JP2004238240A - Gas storage material, method of manufacturing the same and gas storage tank - Google Patents

Gas storage material, method of manufacturing the same and gas storage tank Download PDF

Info

Publication number
JP2004238240A
JP2004238240A JP2003028240A JP2003028240A JP2004238240A JP 2004238240 A JP2004238240 A JP 2004238240A JP 2003028240 A JP2003028240 A JP 2003028240A JP 2003028240 A JP2003028240 A JP 2003028240A JP 2004238240 A JP2004238240 A JP 2004238240A
Authority
JP
Japan
Prior art keywords
gas storage
carbon material
storage material
transition metal
particle diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003028240A
Other languages
Japanese (ja)
Inventor
Masaharu Hatano
正治 秦野
Junji Katamura
淳二 片村
Mikio Kawai
幹夫 川合
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2003028240A priority Critical patent/JP2004238240A/en
Publication of JP2004238240A publication Critical patent/JP2004238240A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lightweight low cost gas storage material capable of being used for a mobile body such as an automobile. <P>SOLUTION: A transition metal particle 2 composed of nickel (Ni) and having ≤25 nm particle diameter in a quantity enough to contact with the quantity of a carbon material 1A is arranged on the surface of the carbon material 1A composed of fibrous carbon nano-tube assembly. Then, the compact, lightweight and low cost gas storage material for the mobile body represented by the automobile is obtained. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、自動車などの移動体に用いることのできるガス貯蔵材料、及びその製造方法、ならびにガス貯蔵タンクに関する。
【0002】
【従来の技術】
通常、多量のガスを貯蔵するためには、高圧タンク等を用いている。しかし、水素やメタンなどの液化しがたいガスの場合、高圧タンクではガスの貯蔵量に限界があり、低温で液化状態で保存するためには低温の維持のための高価な設備と維持コストがかかる。このため、近年では、常温で多量のガスを貯蔵するための貯蔵材料を利用する方法が開発されている。現在、活性炭、グラファイト、炭素繊維あるいはカーボンナノチューブといった高比表面積を有する炭素材料がガス貯蔵体として提案されている。さらに、炭素材料を用いたガス貯蔵体のガス貯蔵能を向上させるために、各種添加物で修飾した炭素材料に関する検討が行われている。例えば、アルカリ金属元素の単体、アルカリ金属元素を含む無機化合物、アルカリ金属元素を含む有機金属化合物、パラジウム、白金、ニッケル、パラジウムの化合物等を添加したガス吸蔵体が、優れたガス貯蔵能を示すことが知られている。なお、このように添加する元素や化合物単独でのガス吸蔵能は大きくなく、ガス貯蔵の主体は炭素材料であり、添加元素はガスの貯蔵を補助する役割をすると考えられる。特に遷移金属元素の役割はガスの吸脱着を触媒的に促進して、炭素材料の持つガス貯蔵能を最大限に引き出す役割を担うと考えられる。炭素材料に遷移金属元素を添加する方法として、粉体材料を粉砕混合することによって行う方法が知られている(例えば、特許文献1参照。)。
【0003】
【特許文献1】
特開2001−226108号公報(第2頁)
【0004】
【発明が解決しようとする課題】
しかしながら、上述した特許文献1では、その添加金属の粒径、存在状態に関する記述はない。また、添加金属自体には大きなガス貯蔵能はないために、添加金属に不必要な部分が存在すると、単位重量あたり、単位体積あたり、ならびに単位コストあたりのガス貯蔵量の低下をもたらすことになる。例えば、自動車のような移動体にガス吸蔵材料を用いる場合には、重量増により燃費の悪化、体積増により居住性の悪化が懸念される。このため、コスト高になる問題もある。特に、従来の粉砕混合法では、金属粒子の微粒化が1μm程度が限界であり、それよりも小さいnmオーダの炭素材料との混合により、金属添加炭素材料の調製は困難であった。
【0005】
そこで、本発明は、自動車に代表される移動体用のコンパクト且つ軽量で、低コストなガス貯蔵材料、その製造方法、及びガス貯蔵タンクを提供することを目的とする。
【0006】
【課題を解決するための手段】
発明者らは、上記課題を解決するために、鋭意検討を重ねた結果、炭素材料に金属元素を担持し、炭素材料の平均粒径よりも小さな金属粒子を、炭素材料に接触する状態で添加する方法を見出し、ガス吸蔵能が向上することを見出した。特に、添加金属の機能を発揮できない部分は最小限にする必要がある。そのためには、添加金属の平均粒径が炭素材料の平均粒径より小さい必要がある。また、添加金属が触媒的に作用するためには、添加金属と炭素材料が接触して存在する必要がある。
【0007】
そこで、本発明の第1の特徴は、ガス貯蔵材料であって、粒子状炭素材料に、その平均粒径より短い粒径を持つ遷移金属粒子が接触して存在することを特徴とする。
【0008】
また、本発明の第2の特徴は、ガス貯蔵材料であって、繊維状の炭素材料に、その平均繊維径よりも短い粒径を持つ遷移金属粒子が接触して存在することを要旨とする。
【0009】
これら第1及び第2の特徴に係る発明では、遷移金属粒子がニッケルでなることが好ましく、遷移金属粒子の平均粒径が25nm以下であることが好ましい。
【0010】
本発明の第3の特徴は、ガス貯蔵材料の製造方法であって、粒子状もしくは繊維状の炭素材料に、無電解メッキを施して前記炭素材料にニッケルを添加させることを要旨とする。この第3の特徴に係る発明では、炭素材料に無電解メッキ用の触媒を付与する工程と、この触媒を付与した炭素材料をニッケルメッキ液に浸漬する工程と、ニッケルメッキ液に浸漬した炭素材料を濾過・洗浄を行って乾燥させる工程と、とを備える方法とすることが好ましい。このような方法では、メッキの前処理として、金属析出の活性点を炭素材料の表面上に形成する工程(触媒を付与する工程)を含む無電解メッキ法を用いるため、炭素材料の表面に確実に金属が析出し、かつ析出する金属粒子の大きさは、メッキ液の濃度、およびメッキ処理の時間、温度を制御することによって容易に制御することができる。
【0011】
本発明の第4の特徴は、ガス貯蔵タンクであって、上述したガス貯蔵材料を耐高圧容器内に充填したことを要旨とする。
【0012】
【発明の効果】
第1および第2の特徴に係る発明によれば、粒子状もしくは繊維状の炭素材料に、その平均粒径もしくは平均繊維径よりも短い粒径を持つ遷移金属粒子が接触して存在するため、遷移金属粒子を必要最小限に付着させることが可能となり、ガス貯蔵能が高くかつ軽量で、低コストなガス貯蔵材料を実現することができる。
【0013】
第3の特徴に係る発明によれば、ガス貯蔵用の炭素材料に最適な粒径の金属を、炭素材料に接触した状態で調製することが可能となり、ガス貯蔵能が高く、かつ軽量で、低コストなガス貯蔵材料を製造することができる。
【0014】
第4の特徴に係る発明によれば、自動車に代表される移動体用のコンパクト且つ軽量で、低コストなガス貯蔵タンクを実現することができる。
【0015】
【発明の実施の形態】
以下、本発明に係るガス貯蔵材料、ガス貯蔵材料の製造方法およびガス貯蔵タンク詳細を図面に示す実施の形態に基づいて説明する。
【0016】
〈ガス貯蔵材料およびその製造方法〉
本発明のガス貯蔵材料は、粒子状もしくは繊維状の炭素材料に、その平均粒径もしくはその平均繊維径よりも短い粒径を持つ遷移金属粒子が接触して存在するように調製されている。
【0017】
本実施の形態では、図1に示すように、繊維状のカーボンナノチューブ集合体でなる炭素材料1Aの表面に、ニッケルでなる遷移金属粒子2を所定の粒径でかつ所定の配合量で接触する微細構造を有する。なお、遷移金属粒子2の平均粒径は、炭素材料1Aの平均繊維径より短い25nm以下であることが好ましい。
【0018】
(実施例1)
実施例1では、図2のフローチャートに示すように、先ず、炭素材料としてのCNI社製シングルウォールカーボンナノチューブ(以下、SWCNTという)を、SnCl(0.05重量%)濃塩酸を0.05重量%含む40℃の水溶液に、5分間浸漬し濾過・洗浄した。
【0019】
その後、日本カニゼン社製レッドシューマー(PdCl、HClの混合溶液)の5倍希釈溶液を40℃の温度に調節して、前工程で濾過・洗浄したSWCNTを、5分間浸漬した後、濾過・洗浄を行った。
【0020】
上記処理を3回繰り返して、SWCNTに無電解メッキ用触媒を付与した。
【0021】
そして、このように触媒付与されたSWCNTを60℃の日本カニゼン社製メッキ液SB−55(硝酸ニッケル、ジメチルアミンジボラン、有機酸、アンモニア水の混合溶液)に浸漬して4分間放置した後に濾過・洗浄を行った。
【0022】
その後、SWCNTを110℃で乾燥することにより、Ni添加SWCNTを調製した。このとき、Ni添加SWCNTにおけるNiの添加量は20wt%であった。
【0023】
(実施例2)
実施例2では、SWCNTのメッキ液への浸漬時間を2分とした以外は、上記実施例1と同様の処理を施して、Ni添加SWCNTを調製した。このとき、Ni添加SWCNTにおけるNiの添加量は15wt%であった。
【0024】
(実施例3)
実施例3では、SWCNTのメッキ液への浸漬時間を1.5分とした以外は、上記実施例1と同様の処理を施してにして、Ni添加SWCNTを調製した。このとき、Ni添加SWCNTにおけるNi添加量は12wt%であった。
【0025】
(比較例1)
比較例1では、上記実施例1に用いたSWCNTの未処理品を用いた。
【0026】
(比較例2)
比較例2では、SWCNTを、Niが炭素に対して15wt%となるように調製した硝酸Ni水溶液に浸した後、水分を蒸発させ、110℃で5時間の乾燥を行った。乾燥後の試料を空気中200℃で2時間の焼成を行った後、水素気流中500℃で還元処理を行うことによってNi添加SWCNTを調製した。
【0027】
上記実施例1で製造したガス貯蔵材料における炭素材料の平均繊維径は、約50nmであり、担持されているNi粒子の粒子径は10〜25nmであった。また、実施例2の試料のNi粒子径は8〜20nm、実施例3の試料のNi粒子径は7〜18nmであった。これらの材料を耐圧容器に充填して、水素ガスを用いた吸蔵量測定を行った。図3に各種炭素材料を用いた水素ガスの吸蔵量測定結果を示す。水素吸蔵量は、容器に充填した材料の重量あたりの水素吸蔵量で評価している。図から明らかなように、本発明による材料(実施例1、実施例2、実施例3)は、他の材料に比べて多くの水素を吸蔵していることがわかる。
【0028】
このように、実施例1〜3によれば、遷移金属粒子を必要最小限に付着させることが可能となり、ガス貯蔵能が高くかつ軽量で、低コストなガス貯蔵材料を実現することができる。
【0029】
また、ガス貯蔵用の炭素材料に最適な粒径の遷移金属を、炭素材料に接触した状態で調製することが可能となり、ガス貯蔵能が高く、かつ軽量で、低コストなガス貯蔵材料を製造することができる。
【0030】
〈ガス貯蔵タンク〉
図4は、本発明に係るガス貯蔵タンクを示している。本実施の形態に係るガス貯蔵タンク10は、所定の耐圧強度を有する金属製のタンク本体11内に、上記した実施例1乃至実施例3のいずれかで製造しガス貯蔵材料12が充填されている。タンク本体11は、例えば水素などのガスを導入・導出する出入口13が設けられており、この出入口13には、タンクバルブ14が設けられている。
【0031】
なお、本実施の形態では、タンク本体11内に配置するガス貯蔵材料12を単に充填する他に、適宜、固形化あるいは薄膜化して形成したものを用いてもよい。このようなガス貯蔵タンク10は、自動車に搭載して例えば燃料電池システムあるいは水素エンジンシステムなどに組み込んで用いることができる。
【0032】
以上、本実施の形態の形態について説明したが、上記の実施の形態の開示の一部をなす論述および図面はこの発明を限定するものであると理解するべきではない。この開示から当業者には様々な代替実施の形態、実施例および運用技術が明らかとなろう。
【0033】
例えば、上記実施の形態では、炭素材料として繊維状のカーボンナノチューブを用いたが、図5に示すように粒子状の炭素材料1Bを用いてこの炭素材料1Bの表面に遷移金属粒子2が存在するように調製してもよい。また、このような粒子状の炭素材料1Bを用いる場合も、上述した実施例1〜実施例3のような製造方法を適用すればよい。
【0034】
なお、上記した各実施例では、遷移金属としてNiを用いたが、他の遷移金属を適用することも可能である。
【図面の簡単な説明】
【図1】本発明に係る実施例1で製造したガス貯蔵材料の模式図である。
【図2】本発明に係る実施例1の製造工程を示すフローチャートである。
【図3】実施例1〜実施例3、比較例1および比較例2で製造したガス貯蔵材料の水素貯蔵量測定結果を示すグラフである。
【図4】本発明に係るガス貯蔵タンクの実施の形態を示す断面図である。
【図5】本発明に係るガス貯蔵材料の他の実施の形態を示す模式図である。
【符号の説明】
1A 炭素材料
1B 炭素材料
2 遷移金属粒子
10 ガス貯蔵タンク
11 タンク本体
12 ガス貯蔵材料
13 水素吸入排出口
14 タンクバルブ部
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a gas storage material that can be used for a moving body such as an automobile, a method for manufacturing the same, and a gas storage tank.
[0002]
[Prior art]
Usually, a high-pressure tank or the like is used to store a large amount of gas. However, in the case of gases that are difficult to liquefy, such as hydrogen and methane, high-pressure tanks have a limited gas storage capacity.To store them in a liquefied state at low temperatures, expensive equipment for maintaining low temperatures and maintenance costs are required. Take it. For this reason, in recent years, a method using a storage material for storing a large amount of gas at normal temperature has been developed. At present, carbon materials having a high specific surface area, such as activated carbon, graphite, carbon fiber or carbon nanotube, have been proposed as gas storage bodies. Further, in order to improve the gas storage capacity of a gas storage using a carbon material, studies have been made on carbon materials modified with various additives. For example, a gas occlusion body to which a simple substance of an alkali metal element, an inorganic compound containing an alkali metal element, an organic metal compound containing an alkali metal element, palladium, platinum, nickel, a compound of palladium, etc., exhibits excellent gas storage capacity. It is known. It should be noted that the gas occlusion ability of the added element or compound alone is not large, the main component of gas storage is a carbon material, and the added element is considered to play a role in assisting gas storage. In particular, the role of the transition metal element is considered to play a role of catalytically promoting the adsorption and desorption of gas to maximize the gas storage capacity of the carbon material. As a method of adding a transition metal element to a carbon material, a method of pulverizing and mixing a powder material is known (for example, see Patent Document 1).
[0003]
[Patent Document 1]
JP 2001-226108 A (page 2)
[0004]
[Problems to be solved by the invention]
However, Patent Document 1 mentioned above does not describe the particle size and the existing state of the added metal. In addition, since the added metal itself does not have a large gas storage capacity, the presence of an unnecessary portion in the added metal causes a reduction in gas storage amount per unit weight, per unit volume, and per unit cost. . For example, when a gas occluding material is used for a moving body such as an automobile, there is a concern that fuel consumption may be deteriorated due to an increase in weight, and comfort may be deteriorated due to an increase in volume. For this reason, there is a problem that the cost increases. In particular, in the conventional pulverization and mixing method, the atomization of metal particles is limited to about 1 μm, and it has been difficult to prepare a metal-added carbon material by mixing with a carbon material of a smaller nm order.
[0005]
Therefore, an object of the present invention is to provide a compact, lightweight, low-cost gas storage material for a moving body represented by an automobile, a method for manufacturing the same, and a gas storage tank.
[0006]
[Means for Solving the Problems]
The inventors of the present invention have conducted intensive studies to solve the above-described problems, and as a result, have carried a metal element on a carbon material and added metal particles smaller than the average particle size of the carbon material in a state of contacting the carbon material. And found that the gas storage capacity was improved. In particular, it is necessary to minimize the portion where the function of the added metal cannot be exhibited. For that purpose, the average particle diameter of the additive metal needs to be smaller than the average particle diameter of the carbon material. In order for the additional metal to act catalytically, the additional metal and the carbon material need to be in contact with each other.
[0007]
Therefore, a first feature of the present invention is that the transition metal particles having a particle diameter shorter than the average particle diameter are present in contact with the particulate carbon material, which is a gas storage material.
[0008]
Further, a second feature of the present invention is a gas storage material, wherein a transition metal particle having a particle diameter shorter than the average fiber diameter is present in contact with a fibrous carbon material. .
[0009]
In the inventions according to the first and second aspects, the transition metal particles are preferably made of nickel, and the average particle diameter of the transition metal particles is preferably 25 nm or less.
[0010]
A third feature of the present invention is a method for producing a gas storage material, which comprises subjecting a particulate or fibrous carbon material to electroless plating and adding nickel to the carbon material. In the invention according to the third aspect, a step of applying a catalyst for electroless plating to the carbon material, a step of immersing the carbon material provided with the catalyst in a nickel plating solution, and a step of immersing the carbon material in the nickel plating solution And a step of performing filtration, washing, and drying. In such a method, as a pretreatment for plating, an electroless plating method including a step of forming active points for metal deposition on the surface of the carbon material (a step of applying a catalyst) is used, so that the surface of the carbon material is surely treated. The size of the metal particles on which the metal is deposited can be easily controlled by controlling the concentration of the plating solution, and the time and temperature of the plating treatment.
[0011]
A fourth feature of the present invention is a gas storage tank, wherein the gas storage material described above is filled in a high-pressure resistant container.
[0012]
【The invention's effect】
According to the first and second aspects of the invention, the transition metal particles having a particle diameter shorter than the average particle diameter or the average fiber diameter are present in contact with the particulate or fibrous carbon material, The transition metal particles can be adhered to a necessary minimum, and a gas storage material having high gas storage ability, light weight, and low cost can be realized.
[0013]
According to the invention according to the third aspect, it is possible to prepare a metal having a particle diameter most suitable for a carbon material for gas storage in a state in which the metal is in contact with the carbon material. A low-cost gas storage material can be manufactured.
[0014]
According to the invention according to the fourth aspect, a compact, lightweight, and low-cost gas storage tank for a moving body represented by an automobile can be realized.
[0015]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, a gas storage material, a method of manufacturing a gas storage material, and a gas storage tank according to the present invention will be described in detail based on embodiments shown in the drawings.
[0016]
<Gas storage material and its manufacturing method>
The gas storage material of the present invention is prepared such that transition metal particles having an average particle diameter or a particle diameter shorter than the average fiber diameter are present in contact with the particulate or fibrous carbon material.
[0017]
In the present embodiment, as shown in FIG. 1, transition metal particles 2 made of nickel are brought into contact with a surface of a carbon material 1A made of an aggregate of fibrous carbon nanotubes at a predetermined particle size and a predetermined blending amount. Has a fine structure. The average particle diameter of the transition metal particles 2 is preferably 25 nm or less, which is shorter than the average fiber diameter of the carbon material 1A.
[0018]
(Example 1)
In Example 1, as shown in the flowchart of FIG. 2, first, CNI single-walled carbon nanotubes (hereinafter, referred to as SWCNTs) as carbon materials were added to SnCl 2 (0.05% by weight) concentrated hydrochloric acid at 0.05%. It was immersed in a 40% aqueous solution containing 5% by weight for 5 minutes, and filtered and washed.
[0019]
Thereafter, a 5-fold diluted solution of Red Schumer (mixed solution of PdCl 2 and HCl) manufactured by Nippon Kanigen Co., Ltd. was adjusted to a temperature of 40 ° C., and the SWCNT filtered and washed in the previous step was immersed for 5 minutes, then filtered and Washing was performed.
[0020]
The above treatment was repeated three times to apply a catalyst for electroless plating to SWCNT.
[0021]
Then, the SWCNT thus provided with a catalyst is immersed in a plating solution SB-55 (mixed solution of nickel nitrate, dimethylamine diborane, organic acid, and aqueous ammonia) manufactured by Nippon Kanigen Co. at 60 ° C., left for 4 minutes, and then filtered.・ Washing was performed.
[0022]
Thereafter, the SWCNTs were dried at 110 ° C. to prepare Ni-added SWCNTs. At this time, the amount of Ni added to the Ni-added SWCNT was 20 wt%.
[0023]
(Example 2)
In Example 2, Ni-added SWCNT was prepared by performing the same treatment as in Example 1 except that the immersion time of SWCNT in the plating solution was 2 minutes. At this time, the amount of Ni added to the Ni-added SWCNT was 15 wt%.
[0024]
(Example 3)
In Example 3, Ni-added SWCNT was prepared by performing the same process as in Example 1 except that the immersion time of SWCNT in the plating solution was 1.5 minutes. At this time, the amount of Ni added to the Ni-added SWCNT was 12 wt%.
[0025]
(Comparative Example 1)
In Comparative Example 1, an untreated SWCNT used in Example 1 was used.
[0026]
(Comparative Example 2)
In Comparative Example 2, SWCNT was immersed in an aqueous solution of Ni nitrate prepared so that Ni became 15 wt% with respect to carbon, then water was evaporated and dried at 110 ° C. for 5 hours. The dried sample was calcined in air at 200 ° C. for 2 hours, and then subjected to a reduction treatment at 500 ° C. in a hydrogen stream to prepare Ni-added SWCNT.
[0027]
The average fiber diameter of the carbon material in the gas storage material manufactured in Example 1 was about 50 nm, and the particle diameter of the supported Ni particles was 10 to 25 nm. The Ni particle diameter of the sample of Example 2 was 8 to 20 nm, and the Ni particle diameter of the sample of Example 3 was 7 to 18 nm. These materials were filled in a pressure-resistant container, and the occlusion amount was measured using hydrogen gas. FIG. 3 shows the results of measuring the amount of occluded hydrogen gas using various carbon materials. The hydrogen storage capacity is evaluated by the hydrogen storage capacity per weight of the material filled in the container. As is clear from the figure, the materials according to the present invention (Examples 1, 2, and 3) occlude more hydrogen than the other materials.
[0028]
As described above, according to Examples 1 to 3, transition metal particles can be adhered to a necessary minimum, and a gas storage material having high gas storage ability, light weight, and low cost can be realized.
[0029]
In addition, it is possible to prepare a transition metal with the optimal particle size for a carbon material for gas storage while in contact with the carbon material, and to produce a gas storage material with high gas storage capacity, light weight, and low cost. can do.
[0030]
<Gas storage tank>
FIG. 4 shows a gas storage tank according to the present invention. The gas storage tank 10 according to the present embodiment is obtained by filling a gas storage material 12 manufactured in any of the above-described Examples 1 to 3 into a metal tank main body 11 having a predetermined pressure resistance. I have. The tank main body 11 is provided with an inlet / outlet 13 for introducing / delivering a gas such as hydrogen, for example, and the inlet / outlet 13 is provided with a tank valve 14.
[0031]
In the present embodiment, in addition to simply filling the gas storage material 12 disposed in the tank main body 11, a material which is appropriately solidified or thinned may be used. Such a gas storage tank 10 can be mounted on an automobile and incorporated into, for example, a fuel cell system or a hydrogen engine system.
[0032]
Although the embodiments of the present invention have been described above, it should not be understood that the description and drawings constituting a part of the disclosure of the above embodiments limit the present invention. From this disclosure, various alternative embodiments, examples, and operation techniques will be apparent to those skilled in the art.
[0033]
For example, in the above-described embodiment, fibrous carbon nanotubes are used as the carbon material. However, as shown in FIG. 5, a particulate carbon material 1B is used, and transition metal particles 2 exist on the surface of the carbon material 1B. May be prepared as follows. Also, when such a particulate carbon material 1B is used, the manufacturing method as in the above-described first to third embodiments may be applied.
[0034]
In each of the above-described embodiments, Ni is used as the transition metal. However, other transition metals can be applied.
[Brief description of the drawings]
FIG. 1 is a schematic view of a gas storage material manufactured in Example 1 according to the present invention.
FIG. 2 is a flowchart illustrating a manufacturing process according to a first embodiment of the present invention.
FIG. 3 is a graph showing the results of measuring the amount of hydrogen stored in the gas storage materials manufactured in Examples 1 to 3 and Comparative Examples 1 and 2.
FIG. 4 is a sectional view showing an embodiment of a gas storage tank according to the present invention.
FIG. 5 is a schematic view showing another embodiment of the gas storage material according to the present invention.
[Explanation of symbols]
1A Carbon material 1B Carbon material 2 Transition metal particles 10 Gas storage tank 11 Tank body 12 Gas storage material 13 Hydrogen inlet / outlet 14 Tank valve

Claims (7)

粒子状炭素材料に、該粒子状炭素材料の平均粒径より短い粒径を持つ遷移金属粒子が接触して存在することを特徴とするガス貯蔵材料。A gas storage material, wherein transition metal particles having a particle diameter shorter than the average particle diameter of the particulate carbon material are present in contact with the particulate carbon material. 繊維状の炭素材料に、該炭素材料の平均繊維径よりも短い粒径を持つ遷移金属粒子が接触して存在することを特徴とするガス貯蔵材料。A gas storage material, wherein transition metal particles having a particle diameter shorter than the average fiber diameter of the carbon material are present in contact with the fibrous carbon material. 請求項1又は請求項2に記載のガス貯蔵材料であって、
前記遷移金属粒子は、ニッケルでなることを特徴とするガス貯蔵材料。
It is a gas storage material according to claim 1 or claim 2,
The gas storage material, wherein the transition metal particles are made of nickel.
請求項1乃至請求項3のいずれか一項に記載されたガス貯蔵材料であって、
前記遷移金属粒子の平均粒径が25nm以下であることを特徴とするガス貯蔵材料。
A gas storage material according to any one of claims 1 to 3, wherein
A gas storage material, wherein the average particle size of the transition metal particles is 25 nm or less.
粒子状もしくは繊維状の炭素材料に、無電解メッキを施して前記炭素材料にニッケルを添加させることを特徴とするガス貯蔵材料の製造方法。A method for producing a gas storage material, comprising applying electroless plating to a particulate or fibrous carbon material to add nickel to the carbon material. 請求項5記載のガス貯蔵材料の製造方法であって、
前記炭素材料に無電解メッキ用の触媒を付与する工程と、
前記触媒を付与した前記炭素材料をニッケルメッキ液に浸漬する工程と、
前記ニッケルメッキ液に浸漬した前記炭素材料を濾過・洗浄を行って乾燥させる工程と、
を備えることを特徴とするガス貯蔵材料の製造方法。
It is a manufacturing method of the gas storage material of Claim 5, Comprising:
A step of applying a catalyst for electroless plating to the carbon material,
Immersing the carbon material provided with the catalyst in a nickel plating solution,
Filtering and washing the carbon material immersed in the nickel plating solution and drying,
A method for producing a gas storage material, comprising:
請求項1乃至請求項4のいずれか一項に記載されたガス貯蔵材料を耐高圧容器内に充填したことを特徴とするガス貯蔵タンク。A gas storage tank, wherein the gas storage material according to any one of claims 1 to 4 is filled in a high-pressure resistant container.
JP2003028240A 2003-02-05 2003-02-05 Gas storage material, method of manufacturing the same and gas storage tank Pending JP2004238240A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003028240A JP2004238240A (en) 2003-02-05 2003-02-05 Gas storage material, method of manufacturing the same and gas storage tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003028240A JP2004238240A (en) 2003-02-05 2003-02-05 Gas storage material, method of manufacturing the same and gas storage tank

Publications (1)

Publication Number Publication Date
JP2004238240A true JP2004238240A (en) 2004-08-26

Family

ID=32955755

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003028240A Pending JP2004238240A (en) 2003-02-05 2003-02-05 Gas storage material, method of manufacturing the same and gas storage tank

Country Status (1)

Country Link
JP (1) JP2004238240A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218346A (en) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Hydrogen adsorbent material and its production method
JP2010523311A (en) * 2007-04-03 2010-07-15 サエス ゲッターズ ソチエタ ペル アツィオニ Adsorption method of gaseous pollutants by nanostructured adsorbent in fiber form
JP2013193954A (en) * 2012-03-15 2013-09-30 Dh Holdings Co Ltd Method for producing nickel coating nanocarbon by using electroless plating

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006218346A (en) * 2005-02-08 2006-08-24 Honda Motor Co Ltd Hydrogen adsorbent material and its production method
JP2010523311A (en) * 2007-04-03 2010-07-15 サエス ゲッターズ ソチエタ ペル アツィオニ Adsorption method of gaseous pollutants by nanostructured adsorbent in fiber form
JP2013193954A (en) * 2012-03-15 2013-09-30 Dh Holdings Co Ltd Method for producing nickel coating nanocarbon by using electroless plating

Similar Documents

Publication Publication Date Title
Lu et al. Highly efficient and durable Pd hydride nanocubes embedded in 2D amorphous NiB nanosheets for oxygen reduction reaction
Saka Surface modification with oxygen doping of g-C3N4 nanoparticles by carbon vacancy for efficient dehydrogenation of sodium borohydride in methanol
US9795946B2 (en) Method of manufacturing a catalyst comprising gold nanoparticles, the catalyst and its use
EP1194211A1 (en) Method for introducing hydrogen into layered nanostructures
US8062624B2 (en) Hydrogen storage apparatus using porous carbon nanospheres
JP2004074116A (en) Catalyst body
JP2003201108A (en) Carbon material
Levasseur et al. Effect of reduction treatment on copper modified activated carbons on NO x adsorption at room temperature
JP4022615B2 (en) Catalyst for water gas shift reaction and methanol steam reforming reaction
US20090208391A1 (en) Processes for the recovery of catalytic metal and carbon nanotubes
JP2009119423A (en) Active b-c-n material and method of manufacturing the same
JP2004238240A (en) Gas storage material, method of manufacturing the same and gas storage tank
JP5072200B2 (en) Methane steam reforming catalyst, method for producing the same, and method for producing hydrogen using the same
JP2012050980A (en) Catalyst, oxidation catalyst, reduction catalyst, and exhaust gas cleaning catalyst
Lu et al. In-situ synthesis of Co-NC/MoS2 derived from ZIF-67 for enhancing the selectivity of electrochemical nitrogen reduction
KR20060108170A (en) Nano-sized ni doped carbon nanotubes for hydrogen storage and its preparation method
KR100911575B1 (en) Titania-palladium compositesand preparing method for the same
Bitter et al. Preparation of Carbon‐Supported Metal Catalysts
JP5112966B2 (en) Lean burn exhaust gas purification catalyst
JP4049097B2 (en) Gas storage material and gas storage device
JP2013111545A (en) Catalyst for purifying exhaust gas and catalyst body supporting the same
JP3624819B2 (en) Fluorine-containing hydrogen storage material
CN112610309B (en) Diesel catalytic particle trap coated with CeZrK/rGO nano solid solution catalyst
JP4166390B2 (en) Method for removing sulfur compounds
JP2004344775A (en) Hydrogen storage material and fuel cell provided with the same