JPH03175136A - Device for utilizing exhaust heat of internal combustion engine - Google Patents

Device for utilizing exhaust heat of internal combustion engine

Info

Publication number
JPH03175136A
JPH03175136A JP1314281A JP31428189A JPH03175136A JP H03175136 A JPH03175136 A JP H03175136A JP 1314281 A JP1314281 A JP 1314281A JP 31428189 A JP31428189 A JP 31428189A JP H03175136 A JPH03175136 A JP H03175136A
Authority
JP
Japan
Prior art keywords
water
heat
heat exchanger
hot spring
piping system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1314281A
Other languages
Japanese (ja)
Inventor
Hideo Kojima
小嶋 日出男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanden Corp
Original Assignee
Sanden Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanden Corp filed Critical Sanden Corp
Priority to JP1314281A priority Critical patent/JPH03175136A/en
Publication of JPH03175136A publication Critical patent/JPH03175136A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E20/00Combustion technologies with mitigation potential
    • Y02E20/14Combined heat and power generation [CHP]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Abstract

PURPOSE:To store extra exhaust heat in a hot spring well by providing water injection piping for injecting into the hot spring well water contained in a heat exchanger when cooling water is heated to above a predetermined temperature after passing through a heat exchanging portion for the cooling water. CONSTITUTION:When cooling water is heated to above a predetermined temperature (about 75 deg.C)after passing through the heat exchanging portion 2a of the cooling water exhaust piping 2 of a co-generation unit 1, a solenoid valve 12d is opened so that city water is supplied into a heat exchanger 4 via water feed piping 5. High- temperature water contained in the heat exchanger 4 is injected into a hot spring well 7 via water injection piping 12 by the pressure of the city water. A water head above the natural water level is applied to the inside of the well 7 by injection of the high-pressure water and the high-temperature water is returned and stored in the well 7 or an aquifer 7a. By supply of the city water into the heat exchanger 4 the valve 12d is closed when the temperature of the water contained in the heat exchanger 4 is stopped to less than 70 deg.C so that injection of the high-temperature water is stopped. The temperature of the water contained in the heat exchanger 4 is thereby maintained within a predetermined temperature range and also extra exhaust heat is stored in the well 7 etc.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は温泉設備において使用される内燃機関の排熱利
用装置に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to an apparatus for utilizing exhaust heat of an internal combustion engine used in hot spring facilities.

(従来の技術) 従来、発電機、冷媒圧縮機、空気圧縮機などを駆動する
内燃機関の排熱を水を貯留する熱交換器内に蓄熱し、こ
の熱を給湯用の熱源として利用したり、或いは空調等の
交換熱として利用するいわゆるコ・ジェネレーションシ
ステムが知られている。
(Conventional technology) Conventionally, waste heat from an internal combustion engine that drives a generator, refrigerant compressor, air compressor, etc. is stored in a heat exchanger that stores water, and this heat is used as a heat source for hot water supply. Alternatively, so-called co-generation systems are known, which are used as exchange heat for air conditioning and the like.

一方、温泉設備、特に都市部の平地に設置されるいわゆ
る深層地熱水型温泉設備における経済的な井戸深さ(深
さ10(10m〜1500m)においては、一般にその
温泉水温度が356C〜45℃となっている。
On the other hand, in hot spring facilities, especially so-called deep geothermal water type hot spring facilities installed in flat areas in urban areas, at economical well depths (depth 10 (10 m to 1,500 m)), the temperature of the hot spring water is generally 356 C to 45 C. It is ℃.

(発明が解決しようとする課題) しかしながら、前述のコ・ジェネレーションシステムで
は、内燃機関の排熱が熱負荷をオーバーする場合が多く
、また、熱交換器の容量も経済的な限界があるため、こ
のオーバーした熱が投棄される事態が多々あった。特に
夏期においては給湯等に使用される熱量が少ないため、
発電量の割には熱の使用量が少なくアンバランスとなっ
ている。。
(Problems to be Solved by the Invention) However, in the above-mentioned cogeneration system, the exhaust heat of the internal combustion engine often exceeds the heat load, and the capacity of the heat exchanger has an economical limit. There were many situations in which this excess heat was thrown away. Especially in the summer, because the amount of heat used for hot water heating is small,
The amount of heat used is small compared to the amount of power generated, resulting in an imbalance. .

一方、前述の温泉設備においては、その温泉水温度を6
06C〜65℃まで高めるため、ボイラーにより追い焚
き加熱を行なうことを要していた。
On the other hand, in the hot spring facilities mentioned above, the temperature of the hot spring water is 6
In order to raise the temperature to 0.6 to 65 degrees Celsius, it was necessary to perform reheating using a boiler.

また、温泉水を汲上げるためのポンプ及び給湯用のポン
プを常時稼働しなければならず、その電力消費量も多大
なものとなっている。
Furthermore, pumps for pumping up hot spring water and pumps for hot water supply must be operated at all times, and their power consumption is also large.

このように、コ・ジェネレーションシステムにおいては
、電力負荷と熱負荷のそれぞれの発生に時間的なずれが
あり、排熱を完全に利用するには大容量かつ高性能の熱
交換器が要求されるが、この熱交換器の費用が高く、か
つ、その容量に限界があった。他方、温泉設備において
は電力需要があり、加温を必要としていること、また、
温泉井戸には膨大な蓄熱容量がある。従って、この両者
を組合せたものが最も熱効率の良い内燃機関の排熱利用
装置となる。
In this way, in cogeneration systems, there is a time lag between the generation of electric power load and heat load, and large-capacity, high-performance heat exchangers are required to fully utilize waste heat. However, this heat exchanger was expensive and had a limited capacity. On the other hand, hot spring facilities require electricity and require heating.
Hot spring wells have a huge heat storage capacity. Therefore, a combination of the two provides the most thermally efficient exhaust heat utilization device for an internal combustion engine.

このような内燃機関の排熱利用装置を実現するため、第
2図に示すものを考えることができる。
In order to realize such an apparatus for utilizing exhaust heat of an internal combustion engine, the system shown in FIG. 2 can be considered.

即ち、図中、20は内燃機関20a及び内燃機関20a
により駆動する発電機20bを設置したコ・ジェネレー
ションユニット、21は内燃機関20aの冷却水がポン
プ21aにて循環する冷却水配管系、22は内燃機関2
0aの排気を排出する排気配管系である。23はコ・ジ
ェネレーションユニット20の排熱を蓄熱する熱交換器
で、各配管系21.22の各熱交換部21b、22aを
配置している。24は温泉井戸で、熱交換器23と揚水
配管系25及び注水配管系26により連結し、揚水配管
系25の水中ポンプ25aにて温泉水を熱交換器23内
に汲み上げ、また、注水配管系26の電磁弁26aを開
とすることにより、熱交換器23内の温泉水を温泉井戸
24内に戻すようにしている。また、熱交換器23には
給湯配管系27が連通して給湯が行なわれ、温泉井戸2
4内には電磁弁28aを有し市水を給水する給水配管系
28が連通している。
That is, in the figure, 20 indicates an internal combustion engine 20a and an internal combustion engine 20a.
21 is a cooling water piping system in which the cooling water of the internal combustion engine 20a is circulated by a pump 21a, and 22 is a cogeneration unit installed with a generator 20b driven by the internal combustion engine 2.
This is an exhaust piping system that discharges the exhaust gas of 0a. 23 is a heat exchanger that stores the exhaust heat of the co-generation unit 20, and each heat exchange section 21b, 22a of each piping system 21.22 is arranged. Reference numeral 24 denotes a hot spring well, which is connected to the heat exchanger 23 by a pumping piping system 25 and a water injection piping system 26, and a submersible pump 25a of the pumping piping system 25 pumps hot spring water into the heat exchanger 23, and a water injection piping system. By opening the solenoid valve 26a of 26, the hot spring water in the heat exchanger 23 is returned to the hot spring well 24. Further, a hot water supply piping system 27 is connected to the heat exchanger 23 to supply hot water to the hot spring well 2.
A water supply piping system 28 having a solenoid valve 28a and supplying city water communicates with the interior of the water supply pipe 4.

各電磁弁26a、28aは冷却水配管系21の熱交換部
21bを通過した水の温度を検知する温度センサ29に
より制御される。即ち、熱交換器23内の温泉水が各熱
交換部21b、22aにより加熱され、冷却水温度が内
燃機関20gの冷却に不適当な高温度となったときは、
各電磁弁26a、28aを開とする。これにより、高温
となった熱交換器23内の温泉水が注水配管系26を介
して温泉井戸24内に戻り、温泉井戸24の自然水面上
に印加水頭圧がかかり温泉井戸24内及び温泉の滞水層
24bに逆流して貯留される。他方、給水配管系28の
水にて理められた温泉井戸24の温泉水が水中ポンプ2
5aにより熱交換器23内に供給される。
Each electromagnetic valve 26a, 28a is controlled by a temperature sensor 29 that detects the temperature of water that has passed through the heat exchange section 21b of the cooling water piping system 21. That is, when the hot spring water in the heat exchanger 23 is heated by the heat exchange parts 21b and 22a and the cooling water temperature reaches a high temperature inappropriate for cooling the internal combustion engine 20g,
Let each solenoid valve 26a, 28a be opened. As a result, the hot spring water in the heat exchanger 23 that has reached a high temperature returns to the hot spring well 24 via the water injection piping system 26, and water head pressure is applied above the natural water surface of the hot spring well 24, causing the inside of the hot spring well 24 and the hot spring to flow. The water flows back into the water retention layer 24b and is stored therein. On the other hand, the hot spring water from the hot spring well 24, which is treated with water from the water supply piping system 28, is supplied to the submersible pump 2.
5a into the heat exchanger 23.

このように、熱交換器23の蓄熱量がオーバーしたとき
は、この蓄熱が温泉井戸24内に貯留されるとともに、
熱交換器23内の温泉水温度が所定温度以下に保持され
、内燃機関20aの冷却を行なっている。
In this way, when the heat storage amount of the heat exchanger 23 exceeds, this heat storage is stored in the hot spring well 24, and
The temperature of the hot spring water in the heat exchanger 23 is maintained below a predetermined temperature to cool the internal combustion engine 20a.

しかしながら、このように、コeジェネレーションシス
テム20の熱交換器23内にこの温泉水を循環させると
きは、温泉水に含有する塩分、硫酸根、カルシウム分等
によって熱交換器23はもとより各熱交換部21b、2
2aが破損するという問題点を有している。
However, when circulating this hot spring water in the heat exchanger 23 of the co-egeneration system 20, the heat exchanger 23 and each heat exchanger are affected by the salt, sulfate, calcium, etc. contained in the hot spring water. Part 21b, 2
There is a problem that 2a is damaged.

本発明の目的は、熱交換器及び各熱交換部を温泉水によ
り破損することなく、かつ、コ・ジェネレーションシス
テムの余剰排熱を温泉井戸に蓄熱し、更には温泉水を加
温することができる内燃機関の排熱利用装置を提供する
ことにある。
The purpose of the present invention is to prevent the heat exchanger and each heat exchange part from being damaged by hot spring water, store excess waste heat from the cogeneration system in the hot spring well, and further heat the hot spring water. An object of the present invention is to provide an exhaust heat utilization device for an internal combustion engine that can be used.

(課題を解決するための手段) 本発明は前記課題を解決するため、請求項(1)の発明
は、内燃機関の排気を排出するとともに一部に排気中の
熱を放出する排気用熱交換部を有する排気配管系と、内
燃機関の冷却水を循環するとともに一部に冷却水中の熱
を放出する冷却水用貼交換部を有する冷却水配管系と、
前記排気用熱交換部及び前記冷却水用熱交換部と熱的に
接触し貯留した水が該各熱交換部により加熱される熱交
換器と、温泉井戸の温泉水を汲上げる揚水配管系と、前
記熱交換器内に市水等の前記温泉水以外の水を給送する
給水配管系と、前記冷却水用熱交換部を通過した冷却水
が所定温度以上となったとき前記熱交換器内の水を前記
温泉井戸内に注入する注水配管系とを備えたことを特徴
とする 請求項(2)の発明は、請求項(1)の給水用配管系に
ビルなどの建物の冷房装置に係る冷却回路の排熱と熱交
換する熱交換器を設けたことを特徴とする。
(Means for Solving the Problems) In order to solve the above problems, the invention of claim (1) provides an exhaust heat exchanger that discharges the exhaust gas of an internal combustion engine and partially releases the heat in the exhaust gas. an exhaust piping system having a part, and a cooling water piping system having a part for circulating cooling water of the internal combustion engine and part for discharging heat in the cooling water;
a heat exchanger in which water that is in thermal contact with the exhaust heat exchange section and the cooling water heat exchange section and is stored is heated by the respective heat exchange sections; and a pumping piping system that pumps up hot spring water from a hot spring well. , a water supply piping system that supplies water other than the hot spring water, such as city water, into the heat exchanger; and a water supply piping system that supplies water other than the hot spring water, such as city water, into the heat exchanger, and when the cooling water that has passed through the cooling water heat exchange section reaches a predetermined temperature or higher, the heat exchanger The invention of claim (2) is characterized in that the invention further comprises a water injection piping system for injecting water into the hot spring well into the hot spring well. A heat exchanger is provided for exchanging heat with the exhaust heat of the cooling circuit.

(作 用) 請求項(1)の発明によれば、給水配管系により熱交換
器内に市水が給水され、この水が内燃機関の排熱により
加熱される。このとき、内燃機関を冷却する冷却水が冷
却水許容温度以上となったときは注水配管系により熱交
換器内の高温水が温泉井戸に注入される。これにより、
温泉井戸の自然水面上に印加水頭圧がかかり、温泉井戸
内及び温泉井戸の下方の滞水層に逆流して貯留される。
(Function) According to the invention of claim (1), city water is supplied into the heat exchanger by the water supply piping system, and this water is heated by the exhaust heat of the internal combustion engine. At this time, when the cooling water that cools the internal combustion engine reaches a cooling water permissible temperature or higher, high-temperature water in the heat exchanger is injected into the hot spring well by the water injection piping system. This results in
An applied head pressure is applied above the natural water surface of the hot spring well, and the water flows back into the hot spring well and into the aquifer layer below the hot spring well and is stored.

そして揚水配管系により温泉水とともに給湯水等として
供給される。
The water is then supplied as hot water, etc. along with the hot spring water through the pumping piping system.

請求項(2)の発明によれば、建物などの冷房装置の冷
却回路の排熱により給水配管系を通る水が加熱されるた
め、予熱された水が熱交換器内に流入する。これにより
、冷却回路の排熱回収が行なわれ、装置全体の省エネル
ギーを実現できる。
According to the invention of claim (2), since the water passing through the water supply piping system is heated by the exhaust heat of the cooling circuit of the cooling device of the building, etc., the preheated water flows into the heat exchanger. As a result, exhaust heat from the cooling circuit is recovered, and energy saving for the entire device can be realized.

(実施例) 第1図、第3図及び第4図は本発明の一実施例で、第1
図は内燃機関の排熱利用装置の水回路を示す概略図であ
る。図中、1はコ・ジェネレーションユニット(以下、
コ・ジエネユニットという)、2はコ・ジエネユニット
1の冷却水配管系、3はコ・ジエネユニット1の排気配
管系、4はコ・ジエネユニット1の排熱を蓄熱する加圧
タンク型の熱交換器、5は熱交換器4内に市水を供給す
る給水配管系、6はビルなどの建物Aの冷房装置の冷却
回路である。7は温泉井戸、8は温泉井戸7から温泉水
を汲上げる揚水配管系、9はこの汲上げられた温泉水を
貯留する貯湯タンク、10は貯湯タンク9内の温泉水を
加熱する熱交換水配管系、11は熱交換器4及び貯湯タ
ンク9の給湯配管系、12は熱交換器4及び貯湯タンク
9内の水を温泉井戸7に注水する注水配管系である。
(Example) Figures 1, 3, and 4 show an example of the present invention.
The figure is a schematic diagram showing a water circuit of an exhaust heat utilization device for an internal combustion engine. In the figure, 1 is a co-generation unit (hereinafter referred to as
2 is the cooling water piping system of the co-generating unit 1, 3 is the exhaust piping system of the co-generating unit 1, 4 is a pressurized tank type heat exchanger that stores the exhaust heat of the co-generating unit 1, 5 is a water supply piping system that supplies city water into the heat exchanger 4, and 6 is a cooling circuit of a cooling device of building A such as a building. 7 is a hot spring well, 8 is a pumping piping system that pumps hot spring water from the hot spring well 7, 9 is a hot water storage tank that stores the pumped hot spring water, and 10 is a heat exchange water that heats the hot spring water in the hot spring water storage tank 9. A piping system 11 is a hot water supply piping system for the heat exchanger 4 and the hot water storage tank 9, and 12 is a water injection piping system for injecting the water in the heat exchanger 4 and the hot water storage tank 9 into the hot spring well 7.

前記コ・ジエネユニット1はその内部に内燃機関1aと
発電機1bを設置しており、この発電機1bを内燃機関
1aにて駆動し発電する。このコ・ジエネユニット1の
冷却水配管系2はその熱交換部2aを熱交換器4内に配
備し、ポンプ2bにより冷却水を熱交換器4内に循環さ
せて内燃機関1aの冷却を行ない、また、熱交換器4内
の水を加熱している。また、コ◆ジェネユニット1の排
気配管系3はその熱交換部3aを熱交換器4内に貫通さ
せ内燃機関1aの排気熱により熱交換器4内の水を加熱
している。また、この排気配管系3は耐酸性抵抗の大き
な部材で形成されている。尚、4aは熱交換器4の排水
バルブである。
The co-generation unit 1 has an internal combustion engine 1a and a generator 1b installed therein, and the generator 1b is driven by the internal combustion engine 1a to generate electricity. The cooling water piping system 2 of this co-engineering unit 1 has its heat exchange part 2a disposed inside the heat exchanger 4, and the cooling water is circulated inside the heat exchanger 4 by the pump 2b to cool the internal combustion engine 1a. Moreover, the water in the heat exchanger 4 is heated. Further, the exhaust piping system 3 of the co◆generator unit 1 has its heat exchange portion 3a penetrated into the heat exchanger 4, and heats the water in the heat exchanger 4 with the exhaust heat of the internal combustion engine 1a. Further, the exhaust piping system 3 is made of a material having high acid resistance. Note that 4a is a drain valve of the heat exchanger 4.

前記給水配管系5はその先端が熱交換器4内に臨むとと
もに、市水圧により熱交換器4内を加圧しており、熱交
換器4内の水が消費されると、その消費分の市水が供給
される。尚、5aは給水配管系5の制水弁である。また
、この給水配管系5にはビルなどの建物Aの冷却回路6
の凝縮器6aが熱的に接触している。この冷却回路6の
冷媒は凝縮器6a−膨脂弁6b−蒸発器6C−圧縮機6
d−凝縮器6aと順次循環しており、この凝縮器6aの
排熱により市水を加熱している。
The tip of the water supply piping system 5 faces the inside of the heat exchanger 4, and the inside of the heat exchanger 4 is pressurized by city water pressure, so that when the water in the heat exchanger 4 is consumed, the amount of water consumed is returned to the city. Water is provided. Note that 5a is a water control valve of the water supply piping system 5. The water supply piping system 5 also includes a cooling circuit 6 for a building A such as a building.
The condenser 6a is in thermal contact with the condenser 6a. The refrigerant in this cooling circuit 6 is a condenser 6a, a fat expansion valve 6b, an evaporator 6C, and a compressor 6.
It circulates in sequence with the d-condenser 6a, and city water is heated by the exhaust heat of this condenser 6a.

前記温泉井戸7は1000m −1500mの深さに掘
られており、その下端が温泉水が滞留する滞水層7aに
達している。また、この温泉井戸7内には揚水配管系8
が配備され、水中ポンプ8aで温泉水が貯湯タンク9内
に汲上げられる。この貯湯タンク9にはレベルスイッチ
9aが設置され、貯留タンアク9内の水位が所定レベル
以上となったとき水中ポンプ8aが停止し、所定量の温
泉水を常時貯留している。また、この貯湯タンク9内に
は熱交換水配管系10の熱交換部10aが配備されてお
り、貯湯タンク9内の温泉水の温度に基づき発停するポ
ンプ10bにて熱交換器4内の水を循環させている。尚
、9aは貯湯タンク9の排水バルブである。
The hot spring well 7 is dug to a depth of 1,000 m to 1,500 m, and its lower end reaches a water reservoir layer 7a in which hot spring water accumulates. In addition, inside this hot spring well 7, there is a pumping piping system 8.
is provided, and hot spring water is pumped into the hot water storage tank 9 by a submersible pump 8a. A level switch 9a is installed in this hot water storage tank 9, and when the water level in the storage tank 9 reaches a predetermined level or higher, the submersible pump 8a stops, and a predetermined amount of hot spring water is always stored. In addition, a heat exchange part 10a of a heat exchange water piping system 10 is installed in this hot water storage tank 9, and a pump 10b that starts and stops based on the temperature of hot spring water in the hot water storage tank 9 is used to control the temperature in the heat exchanger 4. It circulates water. Note that 9a is a drain valve for the hot water storage tank 9.

前記給湯配管系11は熱交換器4に連通ずる配管11a
と貯湯タンク9に連通ずる配管11bに分岐され、この
分岐された各配管11a、llbから湯がポンプ11C
で汲上げられる。また、各配管11a、llbはミキシ
ングバルブ11dに連結し、熱交換器4の水と貯湯タン
ク9内の温泉水を混合して共通配管11eを介して蛇口
11fに給送される。尚、l1gはミキシングバルブl
id側から熱交換器4例の逆流を防止する逆止弁である
The hot water supply piping system 11 includes a piping 11a that communicates with the heat exchanger 4.
The branched pipes 11b communicate with the hot water storage tank 9, and hot water flows from the branched pipes 11a and 11b to the pump 11C.
It is pumped up. Further, each of the pipes 11a and llb is connected to a mixing valve 11d, and the water in the heat exchanger 4 and the hot spring water in the hot water storage tank 9 are mixed and fed to the faucet 11f via the common pipe 11e. In addition, l1g is the mixing valve l
This is a check valve that prevents backflow in the four heat exchangers from the ID side.

前記注水配管系12は分岐された配管12a。The water injection piping system 12 is a branched piping 12a.

]、 2 bとこの各配管12a、12bが連結する共
通配管12cとを有している。この分岐された配管12
aは給湯配管系11の配管11aを介して熱交換器4内
に臨み、配管12bは貯湯タンク9内に臨み、更に、共
通配管12cは温泉井戸7内に臨んでいる。また、分岐
された各配管12a。
], 2b and a common pipe 12c to which the respective pipes 12a and 12b are connected. This branched piping 12
A faces into the heat exchanger 4 via a pipe 11a of the hot water supply piping system 11, a pipe 12b faces into the hot water storage tank 9, and a common pipe 12c faces into the hot spring well 7. Moreover, each branched pipe 12a.

12bにはそれぞれ各配管12a、12bを開閉する電
磁弁12d、12eが設けられ、電磁弁12dは冷却水
配管系2で熱交換部20を通過した水の温度に基づき開
閉制御され、電磁弁12eは貯湯タンク9内の温泉水の
温度に基づき開閉制御される。
12b is provided with electromagnetic valves 12d and 12e that open and close the respective piping 12a and 12b, respectively. is controlled to open and close based on the temperature of the hot spring water in the hot water storage tank 9.

第3図はこれらの各電磁弁12d、12e及びポンプ1
0bの制御回路を示すブロック図である。
FIG. 3 shows these solenoid valves 12d, 12e and pump 1.
FIG. 2 is a block diagram showing a control circuit of 0b.

図中、13はマイクロコンピュータ構成のCPUで、そ
の入力端には内燃機関冷却水の水温を検知する温度セン
サ14aと貯湯タンク9内の温泉水の温度を検知する温
度センサ14bが接続している。また、CPU13の出
力側には各駆動回路15a、15b、15cを介してそ
れぞれ各電磁弁12d、12e及びポンプ10bが接続
している。
In the figure, 13 is a CPU configured as a microcomputer, and a temperature sensor 14a that detects the temperature of internal combustion engine cooling water and a temperature sensor 14b that detects the temperature of hot spring water in the hot water storage tank 9 are connected to its input terminal. . Furthermore, electromagnetic valves 12d and 12e and a pump 10b are connected to the output side of the CPU 13 via drive circuits 15a, 15b and 15c, respectively.

第4図はCPU13による各電磁弁12d。FIG. 4 shows each solenoid valve 12d controlled by the CPU 13.

12e、ポンプ10bの駆動制御を示すフローチャート
である。この図面中で、電磁弁12dをSVl、電磁弁
12eをSV2、温度センサ14aの検知温度をT1、
温度センサ14bの検知温度をT2、ポンプ10bをP
と表示する。即ち、冷却水の水温が75℃以上となった
ときは(Sl)、電磁弁12dが開となり(S2)、こ
れにより、熱交換器4内に市水が供給される。また、こ
の市水圧により熱交換器4内の高温水が注水配管系12
を介して温泉井戸7内に注入される。この高温水の注水
により温泉井戸7内は自然水位より上方の水頭圧がかか
り、この高温水が温泉井戸7内或いは滞水層7aに逆流
して貯留される。他方、この市水の熱交換器4への供給
により、熱交換器4内の水温が70°C以下となったと
きは(S3)、電磁弁12dが閉となり(S4) 、高
温水の注水が停止する。
12e is a flowchart showing drive control of the pump 10b. In this drawing, the solenoid valve 12d is SVl, the solenoid valve 12e is SV2, and the temperature detected by the temperature sensor 14a is T1.
The temperature detected by the temperature sensor 14b is T2, and the temperature of the pump 10b is P.
is displayed. That is, when the temperature of the cooling water reaches 75° C. or higher (Sl), the solenoid valve 12d is opened (S2), thereby supplying city water into the heat exchanger 4. In addition, this city water pressure causes high temperature water in the heat exchanger 4 to flow into the water injection piping system 12.
The water is injected into the hot spring well 7 through the hot spring well 7. This high-temperature water injection applies a water head pressure above the natural water level in the hot spring well 7, and this high-temperature water flows back into the hot spring well 7 or into the water retention layer 7a and is stored. On the other hand, when the water temperature in the heat exchanger 4 becomes 70°C or lower due to the supply of this city water to the heat exchanger 4 (S3), the solenoid valve 12d is closed (S4) and high temperature water is injected. stops.

このように、熱交換器4内の水温は所定温度範囲(70
°CAT、<75°C)に維持され、内燃機関1aの冷
却水許容温度、即ち75℃以」二となることがなく、か
つ、余剰排熱が温泉井戸7等に蓄熱される。
In this way, the water temperature in the heat exchanger 4 is within a predetermined temperature range (70
CAT, <75°C), the temperature of the cooling water of the internal combustion engine 1a is maintained at a temperature that does not exceed the permissible temperature of 75°C, and surplus exhaust heat is stored in the hot spring well 7 and the like.

また、貯湯タンク9内の水温が65℃以」二となったと
きは(S5)、電磁弁12eを開とするとともに(86
)、ポンプ10bの駆動を停止する(S7)。このとき
、貯湯タング9の水位が温泉井戸7の自然水位より高く
なっているから、貯湯タンク9内の温泉水が注水配管系
12を介して温泉井戸7内に注入され、温泉井戸7或い
は滞水層7a内に貯留される。また、ポンプ10bの停
止により貯湯タンク9内の温泉水の加熱も停止している
Further, when the water temperature in the hot water storage tank 9 becomes 65°C or higher (S5), the solenoid valve 12e is opened (86°C).
), the drive of the pump 10b is stopped (S7). At this time, since the water level in the hot water storage tank 9 is higher than the natural water level in the hot spring well 7, the hot spring water in the hot water storage tank 9 is injected into the hot spring well 7 via the water injection piping system 12, and the hot spring water in the hot spring well 7 or stagnant water is injected into the hot spring well 7 through the water injection piping system 12. It is stored in the water layer 7a. Further, due to the stoppage of the pump 10b, heating of the hot spring water in the hot water storage tank 9 is also stopped.

他方、このよう貯湯タンク9内の注水により貯湯タンク
9内の水位が低下したときは、水中ポンプ8aの駆動に
より温泉井戸7から温泉水(35℃〜45℃)が貯湯タ
ンク9内に補充される。この温泉水の補充により水温が
60℃以下となったときは(S8) 、電磁弁12eを
閉とするとともに(S9)、ポンプ10bを再度駆動す
る(S10)。これにより、再度貯湯タンク9内の温泉
水を熱交換器4内の水により追い焚きを行う。
On the other hand, when the water level in the hot water storage tank 9 decreases due to water injection into the hot water storage tank 9, the hot spring water (35°C to 45°C) is replenished into the hot water storage tank 9 from the hot spring well 7 by driving the submersible pump 8a. Ru. When the water temperature falls below 60° C. due to this hot spring water replenishment (S8), the solenoid valve 12e is closed (S9) and the pump 10b is driven again (S10). As a result, the hot spring water in the hot water storage tank 9 is reheated again using the water in the heat exchanger 4.

このように、熱交換器4内の蓄熱が貯湯タンク9内の温
泉水の追い焚きに利用され、かつ、貯73タンク9内の
水温が65℃以上となったときは温泉井戸7に戻される
から、熱交換器4内の水温の上昇が抑制される。従って
、熱交換器4内の高温水を温泉井戸7に注水することに
伴なう温泉成分の稀釈化、並びに市水の消費を抑制する
ことができる。
In this way, the heat stored in the heat exchanger 4 is used to reheat the hot spring water in the hot water storage tank 9, and when the water temperature in the storage tank 9 reaches 65°C or higher, it is returned to the hot spring well 7. Therefore, an increase in the water temperature in the heat exchanger 4 is suppressed. Therefore, it is possible to suppress the dilution of the hot spring components caused by pouring the high temperature water in the heat exchanger 4 into the hot spring well 7, as well as the consumption of city water.

また、熱交換器4及び貯湯タンク9における余剰排熱が
温泉井戸7或いは滞水層7aに蓄熱されるから、水中ポ
ンプ8aを駆動するとき、温泉井戸7内の温泉水ととも
に貯湯タンク9内に給送され、給湯用の温水として有効
に利、用されることとなる。
In addition, excess waste heat from the heat exchanger 4 and the hot water storage tank 9 is stored in the hot spring well 7 or the water reservoir layer 7a, so when the submersible pump 8a is driven, the hot spring water in the hot spring well 7 is released into the hot water storage tank 9. This will be effectively used as hot water for hot water supply.

更に、このように熱交換器4内の水が温泉井戸7内に貯
留され、温泉井戸7が熱交換器4の蓄熱部となるから、
熱交換器4を大型にすることなく、内燃機関1aの排熱
が全て蓄熱される。
Furthermore, since the water in the heat exchanger 4 is stored in the hot spring well 7 in this way, and the hot spring well 7 becomes the heat storage part of the heat exchanger 4,
All the exhaust heat of the internal combustion engine 1a is stored without increasing the size of the heat exchanger 4.

更にまた、温泉井戸7内の温泉水を熱交換器4内に導く
ものではないから、熱交換器4及び各熱交換部2a、3
aが温泉水により破損するといった事態を起すことがな
い。
Furthermore, since the hot spring water in the hot spring well 7 is not guided into the heat exchanger 4, the heat exchanger 4 and each heat exchange section 2a, 3
There is no possibility that a will be damaged by hot spring water.

更にまた、給水配管系5の市水は冷却回路6の凝縮器6
aにより加熱されるから、冷房装置の排熱が熱交換器4
内への水の予熱として有効に利用されることとなる。
Furthermore, the city water in the water supply piping system 5 is supplied to the condenser 6 of the cooling circuit 6.
Since the exhaust heat from the cooling device is heated by the heat exchanger 4
This will be effectively used to preheat the water inside.

(発明の効果) 以上説明したように、請求項(1)の発明によれば、冷
却水用熱交換部を通過した冷却水の水温が所定温度、例
えば許容冷却水温度以上となったときは、この熱交換器
内の蓄熱水が温泉井戸内に貯留されるため、従来の如く
蓄熱水を投棄することなく、温泉水とともに給湯用とし
て有効に利用できる。また、温泉井戸が熱交換器の蓄熱
部として利用されるから、熱交換器を大型にすることな
く、内燃機関の排熱を全て蓄熱できる。
(Effects of the Invention) As explained above, according to the invention of claim (1), when the temperature of the cooling water that has passed through the cooling water heat exchanger reaches a predetermined temperature, for example, the allowable cooling water temperature, Since the heat-storage water in the heat exchanger is stored in the hot spring well, the heat-storage water can be effectively used for hot water supply along with the hot spring water, without having to be disposed of as in the past. Furthermore, since the hot spring well is used as the heat storage part of the heat exchanger, all of the exhaust heat from the internal combustion engine can be stored without increasing the size of the heat exchanger.

請求項(2)の発明によれば、ビルなどの建物に設置さ
れた冷房装置の冷却回路の排熱を給水配管系の予熱に利
用して排熱回収を行なわれ、装置全体の省エネルギーを
実現できるという利点を有する。
According to the invention of claim (2), the exhaust heat of the cooling circuit of the air conditioner installed in a building or other building is used to preheat the water supply piping system and the exhaust heat is recovered, thereby realizing energy saving of the entire device. It has the advantage of being able to

【図面の簡単な説明】[Brief explanation of drawings]

第1図、第3図及び第4図は本発明の一実施例を示すも
ので、第1図は内燃機関の排熱利用装置の水回路図、第
2図は従来の内燃機関の排熱利用装置の水回路図、第3
図は電磁弁及びポンプの制御ブロック図、第4図は電磁
弁及びポンプの駆動制御を示すフローチャートである。 図中、1・・・コ・ジェネレーションユニット、1a・
・・内燃機関、2・・・冷却水配管系、3・・・排気配
管系、4・・・熱交換器、5・・・給水配管系、6・・
・冷却回路、7・・・温泉井戸、8・・・揚水配管系、
14a。 14b・・・温度センサ。
Figures 1, 3, and 4 show an embodiment of the present invention. Figure 1 is a water circuit diagram of an internal combustion engine exhaust heat utilization device, and Figure 2 is a conventional internal combustion engine exhaust heat utilization device. Water circuit diagram of the equipment used, Part 3
The figure is a control block diagram of the solenoid valve and pump, and FIG. 4 is a flowchart showing drive control of the solenoid valve and pump. In the figure, 1... Co-generation unit, 1a.
...Internal combustion engine, 2...Cooling water piping system, 3...Exhaust piping system, 4...Heat exchanger, 5...Water supply piping system, 6...
・Cooling circuit, 7...hot spring well, 8...pumping piping system,
14a. 14b...Temperature sensor.

Claims (2)

【特許請求の範囲】[Claims] (1)内燃機関の排気を排出するとともに一部に排気中
の熱を放出する排気用熱交換部を有する排気配管系と、 内燃機関の冷却水を循環するとともに一部に冷却水中の
熱を放出する冷却水用熱交換部を有する冷却水配管系と
、 前記排気用熱交換部及び前記冷却水用熱交換部と熱的に
接触し貯留した水が該各熱交換部により加熱される熱交
換器と、 温泉井戸の温泉水を汲上げる揚水配管系と、前記熱交換
器内に市水等の前記温泉水以外の水を給送する給水配管
系と、 前記冷却水用熱交換部を通過した冷却水が所定温度以上
となったとき前記熱交換器内の水を前記温泉井戸内に注
入する注水配管系とを備えたことを特徴とする内燃機関
の排熱利用装置。
(1) An exhaust piping system having an exhaust heat exchange section that discharges the exhaust gas of the internal combustion engine and partially releases the heat in the exhaust gas; and an exhaust piping system that circulates the internal combustion engine's cooling water and partially releases the heat in the cooling water. A cooling water piping system having a cooling water heat exchange section for discharging; and a cooling water piping system having a heat exchange section for cooling water to be discharged; an exchanger, a pumping piping system for pumping up hot spring water from a hot spring well, a water supply piping system for feeding water other than the hot spring water, such as city water, into the heat exchanger, and the cooling water heat exchange section. An apparatus for utilizing waste heat of an internal combustion engine, comprising: a water injection piping system that injects water in the heat exchanger into the hot spring well when the cooling water that has passed reaches a predetermined temperature or higher.
(2)給水用配管系に冷房装置の冷却回路の排熱と熱交
換する熱交換器を設けた ことを特徴とする請求項(1)記載の内燃機関の排熱利
用装置。
(2) The exhaust heat utilization device for an internal combustion engine according to claim (1), characterized in that the water supply piping system is provided with a heat exchanger for exchanging heat with exhaust heat of a cooling circuit of an air conditioner.
JP1314281A 1989-12-05 1989-12-05 Device for utilizing exhaust heat of internal combustion engine Pending JPH03175136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1314281A JPH03175136A (en) 1989-12-05 1989-12-05 Device for utilizing exhaust heat of internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1314281A JPH03175136A (en) 1989-12-05 1989-12-05 Device for utilizing exhaust heat of internal combustion engine

Publications (1)

Publication Number Publication Date
JPH03175136A true JPH03175136A (en) 1991-07-30

Family

ID=18051476

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1314281A Pending JPH03175136A (en) 1989-12-05 1989-12-05 Device for utilizing exhaust heat of internal combustion engine

Country Status (1)

Country Link
JP (1) JPH03175136A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503298A (en) * 2009-08-27 2013-01-31 マクアリスター テクノロジーズ エルエルシー Energy system for residential facilities support
KR20200076652A (en) * 2018-12-19 2020-06-29 엘지전자 주식회사 Auxiliary cooling water storage device and Energy generating device having the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013503298A (en) * 2009-08-27 2013-01-31 マクアリスター テクノロジーズ エルエルシー Energy system for residential facilities support
KR20200076652A (en) * 2018-12-19 2020-06-29 엘지전자 주식회사 Auxiliary cooling water storage device and Energy generating device having the same

Similar Documents

Publication Publication Date Title
KR100550111B1 (en) Exhaust heat recovery system
CN100575810C (en) Heat-pump hot water supply apparatus
KR20080010586A (en) Co-generation
KR102614152B1 (en) Heat pump system
JPH11281203A (en) Soil heat source heat pump system and its operation method
US20200232652A1 (en) Local thermal energy consumer assembly and a local thermal energy generator assembly for a district thermal energy distribution system
KR100618292B1 (en) Triple purpose integrated power, heat and cold cogeneration system with absortion cooler from natural gas
KR20030030553A (en) Cogeneration system for fuel cell
KR200396543Y1 (en) A Heat Pumping Unit for A Bathtub
US20210190328A1 (en) Combined heating and cooling system
CN105258415B (en) A kind of oil return apparatus and its control method
JPH03175136A (en) Device for utilizing exhaust heat of internal combustion engine
JP4437987B2 (en) Hot water circulation system
CN115638567A (en) Cold and heat source system with ground source heat pump and aquifer energy storage coupled and regulation and control method thereof
KR20070007644A (en) A heat pumping unit for a bathtub
KR102352496B1 (en) Dual heat source heat pump with selectable heat source and load and its operation method
JP2012180962A (en) Water heater system having hot water storage tank with auxiliary heat source
JP2005076932A (en) Storage type hot water supply system
JPS5952142A (en) Air conditioning method utilizing waste heat of air compressor
KR20070108306A (en) Heating equipment of heat pump type
US4601281A (en) Hot water supply system
JP2002364912A (en) Multifunctional water-heater
US20240142138A1 (en) Combined heating and cooling system
JP7396725B1 (en) Heat pump system and heat pump system control method
JP2002162116A (en) Water heater