JP2013193954A - Method for producing nickel coating nanocarbon by using electroless plating - Google Patents

Method for producing nickel coating nanocarbon by using electroless plating Download PDF

Info

Publication number
JP2013193954A
JP2013193954A JP2013010975A JP2013010975A JP2013193954A JP 2013193954 A JP2013193954 A JP 2013193954A JP 2013010975 A JP2013010975 A JP 2013010975A JP 2013010975 A JP2013010975 A JP 2013010975A JP 2013193954 A JP2013193954 A JP 2013193954A
Authority
JP
Japan
Prior art keywords
nanocarbon
nickel
coated
electroless plating
electroless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013010975A
Other languages
Japanese (ja)
Other versions
JP5602260B2 (en
Inventor
Shojitsu Tei
勝 日 鄭
Ju-Hyung Kim
柱 亨 金
Jae-Deuk Kim
在 徳 金
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DH Holdings Co Ltd
Original Assignee
DH Holdings Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by DH Holdings Co Ltd filed Critical DH Holdings Co Ltd
Publication of JP2013193954A publication Critical patent/JP2013193954A/en
Application granted granted Critical
Publication of JP5602260B2 publication Critical patent/JP5602260B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Abstract

PROBLEM TO BE SOLVED: To provide a coating method which is differentiated by using electroless plating according to the electric properties of nanocarbons.SOLUTION: A method for producing a nickel coating nanocarbon by using electroless plating comprises: a first step to remove impurities by washing a nanocarbon in a solvent or treating by thermal oxidation; a second step to form an activated palladium (Pd) core on the surface of the nanocarbon by immersing the nanocarbon washed or treated with the thermal oxidation in a palladium (Pd)-containing solution; a third step to treat the nanocarbon formed with the palladium (Pd) core with a strong acid; a fourth step to form a nickel plating layer on the surface of the nanocarbon by immersing the nanocarbon treated with the strong acid in an electroless plating liquid; and a fifth step to crystallize the nanocarbon formed with the nickel plating layer by heat treatment at a high temperature.

Description

本発明は、無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法に係り、より詳細には、無電解めっき法の工程変数の制御を通じて形状制御された無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法に関する。   The present invention relates to a method of manufacturing nickel-coated nanocarbon using an electroless plating method, and more particularly, nickel coating using an electroless plating method whose shape is controlled through control of process variables of the electroless plating method. The present invention relates to a method for producing nanocarbon.

ナノカーボンは、高い強度と弾性係数、優れた熱および電気伝導度などの優れた機械的、物理的特性を有し、最近では、ナノカーボンを金属材料でコーティングし、ナノカーボン/金属複合体として様々な分野に応用しようとする試みがなされている。例えば、ニッケルコーティングされたナノカーボン(Ni−coated Nano−carbons)は、電磁波遮蔽素材、遠距離場用吸収素材として優れた性能を示すため、ナノカーボンにニッケルをコーティングしようとする試みがなされている。   Nanocarbon has excellent mechanical and physical properties such as high strength and elastic modulus, excellent heat and electrical conductivity. Recently, nanocarbon is coated with metal material as nanocarbon / metal composite Attempts have been made to apply to various fields. For example, nickel-coated nano-carbons (Ni-coated Nano-carbons) exhibit excellent performance as electromagnetic shielding materials and far-field absorption materials, and therefore, attempts have been made to coat nickel on nano-carbons. .

最近では、ナノカーボンにニッケルをコーティングする方法として無電解めっき法が多く使用されている。
例えば、特許文献1は、無電解めっき方式でカーボンナノチューブに金属をコーティングし、カーボンナノチューブ金属の複合体を作る方法を開示している。
一方、ナノカーボンの代表例である炭素ナノチューブは、黒鉛面(graphite sheet)がナノスケールの直径のシリンダ形態を有し、sp2結合構造を有する。この黒鉛面が巻かれる角度および構造に応じて、ナノカーボンは導体または半導体の特性を示す。このようなナノカーボンは、壁をなしている結合数に応じて、単一壁炭素ナノチューブ(以下、SWCNTと略す。)、二重壁炭素ナノチューブ(以下、DWCNTと略す。)、多重壁炭素ナノチューブ(以下、MWCNTと略す。)および束状炭素ナノチューブ(rope carbon nanotube)に分類できる(例えば、特許文献2を参照)。
Recently, electroless plating is often used as a method of coating nanocarbon with nickel.
For example, Patent Document 1 discloses a method of making a carbon nanotube metal composite by coating a carbon nanotube with a metal by an electroless plating method.
On the other hand, a carbon nanotube, which is a typical example of nanocarbon, has a cylinder shape with a graphite surface having a nanoscale diameter and an sp2 bond structure. Depending on the angle and structure at which this graphite surface is wound, nanocarbon exhibits the properties of a conductor or semiconductor. Such nanocarbons are single-walled carbon nanotubes (hereinafter abbreviated as SWCNT), double-walled carbon nanotubes (hereinafter abbreviated as DWCNT), multi-walled carbon nanotubes, depending on the number of bonds forming the wall. (Hereinafter abbreviated as MWCNT) and bundle carbon nanotubes (see, for example, Patent Document 2).

このうち、SWCNTは、金属的な特性と半導体的な特性を併せ持っており、多様な電気的、化学的、物理的および光学的特性を示す。一般的に、SWCNTの合成時、金属性SWCNTと半導体性SWCNTが必然的に混合される。
カーボンナノファイバー(Carbon nano fiber:以下、CNFと略す。)、MWCNT、三重壁炭素ナノチューブ(以下、TWCNTと略す。)、DWCNT、金属性SWCNTなどの金属性ナノカーボンと、半導体性SWCNTないしSWCNTバンドルなどの半導体性ナノカーボンとは、その電気的性質が異なる。無電解めっき法は、被めっき体の表面上で化学反応が行われるものであるため、無電解めっき法を適用してナノカーボンに金属をコーティングするにあたり、被めっき体の電気的性質に応じた、差別化されたプロセスが要求されているが、従来技術はこれに対する解答を提供することができなかった。
Among them, SWCNT has both metallic characteristics and semiconductor characteristics, and exhibits various electrical, chemical, physical and optical characteristics. Generally, when SWCNT is synthesized, metallic SWCNT and semiconductive SWCNT are necessarily mixed.
Carbon nanofiber (hereinafter abbreviated as CNF), MWCNT, triple-walled carbon nanotube (hereinafter abbreviated as TWCNT), DWCNT, metallic SWCNT, and other metallic nanocarbon, and semiconducting SWCNT or SWCNT bundle Its electrical properties are different from those of semiconducting nanocarbon. In the electroless plating method, a chemical reaction is performed on the surface of the object to be plated. Therefore, in applying the metal to nanocarbon by applying the electroless plating method, it depends on the electrical properties of the object to be plated. Although a differentiated process is required, the prior art has not been able to provide an answer to this.

大韓民国公開特許第2006−0073019号公報Republic of Korea Public Patent No. 2006-0073019 特開2002−348108号公報JP 2002-348108 A

そこで、本発明は、かかる問題点を解決するためになされたものであって、その目的とするところは、無電解めっき法を用いてナノカーボンにニッケルをコーティングするにあたり、ナノカーボンの電気的性質に応じて差別化されたコーティング方法を提供することにある。
より具体的には、本発明は、無電解めっき法を用いて金属性ナノカーボン、すなわち、CNF、MWCNT、TWCNT,DWCNTまたは金属性SWCNTにニッケルをコーティングする方法を提供する。
また、本発明は、無電解めっき法を用いて半導体性ナノカーボン、すなわち、半導体性SWCNTまたはSWCNTバンドル(bundle)にニッケルをコーティングする方法を提供する。
さらに、本発明は、無電解めっき法を用いてナノカーボンに形状制御されたニッケルコーティングを形成する方法を提供する。
Therefore, the present invention has been made to solve such problems, and the object of the present invention is to apply the electrical properties of nanocarbon when coating nanocarbon with electroless plating. It is an object of the present invention to provide a coating method differentiated according to the above.
More specifically, the present invention provides a method for coating nickel on metallic nanocarbon, that is, CNF, MWCNT, TWCNT, DWCNT, or metallic SWCNT using an electroless plating method.
In addition, the present invention provides a method for coating semiconducting nanocarbon, that is, semiconducting SWCNT or SWCNT bundle using an electroless plating method.
Furthermore, the present invention provides a method of forming a shape-controlled nickel coating on nanocarbon using an electroless plating method.

上記目的を達成するための、本発明の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法は、ナノカーボンを溶媒中で洗浄したり熱酸化処理して不純物を除去する第1ステップと、洗浄または熱酸化処理されたナノカーボンをパラジウム(Pd)含有溶液に浸漬し、ナノカーボンの表面に活性化されたパラジウム(Pd)核を形成させる第2ステップと、パラジウム(Pd)核が形成されたナノカーボンを強酸処理する第3ステップと、強酸処理されたナノカーボンを無電解ニッケルめっき液に浸漬し、ナノカーボンの表面にニッケルめっき層を形成する第4ステップと、ニッケルめっき層が形成されたナノカーボンを高温熱処理して結晶化する第5ステップとを含むことを特徴とする。   In order to achieve the above object, a method for producing a nickel-coated nanocarbon using the electroless plating method of the present invention includes a first step of removing impurities by washing the nanocarbon in a solvent or thermally oxidizing it. A second step of immersing the washed or thermally oxidized nanocarbon in a palladium (Pd) -containing solution to form activated palladium (Pd) nuclei on the nanocarbon surface; and formation of palladium (Pd) nuclei A third step of treating the nanocarbon with a strong acid, a fourth step of immersing the strong acid-treated nanocarbon in an electroless nickel plating solution to form a nickel plating layer on the surface of the nanocarbon, and forming a nickel plating layer And a fifth step of crystallizing the nanocarbon by heat treatment at a high temperature.

本発明によれば、無電解めっき法を用いてナノカーボンの電気的性質を反映し、簡単かつ便利に大量で多様な形態の金属コーティングが形成されたナノカーボンを製造することができる。   ADVANTAGE OF THE INVENTION According to this invention, the nanocarbon by which the electrical property of nanocarbon was reflected using the electroless-plating method and the metal coating of various forms was formed in large quantities easily and conveniently can be manufactured.

本発明のパラジウム(Pd)およびニッケル(Ni)がコーティングされたナノカーボンの概念図である。1 is a conceptual diagram of nanocarbon coated with palladium (Pd) and nickel (Ni) of the present invention. 熱処理前後のCNFの熱量分析(TGA)の結果である。It is the result of the calorimetric analysis (TGA) of CNF before and after heat treatment. 実施例1ないし3の非晶質および結晶質の繊維状、鱗状および球状のニッケルめっきの形状による走査型電子顕微鏡(SEM)画像である。4 is a scanning electron microscope (SEM) image of amorphous and crystalline fibrous, scaly, and spherical nickel plating shapes of Examples 1 to 3. FIG. 実施例1ないし3の非晶質および結晶質の繊維状、鱗状および球状のニッケルめっきの形状による透過型電子顕微鏡(TEM)画像である。4 is a transmission electron microscope (TEM) image of the amorphous and crystalline fibrous, scaly, and spherical nickel plating shapes of Examples 1 to 3. FIG. 実施例1ないし3の非晶質の繊維状、鱗状および球状のニッケルめっきの形状に応じた熱的特性を分析した熱量分析(TGA)の結果である。It is the result of the calorimetric analysis (TGA) which analyzed the thermal characteristic according to the shape of the amorphous fibrous, scale-like, and spherical nickel plating of Example 1 thru | or 3. 実施例1ないし3の400℃、エアー雰囲気で、3時間高温熱処理を通じて生成された結晶質の繊維状、鱗状および球状のニッケルめっきの形状に応じた熱的特性を分析した熱量分析(TGA)の結果である。A calorimetric analysis (TGA) analysis of thermal properties according to the shape of crystalline fibrous, scale-like and spherical nickel plating produced through high-temperature heat treatment for 3 hours at 400 ° C. in an air atmosphere of Examples 1 to 3. It is a result.

以下、本発明の構成および作用をより詳細に説明する。
本発明は、ナノカーボンを溶媒中で洗浄したり熱酸化処理して不純物を除去する第1ステップと、洗浄または熱酸化処理されたナノカーボンをPd含有溶液に浸漬し、ナノカーボンの表面に活性化されたPd核を形成させる第2ステップと、Pd核が形成されたナノカーボンを強酸処理する第3ステップと、強酸処理されたナノカーボンを無電解ニッケルめっき液に浸漬し、ナノカーボンの表面にニッケルめっき層を形成する第4ステップと、ニッケルめっき層が形成されたナノカーボンを高温熱処理して結晶化する第5ステップとを含む、無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法を提供する。
本発明において、ナノカーボンは、CNF、MWCNT、TWCNT、DWCNTおよび金属性SWCNTなどの金属性ナノカーボンと、半導体性SWCNTおよびSWCNTバンドル(bundle)などの半導体性ナノカーボンとに分類する。
本発明において、ニッケルコーティングは、無電解めっき時に使用される還元剤の種類に応じて、Ni−PまたはNi−Bコーティングを含む意味として使われる。すなわち、Ni−Pコーティングは、リン(P)系の還元剤を用いてニッケルを無電解めっきする場合に形成され、Ni−Bコーティングは、ホウ素(B)系の還元剤を用いる場合に形成される。
Hereinafter, the configuration and operation of the present invention will be described in more detail.
In the present invention, the first step of removing impurities by washing the nanocarbon in a solvent or thermally oxidizing it, and immersing the washed or thermally oxidized nanocarbon in a Pd-containing solution to activate the surface of the nanocarbon. A second step of forming the oxidized Pd nucleus, a third step of treating the nanocarbon with the Pd nucleus formed with a strong acid, and immersing the strong acid-treated nanocarbon in an electroless nickel plating solution to form a surface of the nanocarbon. Manufacturing a nickel-coated nanocarbon using an electroless plating method, which includes a fourth step of forming a nickel plating layer on the substrate and a fifth step of crystallizing the nanocarbon having the nickel plating layer formed thereon by high-temperature heat treatment. Provide a method.
In the present invention, nanocarbons are classified into metallic nanocarbons such as CNF, MWCNT, TWCNT, DWCNT and metallic SWCNT, and semiconducting nanocarbons such as semiconducting SWCNT and SWCNT bundles.
In the present invention, nickel coating is used to include Ni-P or Ni-B coating, depending on the type of reducing agent used during electroless plating. That is, the Ni-P coating is formed when nickel is electrolessly plated using a phosphorus (P) -based reducing agent, and the Ni-B coating is formed when a boron (B) -based reducing agent is used. The

本発明の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法において、第1ステップは、純度の向上を目的として、ナノカーボンを有機溶媒または酸水溶液中で超音波でナノカーボンを洗浄するステップである。例えば、ナノカーボンをアルコールなどの有機溶媒または酸水溶液などに浸漬させ、超音波処理を行うことにより、非晶質炭素などの不純物を除去することができる。
あるいは、第1ステップは、400〜600℃で30分〜5時間空気中の熱酸化処理を行うステップである。
図2は、熱処理前後のCNFの熱量分析(TGA)の結果である。図2に示したとおり、400〜600℃で3時間空気中の熱酸化処理を行った結果、CNFの純度が87重量%から99重量%に増加した。したがって、アルコールなどの溶媒を用いてCNFを洗浄する工程を熱酸化処理に代替することができる。熱酸化処理工程は、洗浄工程に比べると、溶媒などの使用が減少し、経済的および環境的な面で有利である。
In the method for producing nickel-coated nanocarbon using the electroless plating method of the present invention, the first step is to clean the nanocarbon with ultrasonic waves in an organic solvent or an acid aqueous solution for the purpose of improving purity. It is a step. For example, it is possible to remove impurities such as amorphous carbon by immersing nanocarbon in an organic solvent such as alcohol or an aqueous acid solution and performing ultrasonic treatment.
Or a 1st step is a step which performs the thermal oxidation process in the air for 30 minutes-5 hours at 400-600 degreeC.
FIG. 2 shows the results of calorimetric analysis (TGA) of CNF before and after heat treatment. As shown in FIG. 2, as a result of performing thermal oxidation treatment in air at 400 to 600 ° C. for 3 hours, the purity of CNF increased from 87 wt% to 99 wt%. Therefore, the process of cleaning CNF using a solvent such as alcohol can be replaced with thermal oxidation treatment. The thermal oxidation treatment process is advantageous in terms of economy and environment because the use of a solvent or the like is reduced compared to the cleaning process.

第2ステップは、洗浄または熱酸化処理されたナノカーボンをPd含有溶液に浸漬し、ナノカーボンの表面でPdイオンの還元を生じさせ、ナノカーボンの表面に活性化されたPd核を生成させるステップである。
無電解めっきはナノカーボンの活性化された表面でのみ進行し、ナノカーボンの表面の活性化程度は無電解めっき層の密着力に影響を与える。
したがって、本ステップでは、洗浄または熱酸化処理されたナノカーボンをPdを含有した溶液に浸漬し、ナノカーボンの表面でPdイオンを還元して、ナノカーボンの表面に活性化されたPd核を生成させることにより、ナノカーボンの表面を活性化する。
The second step includes immersing the cleaned or thermally oxidized nanocarbon in a Pd-containing solution, causing reduction of Pd ions on the surface of the nanocarbon, and generating activated Pd nuclei on the surface of the nanocarbon. It is.
Electroless plating proceeds only on the activated surface of nanocarbon, and the degree of activation of the nanocarbon surface affects the adhesion of the electroless plating layer.
Therefore, in this step, the cleaned or thermally oxidized nanocarbon is immersed in a solution containing Pd, and Pd ions are reduced on the surface of the nanocarbon to generate activated Pd nuclei on the surface of the nanocarbon. By activating, the surface of the nanocarbon is activated.

ナノカーボンが半導体性SWCNTおよびSWCNTバンドル(bundle)の場合、Sn含有溶液に半導体性ナノカーボンを浸漬し、Sn2+イオンを半導体性ナノカーボンの表面に吸着させて水洗するステップ、すなわち、鋭敏化処理ステップを追加的に含む。
ナノカーボンがCNF、MWCNT、TWCNT、DWCNTおよび金属性SWCNTの場合は、鋭敏化処理ステップを必要としないが、半導体性SWCNTおよびSWCNTバンドル(bundle)の場合、活性化処理前に鋭敏化処理を行う。
When the nanocarbon is a semiconducting SWCNT or SWCNT bundle, the step of immersing the semiconducting nanocarbon in an Sn-containing solution and adsorbing Sn 2+ ions to the surface of the semiconducting nanocarbon, that is, washing with water, that is, sensitization treatment Includes additional steps.
When the nanocarbon is CNF, MWCNT, TWCNT, DWCNT, and metallic SWCNT, the sensitizing treatment step is not required. However, in the case of the semiconducting SWCNT and SWCNT bundle (bundle), the sensitizing treatment is performed before the activation treatment. .

第3ステップは、加速化処理ステップであって、金属性ナノカーボン(CNF、MWCNT、TWCNT、DWCNTおよび金属性SWCNT)の場合、精製されたPdを析出するために、Pd核が形成されたナノカーボンを強酸で処理するステップである。
また、第3ステップは、ナノカーボンが半導体性(半導体性SWCNTおよびSWCNTバンドル)の場合、鋭敏化処理および活性化処理後に表面に残っているSn成分を除去し、精製されたPdを析出するステップである。すなわち、半導体性ナノカーボンは、鋭敏化処理および活性化処理によってSn2++Pd2+=Sn4++Pd反応が進行して表面にPd核が形成される。ナノカーボン表面にはSn4+が残るが、これを強酸で処理することによって除去する。
The third step is an acceleration treatment step. In the case of metallic nanocarbons (CNF, MWCNT, TWCNT, DWCNT, and metallic SWCNT), the nanocrystals in which Pd nuclei are formed to precipitate purified Pd. This is a step of treating carbon with a strong acid.
In the third step, when the nanocarbon is semiconducting (semiconductor SWCNT and SWCNT bundle), the Sn component remaining on the surface after the sensitization treatment and activation treatment is removed, and purified Pd is deposited. It is. That is, the semiconducting nanocarbon undergoes Sn 2+ + Pd 2+ = Sn 4+ + Pd 0 reaction through sensitization and activation treatment, and Pd nuclei are formed on the surface. Sn 4+ remains on the nanocarbon surface, but is removed by treatment with a strong acid.

第4ステップは、強酸処理されたナノカーボンを無電解ニッケルめっき液に浸漬し、ナノカーボンの表面にニッケルめっき層を形成するステップである。
ナノカーボンの表面にPd触媒が活性化されていても、自己触媒めっき反応(Auto catalytic Plating)が引き続き進行するためには、一定温度以上を維持しなければならず、ひいては、温度が増加するほどめっき反応の速度は増加する。ニッケルめっき液は、常温タイプのニッケルめっき液(40℃以下で反応)と、高温タイプのニッケルめっき液(100℃以下で反応)とに分けられる。
また、めっき速度はpH調整によって調整可能である。すなわち、pHは、4.8を基準として、これより高いほどめっき速度は増加する。
めっき厚さはめっき時間に比例して増加するため、ターゲットの厚さに応じて、めっき速度は調整される。
The fourth step is a step of immersing nanoacid-treated nanocarbon in an electroless nickel plating solution to form a nickel plating layer on the nanocarbon surface.
Even if the Pd catalyst is activated on the surface of the nanocarbon, in order for the autocatalytic plating reaction to continue, the temperature must be maintained above a certain temperature, and as the temperature increases. The rate of plating reaction increases. The nickel plating solution is classified into a normal temperature type nickel plating solution (reaction at 40 ° C. or less) and a high temperature type nickel plating solution (reaction at 100 ° C. or less).
The plating rate can be adjusted by adjusting the pH. That is, on the basis of 4.8, the higher the pH, the higher the plating rate.
Since the plating thickness increases in proportion to the plating time, the plating rate is adjusted according to the thickness of the target.

本発明において、第4ステップが、常温タイプのニッケルめっき液の場合、20〜40℃の範囲で5〜20分、高温タイプのニッケルめっき液の場合、70〜100℃で1〜10分間進行することが好ましい。
また、第4ステップにおいて、pHは4〜6に維持されることが好ましい。pHが4〜6の範囲内に維持される場合、無電解ニッケルめっき液がより安定的に維持でき、めっき速度が速く、めっき効率に優れる。
本発明にかかる無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法は、めっき液の濃度、蒸着時間、反応温度、めっき液のpHなどを制御し、金属の積載量、形状、分布密度、パーティクルサイズを制御することができる。
めっき液は、リン(P)の含有量に応じて、高濃度めっき液(10〜13%)、中濃度めっき液(7〜9%)、低濃度めっき液(1〜5%)に分類される。リンの含有量が増加するほど、めっき速度は減少し、耐食性は増加し、耐熱性は減少する。
In the present invention, the fourth step proceeds in the range of 20 to 40 ° C. for 5 to 20 minutes in the case of a normal temperature type nickel plating solution, and in the case of a high temperature type nickel plating solution in 1 to 10 minutes at 70 to 100 ° C. It is preferable.
In the fourth step, the pH is preferably maintained at 4-6. When the pH is maintained within the range of 4 to 6, the electroless nickel plating solution can be maintained more stably, the plating rate is high, and the plating efficiency is excellent.
The method for producing nickel-coated nanocarbon using the electroless plating method according to the present invention controls the concentration of the plating solution, the deposition time, the reaction temperature, the pH of the plating solution, etc., and the metal loading, shape, and distribution density. , Particle size can be controlled.
The plating solution is classified into a high concentration plating solution (10 to 13%), a medium concentration plating solution (7 to 9%), and a low concentration plating solution (1 to 5%) according to the phosphorus (P) content. The As the phosphorus content increases, the plating rate decreases, the corrosion resistance increases, and the heat resistance decreases.

本発明によれば、無電解めっき溶液の濃度、蒸着時間、反応温度、pHなどの工程変数の制御を通じてNi−P、Ni−BまたはNiの積載量、Ni−P、Ni−BまたはNiの形状、分布密度またはパーティクルサイズを制御することができる。
特に、工程変数の制御を通じてナノカーボンの表面に繊維状(fibrous)のNi−PまたはNi−Bコーティング、鱗状(scalelike structure)のNi−PまたはNi−Bコーティング、球状(spherical)のNi−PまたはNi−Bコーティングなど、様々な形態のNi−PまたはNi−Bコーティングを行うことができる。
According to the present invention, the load of Ni—P, Ni—B or Ni, Ni—P, Ni—B or Ni can be controlled through control of process variables such as the concentration of electroless plating solution, deposition time, reaction temperature, and pH. Shape, distribution density or particle size can be controlled.
In particular, a fibrous Ni-P or Ni-B coating, a scalelike Ni-P or Ni-B coating, a spherical Ni-P on the nanocarbon surface through control of process variables. Alternatively, various forms of Ni-P or Ni-B coating can be performed, such as Ni-B coating.

図1は、本発明のパラジウム(Pd)およびニッケル(Ni)がコーティングされたナノカーボンの概念図である。図1に示したとおり、繊維状のコーティングは、多量のPdイオン、低い温度、低いpH(基準4.8)の条件で反応速度が遅い場合に実現できる。
また、鱗状のコーティングは、多量のPdイオン、高い温度、高いpH(基準4.8)の条件で反応が急激に起こる場合に実現できる。
さらに、球状のコーティングは、少量のPdイオン、高い温度、高いpH(基準4.8)の条件で実現できるが、ニッケルイオンが積層できるようにシードの役割を果たすPdの濃度が低く、かつ、温度とpHが高ければ、反応が急激に起こりながらPdの周辺にのみニッケルイオンが積層され、球状のコーティングがなされる。
FIG. 1 is a conceptual diagram of nanocarbon coated with palladium (Pd) and nickel (Ni) according to the present invention. As shown in FIG. 1, a fibrous coating can be realized when the reaction rate is low under the conditions of a large amount of Pd ions, a low temperature, and a low pH (standard 4.8).
Also, scaly coating can be realized when the reaction occurs rapidly under the conditions of a large amount of Pd ions, high temperature, and high pH (standard 4.8).
Furthermore, the spherical coating can be realized under the conditions of a small amount of Pd ions, high temperature, and high pH (standard 4.8), but the concentration of Pd that plays a role of seeding so that nickel ions can be laminated, and If the temperature and pH are high, nickel ions are deposited only around Pd while the reaction occurs rapidly, and a spherical coating is formed.

具体的には、第4ステップは、Pdの濃度0.4〜1g/L、Niめっき液の濃度5〜10g/L、蒸着時間10〜15分、反応温度70〜80℃、pH4〜5で進行することにより、繊維状のニッケルめっき層を形成することができる。
また、第4ステップは、Pdの濃度0.4〜1g/L、Niめっき液の濃度5〜10g/L、蒸着時間5〜10分、反応温度80〜100℃、pH5〜6で進行することにより、鱗状のニッケルめっき層を形成することができる。
さらに、第4ステップは、Pdの濃度0.125〜0.2g/L、Niめっき液の濃度5〜10g/L、蒸着時間5〜10分、反応温度80〜100℃、pH5〜6で進行することにより、球状のニッケルめっき層を形成することができる。
繊維状のコーティングがなされたナノカーボンは、強度が高いという利点があり、鱗状のコーティングがなされたナノカーボンは、表面積が広く、電磁波遮蔽、水素の吸着に有利であり、球状のコーティングがなされたナノカーボンは、燃料電池の触媒支持体としての使用に有利である。
Specifically, in the fourth step, the concentration of Pd is 0.4 to 1 g / L, the concentration of the Ni plating solution is 5 to 10 g / L, the deposition time is 10 to 15 minutes, the reaction temperature is 70 to 80 ° C., and the pH is 4 to 5. By proceeding, a fibrous nickel plating layer can be formed.
The fourth step proceeds at a Pd concentration of 0.4-1 g / L, a Ni plating solution concentration of 5-10 g / L, a deposition time of 5-10 minutes, a reaction temperature of 80-100 ° C., and a pH of 5-6. Thus, a scale-like nickel plating layer can be formed.
Further, the fourth step proceeds at a Pd concentration of 0.125 to 0.2 g / L, a Ni plating solution concentration of 5 to 10 g / L, a deposition time of 5 to 10 minutes, a reaction temperature of 80 to 100 ° C., and a pH of 5 to 6. By doing so, a spherical nickel plating layer can be formed.
Nanocarbon with a fibrous coating has the advantage of high strength, and the nanocarbon with a scaly coating has a large surface area, which is advantageous for electromagnetic shielding and hydrogen adsorption, and has a spherical coating. Nanocarbons are advantageous for use as fuel cell catalyst supports.

無電解ニッケルめっき液の成分は、主成分と、補助成分とに分けられる。
主成分は、ニッケル塩およびニッケルイオンに電子を供与してニッケルに還元させる還元剤からなる。ニッケル塩としては、塩化ニッケル、硫酸ニッケル、スルファミン酸ニッケルなどのニッケル塩水和物が使用可能であり、還元剤としては、次亜リン酸塩、水素化ホウ素塩、ジメチルアミンボラン、ヒドラジンなどが使用可能である。
補助成分としては、錯化剤、緩衝剤、pH調整剤、促進剤、安定剤、改良剤などがあり、めっき液の寿命延長および還元剤の効率性の向上などのために添加される。
The components of the electroless nickel plating solution are divided into a main component and an auxiliary component.
The main component consists of a reducing agent that donates electrons to nickel salts and nickel ions to reduce them to nickel. Nickel salt hydrates such as nickel chloride, nickel sulfate, and nickel sulfamate can be used as the nickel salt, and hypophosphite, borohydride, dimethylamine borane, hydrazine, etc. are used as the reducing agent. Is possible.
Auxiliary components include complexing agents, buffering agents, pH adjusting agents, accelerators, stabilizers, improving agents and the like, which are added to extend the life of the plating solution and improve the efficiency of the reducing agent.

錯化剤は、金属錯イオンを形成して還元反応に参加する金属イオンの総量を調整したり、金属イオンが金属塩として沈澱するのを遅延させることにより、金属イオンの安定化を助ける役割を果たす。その種類は特に限定しないが、酢酸ナトリウム、エチレングリコールなどの有機酸や、それらの塩を使用することができる。
緩衝剤は、無電解めっき時にpHの変化幅を減少させるために使用し、その種類は特に限定されない。
pH調整剤は、無電解めっきの速度、効率、めっき皮膜の状態に影響を与えるpHの変化を防止するために使用され、その種類は特に限定しないが、水酸化アンモニウム、無機酸、有機酸、苛性ソーダなどを使用することができる。
促進剤は、めっき速度を促進して金属析出効率を向上させる役割を果たし、その種類は特に限定せず、硫化物、フッ化物などを使用することができる。
安定剤は、めっきしようとする表面以外に還元反応が起こるのを抑制し、めっき浴の自然分解を抑制する役割を果たし、その種類は特に限定しないが、鉛の塩化物、硫化物、硝酸物などを使用することができる。
改良剤は、めっき皮膜の光沢を向上させる役割を果たし、通常、界面活性剤を微量添加する。
The complexing agent plays a role in stabilizing metal ions by adjusting the total amount of metal ions participating in the reduction reaction by forming metal complex ions or by delaying the precipitation of metal ions as metal salts. Fulfill. Although the kind is not specifically limited, Organic acids, such as sodium acetate and ethylene glycol, and those salts can be used.
The buffering agent is used for reducing the change width of the pH during electroless plating, and the kind thereof is not particularly limited.
The pH adjuster is used to prevent a change in pH that affects the speed, efficiency, and plating film state of electroless plating, and the type thereof is not particularly limited, but ammonium hydroxide, inorganic acid, organic acid, Caustic soda can be used.
The promoter plays the role of promoting the plating rate and improving the metal deposition efficiency, and the type thereof is not particularly limited, and sulfides, fluorides and the like can be used.
Stabilizers suppress the occurrence of reduction reactions on the surface other than the surface to be plated and play a role in suppressing the spontaneous decomposition of the plating bath. The type is not particularly limited, but lead chloride, sulfide, nitrate Etc. can be used.
The improving agent plays a role of improving the gloss of the plating film, and usually a trace amount of a surfactant is added.

第5ステップは、ニッケルめっき層が形成されたナノカーボンを高温熱処理して結晶化するステップであって、不活性気体(Ar、N、Heなど)雰囲気または真空雰囲気(10〜3torr)またはエアー雰囲気で、300〜700℃に3時間高温熱処理するステップである。
第4ステップの結果、ナノカーボンに形成されたニッケルめっき層は、非晶質ニッケルめっき層であり得る。このような非晶質ニッケルめっき層は、熱酸化処理されることにより、結晶質ニッケルめっき層に転換可能である。例えば、Ni−PまたはNi−Bをナノカーボンに無電解めっきする場合、ナノカーボンを無電解ニッケルめっき液に浸漬して形成された非晶質のNi−PまたはNi−Bコーティングは、熱処理を経て結晶質のNi−PまたはNi−Bコーティングに転換可能である。
The fifth step is a step of crystallizing the nanocarbon on which the nickel plating layer is formed by high-temperature heat treatment, and is an inert gas (Ar, N 2 , He, etc.) atmosphere, a vacuum atmosphere (10-3 torr) or air This is a step of high-temperature heat treatment at 300 to 700 ° C. for 3 hours in an atmosphere.
As a result of the fourth step, the nickel plating layer formed on the nanocarbon may be an amorphous nickel plating layer. Such an amorphous nickel plating layer can be converted into a crystalline nickel plating layer by thermal oxidation treatment. For example, when Ni-P or Ni-B is electrolessly plated on nanocarbon, an amorphous Ni-P or Ni-B coating formed by immersing nanocarbon in an electroless nickel plating solution is subjected to heat treatment. It can then be converted to a crystalline Ni-P or Ni-B coating.

結論的に、本発明の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法は、ナノカーボンがCNF、MWCNT、TWCNT、DWCNTおよび金属性SWCNTの場合、前処理、活性化処理および加速化処理を行った後、めっき処理することを特徴とし、ナノカーボンが半導体性SWCNTおよびSWCNTバンドルの場合、前処理、鋭敏化処理、活性化処理および加速化処理を行った後、めっき処理することを特徴とする。
本発明は、ナノカーボンの電気的性質を考慮して差別化されたプロセスに従って無電解めっきを進行するため、めっき工程の成果および信頼性を改善する効果がある。
In conclusion, the method for producing nickel-coated nanocarbons using the electroless plating method of the present invention includes pretreatment, activation treatment and acceleration when the nanocarbon is CNF, MWCNT, TWCNT, DWCNT and metallic SWCNT. It is characterized by plating after the treatment, and when the nanocarbon is semiconducting SWCNT and SWCNT bundle, the pretreatment, sensitization treatment, activation treatment and acceleration treatment are performed, and then the plating treatment is performed. Features.
The present invention proceeds with electroless plating according to a differentiated process in consideration of the electrical properties of nanocarbon, and thus has the effect of improving the results and reliability of the plating process.

以下、実施例を通じて本発明をより詳細に説明する。しかし、下記の実施例は、本発明をより具体的に説明するためのものであって、本発明の範囲が下記の実施例によって限定されるものではない。下記の実施例は、本発明の範囲内において当業者によって適切に修正、変更可能である。
実施例1ないし3:CNFのニッケルコーティング
エタノール溶液にCNF(VGCF○R−H、昭和電工社製)を浸漬させ、30分間超音波処理した後、下記の表1の条件に応じて、[PdCl+HCl+HO]溶液にCNFを浸漬させ、10分間超音波処理した。その後、CNFを濃硫酸溶液に浸漬して、3分間超音波処理した後、SX−A、SX−MおよびHOを含むニッケルめっき液に浸漬させ、200rpm、90℃の条件で10分間撹拌し、Ni−PコーティングされたCNFを得た。
SX−Aは、硫酸ニッケル2.138Mを含有するニッケルめっき液であり、SX−Mは、次亜リン酸ナトリウム2.36Mを含有する還元液である。
ニッケルコーティングされたCNFを、エアー雰囲気中、300〜700℃に3時間熱処理した。
Hereinafter, the present invention will be described in more detail through examples. However, the following examples are for explaining the present invention more specifically, and the scope of the present invention is not limited by the following examples. The following embodiments can be appropriately modified and changed by those skilled in the art within the scope of the present invention.
Examples 1 to 3: CNF (VGCF ○ R-H, manufactured by Showa Denko KK) was immersed in a nickel-coated ethanol solution of CNF, subjected to ultrasonic treatment for 30 minutes, and then [PdCl CNF was immersed in a solution of ( 2 + HCl + H 2 O) and sonicated for 10 minutes. Thereafter, CNF is immersed in a concentrated sulfuric acid solution, subjected to ultrasonic treatment for 3 minutes, then immersed in a nickel plating solution containing SX-A, SX-M and H 2 O, and stirred for 10 minutes at 200 rpm and 90 ° C. Thus, CNF coated with Ni-P was obtained.
SX-A is a nickel plating solution containing 2.138M nickel sulfate, and SX-M is a reducing solution containing 2.36M sodium hypophosphite.
Nickel-coated CNF was heat-treated at 300 to 700 ° C. for 3 hours in an air atmosphere.

Figure 2013193954
結晶質ニッケルコーティングCNFの製造
実施例1ないし3で得たNi−PコーティングされたCNFを、400℃、エアー雰囲気で、3時間高温熱処理し、結晶質のNi−PコーティングされたCNFを製造した。
Figure 2013193954
Production of Crystalline Nickel-Coated CNF The Ni-P-coated CNF obtained in Examples 1 to 3 was heat-treated at 400 ° C. in an air atmosphere for 3 hours to produce a crystalline Ni-P-coated CNF. .

実施例4:SWCNTバンドルのニッケルコーティング
エタノール溶液に半導体性SWCNTバンドルを浸漬させ、30分間超音波処理を行った後(洗浄ステップ)、[PdCl+HCl+HO]溶液にSWCNTバンドルを浸漬させ、10分間超音波処理した。その後、SWCNTバンドルを0.1molのSnCl/0.1molのHCl溶液に数秒間浸漬させて鋭敏化処理し、濃硫酸溶液に浸漬させ、3分間超音波処理した後、SX−A、SX−MおよびHOを含むニッケルめっき液に浸漬させた後、200rpm、90℃の条件で10分間撹拌し、ニッケルコーティングされたSWCNTバンドルを製造した。
試験例:ニッケルコーティングCNFの特性の評価
実施例1ないし3で得た非晶質および結晶質のNi−PコーティングされたCNFに対してSEM分析およびTEM分析を行った。
図3は、実施例1ないし3の非晶質および結晶質の繊維状、鱗状および球状のニッケルめっきの形状による走査型電子顕微鏡(SEM)画像であり、図4は、実施例1ないし3の非晶質および結晶質の繊維状、鱗状および球状のニッケルめっきの形状による透過型電子顕微鏡(TEM)画像である。
図3の上段に示したとおり、ナノカーボンの表面にめっきされている非晶質の繊維状、鱗状、球状のニッケルめっき層を確認することができる。また、図3の下段に示したとおり、結晶質の繊維状、鱗状、球状のニッケルめっき層を確認することができる。SEM画像を通じて、非晶質めっき層は、高温熱処理を通じて表面の形態が変化することを確認することができた。
Example 4: A semiconducting SWCNT bundle was immersed in a nickel-coated ethanol solution of a SWCNT bundle, subjected to ultrasonic treatment for 30 minutes (cleaning step), and then the SWCNT bundle was immersed in a [PdCl 2 + HCl + H 2 O] solution. Sonicate for minutes. Thereafter, the SWCNT bundle is immersed in a 0.1 mol SnCl 2 /0.1 mol HCl solution for several seconds to be sensitized, immersed in a concentrated sulfuric acid solution, subjected to ultrasonic treatment for 3 minutes, and then SX-A, SX- After dipping in a nickel plating solution containing M and H 2 O, the mixture was stirred for 10 minutes at 200 rpm and 90 ° C. to produce a nickel-coated SWCNT bundle.
Test Example: Evaluation of Characteristics of Nickel-Coated CNF SEM analysis and TEM analysis were performed on the amorphous and crystalline Ni-P coated CNF obtained in Examples 1 to 3.
FIG. 3 is a scanning electron microscope (SEM) image of the amorphous and crystalline fibrous, scale-like, and spherical nickel plating shapes of Examples 1 to 3, and FIG. It is a transmission electron microscope (TEM) image by the shape of amorphous and crystalline fibrous, scale-like, and spherical nickel plating.
As shown in the upper part of FIG. 3, amorphous fibrous, scale-like, and spherical nickel plating layers plated on the nanocarbon surface can be confirmed. Moreover, as shown in the lower part of FIG. 3, crystalline fibrous, scale-like, and spherical nickel plating layers can be confirmed. Through the SEM image, it was confirmed that the surface morphology of the amorphous plating layer changed through high-temperature heat treatment.

また、図4に示したとおり、TEM分析の結果、ナノカーボンに積層されているNi−Pめっき層の厚さおよび積層された形態を断面積で確認することができた。
さらに、実施例1ないし3の非晶質および結晶質の繊維状、鱗状、球状のNi−PコーティングされたCNFに対してTGA分析を行った。図5は、実施例1ないし3の非晶質の繊維状、鱗状および球状のニッケルめっきの形状に応じた熱的特性を分析した熱量分析(TGA)の結果である。
図5に示したとおり、めっき層の形態に応じて熱的特性が異なり、ナノカーボンの表面にめっき層の分布が多いほど熱的に安定していることを確認することができた。
図6は、実施例1ないし3の400℃、エアー雰囲気で、3時間高温熱処理を通じて生成された結晶質の繊維状、鱗状および球状のニッケルめっきの形状に応じた熱的特性を分析した熱量分析(TGA)の結果である。
図6に示したとおり、めっき層が結晶質化されることにより、熱的に安定した状態になることを確認することができた。
Moreover, as shown in FIG. 4, as a result of TEM analysis, the thickness and the laminated form of the Ni—P plating layer laminated on the nanocarbon could be confirmed by the cross-sectional area.
Further, TGA analysis was performed on the amorphous and crystalline fibrous, scaly, and spherical Ni-P coated CNFs of Examples 1 to 3. FIG. 5 shows the results of calorimetric analysis (TGA) in which the thermal characteristics according to the shapes of the amorphous fibrous, scale-like and spherical nickel platings of Examples 1 to 3 were analyzed.
As shown in FIG. 5, the thermal characteristics differed depending on the form of the plating layer, and it was confirmed that the more the plating layer was distributed on the nanocarbon surface, the more thermally stable.
FIG. 6 is a calorimetric analysis of the thermal characteristics according to the shape of the crystalline fibrous, scale-like and spherical nickel plating produced in Examples 1 to 3 through high-temperature heat treatment for 3 hours at 400 ° C. in an air atmosphere. It is a result of (TGA).
As shown in FIG. 6, it was confirmed that the plated layer was crystallized to be in a thermally stable state.

Claims (12)

ナノカーボンを溶媒中で洗浄したり熱酸化処理して不純物を除去する第1ステップと、
前記洗浄または熱酸化処理されたナノカーボンをパラジウム(Pd)含有溶液に浸漬し、ナノカーボンの表面に活性化されたパラジウム(Pd)核を形成させる第2ステップと、
前記パラジウム(Pd)核が形成されたナノカーボンを強酸処理する第3ステップと、
前記強酸処理されたナノカーボンを無電解ニッケルめっき液に浸漬し、ナノカーボンの表面にニッケルめっき層を形成する第4ステップと、
前記ニッケルめっき層が形成されたナノカーボンを高温熱処理して結晶化する第5ステップとを含むことを特徴とする無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。
A first step of removing impurities by washing the nanocarbon in a solvent or performing a thermal oxidation treatment;
A second step of immersing the washed or thermally oxidized nanocarbon in a palladium (Pd) -containing solution to form activated palladium (Pd) nuclei on the surface of the nanocarbon;
A third step of treating the nanocarbon with the palladium (Pd) nucleus formed thereon with a strong acid;
A fourth step of immersing the nanocarbon treated with the strong acid in an electroless nickel plating solution to form a nickel plating layer on the surface of the nanocarbon;
And a fifth step of crystallizing the nanocarbon on which the nickel plating layer has been formed by high-temperature heat treatment. A method for producing nickel-coated nanocarbon using an electroless plating method.
前記ナノカーボンは、カーボンナノファイバー(CNF)、多重壁炭素ナノチューブ(MWCNT)、三重壁炭素ナノチューブ(TWCNT)、二重壁炭素ナノチューブ(DWCNT), 金属性単一壁炭素ナノチューブ(SWCNT)、半導体性単一壁炭素ナノチューブ(SWCNT)または単一壁炭素ナノチューブ(SWCNT)バンドル(bundle)であることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   The nanocarbon is carbon nanofiber (CNF), multi-walled carbon nanotube (MWCNT), triple-walled carbon nanotube (TWCNT), double-walled carbon nanotube (DWCNT), metallic single-walled carbon nanotube (SWCNT), semiconducting The method for producing nickel-coated nanocarbon using the electroless plating method according to claim 1, wherein the method is a single-wall carbon nanotube (SWCNT) or a single-wall carbon nanotube (SWCNT) bundle. 前記第1ステップは、ナノカーボンを有機溶媒または酸水溶液中で超音波で洗浄するステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   2. The method of manufacturing nickel-coated nanocarbon using an electroless plating method according to claim 1, wherein the first step is a step of ultrasonically cleaning the nanocarbon in an organic solvent or an acid aqueous solution. 前記第1ステップは、400〜600℃で30分〜5時間空気中の熱酸化処理を行うステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   2. The nickel-coated nanocarbon is produced using the electroless plating method according to claim 1, wherein the first step is a thermal oxidation treatment in air at 400 to 600 ° C. for 30 minutes to 5 hours. how to. 前記ナノカーボンは、半導体性単一壁炭素ナノチューブ(SWCNT)または単一壁炭素ナノチューブ(SWCNT)バンドル(bundle)であり、第2ステップの後に、スズ(Sn)含有溶液に半導体性ナノカーボンを浸漬し、スズイオン(Sn2+)を半導体性ナノカーボンの表面に吸着させて水洗するステップを追加的に含むことを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。 The nanocarbon is a semiconducting single-walled carbon nanotube (SWCNT) or a single-walled carbon nanotube (SWCNT) bundle, and after the second step, the semiconducting nanocarbon is immersed in a tin (Sn) -containing solution. The method further comprises the step of adsorbing tin ions (Sn 2+ ) on the surface of the semiconducting nanocarbon and washing with water, thereby producing nickel-coated nanocarbon using the electroless plating method according to claim 1. Method. 前記第3ステップは、パラジウム(Pd)核が形成されたナノカーボンを強酸で処理し、精製されたパラジウム(Pd)を析出するステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   2. The electroless plating method according to claim 1, wherein the third step is a step of treating the nanocarbon having a palladium (Pd) nucleus formed with a strong acid to precipitate purified palladium (Pd). A method for producing nickel-coated nanocarbons using bismuth. 前記第4ステップは、無電解ニッケルめっき液が常温タイプのニッケルめっき液の場合、20〜40℃の範囲で5〜20分間進行するステップであり、高温タイプのニッケルめっき液の場合、70〜100℃で1〜10分間進行するステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   The fourth step is a step that proceeds for 5 to 20 minutes in the range of 20 to 40 ° C. when the electroless nickel plating solution is a normal temperature type nickel plating solution, and 70 to 100 when the high temperature type nickel plating solution is used. The method for producing nickel-coated nanocarbon using the electroless plating method according to claim 1, which is a step of proceeding at 1 ° C. for 1 to 10 minutes. 前記第4ステップにおいて、pHは4〜6に維持することを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   The method for producing nickel-coated nanocarbon using the electroless plating method according to claim 1, wherein the pH is maintained at 4 to 6 in the fourth step. 前記第4ステップは、パラジウム(Pd)の濃度0.4〜1g/L、ニッケル(Ni)めっき液の濃度5〜10g/L、蒸着時間10〜15分、反応温度70〜80℃、pH4〜5で進行することにより、繊維状のニッケルめっき層を形成するステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   The fourth step includes palladium (Pd) concentration of 0.4 to 1 g / L, nickel (Ni) plating solution concentration of 5 to 10 g / L, deposition time of 10 to 15 minutes, reaction temperature of 70 to 80 ° C., pH of 4 to 4 The method for producing nickel-coated nanocarbon using the electroless plating method according to claim 1, wherein the step is 5 to form a fibrous nickel plating layer. 前記第4ステップは、パラジウム(Pd)の濃度0.4〜1g/L、ニッケル(Ni)めっき液の濃度5〜10g/L、蒸着時間5〜10分、反応温度80〜100℃、pH5〜6で進行することにより、鱗状のニッケルめっき層を形成するステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   The fourth step includes palladium (Pd) concentration of 0.4 to 1 g / L, nickel (Ni) plating solution concentration of 5 to 10 g / L, vapor deposition time of 5 to 10 minutes, reaction temperature of 80 to 100 ° C., pH of 5 to 5. The method for producing nickel-coated nanocarbon by using the electroless plating method according to claim 1, wherein the step is a step of forming a scale-like nickel plating layer by proceeding in 6. 前記第4ステップは、パラジウム(Pd)の濃度0.125〜0.2g/L、ニッケル(Ni)めっき液の濃度5〜10g/L、蒸着時間5〜10分、反応温度80〜100℃、pH5〜6で進行することにより、球状のニッケルめっき層を形成するステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。   In the fourth step, the concentration of palladium (Pd) is 0.125 to 0.2 g / L, the concentration of nickel (Ni) plating solution is 5 to 10 g / L, the deposition time is 5 to 10 minutes, the reaction temperature is 80 to 100 ° C., The method for producing nickel-coated nanocarbon using the electroless plating method according to claim 1, wherein the step is a step of forming a spherical nickel plating layer by proceeding at pH 5-6. 前記第5ステップは、ニッケルめっき層が形成されたナノカーボンを、不活性気体雰囲気または真空雰囲気またはエアー雰囲気で、300〜700℃に3時間高温熱処理するステップであることを特徴とする請求項1記載の無電解めっき法を用いてニッケルコーティングナノカーボンを製造する方法。
The fifth step is a step of performing a high temperature heat treatment at 300 to 700 ° C. for 3 hours in an inert gas atmosphere, a vacuum atmosphere or an air atmosphere, on the nanocarbon on which the nickel plating layer is formed. The method of manufacturing nickel coating nanocarbon using the electroless-plating method of description.
JP2013010975A 2012-03-15 2013-01-24 Method for producing nickel-coated nanocarbons using electroless plating Expired - Fee Related JP5602260B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020120026650A KR101365457B1 (en) 2012-03-15 2012-03-15 Method of Manufacturing Ni-coated Nano- carbons
KR10-2012-0026650 2012-03-15

Publications (2)

Publication Number Publication Date
JP2013193954A true JP2013193954A (en) 2013-09-30
JP5602260B2 JP5602260B2 (en) 2014-10-08

Family

ID=49129666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013010975A Expired - Fee Related JP5602260B2 (en) 2012-03-15 2013-01-24 Method for producing nickel-coated nanocarbons using electroless plating

Country Status (4)

Country Link
US (1) US20130243974A1 (en)
JP (1) JP5602260B2 (en)
KR (1) KR101365457B1 (en)
CN (1) CN103303897B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074578A (en) * 2014-10-07 2016-05-12 ドンイー ホールディングス カンパニー リミテッド Metal and oxide hybrid-coated nanocarbon production process

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2655073T3 (en) * 2009-06-09 2018-02-16 Ramesh Sivarajan Coatings based on solutions of nanostructured carbon materials (NCM) on bipolar plates in fuel cells
JP6415540B2 (en) * 2013-04-21 2018-10-31 シェンジェン シェン ルイ グラフィン テクノロジー カンパニー リミテッド Carbon nanomaterial coating method
KR101495263B1 (en) 2013-06-04 2015-02-27 주식회사 동희홀딩스 Nickel Coated Nano Carbon-Aluminum Composite Casting Material and the manufacturing method for the same
WO2015012275A1 (en) * 2013-07-22 2015-01-29 独立行政法人産業技術総合研究所 Cnt metal composite material, and method for producing same
CN103708416A (en) * 2013-12-20 2014-04-09 武汉纺织大学 Preparation method for electro-conductive magnetic nanotube
CN104947094B (en) * 2014-03-27 2017-08-25 浙江德汇电子陶瓷有限公司 A kind of chemical nickel-plating liquid and its application in chemical nickel plating and a kind of wiring board
CN104195532A (en) * 2014-07-03 2014-12-10 天津大学 Preparation method of graphite sheet surface chemical plating iron-nickel alloy layer
EP3026143A1 (en) * 2014-11-26 2016-06-01 ATOTECH Deutschland GmbH Plating bath and method for electroless deposition of nickel layers
CN109136891A (en) * 2017-06-18 2019-01-04 罗奕兵 A kind of nickel-phosphor amorphous alloy composite fibre and preparation method
US11512390B2 (en) 2018-07-16 2022-11-29 Rochester Institute Of Technology Method of site-specific deposition onto a free-standing carbon article
WO2020089690A2 (en) * 2018-10-30 2020-05-07 The American University In Cairo Method for aluminum electroless deposition
JP7032348B2 (en) * 2019-03-26 2022-03-08 矢崎総業株式会社 Metal-plated carbon material and its manufacturing method
WO2022056059A1 (en) * 2020-09-09 2022-03-17 Macmoy Richard Ian Thermal-diffused metal on electroless metal or metal alloy having a phosphorous component
CN113151868B (en) * 2021-04-28 2022-08-12 西北工业大学 Porous nickel-tungsten alloy material and preparation method thereof

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201484A (en) * 1987-10-06 1989-08-14 Hitachi Ltd Chemical nickel plating liquid and method of using said liquid
JPH05101972A (en) * 1991-09-25 1993-04-23 Matsushita Electric Ind Co Ltd Method for forming electrode on ceramic
JPH08124577A (en) * 1994-08-31 1996-05-17 Sumitomo Electric Ind Ltd Manufacture of metallic porous material
JP2003246613A (en) * 2002-02-26 2003-09-02 Denso Corp Metal-added carbon material manufacturing method, and electrode material for fuel cell, catalyst carrier for chemical reaction and gas storage material obtained by using the metal-added carbon material manufactured thereby
JP2004018973A (en) * 2002-06-18 2004-01-22 Nippon Oil Corp Method for manufacturing hydrogen-absorbing carbon material, and hydrogen-absorbing method
JP2004122031A (en) * 2002-10-03 2004-04-22 Toshiba Corp Catalyst for synthesizing carbon fiber, method of producing carbon fiber, catalyst material for fuel cell, and method of producing catalyst material for fuel cell
JP2004238240A (en) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd Gas storage material, method of manufacturing the same and gas storage tank
JP2005330151A (en) * 2004-05-20 2005-12-02 Nikon Corp Carbon material having cavity layer and its producing method
JP2007152492A (en) * 2005-12-05 2007-06-21 Bridgestone Corp Metallic nanotube and method of producing the same
JP2009185378A (en) * 2008-02-05 2009-08-20 Korea Inst Of Machinery & Materials Hollow metal fiber for absorbing electromagnetic wave and its manufacturing method
JP2010037623A (en) * 2008-08-07 2010-02-18 Surface Giken Kk Plating method for carbon material and method for producing carbon material
JP2012006819A (en) * 2010-06-23 2012-01-12 Korea Inst Of Science & Technology Method for fabricating composite material comprising nano carbon and metal or ceramic
JP2012211364A (en) * 2011-03-31 2012-11-01 Erc:Kk Method for plating carbon material, and method for plating substrate containing carbon material and resin

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6406750B1 (en) * 1999-05-28 2002-06-18 Osaka Municipal Government Process of forming catalyst nuclei on substrate, process of electroless-plating substrate, and modified zinc oxide film
CN1089121C (en) * 1999-06-09 2002-08-14 冶金工业部钢铁研究总院 Chemical nickel-plating method for surface of metal material
DE60239443D1 (en) * 2001-10-24 2011-04-28 Rohm & Haas Elect Mat Stabilizers for electroless plating solutions and method of use
KR20060127584A (en) * 2005-06-08 2006-12-13 삼성전자주식회사 Method for separating of semiconductor and metal carbon nano tube
KR100721921B1 (en) * 2005-10-13 2007-05-28 주식회사 포스코 Method for manufacturing carbon nano tubes coated by transition metal elements in nanoscale for field emission based lighting source
US20080173864A1 (en) * 2007-01-20 2008-07-24 Toshiba America Research, Inc. Carbon nanotube transistor having low fringe capacitance and low channel resistance
CN100564595C (en) * 2007-05-23 2009-12-02 湖北工业大学 The method of multiple-wall carbon nanotube chemical nickel plating on surface zinc
TW201041009A (en) * 2009-05-08 2010-11-16 Univ Nat Taiwan Science Tech Fabrication method of carbon nanotube field emission cathode
KR101261184B1 (en) * 2009-07-01 2013-05-09 히타치가세이가부시끼가이샤 Coated conductive particles and method for producing same
DE102010011269B4 (en) * 2009-11-10 2014-02-13 Ami Doduco Gmbh A method of depositing a palladium layer suitable for wire bonding onto circuit traces of a circuit board and using a palladium bath in the method
CN101818337A (en) * 2009-11-16 2010-09-01 兰州理工大学 Coating method of high-density Ni layer of carbon nano tube

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201484A (en) * 1987-10-06 1989-08-14 Hitachi Ltd Chemical nickel plating liquid and method of using said liquid
JPH05101972A (en) * 1991-09-25 1993-04-23 Matsushita Electric Ind Co Ltd Method for forming electrode on ceramic
JPH08124577A (en) * 1994-08-31 1996-05-17 Sumitomo Electric Ind Ltd Manufacture of metallic porous material
JP2003246613A (en) * 2002-02-26 2003-09-02 Denso Corp Metal-added carbon material manufacturing method, and electrode material for fuel cell, catalyst carrier for chemical reaction and gas storage material obtained by using the metal-added carbon material manufactured thereby
JP2004018973A (en) * 2002-06-18 2004-01-22 Nippon Oil Corp Method for manufacturing hydrogen-absorbing carbon material, and hydrogen-absorbing method
JP2004122031A (en) * 2002-10-03 2004-04-22 Toshiba Corp Catalyst for synthesizing carbon fiber, method of producing carbon fiber, catalyst material for fuel cell, and method of producing catalyst material for fuel cell
JP2004238240A (en) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd Gas storage material, method of manufacturing the same and gas storage tank
JP2005330151A (en) * 2004-05-20 2005-12-02 Nikon Corp Carbon material having cavity layer and its producing method
JP2007152492A (en) * 2005-12-05 2007-06-21 Bridgestone Corp Metallic nanotube and method of producing the same
JP2009185378A (en) * 2008-02-05 2009-08-20 Korea Inst Of Machinery & Materials Hollow metal fiber for absorbing electromagnetic wave and its manufacturing method
JP2010037623A (en) * 2008-08-07 2010-02-18 Surface Giken Kk Plating method for carbon material and method for producing carbon material
JP2012006819A (en) * 2010-06-23 2012-01-12 Korea Inst Of Science & Technology Method for fabricating composite material comprising nano carbon and metal or ceramic
JP2012211364A (en) * 2011-03-31 2012-11-01 Erc:Kk Method for plating carbon material, and method for plating substrate containing carbon material and resin

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016074578A (en) * 2014-10-07 2016-05-12 ドンイー ホールディングス カンパニー リミテッド Metal and oxide hybrid-coated nanocarbon production process

Also Published As

Publication number Publication date
US20130243974A1 (en) 2013-09-19
CN103303897B (en) 2015-08-26
JP5602260B2 (en) 2014-10-08
KR20130104797A (en) 2013-09-25
KR101365457B1 (en) 2014-02-21
CN103303897A (en) 2013-09-18

Similar Documents

Publication Publication Date Title
JP5602260B2 (en) Method for producing nickel-coated nanocarbons using electroless plating
KR101591454B1 (en) Manufacturing method for Metal and Oxide hybrid coated Nano Carbon
Ang et al. Decoration of activated carbon nanotubes with copper and nickel
US20100047564A1 (en) Carbon nanotube composites
KR101305072B1 (en) Carbon nanofiber-metal composite and method for preparing the same
He et al. Electroless nickel–phosphorus plating on silicon carbide particles for metal matrix composites
TW201408591A (en) Preparing method for coiled nano carbon material, substrate with coiled nano carbon layer and coiled nano carbon material thereof
KR101641031B1 (en) Method for treating substrate that supports catalyst particles for plating processing
KR101574307B1 (en) Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property
WO2015093759A1 (en) Method of manufacturing carbon nanostructure having 3d structure of directly connected carbon supports and carbon nanotubes
US10156015B2 (en) Method for coating of carbon nanomaterials
TWI540222B (en) Method of metallization for surface of substrate and substrate manufactured by the same
Gharde et al. The importance of electroless metallic build-up on surface modified substrates for multifunctional engineering applications: a recent progress update
JP5303483B2 (en) Ozone decomposition removal catalyst, method for producing the same, and ozone decomposition removal method using the same
Córdoba et al. Growth and characterization of electroless deposited Cu films on carbon nanofibers
Zhang et al. Unraveling the multilayer structure formation mechanism of copper coating for the metallization of poly para-phenylene terephthalamide fibers
CN114096701A (en) Method for preparing graphene fiber
Lee et al. Electroless Ni-P metallization on palladium activated polyacrylonitrile (PAN) fiber by using a drying process
CN112063998B (en) Preparation method of ultrathin copper/graphene composite foil
Zheng et al. Preparation of nickel-copper bilayers coated on single-walled carbon nanotubes
KR101365141B1 (en) Method for the preparation of size and density controlled metal nanoparticle catalysts for carbon nanotube and metal nanoparticle catalysts prepared by the same
Vitry et al. Polyalloyed Electroless Nickel Plating
KR101526218B1 (en) Bipolar plate of redox flow battery and preparing method thereof
JP5498420B2 (en) Ozone decomposition removal catalyst, method for producing the same, and ozone decomposition removal method using the same
KR101185009B1 (en) Manufacturing method of metal composite carbon nano tube

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140204

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140507

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140805

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140819

R150 Certificate of patent or registration of utility model

Ref document number: 5602260

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees