기가스로부터 상당량의 물이 생산된다. 본 시스템 (100)은 생산적인 사용을 위하여 대체로 청결하고 실용적인 이러한 물을 수집한다. 연소기관 및 연료전지를 포함한 실질적으로 모든 유형의 엔진에 이러한 장점들이 적용될 수 있다. 엔진 (110)은 유체 (152)에서 각각 청결수 및 에너지로 포획될 수 있는 물 및 소리를 생산할 수 있는 연료전지일 수 있다.The system 100 provides several specific synergies and advantageous results. For example, heat and vibration energy caused by sound as well as pulsed combustion are substantially trapped as heat in the fluid 152 for productive use. In addition, a significant amount of water is produced from the exhaust gases in some combustion processes. The system 100 collects this water, which is generally clean and practical for productive use. These advantages can be applied to virtually all types of engines, including combustion engines and fuel cells. The engine 110 may be a fuel cell capable of producing water and sound that can be captured with clean water and energy in the fluid 152, respectively.

도 2는 열교환 튜브 (160) 단면도를 도시한다. 일부 실시예들에서, 튜브 (160)는 평탄형 튜브 (160)일 수 있다. 일부 실시예들에서, 외부 탱크 (150)는 탱크 (150)를 통해 대체적으로 튜브 (160) 경로를 따르는 핀들 또는 채널들을 포함할 수 있다. 이에 따라 입구 (154)에서 출구 (156)로의 흐름은 튜브 (160) 내부 배기가스 경로와 역류한다. 따라서, 폭 및 높이 치수, w 및 h는 입구 측 물이 대류적 또는 다른 경로들이 아니라, 역류 열교환 방식으로 흐를 수 있도록 필요에 따라 변경될 수 있다.2 shows a cross-sectional view of the heat exchange tube 160. In some embodiments, tube 160 may be flat tube 160. In some embodiments, the outer tank 150 may include fins or channels along the path of the tube 160 generally through the tank 150. Accordingly, the flow from inlet 154 to outlet 156 flows back with the exhaust gas path inside tube 160. Thus, the width and height dimensions, w and h, can be changed as needed so that the inlet side water can flow in countercurrent heat exchange, rather than convective or other paths.

일부 실시예들에서, 튜브 (160)는 전 단면에 걸쳐 대체로 초승달 형태의 활형 튜브일 수 있고, 중앙부는 상향 만곡되어 가열되어 팽창된 물이 부력에 의해 튜브 (160)의 만곡 하측 내부로 흐르도록 조력한다. 튜브 (160)는 탱크 (150) 전반에 나선형으로 감겨 외부 탱크 (150) 내부에 장착되고, 유체 (152)가 입구 (154)에서 출구 (156)로 흐르는 경로와 역류로 탱크 (150)를 통하도록 유지된다. 이러한 배열은 시스템 효율을 높이고 출구 (156)에서 유체 (152) 확실하고도 일관적인 온도에 도달할 수 있다.In some embodiments, the tube 160 may be a generally crescent shaped tubular tube over the entire cross section, with the center curved upwardly so that the expanded water flows into the curved underside of the tube 160 by buoyancy. Help The tube 160 is wound spirally throughout the tank 150 and mounted inside the outer tank 150, passing through the tank 150 with a flow path and backflow of the fluid 152 from the inlet 154 to the outlet 156. Is maintained. This arrangement can increase system efficiency and reach a reliable and consistent temperature of the fluid 152 at the outlet 156.

도 3은 본 발명의 여러 실시예들에 따른 시스템 (200)을 도시한다. 본 시스템 (200)은 엔진 (210) 및 발전기 (212)를 포함한다. 엔진 (210)은 내연기관, 연료전지, 또는 기타 적합한 임의 유형의 엔진일 수 있다. 엔진 (210)은 주입라인 (210a)을 포함하여 엔진 (210)에 연료, 공기, 수소, 또는 기타 엔진 (210)에서 사용되는 적합한 재료를 제공한다. 동시 계속 출원되고 본원에 참조로 전체가 포함되는 '전 영역 에너지 및 자원 자립'에 기술된 바와 같이 주입라인 (210a)을 통하여 연료가 이송된다. 발전기 (212)는 엔진 (210)과 연결되어 엔진 (210)에서 나오는 에너지를 전기로 전환시킨다. 본 시스템 (200)은 인버터 (212a) 및 케이블, 전해조, 배터리, 축전기 등과 같은 기타 적절한 전기설비 (212b)를 포함하여 발전기 (212)에서 생산된 전기를 거주지로 전송한다.3 illustrates a system 200 in accordance with various embodiments of the present invention. The system 200 includes an engine 210 and a generator 212. Engine 210 may be an internal combustion engine, a fuel cell, or any other suitable type of engine. The engine 210 includes an injection line 210a to provide the engine 210 with suitable materials for use in fuel, air, hydrogen, or other engine 210. Fuel is transferred through the injection line 210a as described in 'Full Area Energy and Resource Independence', filed concurrently and hereby incorporated by reference in its entirety. The generator 212 is connected with the engine 210 to convert energy from the engine 210 into electricity. The system 200 includes an inverter 212a and other suitable electrical equipment 212b, such as cables, electrolyzers, batteries, capacitors, and the like, to transfer electricity produced by the generator 212 to the residence.

또한 본 시스템 (200)은 배기라인 (214), 열교환기 (215), 및 오븐 (216)을 포함할 수 있다. 열교환기 (215)는 배기 열을 오븐 (216)으로 전달한다. 오븐 (216)은 열교환기 망들로 연결된 단계적 가열 수준의 다양한 오븐들을 포함할 수 있다. 예를들면, 오븐 (216)은 배기 열을 처음 수용하는 제1 오븐 (216a); 제1 오븐에서 나온 열을 수용하는 제2 오븐 (216b); 및 제2 오븐에서 나온 열을 수용하는 제3 오븐 (216c)을 포함한다. 오븐 (216) 내부 공기는 일련의 밸브 및 조절기 (217)에 의해 여러 오븐들 (216a, 216b, 216c)로 분배된다. 제1 오븐 (216a)은 예를들면 피자 오븐과 같이 가장 높은 온도에서 조리하기 위하여 활용된다. 제2 오븐 (216b)은 약간 낮은 온도 조리용으로, 제3 오븐 (216c)은 음식 건조 또는 보존과 같은 더더욱 낮은 온도 조리용으로 활용된다. 최소한 하나의 오븐 (216)은 마이크로웨이브 오븐을 포함할 수 있다. 오븐 (216)은 흡착 필터 (미도시)를 포함할 수 있어 오븐 (216) 내부 공기를 건조시킬 수 있다. 흡착필터는 엔진 (210)에서 나온 고온 배기를 이용하여 주기적으로 재생될 수 있다. 과일, 고기 및 야채를 건조시켜 음식 보존 및 밀봉 보관에 대한 건강하고도 에너지 절약적인 유리한 대안을 제시한다.The system 200 may also include an exhaust line 214, a heat exchanger 215, and an oven 216. Heat exchanger 215 transfers exhaust heat to oven 216. Oven 216 may include various ovens with staged heating levels connected to heat exchanger networks. For example, oven 216 may include first oven 216a that first receives exhaust heat; A second oven 216b for receiving heat from the first oven; And a third oven 216c for receiving heat from the second oven. The air inside the oven 216 is distributed to the various ovens 216a, 216b, 216c by a series of valves and regulators 217. The first oven 216a is utilized to cook at the highest temperature, for example a pizza oven. The second oven 216b is used for slightly lower temperature cooking, and the third oven 216c is used for even lower temperature cooking such as food drying or preservation. At least one oven 216 may comprise a microwave oven. Oven 216 may include an adsorption filter (not shown) to dry the air inside oven 216. The adsorption filter can be periodically regenerated using the hot exhaust from the engine 210. Drying fruits, meat and vegetables offers a healthy and energy-saving alternative to food preservation and sealed storage.

또한 본 시스템 (200)은 탱크 (220)를 포함하며 여기에는 배기가스가 오븐 (216)를 통과한 후 탱크 (220) 내에 있는 물과 같은 유체를 가열하기 위하여 배기 라인 (214)이 통과한다. 일부 실시예들에서, 열교환기 (215) 및 튜브 (214)를 제조하기 위하여 스테인리스 강과 같은 적합한 내식성 재료가 사용된다. 열교환기 (215)용 대안적 재료로는 비용 효율적인 내식성 이점을 가지는 고온용 중합체를 포함한다. 튜브 (214)는 폴리에스테르, 실리콘, 및/또는 불화중합체로 제조될 수 있다. 배기라인 (214) 및 탱크 (220) 배열은 상기 도 1을 참조하여 설명된 시스템 (100)과 대체로 유사하다. 본 시스템 (200)은 출구 포트 가까이 응축수 수집기 (221)를 포함한다. 일부 실시예들에서, 예를들면 소리, 열, 및 진동 감쇠가 우선 순위인 경우, 엔진 (210) 및 발전기 (212)는, 도 1과 연관하여 기술된 시스템 (100)과 포괄적으로 유사한 방식으로, 내부탱크 (미도시)에 배치되고 이것은 다시 탱크 (220) 내부에 장착될 수 있다. 탱크 (220) 내의 유체는 상수일 수 있고, 거주지 내에서 음용수, 목욕 및 세척수 등으로 사용될 수 있다. 일부 실시예들에서, 물 (또는 기타 유체)는 또한 거주지 난방을 위하여 사용될 수 있다. 탱크 (220)는 거주지 벽, 천장, 마루를 통하여 감긴 일련의 튜브들을 포함하는 열교환기 (224)와 연결되는 출구 (222)를 포함한다. 거주지는 열교환기 (224) 및 거주지 외벽 사이 단열을 포함하지만, 거주지 내부로 열 전달이 가능하다. 물은 열교환기 (224)에서 탱크 (220)로 회귀되거나, 거주지에서 상수로 사용될 수 있다. 탱크 (220)는 진입수 모멘텀 및/또는 대류로 인한 혼합을 억제 또는 방지하여 탱크 (220) 최상부에서는 열수 및 탱크 (220) 바닥에서는 냉수가 생산되고 유지되도록 제조된다.The system 200 also includes a tank 220, through which exhaust lines 214 pass to heat a fluid, such as water, in the tank 220 after the exhaust gas passes through the oven 216. In some embodiments, a suitable corrosion resistant material such as stainless steel is used to make the heat exchanger 215 and the tube 214. Alternative materials for the heat exchanger 215 include high temperature polymers having cost effective corrosion resistance advantages. Tube 214 may be made of polyester, silicone, and / or fluoropolymer. The exhaust line 214 and tank 220 arrangements are largely similar to the system 100 described with reference to FIG. 1 above. The system 200 includes a condensate collector 221 near the outlet port. In some embodiments, for example, where sound, heat, and vibration attenuation are priorities, engine 210 and generator 212 are in a manner similar to that of system 100 described in connection with FIG. , An inner tank (not shown), which in turn can be mounted inside the tank 220. The fluid in tank 220 may be constant and may be used as drinking water, bath and wash water, and the like within the residence. In some embodiments, water (or other fluid) may also be used for residential heating. The tank 220 includes an outlet 222 which is connected to a heat exchanger 224 comprising a series of tubes wound through the residence wall, ceiling, floor. The dwelling includes insulation between the heat exchanger 224 and the dwelling exterior wall, but heat transfer is possible inside the dwelling. Water may be returned to the tank 220 in the heat exchanger 224, or may be used as a constant in the residence. Tank 220 is manufactured to inhibit or prevent mixing due to inflow water momentum and / or convection to produce and maintain hot water at the top of tank 220 and cold water at the bottom of tank 220.

내부연소 또는 고온 연료전지 작동에서 개시되어 일차 연료를 더욱 에너지 생산적인 연료 형태로 재생, 음식 조리, 음식 건조, 급탕용 열교환, 및 팬 코일 또는 마루 난방시스템에서 열수 사용으로 이어지는 단계적 온도들에서의 일련의 열 활용을 제공하여 종래 거주 지원 효율을 크게 향상시킨다. 전체적인 에너지 활용 효율은 현재와 비교하여 개선된다. 에너지 안전 보장과 함께 보증된 물 생산 및 저온 살균 또는 멸균이 내재적 이점들로 제공된다.A series of staged temperatures that are initiated in internal combustion or high temperature fuel cell operation leading to the regeneration of primary fuels into more energy productive fuel forms, food cooking, food drying, heat exchange for hot water, and hot water use in fan coils or floor heating systems. By providing heat utilization, the efficiency of conventional residential support is greatly improved. The overall energy utilization efficiency is improved compared to the present. Guaranteed water production and pasteurization or sterilization along with energy safety guarantees offer inherent advantages.

도 4는 본 발명에 의한 탱크 (300) 단면도를 도시한다. 탱크 (300)는 금속 또는 불화폴리비닐리덴 또는 퍼플루오로알콕시와 같은 중합체로 제조될 수 있다. 탱크 (300)는 중공 또는 중실의 중심축 (310)을 포함할 수 있고 축방향의 관형 부재 (314)를 포함할 수 있다. 일부 실시예들에서, 축 (310)의 구멍은 에너지 시스템 (100, 200) 내부 여러 지점들 및 외부 목적지로 이송되는 적당한 이송튜브들을 연결하는 중앙 도관으로 사용될 수 있다. 나선형 튜브 (312)는 탱크 (300) 내부 축 (310) 주위로 연장된다. 도 4는 튜브 (312)를 개념적으로 선으로 도시하지만; 튜브 (312)는 탱크 (300) 내에서 임의의 적합한 치수를 가질 수 있다. 튜브 (312)의 나선 형태는 내부로부터 탱크 (300)를 보강시킨다. 탱크 (300)는 도 4에 도시된 바와 같이 (축 (310) 주위로 이와 연결되는 성형을 포함하거나 하지 않는) 나선 형태로 중합체 관을 성형시켜 신속하게 제조될 수 있다. 불투과성 라이너 (316)가 튜브 (312) 외면에 결합되도록 가열 성형될 수 있다. 탱크 (300)는 적합한 에폭시와 같은 열경화성 수지 내의 유리섬유, 배향 폴리올레핀, 배향 폴리에스테르, 및/또는 흑연섬유로 제조되는 오버랩 (318)을 포함할 수 있다. 중심축 (310)이 포함되는 실시예들에서, 등각의 차단격벽 (conformal bulkhead, 320 및 322)이 장착 제공구들과 함께 축방향 하중 분포 및 보강 기능을 제공한다. 축 (310)을 차단격벽 (320, 322)과 연결하거나 나사식 파스너 또는 유사한 부착구로 하중을 전달하여 탱크 (300) 내의 압력 응력에 대한 축방향 구속을 제공한다.4 shows a cross-sectional view of a tank 300 according to the present invention. Tank 300 may be made of metal or a polymer such as polyvinylidene fluoride or perfluoroalkoxy. Tank 300 may comprise a hollow or solid central axis 310 and may include an axial tubular member 314. In some embodiments, the aperture of the shaft 310 can be used as a central conduit connecting the appropriate transfer tubes to various points inside the energy system 100, 200 and to an external destination. The helical tube 312 extends around the inner axis 310 of the tank 300. 4 conceptually shows the tube 312 in a line; Tube 312 may have any suitable dimension within tank 300. The spiral shape of the tube 312 reinforces the tank 300 from within. The tank 300 can be rapidly produced by molding the polymer tube in the form of a spiral (with or without a molding connected to it about the axis 310) as shown in FIG. 4. The impermeable liner 316 may be heat molded to couple to the outer surface of the tube 312. Tank 300 may include overlap 318 made of glass fibers, oriented polyolefins, oriented polyesters, and / or graphite fibers in a thermosetting resin such as a suitable epoxy. In embodiments where the central axis 310 is included, conformal bulkheads 320 and 322 together with mounting provisions provide axial load distribution and reinforcement. The shaft 310 is coupled with the barrier ribs 320 and 322 or transfers the load to a threaded fastener or similar attachment to provide axial restraint for pressure stress in the tank 300.

도 5는 거주지 또는 기타 소모 단위를 위한 본 발명의 실시예에 따른 에너지 시스템 (400)을 보인다. 시스템 (400)은 태양에너지를 받아 거주지에 필요한 열 및 전기로 전환하는 태양전지판 (402)을 포함한다. 제1 매니폴드 (404a)에서 제2 매니폴드 (404b)로 공기 및/또는 물과 같은 작동 유체를 통과시켜 태양전지판 (402)로부터 열을 회수할 수 있다. 또한 본 시스템 (400)은 상기 시스템 (100, 200)과 유사한 엔진 (410) 및 발전기 (412)를 포함한다. 엔진 (410) 및 발전기 (412)에서 나오는 배기는 용기 (416) 내부에 있는 열교환기 (414)로 전달된다. 용기 (416)는 배기에서 나오는 열이 사용되는 임의의 격실일 수 있고, 거주지 오븐 또는 가열 단위를 포함한다. 열교환기 (414)는 화살표 (414a)로 표시된 바와 같이 두 유체를 서로 역류시키는 역류 공기를 이용할 수 있다. 대안으로, 배기가스는 열 저장탱크 (418)를 통과할 수 있다. 열 저장탱크 (418)는 고 비열 매질 (419) 및/또는 글라베르 염 (Glaber salt) (Na2SO4?10H2O) 또는 파라핀과 같은 상 변이 물질을 포함하여 열 저장탱크 (418)를 순환하는 유체를 가열하거나 냉각시킬 수 있다. 추후 별도 사용을 위하여 매니폴드 (404a, 404b)는 태양전지판 (402)의 열을 열 저장탱크 (418)로 전달할 수 있다.5 shows an energy system 400 according to an embodiment of the present invention for a residence or other consuming unit. The system 400 includes a solar panel 402 that receives solar energy and converts it into heat and electricity required for the residence. Heat may be recovered from the solar panel 402 by passing a working fluid such as air and / or water from the first manifold 404a to the second manifold 404b. The system 400 also includes an engine 410 and a generator 412 similar to the systems 100, 200. Exhaust from engine 410 and generator 412 is delivered to heat exchanger 414 inside vessel 416. The vessel 416 can be any compartment in which heat from the exhaust is used and includes a residential oven or heating unit. Heat exchanger 414 may utilize backflow air to backflow the two fluids together as indicated by arrow 414a. Alternatively, the exhaust gas may pass through heat storage tank 418. Heat storage tank 418 is a high specific heat medium (419) and / or Glidden suberic salt (Glaber salt) thermal storage tank 418, including a phase transition material, such as (Na 2 SO 4? 10H 2 O) or paraffin The circulating fluid can be heated or cooled. For later use, the manifolds 404a and 404b may transfer heat from the solar panel 402 to the heat storage tank 418.

시스템 (400)은 상기 도 1 및 3을 참조하여 기재된 시스템 (100, 200)과 유사하게 탱크 (430), 탱크 (430)를 통과하는 배기튜브 (432), 및 응축수 수집기 (434)를 포함한다. 탱크 (430) 내의 유체는 엔진 (410)에서 나오는 배기가스 또는 필요한 경우 열 저장탱크 (418)로 가열된다. 탱크 (430)는 탱크 (430)를 둘러싸는 열저장코일 (431)을 포함할 수 있다. 탱크 (430) 내의 뜨거운 유체는 거주지 난방을 위하여 거주지 마루 또는 벽 내에 있는 열교환기 (440)를 순환하고 탱크 (430)로 회귀된다. 본 시스템 (400)은 엔진 (410) 및/또는 발전기 (412)를 제어하는 제어기 (420), 및 온도 및/또는 습도 정보를 수신하는 센서를 포함한다. 제어기 (420)는 시스템 (400) 여러 지점들에 있는 작동 유체들의 순환을 적절하게 조절할 수 있다. 또한 시스템 (400)은 지면보다 대체로 온화한 지면 아래로 연장되는 지열 저장 리던 벤드 (442)를 포함한다. 리턴 벤드 (442)에 있는 유체는 펌프 (444) 또는 기타 적당한 가압 장비에 의해 이동될 수 있다. 열교환기 (440)는 리턴 벤드 (442)와 열을 교환할 수 있고, 열을 지면 아래 지열 저장고로 전달할 수 있다. 열교환기 (440)에서 순환하는 물이 연중 평균 기온을 달성하도록 시스템 (400)은 충분한 깊이로 땅속에 매장된 우물물 또는 열교환기 (미도시)에서 냉각된 물을 순환시킬 수 있다. 대부분의 대륙에서 대수층 지하수 포화 영역은 표토층 각 80에 대하여 연중 평균 기온에 1 도를 더한 정도로 유지된다. 추운 계절에는, 이러한 지하수는 대기 온도보다 더 높다. 더운 계절에는, 지하수는 대기 온도보다 20℉ 내지 40℉ 더 낮고 거주지 냉방을 위한 히트 싱크로 기능할 수 있다. 유사하게 심해수 가까운 지역에서는 거주지 냉각에 적합한 냉 심해수를 활용할 수 있다.The system 400 includes a tank 430, an exhaust tube 432 passing through the tank 430, and a condensate collector 434 similar to the systems 100 and 200 described with reference to FIGS. 1 and 3 above. . The fluid in tank 430 is heated with exhaust gas from engine 410 or heat storage tank 418 if necessary. The tank 430 may include a heat storage coil 431 surrounding the tank 430. Hot fluid in tank 430 circulates through heat exchanger 440 in the residence floor or wall and returns to tank 430 for residence heating. The system 400 includes a controller 420 that controls the engine 410 and / or generator 412, and a sensor that receives temperature and / or humidity information. The controller 420 can appropriately regulate the circulation of working fluids at various points in the system 400. System 400 also includes a geothermal storage redundant bend 442 that extends below the ground, which is generally milder than the ground. Fluid in return bend 442 may be moved by pump 444 or other suitable pressurization equipment. The heat exchanger 440 may exchange heat with the return bend 442 and transfer the heat to the geothermal reservoir below ground. The system 400 may circulate well water buried in the ground or water cooled in a heat exchanger (not shown) to a sufficient depth so that the water circulating in the heat exchanger 440 achieves an annual average temperature. On most continents, the aquifer groundwater saturation region is maintained at an average annual temperature plus 1 degree for each 80 layers of topsoil. In cold seasons, these groundwaters are higher than atmospheric temperatures. In hot seasons, groundwater is 20 ° F to 40 ° F lower than atmospheric temperature and can serve as a heat sink for residential cooling. Similarly, in areas close to deep sea water, cold deep sea water suitable for residential cooling can be used.

달리 명백하게 문맥에서 요청하지 않는 한, 상세한 설명 및 청구범위 전반에 걸쳐, 용어 '포함하는', '구성하는', 및 유사한 단어들은 배제적 또는 철저한 의미가 아닌 개방적 의미로 해석되어야 한다; 즉 '이루어지지만' 제한되지는 않는다. 단수 또는 복수를 사용하는 단어들 역시 복수 또는 단수를 각각 포함한다. 둘 이상의 항목들 리스트를 참조하여 '또는'이라는 단어가 청구범위에 사용될 때, 그 단어는 다음의 모든 의미를 포괄하는 것이다: 리스트의 임의 항목, 리스트의 모든 항목, 및 리스트 항목의 임의 조합.Throughout the description and claims, unless otherwise expressly requested in context, the terms 'comprising', 'constituting', and similar words should be interpreted in an open sense, not in an exclusive or exhaustive sense; It is 'made' but not limited. Words using the singular or plural number also include the plural or singular number respectively. When the word 'or' is used in a claim with reference to a list of two or more items, the word encompasses all of the following meanings: any item in the list, all items in the list, and any combination of list items.

상기 다양한 실시예들이 조합되어 추가적인 실시예들을 제공한다. 본 명세서에 참조된 및/또는 출원데이터서류에 나열된 모든 미국특허, 미국특허출원 공개공보, 미국특허출원, 외국특허, 외국특허출원 및 비-특허공개문헌들은 본원에 참조로 전체가 포함된다. 본 발명의 양태들은, 필요하다면 변형되어 여러 구성들의 연료 주입기 및 점화장치 및 여러 특허, 출원 및 공개문헌들의 개념들을 채용하여 본 발명의 또 다른 실시예들을 제공할 수 있다.The various embodiments above are combined to provide further embodiments. All US patents, US patent application publications, US patent applications, foreign patents, foreign patent applications, and non-patent publications referenced herein and / or listed in application data documents are hereby incorporated by reference in their entirety. Aspects of the present invention may be modified, if necessary, to employ still other embodiments of the present invention by employing fuel injectors and ignition devices of various configurations and concepts of various patents, applications, and publications.

상기 상세한 설명에 비추어 이러한 및 기타 변형들이 가능하다. 포괄적으로, 하기 청구범위들에서, 사용 용어들은 본 발명을 명세서 및 청구범위에 개시된 특정 실시예들로 제한하여 해석하여서는 아니 되고, 청구범위에 따라 작동되는 모든 시스템들 및 방법들을 포함하는 것으로 해석되어야 한다. 따라서, 본 발명은 개시 사항에 제한되지 않고 범위는 다음 청구범위에 의해 넓게 결정되어야 한다.These and other variations are possible in light of the above detailed description. In general, in the following claims, the terms used should not be construed as limiting the present invention to the specific embodiments disclosed in the specification and claims, but rather including all systems and methods operating in accordance with the claims. do. Accordingly, the invention is not limited to the disclosure and the scope should be broadly determined by the following claims.

Claims (37)

내부탱크; 내부탱크에 포함되는 제1 유체에 의해 최소한 일부가 둘러싸이고 거주지에 필요한 전기를 생산하도록 내부탱크 내에 배치되는 발전기; 제2 유체 내에 최소한 일부가 잠기는 내부탱크의 최소한 일부를 포함하는 외부탱크; 발전기로부터 배기가스를 수용하도록 발전기와 작동적으로 연결되며, 배기가스의 열을 제2유체와 교환하도록 제2유체를 통과하는 배기포트; 및 외부탱크에서 나오는 가열 제2유체가 거주지에 사용되도록 외부탱크와 작동적으로 연결되는 유체 출구로 구성되는, 거주지 에너지 시스템.Inner tank; A generator disposed in the inner tank to be at least partially enclosed by the first fluid included in the inner tank and to produce electricity required for the residence; An outer tank comprising at least a portion of an inner tank at least partially submerged in a second fluid; An exhaust port operatively connected to the generator to receive exhaust gas from the generator and passing through the second fluid to exchange heat of the exhaust gas with the second fluid; And a fluid outlet operatively connected to the outer tank such that the heated second fluid from the outer tank is used in the residence. 제1항에 있어서, 외부탱크 내의 유체는 상수인, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the fluid in the outer tank is constant. 제1항에 있어서, 제1 유체는 고온의 실리콘, 탄화불소, 공융용액, 자기-소화성 유체, 유전유체, 6불화유황, 모래, 수산화칼륨, 또는 금속 볼들 중 최소한 하나를 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the first fluid comprises at least one of high temperature silicon, fluorocarbon, eutectic solution, self-extinguishing fluid, dielectric fluid, sulfur hexafluoride, sand, potassium hydroxide, or metal balls. . 제1항에 있어서, 배기포트는 배기가스에서 물을 수집하도록 출구포트 및 유체 수집기를 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the exhaust port comprises an outlet port and a fluid collector to collect water from the exhaust gas. 제1항에 있어서, 발전기에 연료를 이송하는 연료라인; 내연기관을 포함하는 발전기에 공기를 전달하는 공기흡입구; 및 외부탱크 바닥에 위치하는 외부탱크 입구를 더욱 포함하는, 거주지 에너지 시스템.The fuel cell system of claim 1, further comprising: a fuel line configured to transfer fuel to the generator; An air inlet for delivering air to a generator including an internal combustion engine; And an outer tank inlet located at the bottom of the outer tank. 제1항에 있어서, 배기포트는 외부탱크를 통과하는 나선형 튜브를 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the exhaust port comprises a helical tube passing through the outer tank. 제1항에 있어서, 배기포트는 배기가스에서 제2유체로 열전달을 개선하기 위하여 초승달-형태의 단면을 가지는 긴 튜브를 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the exhaust port comprises an elongated tube having a crescent-shaped cross section to improve heat transfer from the exhaust gas to the second fluid. 제1항에 있어서, 외부탱크는 대체로 원통형, 상향 탱크를 포함하며; 내부탱크는 대체로 외부탱크 최상부 가까이 내부 중심에 배치되고; 배기포트는 원통형, 상향 외부탱크와 최소한 대체로 평행하게 축 주위로 나선 연장되는 긴 관을 포함하는, 거주지 에너지 시스템.The tank of claim 1, wherein the outer tank comprises a generally cylindrical, upward tank; The inner tank is generally disposed at the inner center near the top of the outer tank; And the exhaust port comprises a cylindrical, elongated tube extending spirally about an axis at least generally parallel to the outer outer tank. 제1항에 있어서, 내부탱크는 상부 벤트를 포함하고, 제1유체 증기는 제1 유체 표면으로 이동하고 상부 벤트로 빠져나가는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the inner tank comprises an upper vent and the first fluid vapor moves to and exits the first fluid surface. 제1항에 있어서, 유체 출구는 외부탱크 내부 압력이 한계 압력에 도달하면 외부탱크로부터 제2유체 일부를 방출하도록 구성되는 압력센서를 더욱 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the fluid outlet further comprises a pressure sensor configured to release a portion of the second fluid from the outer tank when the outer tank internal pressure reaches a threshold pressure. 제1항에 있어서, 내부탱크는 발전기로부터 열, 진동, 및 음향에너지를 흡수하여 제2유체로 에너지를 열로 전달하도록 구성되는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the inner tank is configured to absorb heat, vibration, and acoustic energy from the generator and transfer energy as heat to the second fluid. 제1항에 있어서, 발전기는 엔진에서 에너지를 수용하고 에너지의 최소한 일부를 플라이휠에 저장하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the generator receives energy from the engine and stores at least a portion of the energy in a flywheel. 제1항에 있어서, 태양전지판 및 태양전지판으로부터 열을 회수하여 제2유체로 전달하도록 구성되는 열교환기를 더욱 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, further comprising a heat exchanger configured to recover heat from the solar panel and the solar panel and transfer the heat to the second fluid. 제1항에 있어서, 제2유체를 수용하고 제2 유체로부터 열을 거주지로 전달하는 열교환기를 더욱 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, further comprising a heat exchanger for receiving the second fluid and transferring heat from the second fluid to the residence. 제14항에 있어서, 열교환기는 제2유체가 통과하는 일련의 튜브를 포함하고, 일련의 튜브는 거주지 내벽에 배치되는, 거주지 에너지 시스템.The residential energy system of claim 14, wherein the heat exchanger comprises a series of tubes through which the second fluid passes, and the series of tubes are disposed on the interior wall of the residence. 제1항에 있어서, 배기포트는 나선형태로 형성되는 튜브를 포함하고, 외부탱크는 나선 형태 외주를 감싸는 커버를 포함하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the exhaust port comprises a spirally formed tube and the outer tank includes a cover surrounding a spiral outer circumference. 제16항에 있어서, 커버는 에폭시와 같은 적합한 열경화성 수지 내의 유리섬유, 배향 폴리올레핀, 배향 폴리에스테르, 및 흑연섬유 중 최소한 하나로 제조되는, 거주지 에너지 시스템.The residential energy system of claim 16, wherein the cover is made of at least one of glass fibers, oriented polyolefins, oriented polyesters, and graphite fibers in a suitable thermosetting resin such as epoxy. 제1항에 있어서, 배기가스로부터 열을 수용하여 열을 저장하는 열 저장탱크를 더욱 포함하고, 열 저장탱크는 글라베르 염 (Na2SO4?10H2O) 또는 파라핀의 최소한 하나로 제조되는, 거주지 에너지 시스템.The method of claim 1, further comprising a heat storage tank for storing heat by receiving heat from the exhaust gas, the heat storage tank is made of at least one of the glaber salt (Na 2 SO 4 ~ 10H 2 O) or paraffin, Residential energy system. 제1항에 있어서, 배기포트는 배기가스로부터 열을 오븐으로 전달하는, 거주지 에너지 시스템.The residential energy system of claim 1, wherein the exhaust port transfers heat from the exhaust to the oven. 제19항에 있어서, 오븐은 복수의 오븐들로 구성되며, 오븐들은 열교환기 망에 의해 연결되어 복수의 오븐들 간 열을 교환하는, 거주지 에너지 시스템.20. The residential energy system of claim 19, wherein the oven consists of a plurality of ovens, the ovens being connected by a heat exchanger network to exchange heat between the plurality of ovens. 엔진으로부터 음향, 진동 및 열에너지 형태로 에너지를 흡수하는 제1 유체를 포함하는 제1 탱크 내부에 배치되는 엔진을 작동하는 단계; 배기포트를 통하여 엔진에서 나오는 배기가스를 통과시키는 단계; 및 배기가스로부터 열을 제2 탱크 내부에 있고 제1 탱크의 최소한 일부가 잠기며 제1 탱크 내부의 제1 유체로부터 에너지를 흡수하도록 구성되는 제2 유체와 교환하는 단계를 포함하는 거주지에 에너지를 제공하는 방법.Operating an engine disposed within a first tank containing a first fluid that absorbs energy in the form of sound, vibration and thermal energy from the engine; Passing exhaust gas from the engine through the exhaust port; And exchanging heat from the exhaust gas with a second fluid that is inside the second tank and at least a portion of the first tank is submerged and configured to absorb energy from the first fluid inside the first tank. How to give. 제21항에 있어서, 제2 유체는 상수를 포함하며, 배기가스로부터 상수로 열을 교환한 후 제2 탱크에서 상수를 배분하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, wherein the second fluid comprises a constant, further comprising distributing the constant in the second tank after exchanging heat from the exhaust gas to the constant. 제21항에 있어서, 엔진을 작동하는 단계는 거주지에 전기를 제공하는 발전기를 운전하는 단계를 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, wherein operating the engine comprises driving a generator that provides electricity to the residence. 제21항에 있어서, 엔진은 내연기관을 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, wherein the engine comprises an internal combustion engine. 제21항에 있어서, 엔진은 태양전지판을 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, wherein the engine comprises a solar panel. 제21항에 있어서, 제2 유체로부터 열을 거주지에 전달하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, further comprising transferring heat from the second fluid to the residence. 제26항에 있어서, 제2 유체로부터 열을 거주지에 전달하는 단계는, 제2 유체로부터 열이 거주지에 전달되도록 제2 탱크로부터 거주지 내벽에 가까운 일련의 튜브들을 통하여 가열된 제2 유체를 이송하는 단계; 및 제2 유체가 거주지 내벽을 통하여 거주지에 열을 전달한 후 제2 탱크로 제2 유체가 복귀하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.27. The method of claim 26, wherein transferring heat from the second fluid to the residence comprises transferring the heated second fluid from the second tank through a series of tubes close to the interior wall of the residence such that heat from the second fluid is transferred to the residence. step; And returning the second fluid to the second tank after the second fluid transfers heat to the residence through the residence interior wall. 제21항에 있어서, 제2 탱크로부터 제2 유체를 지열 저장고로 순환하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, further comprising circulating a second fluid from the second tank into the geothermal reservoir. 제21항에 있어서, 제1 탱크로부터 증기를 외부 환경으로 방출하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, further comprising releasing steam from the first tank to the external environment. 제21항에 있어서, 배기가스로부터 응축수를 수집하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.22. The method of claim 21, further comprising collecting condensate from exhaust gas. 제21항에 있어서, 엔진으로 외부기구를 작동시키는 단계; 및 외부기구로부터 열을 제2 탱크 내의 제2 유체로 전달하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.22. The method of claim 21, further comprising: operating an external mechanism with an engine; And transferring heat from an external device to the second fluid in the second tank. 제21항에 있어서, 외부기구를 작동시키기 위하여 배기가스로부터 열을 외부기구로 전달하는 단계를 더욱 포함하는, 거주지에 에너지를 제공하는 방법.The method of claim 21, further comprising transferring heat from the exhaust gas to the external device to operate the external device. 전기 및 열을 발생시키는 수단; 전기 및 열을 발생시키는 수단으로부터 배기가스를 수용하는 배기라인; 배기라인이 통과하여 유체저장탱크 내의 유체와 열을 교환하는 유체를 저장하는 유체저장탱크; 배기라인 내에 응축되는 물을 수집하는 수단; 및 유체저장탱크와 작동적으로 연결되며 유체저장탱크로부터 유체를 수용하고 유체로부터 열을 거주지에 전달하는 열교환기를 포함하는, 에너지시스템.Means for generating electricity and heat; An exhaust line for receiving exhaust gas from means for generating electricity and heat; A fluid storage tank configured to store a fluid passing through the exhaust line and exchanging heat with a fluid in the fluid storage tank; Means for collecting water condensed in the exhaust line; And a heat exchanger operatively connected with the fluid storage tank and receiving the fluid from the fluid storage tank and transferring heat from the fluid to the residence. 제33항에 있어서, 열교환기는 거주지 내벽 (interior surface) 내부에 있는, 에너지시스템.The energy system of claim 33, wherein the heat exchanger is inside an interior surface of the residence. 제33항에 있어서, 전기 발생 수단과 작동적으로 연결되고 전기를 거주지로 전송하는 인버터를 더욱 포함하는, 에너지시스템.34. The energy system of claim 33, further comprising an inverter operatively connected to the electricity generating means and transmitting electricity to the residence. 제33항에 있어서, 열교환기는 지하 (earth)로 연장되는 지열 저장 리턴 벤드를 포함하고, 이를 통하여 거주지로부터의 열이 지하로 전달되는, 에너지시스템.34. The energy system of claim 33, wherein the heat exchanger includes a geothermal storage return bend extending to the earth through which heat from the residence is transferred underground. 제33항에 있어서, 전기 및 열 발생 수단은 유체저장탱크 내부에 고정되고, 유체저장탱크는 전기 및 열 발생수단으로부터 열 및 진동에너지를 흡수하도록 구성되는, 에너지시스템.34. The energy system of claim 33, wherein the electrical and heat generating means are secured inside the fluid storage tank, and the fluid storage tank is configured to absorb heat and vibration energy from the electrical and heat generating means.
KR1020127004326A 2009-08-27 2010-08-16 Energy system for dwelling support KR101547007B1 (en)

Applications Claiming Priority (16)

Application Number Priority Date Filing Date Title
US23747609P 2009-08-27 2009-08-27
US61/237,476 2009-08-27
US30440310P 2010-02-13 2010-02-13
US61/304,403 2010-02-13
US12/707,653 2010-02-17
WOPCT/US10/24498 2010-02-17
US12/707,656 US8075749B2 (en) 2009-02-17 2010-02-17 Apparatus and method for gas capture during electrolysis
US12/707,651 US8075748B2 (en) 2009-02-17 2010-02-17 Electrolytic cell and method of use thereof
PCT/US2010/024497 WO2010096503A1 (en) 2009-02-17 2010-02-17 Electrolytic cell and method of use thereof
PCT/US2010/024499 WO2010096505A1 (en) 2009-02-17 2010-02-17 Apparatus and method for gas capture during electrolysis
US12/707,651 2010-02-17
WOPCT/US10/24497 2010-02-17
WOPCT/US10/24499 2010-02-17
US12/707,653 US8172990B2 (en) 2009-02-17 2010-02-17 Apparatus and method for controlling nucleation during electrolysis
US12/707,656 2010-02-17
PCT/US2010/024498 WO2010096504A1 (en) 2009-02-17 2010-02-17 Apparatus and method for controlling nucleation during electrolysis

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020147013642A Division KR20140070674A (en) 2009-08-27 2010-08-16 Energy system for dwelling support

Publications (2)

Publication Number Publication Date
KR20120026141A true KR20120026141A (en) 2012-03-16
KR101547007B1 KR101547007B1 (en) 2015-08-24

Family

ID=49302451

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020127004326A KR101547007B1 (en) 2009-08-27 2010-08-16 Energy system for dwelling support

Country Status (11)

Country Link
EP (7) EP2567066A4 (en)
JP (6) JP5922577B2 (en)
KR (1) KR101547007B1 (en)
CN (9) CN102713154A (en)
AU (1) AU2010289904A1 (en)
BR (1) BR112012004093A2 (en)
CA (1) CA2770510A1 (en)
IL (1) IL217860A (en)
RU (4) RU2012111666A (en)
WO (8) WO2012047187A2 (en)
ZA (1) ZA201200791B (en)

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8147599B2 (en) 2009-02-17 2012-04-03 Mcalister Technologies, Llc Apparatuses and methods for storing and/or filtering a substance
CZ304079B6 (en) * 2011-06-23 2013-10-02 Gascontrol, Spolecnost S R.O. Energy system employing connection of hydrogen and oxygen generator with a system of gas microturbine in combination with organic Rankin cycle
JP2013040606A (en) * 2011-08-17 2013-02-28 Kazuhiko Nagashima Method and device for highly-efficiently recovering ordinary temperature heat energy
US9810439B2 (en) 2011-09-02 2017-11-07 Nortek Air Solutions Canada, Inc. Energy exchange system for conditioning air in an enclosed structure
EP2578379A1 (en) * 2011-10-05 2013-04-10 Sumika Polymer Compounds (France) SA Solar thermal solutions using blow moulding technologies
US9816760B2 (en) 2012-08-24 2017-11-14 Nortek Air Solutions Canada, Inc. Liquid panel assembly
NL2010039C2 (en) * 2012-12-21 2014-06-24 S4 Energy B V Device for reducing the load on a supporting structure, in particular an inertial energy accumulating device.
US9366238B2 (en) 2013-03-13 2016-06-14 Lockheed Martin Corporation System and process of cooling an OTEC working fluid pump motor
US10352628B2 (en) 2013-03-14 2019-07-16 Nortek Air Solutions Canada, Inc. Membrane-integrated energy exchange assembly
WO2014145882A1 (en) 2013-03-15 2014-09-18 Mcalister Technologies, Llc Methods of manufacture of engineered materials and devices
US10584884B2 (en) 2013-03-15 2020-03-10 Nortek Air Solutions Canada, Inc. Control system and method for a liquid desiccant air delivery system
JP2014200769A (en) * 2013-04-09 2014-10-27 日東電工株式会社 Adsorbing material
FR3006681B1 (en) * 2013-06-11 2015-07-17 Faurecia Sys Echappement AMMONIA STORAGE CARTRIDGE WITH OPTIMIZED FILL TIME, IN PARTICULAR FOR A GAS EXHAUST SYSTEM OF A MOTOR VEHICLE
CN103615357B (en) * 2013-11-15 2016-05-25 韩树君 A kind of wind energy, solar energy, sea wave energy circulation complemental power-generation and seawater desalination system
CN104674291A (en) * 2013-11-28 2015-06-03 哈尔滨市三和佳美科技发展有限公司 Mixed hydrogen-oxygen generator
JP2015168971A (en) * 2014-03-06 2015-09-28 古河機械金属株式会社 Marine mineral lifting method and marine mineral lifting system
AU2015306040A1 (en) 2014-08-19 2017-04-06 Nortek Air Solutions Canada, Inc. Liquid to air membrane energy exchangers
CN110454682B (en) * 2015-03-13 2021-10-15 先能驹解决有限公司 Gas compressor system for filling container with gas
US20170082124A1 (en) * 2015-06-18 2017-03-23 Kevin Kremeyer Directed Energy Deposition to Facilitate High Speed Applications
EP3314188B1 (en) 2015-06-26 2021-05-12 Nortek Air Solutions Canada, Inc. Three-fluid liquid to air membrane energy exchanger
FR3038456B1 (en) * 2015-06-30 2019-10-18 Jomi Leman ELECTROCHEMICAL DEVICE FOR STORING ELECTRIC ENERGY.
RU2617215C1 (en) * 2015-11-16 2017-04-24 Юрий Владимирович Семынин Heat engine
CN105570672A (en) * 2015-12-22 2016-05-11 重庆市高新技术产业开发区潞翔能源技术有限公司 Natural gas adsorption tank heat exchange system
EA201900243A1 (en) * 2016-11-28 2019-09-30 Евгений Иванович КАСАТКИН METHOD FOR CARBON GAS DISPOSAL
CA3060328A1 (en) 2017-04-18 2018-10-25 Nortek Air Solutions Canada, Inc. Desiccant enhanced evaporative cooling systems and methods
CN107514823B (en) * 2017-08-10 2019-12-31 中广核工程有限公司 Rotary photo-thermal power station heat absorber and uniform heat absorption control method
NL2019407B1 (en) * 2017-08-10 2019-02-21 L2 Consultancy B V Refueling station for supplying energy carriers to vehicles
DE112018003522T5 (en) 2017-08-10 2020-04-09 L2 Consultancy B.V. Gas station for supplying vehicles with energy sources
CN107559161B (en) * 2017-10-09 2019-05-31 上海海事大学 A kind of thermal and electric two way system of combination chemical heat accumulation and power generation with sea water
CN107989681A (en) * 2017-12-06 2018-05-04 佛山早稻田环保节能科技有限公司 A kind of vehicle tail gas treater
CN107893243B (en) * 2017-12-20 2024-05-07 中科京投环境科技江苏有限公司 Device and method for removing heavy metals through cyclone ore pulp electrolysis
US10619794B2 (en) 2018-03-13 2020-04-14 Ford Global Technologies, Llc Pressurized-fluid storage device
CA3023875C (en) 2018-05-08 2023-04-11 Enginuity Power Systems, Inc. Combination systems and related methods for providing power, heat and cooling
AU2019277211A1 (en) * 2018-05-30 2020-12-24 Royal Melbourne Institute Of Technology A pyrolysis reaction system and method of pyrolysing an organic feed
RU2688061C1 (en) * 2018-06-05 2019-05-17 Николай Артёмович Седых Arctic wind-driven power plant
RU196410U1 (en) * 2018-07-27 2020-02-28 Федеральное Государственное Бюджетное Образовательное Учреждение Высшего Образования "Дагестанский Государственный Технический Университет" (Дгту) GEOTHERMAL POWER PLANT
RU2689488C1 (en) * 2018-11-01 2019-05-28 Александр Алексеевич Соловьев Biogas aerodynamic plant
RU2697274C1 (en) * 2018-11-21 2019-08-13 Владимир Алексеевич Чернорот Method of processing solid municipal and industrial wastes
KR102431612B1 (en) * 2019-02-26 2022-08-12 한국자동차연구원 Water removal device for hydrogen filling station
SK9663Y1 (en) * 2019-08-07 2022-12-21 Oleksandr Oleksandrovych Riepkin Method of transporting hydrogen with its integration into existing pipeline energy system using equipment using energy from renewable sources
EP4133218A4 (en) * 2020-04-09 2023-11-15 Woodside Energy Technologies Pty Ltd Renewable energy hydrocarbon processing method and plant
CN112302892A (en) * 2020-11-24 2021-02-02 房盼盼 Method and device for improving sea temperature difference power generation
WO2022150302A1 (en) * 2021-01-08 2022-07-14 Alakai Technologies Corporation Method and system for an off-grid variable state hydrogen refueling infrastructure
CN112600139A (en) * 2021-01-20 2021-04-02 深圳市红越电子科技有限公司 Conductive cable interface detection post-processing terminal
CN112871332B (en) * 2021-02-04 2022-11-11 台州锐祥机械设备有限公司 Production process of high-strength shock absorption and shock absorption part of automobile
CN113546951A (en) * 2021-07-13 2021-10-26 东方电气集团东方锅炉股份有限公司 Landfill treatment and recycling method and system suitable for hydrogen energy development and utilization
DE102022104030A1 (en) 2022-02-21 2023-08-24 Stablegrid Engineers GmbH Arrangement for stabilizing electricity grids with a cavern for gas storage
WO2023195158A1 (en) * 2022-04-08 2023-10-12 日本電信電話株式会社 Heat conversion system and heat conversion method
WO2023239792A1 (en) * 2022-06-07 2023-12-14 Koloma, Inc. Integration of natural hydrogen reservoir storage capacity or suitable subsurface reservoirs with other hydrogen sources and sinks
CN115099508B (en) * 2022-07-01 2024-06-07 西南石油大学 SRB and CO2Shale gas gathering and transportation pipeline corrosion rate prediction method with coupling effect

Family Cites Families (136)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB991581A (en) * 1962-03-21 1965-05-12 High Temperature Materials Inc Expanded pyrolytic graphite and process for producing the same
JPS5216468Y1 (en) * 1969-06-14 1977-04-13
US4060988A (en) * 1975-04-21 1977-12-06 Texaco Inc. Process for heating a fluid in a geothermal formation
JPS5213048A (en) * 1975-07-22 1977-02-01 Ebara Corp Operation method of a marine generating set
JPS52168347U (en) * 1976-06-14 1977-12-20
US4091313A (en) * 1976-08-23 1978-05-23 Salvatore Genovese Current recycling electric motor system
US4170878A (en) * 1976-10-13 1979-10-16 Jahnig Charles E Energy conversion system for deriving useful power from sources of low level heat
DE2934647A1 (en) * 1979-08-28 1981-03-12 Fritz Ing.(grad.) 7612 Haslach Thoma Heating system using IC engine in insulated enclosure - driving generator supplying electrical heating element with waste heat recovered by heat exchangers
JPS56105244A (en) * 1980-01-24 1981-08-21 Hiroyuki Morita Hot water feeder
JPS56138468A (en) * 1980-03-13 1981-10-29 Mitsubishi Heavy Ind Ltd Ocean temperature difference generator
DE3014357A1 (en) 1980-04-15 1981-10-22 Küppersbusch AG, 4650 Gelsenkirchen Water heater with IC-engine - has engine in capsule protruding into boiler with exhaust connected to heat exchanger
DE3016410A1 (en) * 1980-04-29 1981-11-05 Wilhelm 5000 Köln Jülich Combined heating hot water boiler and IC engine - drives electricity generator and uses engine waste heat
DE3044666A1 (en) * 1980-11-27 1982-07-08 Morath, Karl Günther, 6670 St. Ingbert Small scale energy generation plant for domestic use - has heat transfer medium selectively fed through heat exchanger using combustion engine waste heat
JPS5791384A (en) * 1980-11-27 1982-06-07 Toshiba Corp Evaporator
US4437963A (en) * 1981-09-10 1984-03-20 Yeoman David R Apparatus for electrolyzing water
US4490232A (en) * 1981-10-29 1984-12-25 The Laitram Corporation Wave-powered electrolysis of water
JPS5897461U (en) * 1981-12-23 1983-07-02 株式会社 ト−タルシステム Heat exchanger with tank and bow tube
JPS5946375A (en) * 1982-09-08 1984-03-15 Mitsubishi Electric Corp Power generator by sea water
JPS59110872A (en) * 1982-12-17 1984-06-26 Mitsubishi Heavy Ind Ltd Compound generation device which utilizes sea temperature difference and solar heat
JPS59165873A (en) * 1983-03-09 1984-09-19 Toshiba Corp Sea temperature difference power plant
JPS59188058A (en) * 1983-04-08 1984-10-25 Yamaha Motor Co Ltd Waste heat recovery device for internal-combustion engine
JPS6321366A (en) * 1986-07-16 1988-01-28 Kajima Corp Heat accumulating type marine thermal difference power generating plant
JPH0661195B2 (en) * 1986-12-25 1994-08-17 三菱重工業株式会社 High production sea area creation system
JPS63243463A (en) * 1987-03-30 1988-10-11 Agency Of Ind Science & Technol Electric power generator
JP2680674B2 (en) * 1989-04-12 1997-11-19 財団法人電力中央研究所 Ocean / waste heat temperature difference power generation system
US6155212A (en) * 1989-06-12 2000-12-05 Mcalister; Roy E. Method and apparatus for operation of combustion engines
JPH0346161U (en) * 1989-09-09 1991-04-26
JP2587297B2 (en) * 1989-09-27 1997-03-05 富士電機株式会社 Cogeneration system
JPH03173788A (en) * 1989-12-01 1991-07-29 Tanaka Kikinzoku Kogyo Kk Method for synthesizing ammonia
JPH03175136A (en) * 1989-12-05 1991-07-30 Sanden Corp Device for utilizing exhaust heat of internal combustion engine
FI89969C (en) * 1989-12-21 1993-12-10 Waertsilae Diesel Int Procedure and arrangement for improving the utilization of exhaust gas heat energy in large diesel engines
JPH0476211A (en) * 1990-07-19 1992-03-11 Meidensha Corp Heat/electric power cogenerating device
JP2889668B2 (en) * 1990-08-06 1999-05-10 三洋電機株式会社 Energy system
JPH0816475B2 (en) * 1990-11-27 1996-02-21 工業技術院長 Temperature difference power generation method and device, and temperature difference power generation / marine organism aquaculture combined device
US5167786A (en) * 1991-01-25 1992-12-01 Eberle William J Wave-power collection apparatus
JPH0678713U (en) * 1991-04-24 1994-11-04 国立環境研究所長 Home cogeneration
JPH05223268A (en) * 1992-02-06 1993-08-31 Nippondenso Co Ltd Cogeneration system
JP2527288B2 (en) * 1992-06-16 1996-08-21 株式会社新燃焼システム研究所 Ammonia separation method using fuel cell reaction
JPH06147098A (en) * 1992-11-11 1994-05-27 Ikeda Takeshi Convection type temperature gradient prime mover
JPH06234502A (en) * 1993-02-10 1994-08-23 Mitsui Eng & Shipbuild Co Ltd Energy storing method using hydrogen occluding alloy slurry
DE69321615T2 (en) * 1993-04-20 2000-01-27 Widenhammar Rustan BOAT HULL CLEANING DEVICE
JP2942852B2 (en) * 1993-10-15 1999-08-30 株式会社テイエルブイ Evaporative cooling engine of cogeneration
JPH07238866A (en) * 1994-02-28 1995-09-12 Hazama Gumi Ltd Cogeneration system
GT199600032A (en) * 1995-06-07 1997-11-28 OCEAN THERMAL ENERGY CONVERSION SYSTEM (OTEC SISTEMA)
JPH0925871A (en) * 1995-07-07 1997-01-28 Mitsubishi Heavy Ind Ltd Solar energy collecting device
CN1163988A (en) * 1997-01-21 1997-11-05 罗伊·麦克埃里斯特 Method and apparatus for wave generation of electricity
US5950732A (en) * 1997-04-02 1999-09-14 Syntroleum Corporation System and method for hydrate recovery
US6503584B1 (en) * 1997-08-29 2003-01-07 Mcalister Roy E. Compact fluid storage system
JPH1193826A (en) * 1997-09-18 1999-04-06 Nkk Corp Natural energy best mix system
DE69938290D1 (en) * 1998-02-09 2008-04-17 Whisper Tech Ltd IMPROVEMENT OF COGENERATION SYSTEMS
US6126726A (en) * 1998-07-06 2000-10-03 Siemens Westinghouse Power Corporation Generator hydrogen purge gas economizer with membrane filter
US6295827B1 (en) * 1998-09-24 2001-10-02 Exxonmobil Upstream Research Company Thermodynamic cycle using hydrostatic head for compression
DE19859654A1 (en) * 1998-12-15 2000-06-29 Mannesmann Ag Device for storing compressed gas
JP2000205044A (en) * 1999-01-19 2000-07-25 Shigeaki Kimura Cogeneration system
US6104097A (en) * 1999-03-04 2000-08-15 Lehoczky; Kalman N. Underwater hydro-turbine for hydrogen production
JP3620701B2 (en) * 1999-04-14 2005-02-16 本田技研工業株式会社 Cogeneration equipment
WO2001013032A1 (en) * 1999-08-11 2001-02-22 Hennara Investments Limited Gas storage on an adsorbent with exfoliated laminae
WO2001056938A1 (en) * 2000-02-01 2001-08-09 Marsden John Christopher Process for production of hydrogen from anaerobically decomposed organic material
FR2805410B1 (en) * 2000-02-23 2002-09-06 Andre Rene Georges Gennesseaux SELF-CONTAINED ELECTRICITY AND HEAT COGENERATION SYSTEM INCLUDING ENERGY STORAGE BY FLYWHEEL
JP2001254897A (en) * 2000-03-10 2001-09-21 Honda Motor Co Ltd Hydrogen storage device
JP2001295995A (en) * 2000-04-11 2001-10-26 Honda Motor Co Ltd Hydrogen storage tank
JP2001338672A (en) * 2000-05-26 2001-12-07 Shinko Pantec Co Ltd Home-use electric power supply system
JP2002098412A (en) * 2000-09-26 2002-04-05 Noritz Corp Heating hot water storing device
JP2002128501A (en) * 2000-10-18 2002-05-09 Sony Corp Method for gas storage and fuel cell
JP2002147867A (en) * 2000-11-07 2002-05-22 Honda Motor Co Ltd Water-electrolyzing system
US6669919B1 (en) * 2000-11-16 2003-12-30 Advanced Energy Technology Inc. Intercalated graphite flakes exhibiting improved expansion characteristics and process therefor
JP2002180902A (en) * 2000-12-14 2002-06-26 Sagami Sekiyu Kk Cogeneration system
US6516754B2 (en) * 2001-02-20 2003-02-11 Thomas Chadwick Convective heating system for liquid storage tank
GB0106358D0 (en) * 2001-03-13 2001-05-02 Printable Field Emitters Ltd Field emission materials and devices
CN2489098Y (en) * 2001-06-11 2002-05-01 郭广明 Residual-heat re-using device for heat engine
US6603069B1 (en) * 2001-09-18 2003-08-05 Ut-Battelle, Llc Adaptive, full-spectrum solar energy system
US6984305B2 (en) 2001-10-01 2006-01-10 Mcalister Roy E Method and apparatus for sustainable energy and materials
CN1417527A (en) * 2001-11-02 2003-05-14 量子能技术股份有限公司 Improved water heater
GB2383978B (en) * 2002-01-11 2004-09-08 Dominic Michaelis Platform provided with renewable energy converter systems
JP3903798B2 (en) * 2002-01-22 2007-04-11 株式会社デンソー Fuel cell system
RU2232914C2 (en) * 2002-02-04 2004-07-20 Открытое акционерное общество "Заволжский моторный завод" Method of operation and design of steam generator of internal combustion piston engine
JP3882664B2 (en) * 2002-04-15 2007-02-21 日産自動車株式会社 Fuel cell system
GB2387641A (en) * 2002-04-19 2003-10-22 Gasforce Ltd Combined heat and power unit
JP2004154762A (en) * 2002-09-10 2004-06-03 Sanyo Electric Co Ltd Waste treatment system
US7201841B2 (en) * 2003-02-05 2007-04-10 Water Visions International, Inc. Composite materials for fluid treatment
JP2004239149A (en) * 2003-02-05 2004-08-26 Osaka Gas Co Ltd Engine system and heat source system
JP2004245049A (en) * 2003-02-10 2004-09-02 Osaka Gas Co Ltd Heat source system
JP2004268022A (en) * 2003-02-18 2004-09-30 Nissan Motor Co Ltd Hydrogen occluding material, production method therefor, hydrogen storage tank, hydrogen storage system, and fuel cell automobile
WO2004086585A2 (en) * 2003-03-24 2004-10-07 Ion America Corporation Sorfc system and method with an exothermic net electrolysis reaction
JP4163541B2 (en) * 2003-03-25 2008-10-08 トヨタ自動車株式会社 Method for manufacturing gas storage tank
KR100620303B1 (en) * 2003-03-25 2006-09-13 도요다 지도샤 가부시끼가이샤 Gas storage tank and its manufacturing method
JP4167521B2 (en) * 2003-03-25 2008-10-15 トヨタ自動車株式会社 Gas storage tank and manufacturing method thereof
US7575822B2 (en) * 2003-04-09 2009-08-18 Bloom Energy Corporation Method of optimizing operating efficiency of fuel cells
US7364810B2 (en) * 2003-09-03 2008-04-29 Bloom Energy Corporation Combined energy storage and fuel generation with reversible fuel cells
EP1639252A4 (en) * 2003-06-05 2008-06-04 Solar Reactor Tech Method for processing stack gas emissions
US6956300B2 (en) * 2003-08-04 2005-10-18 Andrew Roman Gizara Gimbal-mounted hydroelectric turbine
AU2003261889A1 (en) * 2003-09-02 2005-03-29 Kaneka Corporation Filmy graphite and process for producing the same
CN2644957Y (en) * 2003-09-04 2004-09-29 柳溪立 Air-conditioning plant by utilizing ground temperature
US7378188B2 (en) * 2003-09-18 2008-05-27 Enernext, Llc Storage device and method for sorption and desorption of molecular gas contained by storage sites of nano-filament laded reticulated aerogel
EP1670578A2 (en) * 2003-09-30 2006-06-21 General Electric Company Hydrogen storage compositions and methods of manufacture thereof
RO121819B1 (en) * 2003-10-01 2008-05-30 Petru Baciu Process and installation for collecting free methane gas from the sea bottom
US6994159B2 (en) * 2003-11-04 2006-02-07 Charles Wendland System for extracting natural gas hydrate
US7605326B2 (en) * 2003-11-24 2009-10-20 Anderson Christopher M Solar electrolysis power co-generation system
US7152675B2 (en) * 2003-11-26 2006-12-26 The Curators Of The University Of Missouri Subterranean hydrogen storage process
JP4203810B2 (en) * 2003-12-08 2009-01-07 富士電機ホールディングス株式会社 Organic waste treatment method and system
JP2005291112A (en) * 2004-03-31 2005-10-20 Takeo Saito Temperature difference power generation device
US20050269211A1 (en) * 2004-06-07 2005-12-08 Zachar Oron D Method of and apparatus for producing hydrogen using geothermal energy
JP2006009713A (en) * 2004-06-28 2006-01-12 Hitachi Ltd Cogeneration system and energy supply system
JP2006035174A (en) * 2004-07-29 2006-02-09 Toyota Motor Corp Hydrogen occlusion material and manufacture and utilization of the same
KR100550573B1 (en) * 2004-08-17 2006-02-10 엘지전자 주식회사 Cogeneration system
US7254944B1 (en) * 2004-09-29 2007-08-14 Ventoso Systems, Llc Energy storage system
JP4741718B2 (en) * 2004-10-20 2011-08-10 株式会社豊田自動織機 How to replace the open / close valve
US7178337B2 (en) * 2004-12-23 2007-02-20 Tassilo Pflanz Power plant system for utilizing the heat energy of geothermal reservoirs
US20080248355A1 (en) * 2005-03-11 2008-10-09 Nissan Motor Co., Ltd. Hydrogen Storage Material, Hydrogen Storage Structure, Hydrogen Storage, Hydrogen Storage Apparatus, Fuel Cell Vehicle, and Method of Manufacturing Hydrogen Storage Material
CN1297744C (en) * 2005-03-24 2007-01-31 上海交通大学 Ocean temperature difference energy and solar energy reheat circulating electric generating method
JP5154746B2 (en) * 2005-09-14 2013-02-27 Jx日鉱日石エネルギー株式会社 Porous material and method for producing the same
CA2621244C (en) * 2005-09-02 2012-10-30 John Christopher Burtch Apparatus for production of hydrogen gas using wind and wave action
US7658901B2 (en) * 2005-10-14 2010-02-09 The Trustees Of Princeton University Thermally exfoliated graphite oxide
US7233079B1 (en) * 2005-10-18 2007-06-19 Willard Cooper Renewable energy electric power generating system
JP2007205645A (en) * 2006-02-02 2007-08-16 Matsushita Electric Ind Co Ltd Solar heat collector and solar heat utilization device having the same
KR20060096413A (en) * 2006-02-28 2006-09-11 카네카 코포레이션 Filmy graphite and process for producing the same
US7448214B2 (en) * 2006-03-24 2008-11-11 Erik Monostory Geothermal hydrogen production facility and method
US20070228739A1 (en) * 2006-03-31 2007-10-04 John Troy Kraczek Offshore Energy Capture and Storage Device
RU2319893C1 (en) * 2006-08-01 2008-03-20 Институт физики им. Л.В. Киренского Сибирского отделения РАН Method and device for storing gas inside solid carrier
US20090077969A1 (en) * 2007-09-25 2009-03-26 Prueitt Melvin L Heat Transfer Methods for Ocean Thermal Energy Conversion and Desalination
KR100910059B1 (en) * 2006-12-06 2009-07-30 한국전자통신연구원 Gas storage medium, gas storage apparatus and method
US20080135403A1 (en) * 2006-12-11 2008-06-12 Jang Bor Z Home hydrogen fueling station
JP2008151282A (en) * 2006-12-19 2008-07-03 Honda Motor Co Ltd Gas storage vessel
US20100280135A1 (en) * 2007-03-19 2010-11-04 Doty Scientific, Inc. Hydrocarbon and alcohol fuels from variable, renewable energy at very high efficiency
US7456512B2 (en) * 2007-03-23 2008-11-25 Bernard Nadel Portable sea-powered electrolysis generator
AU2008237264B2 (en) * 2007-04-03 2012-09-20 Sulfurcycle Intellectual Property Holding Company Llc Electrochemical system, apparatus, and method to generate renewable hydrogen and sequester carbon dioxide
RU2342542C1 (en) * 2007-04-04 2008-12-27 Федеральное государственное унитарное предприятие "Московское машиностроительное производственное предприятие "Салют" Power generation plant
US9966763B2 (en) * 2007-06-07 2018-05-08 Allen L. Witters Integrated multiple fuel renewable energy system
JP2009047052A (en) * 2007-08-17 2009-03-05 Honda Motor Co Ltd Co-generation apparatus
JP5306621B2 (en) * 2007-09-12 2013-10-02 高砂熱学工業株式会社 Power supply system
JP2009077457A (en) * 2007-09-18 2009-04-09 Tokyo Gas Co Ltd Operation system of distributed type power supply and its operation method
JP5127385B2 (en) * 2007-09-28 2013-01-23 学校法人同志社 Ammonia electrosynthesis system
CN201103949Y (en) * 2007-10-17 2008-08-20 李建军 Solar nano-warming low temperature supplying floor board radiation heating equipment
KR101042299B1 (en) * 2007-12-13 2011-06-17 기아자동차주식회사 Hydrogen storing system for fuel cell vehicle
JP2009293447A (en) * 2008-06-03 2009-12-17 Honda Motor Co Ltd Co-generation apparatus
CN101614198A (en) * 2009-07-30 2009-12-30 江苏亿隆新能源科技发展有限公司 Pressure electric generator

Also Published As

Publication number Publication date
BR112012004093A2 (en) 2016-03-08
EP2470787A4 (en) 2014-04-16
JP2013503457A (en) 2013-01-31
JP2014025587A (en) 2014-02-06
JP5922577B2 (en) 2016-05-24
IL217860A (en) 2016-03-31
RU2537321C2 (en) 2015-01-10
JP2013503298A (en) 2013-01-31
EP2567066A4 (en) 2017-02-08
WO2012047187A3 (en) 2013-03-28
CN102712020A (en) 2012-10-03
EP2567066A2 (en) 2013-03-13
CN103124692A (en) 2013-05-29
WO2011028233A2 (en) 2011-03-10
WO2011102851A1 (en) 2011-08-25
RU2012111681A (en) 2013-10-10
EP2470786A4 (en) 2015-03-04
EP2625031A2 (en) 2013-08-14
IL217860A0 (en) 2012-03-29
WO2011028401A2 (en) 2011-03-10
RU2012111668A (en) 2013-10-10
WO2012047187A2 (en) 2012-04-12
CN104848032A (en) 2015-08-19
WO2011028233A3 (en) 2011-06-23
EP2470822A4 (en) 2013-07-31
RU2012111665A (en) 2013-10-10
CN102884361B (en) 2015-04-15
EP2470788A4 (en) 2017-04-05
WO2011028401A3 (en) 2011-06-16
CN102712020B (en) 2015-04-01
WO2011028400A3 (en) 2013-05-02
WO2011028402A3 (en) 2011-06-16
WO2011028402A2 (en) 2011-03-10
CN102713281B (en) 2015-08-19
EP2470822A1 (en) 2012-07-04
CA2770510A1 (en) 2011-03-10
CN102713280A (en) 2012-10-03
KR101547007B1 (en) 2015-08-24
WO2012047188A1 (en) 2012-04-12
CN102713281A (en) 2012-10-03
JP5852576B2 (en) 2016-02-03
CN102713282B (en) 2016-01-06
WO2011034677A3 (en) 2011-05-12
WO2011028400A2 (en) 2011-03-10
JP2015028339A (en) 2015-02-12
CN102884361A (en) 2013-01-16
RU2012111666A (en) 2013-10-10
CN102713280B (en) 2015-11-25
EP2470752A2 (en) 2012-07-04
CN104912705A (en) 2015-09-16
RU2499949C1 (en) 2013-11-27
JP2013503310A (en) 2013-01-31
EP2470787A2 (en) 2012-07-04
ZA201200791B (en) 2013-05-29
WO2011034677A2 (en) 2011-03-24
RU2562336C2 (en) 2015-09-10
EP2470788A2 (en) 2012-07-04
EP2470752A4 (en) 2015-08-05
EP2470786A1 (en) 2012-07-04
EP2625031A4 (en) 2016-06-08
JP2013503299A (en) 2013-01-31
CN102713282A (en) 2012-10-03
AU2010289904A1 (en) 2012-02-23
CN102713154A (en) 2012-10-03
CN103124692B (en) 2016-01-13

Similar Documents

Publication Publication Date Title
KR101547007B1 (en) Energy system for dwelling support
US9097152B2 (en) Energy system for dwelling support
US20150267945A1 (en) Solar-biomass complementary thermal energy supply system
US8381523B2 (en) Geothermal electricity production methods and geothermal energy collection systems
Patel et al. Review of solar water heating systems
Gaggioli et al. An innovative concept of a thermal energy storage system based on a single tank configuration using stratifying molten salts as both heat storage medium and heat transfer fluid, and with an integrated steam generator
KR20150082439A (en) Method for operating an arrangement for storing thermal energy
MX2008003643A (en) Energy transfer system and associated methods.
US20160194997A1 (en) Energy system for dwelling support
CN101216216A (en) Architecture integral type wall-type solar heat-collector
WO2012100781A2 (en) Catalytic heating system
He Application of solar heating system for raw petroleum during its piping transport
CN101373103B (en) High-efficiency energy-saving multipurpose solar water heater
EP2956722B1 (en) Water heating apparatus
CN103147941A (en) Geothermal energy generating set
KR20140070674A (en) Energy system for dwelling support
CN209459028U (en) A kind of solid heat storage formula heating system of solar energy auxiliary PTC heating
CN202532739U (en) Flat solar water heater internally provided with wing tube type heat exchange device
CN201697095U (en) Steam generator
CN201259329Y (en) Highly effective energy-conserving multipurpose solar water heater
CN204922916U (en) Thermal -arrest formula solar energy steam hot water unit
CN209279392U (en) Electrothermal vacuum furnace
CN102589162A (en) Multiple-unit solar water heating equipment
De Beni et al. Utilization of solar thermal energy in mountain refuges through an innovative system
CN201062840Y (en) Complex heating system of whole function thermopower equipment

Legal Events

Date Code Title Description
A201 Request for examination
A302 Request for accelerated examination
E902 Notification of reason for refusal
E601 Decision to refuse application
AMND Amendment
E902 Notification of reason for refusal
AMND Amendment
A107 Divisional application of patent
J201 Request for trial against refusal decision
J301 Trial decision

Free format text: TRIAL DECISION FOR APPEAL AGAINST DECISION TO DECLINE REFUSAL REQUESTED 20140521

Effective date: 20140828

S901 Examination by remand of revocation
E902 Notification of reason for refusal
GRNO Decision to grant (after opposition)
GRNT Written decision to grant
LAPS Lapse due to unpaid annual fee