KR101365457B1 - Method of Manufacturing Ni-coated Nano- carbons - Google Patents

Method of Manufacturing Ni-coated Nano- carbons Download PDF

Info

Publication number
KR101365457B1
KR101365457B1 KR1020120026650A KR20120026650A KR101365457B1 KR 101365457 B1 KR101365457 B1 KR 101365457B1 KR 1020120026650 A KR1020120026650 A KR 1020120026650A KR 20120026650 A KR20120026650 A KR 20120026650A KR 101365457 B1 KR101365457 B1 KR 101365457B1
Authority
KR
South Korea
Prior art keywords
nanocarbon
nickel
electroless
coated
immersing
Prior art date
Application number
KR1020120026650A
Other languages
Korean (ko)
Other versions
KR20130104797A (en
Inventor
정승일
김주형
김재덕
이상복
이상관
이진우
Original Assignee
한국기계연구원
(주) 디에이치홀딩스
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국기계연구원, (주) 디에이치홀딩스 filed Critical 한국기계연구원
Priority to KR1020120026650A priority Critical patent/KR101365457B1/en
Priority to US13/745,959 priority patent/US20130243974A1/en
Priority to JP2013010975A priority patent/JP5602260B2/en
Priority to CN201310045558.7A priority patent/CN103303897B/en
Publication of KR20130104797A publication Critical patent/KR20130104797A/en
Application granted granted Critical
Publication of KR101365457B1 publication Critical patent/KR101365457B1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • C23C18/1639Substrates other than metallic, e.g. inorganic or organic or non-conductive
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1635Composition of the substrate
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1689After-treatment
    • C23C18/1692Heat-treatment
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/1851Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material
    • C23C18/1872Pretreatment of the material to be coated of surfaces of non-metallic or semiconducting in organic material by chemical pretreatment
    • C23C18/1886Multistep pretreatment
    • C23C18/1893Multistep pretreatment with use of organic or inorganic compounds other than metals, first
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites

Abstract

본 발명은 나노카본을 용매 중에서 세척하거나 열산화처리하여 불순물을 제거하는 제1 단계; 상기 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본의 표면에 활성화된 Pd핵을 형성하게 하는 제2 단계; 상기 Pd핵이 형성된 나노카본을 강산처리하는 제3 단계; 상기 강산처리된 나노카본을 무전해 니켈 도금액에 침지하여 나노카본 표면에 니켈 도금층을 형성하는 제4 단계; 및 상기 니켈 도금층이 형성된 나노카본을 고온열처리하여 결정화하는 제5 단계를 포함하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법에 관한 것이다.The present invention comprises a first step of removing impurities by washing or thermal oxidation of nanocarbon in a solvent; A second step of immersing the washed or thermally oxidized nanocarbon in a solution containing Pd to form activated Pd nuclei on the surface of the nanocarbon; A third step of strong acid treatment of the nano-carbon on which the Pd nucleus is formed; A fourth step of forming a nickel plating layer on the surface of the nanocarbon by immersing the strong acid treated nanocarbon in an electroless nickel plating solution; And it relates to a method for producing a nickel-coated nanocarbon using an electroless plating method comprising a fifth step of crystallizing the nano-carbon on which the nickel plating layer is formed by high temperature heat treatment.

Description

니켈 코팅 나노카본의 제조 방법{Method of Manufacturing Ni-coated Nano- carbons} Method of Manufacturing Ni-coated Nano-carbons

본 발명은 니켈이 코팅된 나노카본을 제조하는 방법에 관한 것으로, 보다 상세하게는, 무전해 도금법의 공정변수 제어를 통해 형상이 제어된 니켈 코팅 나노카본을 제조하는 방법에 관한 것이다.The present invention relates to a method of manufacturing nickel-coated nanocarbon, and more particularly, to a method of manufacturing a nickel-coated nanocarbon whose shape is controlled by controlling process variables of the electroless plating method.

나노카본은 높은 강도와 탄성계수, 우수한 열 및 전기전도도 등 뛰어난 기계적, 물리적 특성을 갖고 있어, 최근에는 나노카본을 금속재료로 코팅하여 나노카본/금속 복합체로 여러 분야에 응용하고자 하는 시도가 이루어지고 있다. 예를 들어, 니켈 코팅된 나노카본(Ni-coated Nano-carbons)은 전자파 차폐소재, 원역장용 흡수소재로서 탁월한 성능을 나타내므로 나노카본에 니켈을 코팅하려는 시도가 이루어지고 있다.Nanocarbon has excellent mechanical and physical properties such as high strength, modulus of elasticity, excellent thermal and electrical conductivity. Recently, an attempt has been made to apply nanocarbon / metal composite to various fields by coating nanocarbon with metallic materials. have. For example, nickel-coated nano-carbons exhibit excellent performance as electromagnetic wave shielding materials and absorbing materials for far field, and thus, attempts are being made to coat nickel on nanocarbons.

최근에는, 나노카본에 니켈을 코팅하는 방법으로 무전해 도금법이 많이 사용되고 있다. In recent years, electroless plating has been widely used as a method of coating nickel on nanocarbon.

예를 들어, 대한민국 공개특허 제2006-0073019호는 무전해도금 방식으로 카본나노튜브에 금속을 코팅하여 카본나노튜브 금속의 복합체를 만드는 방법을 개시하고 있다. For example, Korean Laid-Open Patent Publication No. 2006-0073019 discloses a method of making a composite of carbon nanotube metal by coating a metal on the carbon nanotube by an electroless plating method.

한편, 나노카본의 대표적인 예인 탄소나노튜브는 흑연면(graphite sheet)이 나노 크기 직경의 실린더 형태를 가지며, sp2 결합 구조를 갖는다. 이 흑연면이 말리는 각도 및 구조에 따라서 나노카본은 도체 또는 반도체의 특성을 나타낸다. 이러한 나노카본은 벽을 이루고 있는 결합 수에 따라 단일벽 탄소나노튜브(SWCNT), 이중벽 탄소나노튜브(DWCNT), 다중벽 탄소나노튜브(MWCNT) 및 다발형 탄소나노튜브(rope carbon nanotube)로 분류될 수 있다. On the other hand, carbon nanotubes, which are representative examples of nanocarbons, have a graphite sheet having a nano size diameter cylinder shape and a sp2 bonding structure. The nanocarbon exhibits the characteristics of a conductor or a semiconductor depending on the angle and structure at which the graphite surface is dried. These nanocarbons are classified into single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes (DWCNTs), multi-walled carbon nanotubes (MWCNTs), and bundle carbon nanotubes, depending on the number of bonds that form the walls. Can be.

이중 SWCNT는 금속적인 특성과 반도체적인 특성을 함께 가지고 있어 다양한 전기적, 화학적, 물리적 및 광학적 특성을 나타낸다. 일반적으로 SWCNT 합성시 금속성 SWCNT와 반도체성 SWCNT가 필연적으로 혼합된다.SWCNTs have a combination of metallic and semiconducting properties, resulting in various electrical, chemical, physical and optical properties. In general, in the synthesis of SWCNT, metallic SWCNT and semiconductor SWCNT are inevitably mixed.

CNF(Carbon nano fiber), MWCNT, TWCNT, DWCNT, 금속성 SWCNT 등 금속성 나노카본과, 반도체성 SWCNT 내지 SWCNT 번들 등 반도체성 나노카본은 그 전기적 성질이 다르다. 무전해 도금법은 피도금체 표면상에서 화학반응이 이루어지는 것이므로 무전해 도금법을 적용하여 나노카본에 금속을 코팅함에 있어서 피도금체의 전기적 성질에 따른 차별화된 프로세스가 요구되고 있으나 종래 기술은 이에 대한 해답을 제공하지 못하고 있다.Metal nanocarbons, such as carbon nanofibers (CNF), MWCNTs, TWCNTs, DWCNTs, and metallic SWCNTs, and semiconducting nanocarbons, such as semiconducting SWCNTs to SWCNT bundles, have different electrical properties. The electroless plating method is a chemical reaction on the surface of the plated body. Therefore, in applying the electroless plating method to coating the metal on the nanocarbon, a differentiated process is required according to the electrical properties of the plated body. It does not provide.

본 발명은 무전해 도금법을 이용하여 나노카본에 니켈을 코팅함에 있어서, 나노카본의 전기적 성질에 따라 차별화된 코팅 방법을 제공하고자 한다.The present invention is to provide a coating method that is differentiated according to the electrical properties of the nanocarbon in the coating of nickel on the nanocarbon using an electroless plating method.

보다 구체적으로, 본 발명은 무전해 도금법을 이용하여 금속성 나노카본 즉, CNF, MWCNT, TWCNT 또는 DWCNT 및 금속성 SWCNT에 니켈을 코팅하는 방법을 제공하고자 한다.More specifically, the present invention is to provide a method for coating nickel on metallic nanocarbon, that is, CNF, MWCNT, TWCNT or DWCNT and metallic SWCNT by using an electroless plating method.

또한, 본 발명은 무전해 도금법을 이용하여 반도체성 나노카본 즉, 반도체성 SWCNT 및 SWCNT 번들(bundle)에 니켈을 코팅하는 방법을 제공하고자 한다.In addition, the present invention is to provide a method for coating nickel on the semiconducting nanocarbon, that is, the semiconducting SWCNT and SWCNT bundle using an electroless plating method.

또한, 본 발명은 무전해 도금법을 이용하여 나노카본에 형태가 제어된 니켈 코팅을 형성하는 방법을 제공하고자 한다.In addition, the present invention is to provide a method of forming a nickel-controlled coating on the nanocarbon using an electroless plating method.

상기 목적을 달성하기 위해, 본 발명은 In order to achieve the above object,

나노카본을 용매 중에서 세척하거나 열산화처리하여 불순물을 제거하는 제1 단계;A first step of removing impurities by washing or thermal oxidation of the nanocarbon in a solvent;

상기 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본의 표면에 활성화된 Pd핵을 형성하게 하는 제2 단계;A second step of immersing the washed or thermally oxidized nanocarbon in a solution containing Pd to form activated Pd nuclei on the surface of the nanocarbon;

상기 Pd핵이 형성된 나노카본을 강산처리하는 제3 단계;A third step of strong acid treatment of the nano-carbon on which the Pd nucleus is formed;

상기 강산처리된 나노카본을 무전해 니켈도금액에 침지하여 나노카본 표면에 니켈 도금층을 형성하는 제4 단계; 및A fourth step of forming a nickel plating layer on the surface of the nanocarbon by immersing the strong acid treated nanocarbon in an electroless nickel plating solution; And

상기 니켈 도금층이 형성된 나노카본을 고온열처리하여 결정화하는 제5 단계를 포함하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법을 제공한다.It provides a method for producing a nickel-coated nanocarbon using an electroless plating method comprising a fifth step of crystallizing the nano-carbon on which the nickel plating layer is formed by high temperature heat treatment.

본 발명에 따르면 무전해 도금법을 이용하여 나노카본의 전기적 성질을 반영하여 간단하고 편리하게 대량으로 다양한 형태의 금속 코팅이 형성된 나노카본을 제조할 수 있다.According to the present invention, by using the electroless plating method, it is possible to manufacture nanocarbon in which various types of metal coatings are formed in large quantities simply and conveniently by reflecting the electrical properties of the nanocarbon.

도 1은 본 발명의 개념도이다.
도 2는 열처리 전후 CNF의 TGA 분석 결과이다.
도 3은 실시예 1 내지 3의 비정질 및 결정질의 섬유상, 비늘상 및 구형의 니켈 도금 형상에 따른 SEM 이미지 이다.
도 4는 실시예 1 내지 3의 비정질 및 결정질의 섬유상, 비늘상 및 구형의 니켈 도금 형상에 따른 TEM 이미지 이다.
도 5는 실시예1 내지 3의 비정질의 섬유상, 비늘상 및 구형의 니켈 도금 형상에 따른 열적 특성을 분석한 TGA 분석 결과이다.
도 6은 실시예 1 내지 3의 400℃, Air분위기에서 3시간 동안 고온열처리를 통하여 생성된 결정질의 섬유상, 비늘상 및 구형의 니켈 도금 형상에 따른 열적 특성을 분석한 TGA 분석 결과이다.
1 is a conceptual diagram of the present invention.
2 shows the results of TGA analysis of CNF before and after heat treatment.
3 is an SEM image of the amorphous and crystalline fibrous, scaly and spherical nickel plating shapes of Examples 1 to 3. FIG.
4 is a TEM image according to the amorphous and crystalline fibrous, scaly and spherical nickel plating shapes of Examples 1 to 3. FIG.
5 is a TGA analysis result of analyzing the thermal properties according to the amorphous fibrous, scaly and spherical nickel plating of Examples 1 to 3.
6 is a TGA analysis result of analyzing the thermal characteristics according to the crystalline fibrous, scaly and spherical nickel-plated shape produced by the high temperature heat treatment for 3 hours at 400 ℃, Air atmosphere of Examples 1 to 3.

이하, 본 발명의 구성 및 작용을 보다 상세히 설명한다.Hereinafter, the configuration and operation of the present invention in more detail.

본 발명은, According to the present invention,

나노카본을 용매 중에서 세척하거나 열산화처리하여 불순물을 제거하는 제1 단계;A first step of removing impurities by washing or thermal oxidation of the nanocarbon in a solvent;

상기 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본의 표면에 활성화된 Pd핵을 형성하게 하는 제2 단계;A second step of immersing the washed or thermally oxidized nanocarbon in a solution containing Pd to form activated Pd nuclei on the surface of the nanocarbon;

상기 Pd핵이 형성된 나노카본을 강산처리하는 제3 단계;A third step of strong acid treatment of the nano-carbon on which the Pd nucleus is formed;

상기 강산처리된 나노카본을 무전해 니켈 도금액에 침지하여 나노카본 표면에 니켈 도금층을 형성하는 제4 단계; 및A fourth step of forming a nickel plating layer on the surface of the nanocarbon by immersing the strong acid treated nanocarbon in an electroless nickel plating solution; And

상기 니켈 도금층이 형성된 나노카본을 고온열처리하여 결정화하는 제5 단계를 포함하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법을 제공한다.It provides a method for producing a nickel-coated nanocarbon using an electroless plating method comprising a fifth step of crystallizing the nano-carbon on which the nickel plating layer is formed by high temperature heat treatment.

본 발명에서 나노카본은 CNF, MWCNT, TWCNT, DWCNT 및 금속성 SWCNT 등의 금속성 나노카본과, 반도체성 SWCNT 및 SWCNT 번들(bundle) 등의 반도체성 나노카본으로 분류한다.In the present invention, the nanocarbon is classified into metallic nanocarbon such as CNF, MWCNT, TWCNT, DWCNT and metallic SWCNT, and semiconducting nanocarbon such as semiconducting SWCNT and SWCNT bundle.

본 발명에서 니켈 코팅은 무전해 도금 시 사용되는 환원제의 종류에 따라 Ni-P 또는 Ni-B 코팅을 포함하는 의미로 사용된다. 즉 Ni-P 코팅은 P-타입 환원제를 이용하여 니켈을 무전해 도금할 경우에 형성되고, Ni-B 코팅은 B-타입 환원제를 이용할 경우에 형성된다.
In the present invention, the nickel coating is used to include Ni-P or Ni-B coating depending on the type of reducing agent used in electroless plating. That is, Ni-P coating is formed when electroless plating nickel using a P-type reducing agent, Ni-B coating is formed when using a B-type reducing agent.

본 발명의 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법에서, 제1 단계는, 순도 향상을 목적으로, 나노카본을 유기용매 또는 산 수용액 중에서 초음파로 나노카본을 세척하는 단계이다. 예를 들어 나노카본을 알코올 등의 유기용매 또는 산수용액 등에 침지시키고 초음파처리를 함으로써 비정질 탄소 등의 불순물을 제거할 수 있다.In the method for preparing nickel-coated nanocarbon using the electroless plating method of the present invention, the first step is to wash the nanocarbon with ultrasonic waves in an organic solvent or an aqueous acid solution for the purpose of improving purity. For example, the nanocarbon can be immersed in an organic solvent or an acid solution such as alcohol and sonicated to remove impurities such as amorphous carbon.

다르게는, 상기 제1 단계는 400~600℃에서 30분 내지 5시간 동안 공기 중 열산화처리를 하는 단계이다. 도 2를 보면, 400~600℃에서 3시간 동안 공기 중 열산화처리를 한 결과 CNF의 순도가 87중량%에서 99중량%로 증가하였다. 따라서, 알코올 등의 용매를 사용하여 CNF를 세척하는 공정을 열산화처리로 대체할 수 있다. 열산화처리 공정은 세척 공정과 비교하면 용매 등의 사용이 감소하여 경제적 및 환경적 면에서 유리하다.
Alternatively, the first step is a step of thermal oxidation in air for 30 minutes to 5 hours at 400 ~ 600 ℃. Referring to Figure 2, the thermal oxidation treatment in air at 400 ~ 600 ℃ for 3 hours, the purity of CNF increased from 87% by weight to 99% by weight. Therefore, the process of washing CNF with a solvent such as alcohol can be replaced by thermal oxidation. The thermal oxidation process is advantageous in terms of economic and environmental reasons because the use of solvents and the like is reduced compared to the washing process.

상기 제2 단계는 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본 표면에서 Pd 이온의 환원이 일어나게 하여 나노카본 표면에 활성화된 Pd 핵을 생성시키는 단계이다.The second step is a step of immersing the washed or thermally oxidized nanocarbon in a Pd-containing solution to reduce the Pd ion on the nanocarbon surface to generate an activated Pd nucleus on the nanocarbon surface.

무전해 도금은 나노카본의 활성화된 표면에서만 진행되고 나노카본 표면의 활성화 정도는 무전해 도금층의 밀착력에 영향을 미치게 된다.Electroless plating proceeds only on the activated surface of the nanocarbon, and the degree of activation of the nanocarbon surface affects the adhesion of the electroless plating layer.

따라서, 본 단계에서는 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본 표면에서 Pd 이온의 환원이 일어나게 하여 나노카본 표면에 활성화된 Pd 핵을 생성시킴으로써, 나노카본 표면을 활성화할 수 있다.
Accordingly, in this step, the nanocarbon surface is activated by immersing the washed or thermally oxidized nanocarbon in a Pd-containing solution to reduce Pd ions on the nanocarbon surface to generate an activated Pd nucleus on the nanocarbon surface. can do.

상기 나노카본이 반도체성 SWCNT 및 SWCNT 번들(bundle)인 경우, Sn이 함유된 용액에 반도체성 나노카본을 침지하여 Sn2 +이온을 반도체성 나노카본 표면에 흡착시키고 수세하는 단계, 즉 예민화 처리 단계를 추가로 포함한다.When the nano-carbon is a semiconducting SWCNT and SWCNT bundle (bundle), the method comprising soaking the semiconducting nano-carbon in the Sn-containing solution, adsorbing Sn 2 + ions in the semiconducting nano-carbon surface and washing with water, or sensitizing treatment It further comprises a step.

나노카본이 CNF, MWCNT, TWCNT, DWCNT 및 금속성 SWCNT인 경우는 예민화 처리 단계가 필요 없으나, 반도체성 SWCNT 및 SWCNT 번들(bundle)인 경우 활성화처리 전 예민화 처리를 한다.
If the nanocarbon is CNF, MWCNT, TWCNT, DWCNT, and metallic SWCNT, no sensitization step is required, but in the case of semiconducting SWCNTs and SWCNT bundles, the sensitization process is performed before activation.

상기 제3 단계는 가속화 처리 단계로서, 금속성 나노카본(CNF, MWCNT, TWCNT, DWCNT 및 금속성 SWCNT)의 경우 정제된 Pd를 석출하기 위해 Pd핵이 형성된 나노카본을 강산으로 처리하는 단계이다. The third step is an accelerated treatment step, in which, in the case of metallic nanocarbons (CNF, MWCNT, TWCNT, DWCNT, and metallic SWCNT), nanocarbons having Pd nuclei are formed with strong acid to precipitate purified Pd.

또한, 상기 제3 단계는 나노카본이 반도체성(반도체성 SWCNT 및 SWCNT 번들)인 경우 예민화처리 및 활성화처리 후에 표면에 남아있는 Sn 성분을 제거하고 정제된 Pd을 석출하는 단계이다. 즉, 반도체성 나노카본은 예민화처리 및 활성화처리에 의해 Sn2 + + Pd2 + = Sn4 + + Pd0 반응이 진행되어 표면에 Pd핵이 형성되고 Sn4 +가 남게 되는데 이를 강산으로 처리함으로써 제거한다.
In addition, in the third step, when the nanocarbon is semiconducting (semiconductor SWCNT and SWCNT bundle), the Sn component remaining on the surface after the sensitization and activation process is removed and the purified Pd is precipitated. In other words, the semiconducting nanocarbon is Sn 2 + + Pd 2 + = Sn 4 + + Pd 0 by sensitization and activation . The reaction proceeds the Pd nuclei on the surface there is formed, leaving a Sn + 4 are removed by treating them with a strong acid.

상기 제4 단계는 강산처리된 나노카본을 무전해 니켈도금액에 침지하여 나노카본 표면에 니켈 도금층을 형성하는 단계이다. The fourth step is a step of forming a nickel plating layer on the surface of the nanocarbon by immersing the strong acid treated nanocarbon in an electroless nickel plating solution.

나노카본 표면에 Pd 촉매가 활성화가 되었더라도 자기 촉매 도금 반응(Auto catalytic plating)이 계속 진행되기 위해서는 일정온도 이상을 유지하여야 하며, 나아가 온도가 증가할수록 도금 반응의 속도는 증가한다. 니켈도금액은 상온타입 니켈도금액(40oC 이하에서 반응)과 고온타입 니켈도금액(100oC 이하에서 반응)으로 나눌 수 있다. Even if the Pd catalyst is activated on the surface of the nanocarbon, in order to proceed with auto catalytic plating, the temperature must be maintained above a certain temperature. Furthermore, as the temperature increases, the rate of the plating reaction increases. The nickel plating solution may be classified into a room temperature type nickel plating solution (reacted at 40 ° C. or less) and a high temperature type nickel plating solution (reacted at 100 ° C. or less).

또한, 도금 속도는 pH 조절에 따라 조절될 수 있다. 즉, pH 는 4.8을 기준으로 하여 이보다 높을수록 도금 속도는 증가한다. In addition, the plating rate may be adjusted by adjusting the pH. In other words, the plating rate increases as the pH is higher than 4.8.

도금 두께는 도금 시간에 비례해서 증가하므로, 타겟 두께에 따라 도금 속도는 조절된다.Since the plating thickness increases in proportion to the plating time, the plating speed is controlled according to the target thickness.

본 발명에서 상기 제4 단계는 상온타입의 니켈도금액인 경우 20~40oC 범위에서 5~20분, 고온타입의 니켈도금액인 경우, 70~100℃에서 1~10분 동안 진행되는 것이 바람직하다.In the present invention, the fourth step is 5 to 20 minutes in the range of 20 to 40 o C in the case of a room temperature type nickel plating solution, and 1 to 10 minutes in the case of a high temperature type nickel plating solution and 70 to 100 ° C. desirable.

또한, 상기 제4 단계에서 pH는 4 내지 6으로 유지되는 것이 바람직하다. 상기 범위 내로 pH가 유지되는 경우에 무전해 니켈도금액이 보다 안정적으로 유지될 수 있으며 도금 속도가 빠르고 도금 효율이 우수하다.
In addition, the pH is preferably maintained at 4 to 6 in the fourth step. When the pH is maintained within the above range, the electroless nickel plating solution can be more stably maintained, and the plating rate is fast and the plating efficiency is excellent.

본 발명에 따른 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법은 도금액의 농도, 증착시간, 반응온도, 도금액의 pH 등을 제어하여 금속의 적재량, 형상, 분포밀도, 파티클 사이즈를 제어할 수 있다.  In the method for preparing nickel-coated nanocarbon using the electroless plating method according to the present invention, the metal loading, shape, distribution density, particle size can be controlled by controlling the concentration of the plating solution, the deposition time, the reaction temperature, the pH of the plating solution, and the like. Can be.

도금액은 인 함량에 따라 고인 도금액(10~13%), 중인 도금액(7~9%), 저인 도금액(1~5%)으로 분류된다. 인 함유량이 증가할 수록, 도금 속도는 감소되고, 내식성은 증가하며, 내열성은 감소한다.Plating solutions are classified into high plating solutions (10-13%), middle plating solutions (7-9%), and low plating solutions (1-5%), depending on the phosphorus content. As the phosphorus content increases, the plating rate decreases, the corrosion resistance increases, and the heat resistance decreases.

본 발명에 따르면 무전해 도금 용액농도, 증착시간, 반응온도, pH 등의 공정변수 제어를 통해 Ni-P, Ni-B 또는 Ni 적재량, Ni-P, Ni-B 또는 Ni의 형상, 분포밀도 또는 파티클 사이즈를 제어할 수 있다. According to the present invention, by controlling process variables such as electroless plating solution concentration, deposition time, reaction temperature, pH, and the like, Ni-P, Ni-B or Ni loading amount, Ni-P, Ni-B or Ni shape, distribution density or You can control the particle size.

특히, 공정변수 제어를 통해 나노카본 표면에 섬유상(fibrous) Ni-P 또는 Ni-B 코팅, 비늘상(scalelike structure) Ni-P 또는 Ni-B 코팅, 구형(spherical) Ni-P 또는 Ni-B 코팅 등 여러 형태의 Ni-P 또는 Ni-B 코팅을 할 수 있다. In particular, fibrous Ni-P or Ni-B coatings, scalelike structure Ni-P or Ni-B coatings, spherical Ni-P or Ni-B coatings on nanocarbon surfaces through process variable control Various types of Ni-P or Ni-B coating, such as coating, can be performed.

도 1에서 보는 바와 같이, 섬유상 코팅은 다량의 Pd 이온, 낮은 온도, 낮은 pH(기준 4.8) 조건에서 반응속도가 느린 경우 이루어질 수 있다.As shown in FIG. 1, the fibrous coating can be achieved when the reaction rate is slow at high Pd ions, low temperature, and low pH (reference 4.8).

또한, 비늘상 코팅은 다량의 Pd 이온, 높은 온도, 높은 pH(기준 4.8) 조건에서 반응이 급격하게 일어날 경우 이루어질 수 있다.In addition, the scaly coating can be achieved when the reaction occurs rapidly at high Pd ions, high temperature, high pH (reference 4.8) conditions.

또한, 구형 코팅은 소량의 Pd 이온, 높은 온도, 높은 pH(기준 4.8) 조건에서 이루어질 수 있는데, 니켈 이온이 적층될 수 있도록 Seed 역할을 하는 Pd의 농도가 낮으면서 온도와 pH가 높으면, 반응이 급격하게 일어나면서 Pd주변으로만 니켈 이온이 적층되어 구형의 코팅이 이루어진다.
In addition, the spherical coating can be made in a small amount of Pd ions, high temperature, high pH (Reference 4.8) conditions, when the temperature and pH is high and the concentration of Pd, which acts as a Seed to deposit nickel ions, the reaction will be Suddenly occurring, nickel ions are deposited only around the Pd to form a spherical coating.

구체적으로, 상기 제4 단계는, Pd 농도 0.4 ~ 1 g/L, 도금액 농도 5 ~ 10 g/L, 증착시간 10 ~ 15 분, 반응온도 70 ~ 80 ℃, pH 4 ~ 5 에서 진행함으로써 섬유상 니켈 도금층을 형성할 수 있다.Specifically, the fourth step, fibrous nickel by proceeding at a Pd concentration of 0.4 ~ 1 g / L, a plating solution concentration of 5 ~ 10 g / L, deposition time 10 ~ 15 minutes, reaction temperature 70 ~ 80 ℃, pH 4 ~ 5 The plating layer can be formed.

또한, 상기 제4 단계는 Pd 농도 0.4 ~ 1 g/L, 도금액 농도 5 ~ 10 g/L, 증착시간 5 ~ 10 분, 반응온도 80 ~ 100 ℃, pH 5 ~ 6에서 진행함으로써 비늘상 니켈 도금층을 형성할 수 있다.In addition, the fourth step is carried out at a Pd concentration of 0.4 ~ 1 g / L, a plating solution concentration of 5 ~ 10 g / L, deposition time 5 ~ 10 minutes, reaction temperature 80 ~ 100 ℃, pH 5 ~ 6 by the scale nickel plating layer Can be formed.

또한, 상기 제4 단계는 Pd 농도 0.125 ~ 0.2 g/L, 도금액 농도 5 ~ 10 g/L, 증착시간 5 ~ 10 분, 반응온도 80 ~ 100 ℃, pH 5 ~ 6 에서 진행함으로써 구형 니켈 도금층을 형성할 수 있다.
In addition, the fourth step is carried out at a Pd concentration of 0.125 ~ 0.2 g / L, plating solution concentration 5 ~ 10 g / L, deposition time 5 ~ 10 minutes, reaction temperature 80 ~ 100 ℃, pH 5 ~ 6 to form a spherical nickel plating layer Can be formed.

섬유상 코팅이 이루어진 나노카본은 강도가 높은 장점이 있고, 비늘상 코팅이 이루어진 나노카본은 표면적이 넓어 전자파 차폐, 수소흡착에 유리하고, 구형 코팅이 이루어진 나노카본은 연료전지의 촉매지지체로서 사용에 유리하다.
Nano carbon with fibrous coating has the advantage of high strength, nano carbon with scaly coating has a large surface area, which is advantageous for electromagnetic shielding and hydrogen adsorption, and nano carbon with spherical coating is advantageous for use as a catalyst support for fuel cells. Do.

상기 무전해 니켈도금액의 성분은 주성분과 보조성분으로 나눌 수 있다. Components of the electroless nickel plating solution may be divided into main components and auxiliary components.

상기 주성분은 니켈 염 및 니켈 이온에 전자를 공여하여 니켈로 환원시키는 환원제로 이루어져 있다. 상기 니켈염으로는, 염화니켈, 황산니켈, 설파민산니켈 등의 니켈염수화물이 사용될 수 있으며, 환원제로는 차아인산염, 수소화붕소염, 디메틸아민보란, 하이드라진 등이 사용될 수 있다. The main component consists of a nickel salt and a reducing agent for reducing electrons by donating electrons to nickel ions. As the nickel salt, nickel chloride such as nickel chloride, nickel sulfate, or nickel sulfamate may be used, and hypophosphite, boron hydride salt, dimethylamine borane, hydrazine, or the like may be used as the reducing agent.

상기 보조성분으로는 착화제, 완충제, pH 조절제, 촉진제, 안정제, 개량제 등이 있으며, 도금액의 수명연장 및 환원제의 효율성 향상 등을 위해 첨가된다.The auxiliary components include a complexing agent, a buffer, a pH adjusting agent, an accelerator, a stabilizer, an improving agent, and the like, and are added for extending the life of the plating solution and improving the efficiency of the reducing agent.

상기 착화제는 금속 착이온을 형성하여 환원 반응에 참여하는 금속 이온의 총량을 조절하거나 금속 이온이 금속염으로 침전되는 것을 지연시킴으로써 금속이온의 안정화를 돕는 역할을 한다. 그 종류는 특별히 한정하지 않으나, 아세트산 나트륨, 에틸렌글리콜 등의 유기산이나 그들의 염을 사용할 수 있다. The complexing agent serves to help stabilize metal ions by forming metal complex ions to control the total amount of metal ions participating in the reduction reaction or to delay the precipitation of metal ions into metal salts. Although the kind is not specifically limited, Organic acids, such as sodium acetate and ethylene glycol, and their salts can be used.

상기 완충제는 무전해 도금시 pH의 변화폭을 줄이기 위해 사용하며, 그 종류는 특별히 한정되지 않는다. The buffer is used to reduce the change in pH during electroless plating, and the type thereof is not particularly limited.

상기 pH 조절제는 무전해 도금의 속도, 효율, 도금피막 상태에 영향을 주는 pH변화를 방지하기 위해 사용되며, 그 종류는 특별히 한정하지 않으나, 수산화암모늄, 무기산, 유기산, 가성소다 등을 사용할 수 있다.The pH regulator is used to prevent the pH change affecting the rate, efficiency, plating film state of the electroless plating, the type is not particularly limited, ammonium hydroxide, inorganic acid, organic acid, caustic soda can be used. .

상기 촉진제는 도금 속도를 촉진하여 금속 석출 효율을 향상시키는 역할을 하며, 그 종류는 특별히 한정하지 않으며, 황화물, 불화물 등을 사용할 수 있다.The accelerator serves to promote the plating rate to improve the metal precipitation efficiency, and the type thereof is not particularly limited, and sulfides and fluorides may be used.

상기 안정제는 도금하고자 하는 표면 이외에 환원 반응이 일어나는 것을 억제하고, 도금욕의 자연분해를 억제하는 역할을 하며, 그 종류는 특별히 한정하지 않으나, 납의 염화물, 황화물, 질산물 등을 사용할 수 있다.The stabilizer serves to suppress the reduction reaction in addition to the surface to be plated, and to inhibit the natural decomposition of the plating bath, the type of the stabilizer is not particularly limited, it may be used chlorides, sulfides, nitrates and the like.

개량제는 도금피막의 광택을 향상시키는 역할을 하며, 보통 계면활성제를 미량 첨가한다.
The modifier serves to improve the glossiness of the plating film, and usually a trace amount of surfactant is added.

상기 제5 단계는 니켈 도금층이 형성된 나노카본을 고온열처리하여 결정화하는 단계로서, 불활성기체(Ar, N2, He 등) 분위기 또는 진공분위기(10-3 torr) 또는 Air 분위기에서 300 내지 700℃로 3시간 동안 고온열처리하는 단계이다.The fifth step is a step of crystallizing the nano-carbon on which the nickel plated layer is formed by high-temperature heat treatment, 3 to 300 to 700 ℃ in an inert gas (Ar, N2, He, etc.) atmosphere or a vacuum atmosphere (10 -3 torr) or Air atmosphere It is a step of high temperature heat treatment for a time.

상기 제4 단계의 결과 나노카본에 형성된 니켈 도금층은 비정질 니켈 도금층일 수 있다. 이러한 비정질 니켈 도금층은 열산화처리됨으로써 결정질 니켈 도금층으로 전환될 수 있다. 예를 들어, Ni-P 또는 Ni-B를 나노카본에 무전해 도금하는 경우, 나노카본을 무전해 니켈도금액에 침지하여 형성된 비정질 Ni- P 또는 NI-B 코팅은 열처리를 거쳐 결정질 Ni- P 또는 Ni-B 코팅으로 전환될 수 있다.As a result of the fourth step, the nickel plating layer formed on the nanocarbon may be an amorphous nickel plating layer. The amorphous nickel plating layer may be converted into a crystalline nickel plating layer by thermal oxidation treatment. For example, when Ni-P or Ni-B is electroless plated on nanocarbon, the amorphous Ni-P or NI-B coating formed by immersing the nanocarbon in an electroless nickel plating solution is subjected to heat treatment and then to crystalline Ni-P. Or Ni-B coating.

결론적으로, 본 발명의 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법은 나노카본이 CNF, MWCNT, TWCNT, DWCNT 및 금속성 SWCNT인 경우 전처리, 활성화 처리 및 가속화 처리를 한 다음, 도금처리하는 것을 특징으로 하고, 나노카본이 반도체성 SWCNT 및 SWCNT 번들인 경우 전처리, 예민화 처리, 활성화 처리 및 가속화 처리를 한 다음, 도금처리하는 것을 특징으로 한다.
In conclusion, the method for preparing nickel-coated nanocarbon using the electroless plating method of the present invention is that if the nanocarbon is CNF, MWCNT, TWCNT, DWCNT, and metallic SWCNT, pretreatment, activation treatment, and acceleration treatment are followed. If the nanocarbon is a semiconductive SWCNT and SWCNT bundle, characterized in that the pre-treatment, sensitization treatment, activation treatment and acceleration treatment, and then plating.

본 발명은 나노카본의 전기적 성질을 고려하여 차별화된 프로세스에 따라 무전해 도금을 진행하므로 도금공정의 성과 및 신뢰성을 개선하는 효과가 있다.
The present invention has an effect of improving the performance and reliability of the plating process because the electroless plating proceeds according to a differentiated process in consideration of the electrical properties of the nanocarbon.

이하에서는, 실시예를 통하여 본 발명을 보다 상세히 설명한다. 그러나, 하기의 실시예는 본 발명을 더욱 구체적으로 설명하기 위한 것으로서, 본 발명의 범위가 하기의 실시예에 의하여 한정되는 것은 아니다. 하기의 실시예는 본 발명의 범위 내에서 당업자에 의해 적절히 수정, 변경될 수 있다.
Hereinafter, the present invention will be described in more detail with reference to Examples. However, the following examples are intended to further illustrate the present invention, and the scope of the present invention is not limited by the following examples. The following examples can be appropriately modified and changed by those skilled in the art within the scope of the present invention.

실시예Example 1 내지 3 :  1 to 3: CNFCNF 의 니켈 코팅Nickel coating

에탄올 용액에 CNF(VGCF®-H, SHOWA DENKO사)를 침지시키고 30분 동안 초음파 처리한 후, 하기 표 1의 조건에 따라 [PdCl2 + HCl + H20] 용액에 상기 CNF를 침지시키고 10분 동안 초음파 처리하였다. 그 다음, 상기 CNF를 진한 황산 용액에 침지시켜 3분 동안 초음파 처리한 후, SX-A, SX-M 및 H2O를 포함하는 니켈 도금액에 침지시키고 200rpm, 90℃의 조건으로 10분 동안 교반하여, Ni-P 코팅된 CNF을 얻었다.After immersing CNF (VGCF ® -H, SHOWA DENKO) in ethanol solution and sonicating for 30 minutes, the CNF was immersed in [PdCl 2 + HCl + H 2 0] solution according to the conditions of Table 1 below 10 Ultrasonicated for minutes. Then, the CNF was immersed in a concentrated sulfuric acid solution and sonicated for 3 minutes, and then immersed in a nickel plating solution containing SX-A, SX-M and H 2 O, and stirred for 10 minutes at 200 rpm and 90 ° C. To obtain Ni-P coated CNF.

SX-A는 황산 니켈 2.138M을 함유하는 니켈 도금액이며, SX-M은 차아인산나트륨 2.36M을 함유하는 환원액이다. SX-A is a nickel plating solution containing 2.138 M of nickel sulfate, and SX-M is a reducing solution containing 2.36 M of sodium hypophosphite.

상기 니켈 코팅된 CNF를 Air 분위기 중 300 내지 700℃로 3시간 동안 열처리하였다.The nickel-coated CNF was heat-treated for 3 hours at 300 to 700 ℃ in the air atmosphere.

Pd 농도
(g/L)
Pd concentration
(g / L)
Ni도금액 농도
(g/L)
Ni plating solution concentration
(g / L)
증착시간
(min)
Deposition time
(min)
반응온도
(℃)
Reaction temperature
(℃)
pHpH 비고Remarks
실시예1Example 1 0.80.8 77 1212 7575 4.24.2 섬유상Fibrous 실시예2Example 2 0.80.8 77 77 9090 5.55.5 비늘상Scale 실시예3Example 3 0.20.2 77 77 9090 5.55.5 구형rectangle

결정질 니켈 코팅 Crystalline nickel coating CNFCNF 의 제조Manufacturing

실시예 1 내지 3에서 얻은 Ni-P 코팅된 CNF를 400℃, Air분위기에서 3시간 동안 고온열처리하여 결정질의 Ni-P 코팅된 CNF를 제조하였다.
Ni-P coated CNF obtained in Examples 1 to 3 was heat-treated at 400 ° C. for 3 hours in an air atmosphere to prepare crystalline Ni-P coated CNF.

실시예4Example 4 : : SWCNTSWCNT 번들의 니켈 코팅 Nickel Coating on Bundle

에탄올 용액에 반도체성 SWCNT 번들을 침지시키고 30분 동안 초음파처리를 한 후(세척단계), [PdCl2 + HCl + H20] 용액에 상기 SWCNT 번들을 침지시키고 10분 동안 초음파처리하였다. 그 다음, 상기 SWCNT 번들을 0.1 mol SnCl2/0.1 mol HCl 용액에 수초간 침지시켜 예민화처리하고, 진한 황산 용액에 침지시켜 3분 동안 초음파 처리한 후, SX-A, SX-M 및 H2O를 포함하는 니켈 도금액에 침지시킨 다음 200rpm, 90℃의 조건으로 10분 동안 교반하여 니켈이 코팅된 SWCNT 번들을 제조하였다.
After immersing the semiconducting SWCNT bundle in ethanol solution and sonicating for 30 minutes (washing step), the SWCNT bundle was immersed in [PdCl 2 + HCl + H 2 0] solution and sonicated for 10 minutes. Subsequently, the SWCNT bundle is sensitized by immersing in 0.1 mol SnCl 2 /0.1 mol HCl solution for several seconds, soaked in concentrated sulfuric acid solution for 3 minutes, and then subjected to SX-A, SX-M and H 2. The nickel-plated SWCNT bundle was prepared by immersing in a nickel plating solution containing O and then stirring for 10 minutes at 200 rpm and 90 ° C.

시험예Test Example : 니켈 코팅 Nickel Coating CNFCNF 의 특성 평가Characterization of

실시예 1 내지 3에서 얻은 비정질 및 결정질 Ni-P 코팅된 CNF에 대해 SEM 분석 및 TEM 분석을 수행하였다. 도 3의 SEM 이미지 상단에서, 나노카본의 표면에 도금되어 있는 비정질 섬유상, 비늘상, 구형 니켈 도금층을 확인할 수 있다. 또한, 도 3의 SEM이미지 하단에서, 결정질의 섬유상, 비늘상, 구형 니켈 도금층을 확인할 수 있다. SEM이미지를 통하여 비정질 도금층은 고온열처리를 통하여 표면의 형태가 변화함을 확인할 수 있었다. SEM and TEM analyzes were performed on the amorphous and crystalline Ni-P coated CNFs obtained in Examples 1-3. In the upper part of the SEM image of FIG. 3, the amorphous fibrous, scaly, spherical nickel plated layer is plated on the surface of the nanocarbon. In addition, at the bottom of the SEM image of Figure 3, the crystalline fibrous, scaly, spherical nickel plating layer can be confirmed. Through the SEM image, it was confirmed that the surface of the amorphous plated layer was changed by high temperature heat treatment.

또한, 도 4의 TEM 분석 결과, 나노카본에 적층되어 있는 Ni-P 도금층의 두께 및 적층된 형태를 단면적으로 확인할 수 있었다. In addition, as a result of the TEM analysis of FIG. 4, it was possible to confirm the cross-sectional area and thickness of the Ni-P plating layer laminated on the nanocarbon.

또한, 실시예 1 내지 3의 비정질 및 결정질의 섬유상, 비늘상, 구형의 Ni-P 코팅된 CNF에 대하여 TGA 분석을 수행하였다.In addition, TGA analysis was performed on the amorphous and crystalline fibrous, scaly, spherical Ni-P coated CNFs of Examples 1-3.

도 5는 비정질의 섬유상, 비늘상 및 구형 Ni-P 코팅된 CNF의 도금층의 열적 특성을 TGA분석한 결과로서, 도금층의 형태에 따라 열적 특성이 다르며, 나노카본 표면에 도금층의 분포가 많을수록 열적으로 안정한 것을 확인할 수 있었다. 5 is a result of TGA analysis of the thermal properties of the plated layer of amorphous fibrous, scaled and spherical Ni-P coated CNF, and the thermal properties vary depending on the shape of the plated layer. It was confirmed that it was stable.

도 6은 비정질의 섬유상, 비늘상 및 구형 Ni-P 코팅된 CNF를 400℃에서 고온열처리하여 형성된 결정질 Ni-P 코팅된 CNF의 도금층의 열적 특성을 TGA분석한 결과로서, 도금층이 결정질화됨으로써 열적으로 안정한 상태가 되는 것을 확인할 수 있었다.6 is a result of TGA analysis of the thermal properties of a plated layer of crystalline Ni-P coated CNF formed by high-temperature heat treatment of amorphous fibrous, scaled and spherical Ni-P coated CNF at 400 ° C., where the plated layer is crystallized to obtain thermal properties. It was confirmed that the stable state.

Claims (12)

나노카본을 용매 중에서 세척하거나 열산화처리하여 불순물을 제거하는 제1 단계;
상기 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본의 표면에 활성화된 Pd핵을 형성하게 하는 제2 단계;
상기 Pd핵이 형성된 나노카본을 강산처리하는 제3 단계;
상기 강산처리된 나노카본을 무전해 니켈도금액에 침지하여 나노카본 표면에 니켈 도금층을 형성하는 제4 단계; 및
상기 니켈 도금층이 형성된 나노카본을 고온열처리하여 결정화하는 제5 단계를 포함하며,
상기 제4 단계는 Pd 농도 0.4 ~ 1 g/L, 도금액 농도 5 ~ 10 g/L, 증착시간 10 ~ 15 분, 반응온도 70 ~ 80℃, pH 4 ~ 5 에서 진행함으로써 섬유상 니켈 도금층을 형성하는 단계인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
A first step of removing impurities by washing or thermal oxidation of the nanocarbon in a solvent;
A second step of immersing the washed or thermally oxidized nanocarbon in a solution containing Pd to form activated Pd nuclei on the surface of the nanocarbon;
A third step of strong acid treatment of the nano-carbon on which the Pd nucleus is formed;
A fourth step of forming a nickel plating layer on the surface of the nanocarbon by immersing the strong acid treated nanocarbon in an electroless nickel plating solution; And
And a fifth step of crystallizing the nanocarbon on which the nickel plating layer is formed by high temperature heat treatment,
The fourth step is to form a fibrous nickel plating layer by proceeding at a Pd concentration of 0.4 to 1 g / L, a plating solution concentration of 5 to 10 g / L, a deposition time of 10 to 15 minutes, a reaction temperature of 70 ~ 80 ℃, pH 4 ~ 5 Method for producing a nickel-coated nanocarbon using an electroless plating method characterized in that the step.
나노카본을 용매 중에서 세척하거나 열산화처리하여 불순물을 제거하는 제1 단계;
상기 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본의 표면에 활성화된 Pd핵을 형성하게 하는 제2 단계;
상기 Pd핵이 형성된 나노카본을 강산처리하는 제3 단계;
상기 강산처리된 나노카본을 무전해 니켈도금액에 침지하여 나노카본 표면에 니켈 도금층을 형성하는 제4 단계; 및
상기 니켈 도금층이 형성된 나노카본을 고온열처리하여 결정화하는 제5 단계를 포함하며,
상기 제4 단계는 Pd 농도 0.4 ~ 1 g/L, 도금액 농도 5 ~ 10 g/L, 증착시간 5 ~ 10 분, 반응온도 80 ~ 100℃, pH 5 ~ 6에서 진행함으로써 비늘상 니켈 도금층을 형성하는 단계인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
A first step of removing impurities by washing or thermal oxidation of the nanocarbon in a solvent;
A second step of immersing the washed or thermally oxidized nanocarbon in a solution containing Pd to form activated Pd nuclei on the surface of the nanocarbon;
A third step of strong acid treatment of the nano-carbon on which the Pd nucleus is formed;
A fourth step of forming a nickel plating layer on the surface of the nanocarbon by immersing the strong acid treated nanocarbon in an electroless nickel plating solution; And
And a fifth step of crystallizing the nanocarbon on which the nickel plating layer is formed by high temperature heat treatment,
The fourth step is carried out at a Pd concentration of 0.4 to 1 g / L, a plating solution concentration of 5 to 10 g / L, a deposition time of 5 to 10 minutes, a reaction temperature of 80 to 100 ℃, pH 5 ~ 6 to form a scale nickel plating layer Method for producing a nickel-coated nanocarbon using an electroless plating method characterized in that the step.
나노카본을 용매 중에서 세척하거나 열산화처리하여 불순물을 제거하는 제1 단계;
상기 세척 또는 열산화처리된 나노카본을 Pd가 함유된 용액에 침지하여 나노카본의 표면에 활성화된 Pd핵을 형성하게 하는 제2 단계;
상기 Pd핵이 형성된 나노카본을 강산처리하는 제3 단계;
상기 강산처리된 나노카본을 무전해 니켈도금액에 침지하여 나노카본 표면에 니켈 도금층을 형성하는 제4 단계; 및
상기 니켈 도금층이 형성된 나노카본을 고온열처리하여 결정화하는 제5 단계를 포함하며,
상기 제4 단계는 Pd 농도 0.125 ~ 0.2 g/L, 도금액 농도 5 ~ 10 g/L, 증착시간 5 ~ 10 분, 반응온도 80 ~ 100℃, pH 5 ~ 6 에서 진행함으로써 구형 니켈 도금층을 형성하는 단계인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
A first step of removing impurities by washing or thermal oxidation of the nanocarbon in a solvent;
A second step of immersing the washed or thermally oxidized nanocarbon in a solution containing Pd to form activated Pd nuclei on the surface of the nanocarbon;
A third step of strong acid treatment of the nano-carbon on which the Pd nucleus is formed;
A fourth step of forming a nickel plating layer on the surface of the nanocarbon by immersing the strong acid treated nanocarbon in an electroless nickel plating solution; And
And a fifth step of crystallizing the nanocarbon on which the nickel plating layer is formed by high temperature heat treatment,
The fourth step is to form a spherical nickel plating layer by proceeding at a Pd concentration of 0.125 ~ 0.2 g / L, a plating solution concentration of 5 ~ 10 g / L, deposition time 5 ~ 10 minutes, reaction temperature 80 ~ 100 ℃, pH 5 ~ 6 Method for producing a nickel-coated nanocarbon using an electroless plating method characterized in that the step.
청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 나노카본은 CNF, MWCNT, TWCNT, DWCNT 및 금속성 SWCNT; 또는 반도체성 SWCNT 및 SWCNT 번들인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
The method according to any one of claims 1 to 3,
The nanocarbons include CNF, MWCNT, TWCNT, DWCNT and metallic SWCNT; Or a semiconductive SWCNT and a SWCNT bundle.
청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 제1 단계는 나노카본을 유기용매 또는 산수용액 중에서 초음파로 세척하는 단계인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
The method according to any one of claims 1 to 3,
The first step is a method for producing a nickel-coated nanocarbon using an electroless plating method characterized in that the nanocarbon is ultrasonically washed in an organic solvent or an acid solution.
청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 제1 단계는 400~600℃에서 30분 내지 5시간 동안 공기 중 열산화처리를 하는 단계인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
The method according to any one of claims 1 to 3,
The first step is a method for producing a nickel-coated nanocarbon using an electroless plating method characterized in that the step of thermal oxidation in air for 30 minutes to 5 hours at 400 ~ 600 ℃.
청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 나노카본은 반도체성 SWCNT 및 SWCNT 번들(bundle)이고, 제2 단계 후에 Sn이 함유된 용액에 반도체성 나노카본을 침지하여 Sn2+이온을 반도체성 나노카본 표면에 흡착시키고 수세하는 단계를 추가로 포함하는 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
The method according to any one of claims 1 to 3,
The nanocarbon is a semiconducting SWCNT and a SWCNT bundle, and after the second step, immersing the semiconducting nanocarbon in a Sn-containing solution adsorbs Sn 2+ ions onto the semiconducting nanocarbon surface and washes with water. Method for producing a nickel-coated nanocarbon using an electroless plating method characterized in that it comprises a.
청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 제3 단계는 Pd핵이 형성된 나노카본을 강산으로 처리하여 정제된 Pd를 석출하는 단계인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
The method according to any one of claims 1 to 3,
The third step is a method for producing a nickel-coated nanocarbon using an electroless plating method characterized in that the Pd nucleus is formed by treating the nanocarbon having a strong acid to precipitate purified Pd.
청구항 1 내지 청구항 3 중 어느 한 항에 있어서,
상기 제5 단계는 니켈 도금층이 형성된 나노카본을, 불활성기체 분위기 또는 진공분위기 또는 Air 분위기에서 300 내지 700℃로 3시간 동안 고온열처리하는 단계인 것을 특징으로 하는 무전해 도금법을 이용하여 니켈 코팅 나노카본을 제조하는 방법.
The method according to any one of claims 1 to 3,
The fifth step is a nickel-coated nanocarbon using an electroless plating method characterized in that the nanocarbon on which the nickel plated layer is formed is subjected to high temperature heat treatment at 300 to 700 ° C. for 3 hours in an inert gas atmosphere, a vacuum atmosphere or an air atmosphere. How to prepare.
삭제delete 삭제delete 삭제delete
KR1020120026650A 2012-03-15 2012-03-15 Method of Manufacturing Ni-coated Nano- carbons KR101365457B1 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
KR1020120026650A KR101365457B1 (en) 2012-03-15 2012-03-15 Method of Manufacturing Ni-coated Nano- carbons
US13/745,959 US20130243974A1 (en) 2012-03-15 2013-01-21 Method of preparing nickel-coated nanocarbon
JP2013010975A JP5602260B2 (en) 2012-03-15 2013-01-24 Method for producing nickel-coated nanocarbons using electroless plating
CN201310045558.7A CN103303897B (en) 2012-03-15 2013-02-05 Electroless plating is utilized to prepare the method for the nano-sized carbon of nickel coating

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020120026650A KR101365457B1 (en) 2012-03-15 2012-03-15 Method of Manufacturing Ni-coated Nano- carbons

Publications (2)

Publication Number Publication Date
KR20130104797A KR20130104797A (en) 2013-09-25
KR101365457B1 true KR101365457B1 (en) 2014-02-21

Family

ID=49129666

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020120026650A KR101365457B1 (en) 2012-03-15 2012-03-15 Method of Manufacturing Ni-coated Nano- carbons

Country Status (4)

Country Link
US (1) US20130243974A1 (en)
JP (1) JP5602260B2 (en)
KR (1) KR101365457B1 (en)
CN (1) CN103303897B (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495263B1 (en) 2013-06-04 2015-02-27 주식회사 동희홀딩스 Nickel Coated Nano Carbon-Aluminum Composite Casting Material and the manufacturing method for the same
CN104947094A (en) * 2014-03-27 2015-09-30 浙江德汇电子陶瓷有限公司 Chemical nickel plating solution and application thereof in chemical nickel plating as well as circuit board

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2655073T3 (en) * 2009-06-09 2018-02-16 Ramesh Sivarajan Coatings based on solutions of nanostructured carbon materials (NCM) on bipolar plates in fuel cells
US10156015B2 (en) * 2013-04-21 2018-12-18 Shenzhen Shen Rui Graphene Technology Co., Ltd. Method for coating of carbon nanomaterials
JP6112639B2 (en) * 2013-07-22 2017-04-12 国立研究開発法人産業技術総合研究所 CNT metal composite and manufacturing method thereof
CN103708416A (en) * 2013-12-20 2014-04-09 武汉纺织大学 Preparation method for electro-conductive magnetic nanotube
CN104195532A (en) * 2014-07-03 2014-12-10 天津大学 Preparation method of graphite sheet surface chemical plating iron-nickel alloy layer
KR101591454B1 (en) * 2014-10-07 2016-02-03 주식회사 동희홀딩스 Manufacturing method for Metal and Oxide hybrid coated Nano Carbon
EP3026143A1 (en) * 2014-11-26 2016-06-01 ATOTECH Deutschland GmbH Plating bath and method for electroless deposition of nickel layers
CN109136891A (en) * 2017-06-18 2019-01-04 罗奕兵 A kind of nickel-phosphor amorphous alloy composite fibre and preparation method
US11512390B2 (en) 2018-07-16 2022-11-29 Rochester Institute Of Technology Method of site-specific deposition onto a free-standing carbon article
US20220002877A1 (en) * 2018-10-30 2022-01-06 The American University In Cairo Method for aluminum electroless deposition
JP7032348B2 (en) * 2019-03-26 2022-03-08 矢崎総業株式会社 Metal-plated carbon material and its manufacturing method
WO2022056059A1 (en) * 2020-09-09 2022-03-17 Macmoy Richard Ian Thermal-diffused metal on electroless metal or metal alloy having a phosphorous component
CN113151868B (en) * 2021-04-28 2022-08-12 西北工业大学 Porous nickel-tungsten alloy material and preparation method thereof

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070041024A (en) * 2005-10-13 2007-04-18 주식회사 포스코 Method for manufacturing carbon nano tubes coated by transition metal elements in nanoscale for field emission based lighting source

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01201484A (en) * 1987-10-06 1989-08-14 Hitachi Ltd Chemical nickel plating liquid and method of using said liquid
JPH05101972A (en) * 1991-09-25 1993-04-23 Matsushita Electric Ind Co Ltd Method for forming electrode on ceramic
JP3735898B2 (en) * 1994-08-31 2006-01-18 住友電気工業株式会社 Method for producing porous metal body
US6406750B1 (en) * 1999-05-28 2002-06-18 Osaka Municipal Government Process of forming catalyst nuclei on substrate, process of electroless-plating substrate, and modified zinc oxide film
CN1089121C (en) * 1999-06-09 2002-08-14 冶金工业部钢铁研究总院 Chemical nickel-plating method for surface of metal material
DE60239443D1 (en) * 2001-10-24 2011-04-28 Rohm & Haas Elect Mat Stabilizers for electroless plating solutions and method of use
JP2003246613A (en) * 2002-02-26 2003-09-02 Denso Corp Metal-added carbon material manufacturing method, and electrode material for fuel cell, catalyst carrier for chemical reaction and gas storage material obtained by using the metal-added carbon material manufactured thereby
JP2004018973A (en) * 2002-06-18 2004-01-22 Nippon Oil Corp Method for manufacturing hydrogen-absorbing carbon material, and hydrogen-absorbing method
JP4495902B2 (en) * 2002-10-03 2010-07-07 株式会社東芝 Catalyst for carbon fiber synthesis, method for producing carbon fiber, and method for producing catalyst material for fuel cell
JP2004238240A (en) * 2003-02-05 2004-08-26 Nissan Motor Co Ltd Gas storage material, method of manufacturing the same and gas storage tank
JP2005330151A (en) * 2004-05-20 2005-12-02 Nikon Corp Carbon material having cavity layer and its producing method
KR20060127584A (en) * 2005-06-08 2006-12-13 삼성전자주식회사 Method for separating of semiconductor and metal carbon nano tube
JP2007152492A (en) * 2005-12-05 2007-06-21 Bridgestone Corp Metallic nanotube and method of producing the same
US20080173864A1 (en) * 2007-01-20 2008-07-24 Toshiba America Research, Inc. Carbon nanotube transistor having low fringe capacitance and low channel resistance
CN100564595C (en) * 2007-05-23 2009-12-02 湖北工业大学 The method of multiple-wall carbon nanotube chemical nickel plating on surface zinc
KR100982019B1 (en) * 2008-02-05 2010-09-13 한국기계연구원 Hollow metal fibers for the electromagnetic wave absorption
JP2010037623A (en) * 2008-08-07 2010-02-18 Surface Giken Kk Plating method for carbon material and method for producing carbon material
TW201041009A (en) * 2009-05-08 2010-11-16 Univ Nat Taiwan Science Tech Fabrication method of carbon nanotube field emission cathode
JP4877407B2 (en) * 2009-07-01 2012-02-15 日立化成工業株式会社 Coated conductive particles and method for producing the same
DE102010011269B4 (en) * 2009-11-10 2014-02-13 Ami Doduco Gmbh A method of depositing a palladium layer suitable for wire bonding onto circuit traces of a circuit board and using a palladium bath in the method
CN101818337A (en) * 2009-11-16 2010-09-01 兰州理工大学 Coating method of high-density Ni layer of carbon nano tube
KR20110139588A (en) * 2010-06-23 2011-12-29 한국과학기술연구원 Fabrication method for composite material comprises nano carbon and metal or seramic
JP2012211364A (en) * 2011-03-31 2012-11-01 Erc:Kk Method for plating carbon material, and method for plating substrate containing carbon material and resin

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20070041024A (en) * 2005-10-13 2007-04-18 주식회사 포스코 Method for manufacturing carbon nano tubes coated by transition metal elements in nanoscale for field emission based lighting source

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
Chem. Mater. Vol.11, 1999, pages 2115-2118 (1999.07.30.) *
Chem. Mater. Vol.11, 1999, pages 2115-2118 (1999.07.30.)*

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101495263B1 (en) 2013-06-04 2015-02-27 주식회사 동희홀딩스 Nickel Coated Nano Carbon-Aluminum Composite Casting Material and the manufacturing method for the same
CN104947094A (en) * 2014-03-27 2015-09-30 浙江德汇电子陶瓷有限公司 Chemical nickel plating solution and application thereof in chemical nickel plating as well as circuit board
CN104947094B (en) * 2014-03-27 2017-08-25 浙江德汇电子陶瓷有限公司 A kind of chemical nickel-plating liquid and its application in chemical nickel plating and a kind of wiring board

Also Published As

Publication number Publication date
JP5602260B2 (en) 2014-10-08
KR20130104797A (en) 2013-09-25
US20130243974A1 (en) 2013-09-19
CN103303897A (en) 2013-09-18
CN103303897B (en) 2015-08-26
JP2013193954A (en) 2013-09-30

Similar Documents

Publication Publication Date Title
KR101365457B1 (en) Method of Manufacturing Ni-coated Nano- carbons
CN108103485B (en) Preparation method for coating metal copper or nickel on surface of graphene
KR101591454B1 (en) Manufacturing method for Metal and Oxide hybrid coated Nano Carbon
CN100564595C (en) The method of multiple-wall carbon nanotube chemical nickel plating on surface zinc
Kim et al. EMI shielding behaviors of Ni-coated MWCNTs-filled epoxy matrix nanocomposites
Balaraju et al. Studies on electroless nickel polyalloy coatings over carbon fibers/CFRP composites
He et al. Electroless nickel–phosphorus plating on silicon carbide particles for metal matrix composites
JP2008195599A (en) Platinum nano catalyst-carrying carbon nano-tube electrode and its manufacturing method
Tang et al. Achieving flexible and durable electromagnetic interference shielding fabric through lightweight and mechanically strong aramid fiber wrapped in highly conductive multilayer metal
CN111254423B (en) Method for electroplating silver on aromatic polyamide fiber and application
KR20110077340A (en) Carbon nanofiber-metal composite and method for preparing the same
CN110983764B (en) Conductive aromatic polyamide fiber with composite metal coating structure
Lu et al. Electroless nickel deposition on silane modified bamboo fabric through silver, copper or nickel activation
CN110624552A (en) Preparation method of graphene nano metal composite material
CN113817203A (en) Method for preparing Cu-CNTs super-hydrophobic coating on plastic surface
Qin et al. Enhanced electromagnetic-interference shielding effectiveness and mechanical strength of Co-Ni coated aramid-carbon blended fabric
KR101574307B1 (en) Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property
Fatema et al. A new electroless Ni plating procedure of iodine-treated aramid fiber
Zhang et al. Unraveling the multilayer structure formation mechanism of copper coating for the metallization of poly para-phenylene terephthalamide fibers
Córdoba et al. Growth and characterization of electroless deposited Cu films on carbon nanofibers
CN110918980B (en) Electromagnetic shielding composite material and preparation method thereof
CN104593753A (en) Method for metalizing surfaces of carbon nanotubes
CN109750283B (en) Process method for chemically plating nickel-phosphorus alloy on SMC material surface
WO2014173793A1 (en) Method for coating of carbon nanomaterials
Lee et al. Electroless Ni-P metallization on palladium activated polyacrylonitrile (PAN) fiber by using a drying process

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20170214

Year of fee payment: 4

LAPS Lapse due to unpaid annual fee