KR101574307B1 - Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property - Google Patents

Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property Download PDF

Info

Publication number
KR101574307B1
KR101574307B1 KR1020130036807A KR20130036807A KR101574307B1 KR 101574307 B1 KR101574307 B1 KR 101574307B1 KR 1020130036807 A KR1020130036807 A KR 1020130036807A KR 20130036807 A KR20130036807 A KR 20130036807A KR 101574307 B1 KR101574307 B1 KR 101574307B1
Authority
KR
South Korea
Prior art keywords
metal
catalyst
polymer electrolyte
carbon
carbon nanotubes
Prior art date
Application number
KR1020130036807A
Other languages
Korean (ko)
Other versions
KR20140120672A (en
Inventor
염경태
이영실
Original Assignee
제일모직주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 제일모직주식회사 filed Critical 제일모직주식회사
Priority to KR1020130036807A priority Critical patent/KR101574307B1/en
Publication of KR20140120672A publication Critical patent/KR20140120672A/en
Application granted granted Critical
Publication of KR101574307B1 publication Critical patent/KR101574307B1/en

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M14/00Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials
    • D06M14/36Graft polymerisation of monomers containing carbon-to-carbon unsaturated bonds on to fibres, threads, yarns, fabrics, or fibrous goods made from such materials on to carbon fibres
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06CFINISHING, DRESSING, TENTERING OR STRETCHING TEXTILE FABRICS
    • D06C7/00Heating or cooling textile fabrics
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/46Oxides or hydroxides of elements of Groups 4 or 14 of the Periodic System; Titanates; Zirconates; Stannates; Plumbates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/32Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/36Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with oxygen, ozone, ozonides, oxides, hydroxides or percompounds; Salts derived from anions with an amphoteric element-oxygen bond with oxides, hydroxides or mixed oxides; with salts derived from anions with an amphoteric element-oxygen bond
    • D06M11/49Oxides or hydroxides of elements of Groups 8, 9, 10 or 18 of the Periodic System; Ferrates; Cobaltates; Nickelates; Ruthenates; Osmates; Rhodates; Iridates; Palladates; Platinates
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M11/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising
    • D06M11/83Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with inorganic substances or complexes thereof; Such treatment combined with mechanical treatment, e.g. mercerising with metals; with metal-generating compounds, e.g. metal carbonyls; Reduction of metal compounds on textiles
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M15/00Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment
    • D06M15/19Treating fibres, threads, yarns, fabrics, or fibrous goods made from such materials, with macromolecular compounds; Such treatment combined with mechanical treatment with synthetic macromolecular compounds
    • D06M15/21Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D06M15/263Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds of unsaturated carboxylic acids; Salts or esters thereof
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K9/00Screening of apparatus or components against electric or magnetic fields
    • H05K9/0073Shielding materials
    • H05K9/0081Electromagnetic shielding materials, e.g. EMI, RFI shielding
    • H05K9/009Electromagnetic shielding materials, e.g. EMI, RFI shielding comprising electro-conductive fibres, e.g. metal fibres, carbon fibres, metallised textile fibres, electro-conductive mesh, woven, non-woven mat, fleece, cross-linked
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2101/00Chemical constitution of the fibres, threads, yarns, fabrics or fibrous goods made from such materials, to be treated
    • D06M2101/40Fibres of carbon
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2101/00Inorganic fibres
    • D10B2101/10Inorganic fibres based on non-oxides other than metals
    • D10B2101/12Carbon; Pitch
    • D10B2101/122Nanocarbons

Abstract

본 발명은 (A) 탄소나노튜브를 고분자전해질로 랩핑(wrapping) 또는 코팅(coating)하는 단계, (B) 고분자전해질로 랩핑 또는 코팅된 탄소나노튜브를 촉매에 담지시켜 촉매를 탄소나노튜브 표면에 분포시키는 단계 및 (C) 촉매가 표면에 분포된 탄소나노튜브를 무전해 도금액으로 무전해 도금하여 금속코팅층을 형성하는 단계로 이루어진 금속코팅된 탄소나노섬유 복합체의 제조방법에 관한 것으로서, 치밀한 구조의 금속층 구현에 따라 전자파 차폐특성 및 전기전도도가 우수하다.(A) wrapping or coating a carbon nanotube with a polymer electrolyte, (B) supporting a carbon nanotube wrapped or coated with a polymer electrolyte on a catalyst, and then placing the catalyst on the surface of the carbon nanotube And (C) electroless-plating the carbon nanotubes distributed on the surface of the catalyst with an electroless plating solution to form a metal coating layer. The present invention relates to a method of manufacturing a metal-coated carbon nanofiber composite having a dense structure The electromagnetic wave shielding property and the electric conductivity are excellent according to the implementation of the metal layer.

Description

전자파 차폐특성이 우수한 탄소나노섬유 복합체의 제조방법 {Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property} TECHNICAL FIELD [0001] The present invention relates to a method for producing a carbon nanofiber composite having excellent electromagnetic wave shielding properties,

본 발명은 전자파 차폐특성이 우수한 탄소나노섬유 복합체의 제조방법에 관한 것이다. 보다 구체적으로, 금속 코팅된 탄소나노섬유 복합체의 제조방법에 관한 것이다.
The present invention relates to a method for producing a carbon nanofiber composite material excellent in electromagnetic wave shielding properties. More particularly, the present invention relates to a method for producing a metal-coated carbon nanofiber composite.

전기/전자 제품의 다기능, 소형화 및 정보통신기기의 발전으로 전자파 사용대역이 점점 고주파 대역으로 이동하는 등 일상생활에서 전자기파 공해가 꾸준히 증가하는 추세이다. 구체적으로, 방출된 전자기파는 주변 기기의 오작동이나 시스템 오류를 유발할 수 있으며, 인체에 발열과 같은 직접적인 피해를 줄 수 있으므로, 이를 방지하는 효과적인 전자기파 차폐 기술의 개발은 그 중요성을 더해가고 있다. Electromagnetic wave pollution has been increasing steadily in everyday life, as the band of electromagnetic waves is gradually shifting to the high frequency band due to the multi-function, miniaturization of electric / electronic products and the development of information communication devices. Specifically, the emitted electromagnetic waves may cause malfunctions or system errors of peripheral devices, and may cause direct damage such as heat to the human body. Therefore, development of effective electromagnetic wave shielding technology to prevent this is becoming more important.

종래 전자기파 차폐기술에는 주로 금속기재(metal based material)를 직접 가공하거나 또는 금속기재를 전도성막에 도장 또는 도금하는 방법이 있다. 금속기재를 직접 가공하는 방법은 금속기재가 복잡한 패턴을 가지고 있는 경우 가공성이 좋지 않고, 무게가 많이 나가는 단점이 있다. 금속기재를 전도성막에 도금하는 방법은 탈지단계, 에칭단계, 중화단계, 활성화단계, 금속증착단계, 도금단계와 같이 복잡한 프로세스를 거쳐야 하므로, 생산성 측면에서 부담이 되는 단점이 있다. Conventional electromagnetic wave shielding techniques include a method of directly processing a metal based material or a method of coating or plating a metal substrate on a conductive film. A method of directly processing a metal substrate has a disadvantage in that it has poor processability and a large weight when the metal substrate has a complicated pattern. The method of plating a metal substrate with a conductive film is a complicated process such as a degreasing step, an etching step, a neutralization step, an activating step, a metal deposition step, and a plating step, which is disadvantageous in terms of productivity.

이에 반하여 고분자 복합수지를 응용한 전기전도성 및 전기파 차폐물은 복합수지를 사출하는 공정만으로 제품화가 가능하기 때문에 생산가격 및 생산성 측면에서 이점이 상당하다 할 수 있다. On the other hand, the electric conductivity and the electric wave shielding applying the polymer composite resin can be produced only by the injection process of the composite resin, which is advantageous in terms of production cost and productivity.

전자파 차폐효율(EMI shielding effectiveness)은 다음과 같은 식으로 표현할 수 있다: The EMI shielding effectiveness can be expressed as:

S.E.(Shielding effectiveness) = R + A + BS.E. (Shielding effectiveness) = R + A + B

상기 식에서, R은 전자기파의 표면반사, A는 전자기파의 내부흡수, 그리고 B는 다반사를 통한 손실을 의미한다. Where R is the surface reflection of the electromagnetic wave, A is the internal absorption of the electromagnetic wave, and B is the loss through the multiple reflection.

금속재의 경우, 전기전도성이 높아(임피던스가 낮아) 전자기파의 표면반사를 통한 전자파 차폐효율이 높다. 따라서 고분자 복합수지의 전자파 차폐효율을 높이기 위해서는 금속성 충진재를 사용하여 전기전도성을 증대시켜 표면 반사를 증대시키고, 동시에 고투자율 충진재를 사용하여 전기파의 반사뿐만 아니라 자기파의 흡수를 증가시켜야 한다. In the case of metallic materials, the electromagnetic wave shielding efficiency is high due to the high electrical conductivity (low impedance) and surface reflection of the electromagnetic wave. Therefore, in order to increase the electromagnetic wave shielding efficiency of the polymer composite resin, a metallic filler should be used to increase the electrical conductivity to increase the surface reflection and at the same time to increase the absorption of magnetic waves as well as reflection of electric waves by using a high permeability filler.

고분자 복합수지의 전자파 차폐효율을 향상시키기 위해서 고투자율을 가지고, 전기전도성이 우수하며, 종횡비가 크고, 중공 구조를 가지는 금속성 충진재의 개발이 요구되고 있다. In order to improve the electromagnetic wave shielding efficiency of the polymer composite resin, it is required to develop a metallic filler having a high permeability, excellent electrical conductivity, a large aspect ratio, and a hollow structure.

한국공개특허 제2007-0041024호는 무전해 도금법을 이용하여 탄소나노튜브에 금속을 코팅하는 방법이 개시되어 있으나, 금속이 고르게 코팅되지 않고, 금속코팅층의 두께가 매우 얇아 전도도에 기인한 반사효과 및 투자율에 기인한 흡수효과를 기대하기 어렵다는 문제점이 있다.Korean Patent Publication No. 2007-0041024 discloses a method of coating a metal on a carbon nanotube by using electroless plating. However, since the metal is not uniformly coated and the thickness of the metal coating layer is very thin, It is difficult to expect the absorption effect due to the permeability.

한국공개특허 제2009-133885호는 나노크기의 섬유상 탄소에 무전해 도금을 하여 종횡비가 큰 금속코팅된 섬유상 탄소를 제조하는 방법을 개시하고 있다. 그러나 무전해 도금반응시 금속촉매의 담지를 위한 결점(defect)의 도입을 위해 초강산 중탕단계를 포함해야하므로, 폐수처리와 같은 환경적인 문제점이 발생하고, 대량생산이 어렵다는 문제점이 있다. Korean Patent Laid-Open Publication No. 2009-133885 discloses a method for producing metal-coated fibrous carbon having a high aspect ratio by electroless plating nano-sized fibrous carbon. However, in order to introduce defects for supporting the metal catalyst during the electroless plating reaction, it is necessary to include a super strong acid bathing step, thus causing environmental problems such as wastewater treatment and difficulty in mass production.

이에 본 발명자들은 초강산 중탕단계를 사용하지 않고 금속촉매의 담지를 위한 결점을 생성함으로써 금속이 고르게 코팅된 탄소나노섬유 복합체의 제조방법을 개발하기에 이른 것이다.
Accordingly, the present inventors have developed a method for producing a carbon nanofiber composite material in which metal is uniformly coated by forming defects for supporting a metal catalyst without using a super strong acid bath step.

본 발명의 목적은 전자파 차폐특성이 우수한 탄소나노섬유 복합체의 제조방법을 제공하기 위한 것이다.An object of the present invention is to provide a method for producing a carbon nanofiber composite material excellent in electromagnetic wave shielding properties.

본 발명의 다른 목적은 전기전도도가 우수한 탄소나노섬유 복합체의 제조방법을 제공하기 위한 것이다.Another object of the present invention is to provide a method for producing a carbon nanofiber composite having excellent electrical conductivity.

본 발명의 또다른 목적은 금속층의 두께조절이 가능한 탄소나노섬유 복합체의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method of manufacturing a carbon nanofiber composite capable of controlling the thickness of a metal layer.

본 발명의 또다른 목적은 친환경적인 탄소나노섬유 복합체의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing an environmentally friendly carbon nanofiber composite.

본 발명의 또다른 목적은 대량생산이 가능한 탄소나노섬유 복합체의 제조방법을 제공하는 것이다.It is another object of the present invention to provide a method for producing a carbon nanofiber composite material capable of mass production.

본 발명의 상기 및 기타의 목적들은 하기 설명되는 본 발명에 의하여 모두 달성될 수 있다.
The above and other objects of the present invention can be achieved by the present invention described below.

본 발명에 따른 금속코팅된 탄소나노섬유 복합체의 제조방법은 (A) 탄소나노튜브를 고분자전해질로 랩핑(wrapping) 또는 코팅(coating)하는 단계, (B) 고분자전해질로 랩핑 또는 코팅된 탄소나노튜브를 촉매용액에 담지시켜 촉매를 탄소나노튜브 표면에 분포시키는 단계 및 (C) 촉매가 표면에 분포된 탄소나노튜브를 무전해 도금액으로 도금하여 금속코팅층을 형성하는 단계로 이루어져 있다.A method for fabricating a metal-coated carbon nanofiber composite according to the present invention includes the steps of (A) wrapping or coating a carbon nanotube with a polymer electrolyte, (B) carbon nanotubes wrapped or coated with a polymer electrolyte (C) a step of coating the carbon nanotubes distributed on the surface of the catalyst with an electroless plating solution to form a metal coating layer on the surface of the carbon nanotube.

본 발명의 금속코팅된 탄소나노섬유 복합체의 제조방법은 (D) 금속코팅층이 형성된 탄소나노튜브를 열처리하는 단계를 더 포함할 수 있다. 열처리 단계는 380 내지 450 ℃에서 수행된다.The method for producing a metal-coated carbon nanofiber composite according to the present invention may further include (D) heat treating the carbon nanotube having the metal coating layer formed thereon. The heat treatment step is performed at 380 to 450 ° C.

탄소나노튜브를 고분자전해질로 랩핑(wrapping) 또는 코팅(coating)하는 단계(A)는 고분자전해질 100 중량부에 대하여 탄소나노튜브 30 내지 100 중량부를 고분자전해질로 랩핑 또는 코팅한다. The step (A) of wrapping or coating the carbon nanotubes with a polymer electrolyte is performed by laminating or coating 30 to 100 parts by weight of carbon nanotubes with a polymer electrolyte with respect to 100 parts by weight of the polymer electrolyte.

고분자전해질은 폴리아크릴산, 폴리아크릴레이트, 폴리스티렌설폰산, 폴리스티렌설포네이트, 폴리메타크릴산, 폴리메타크릴레이트, 폴리비닐설폰산, 폴리비닐설포네이트, 폴리에틸렌이민, 폴리에틸렌이민에폭시레이트, 폴리디아릴디메틸암모니움클로라이드, 폴리아릴아민하이드로클로라이드 및 이들의 혼합물이다. The polymer electrolyte may be selected from the group consisting of polyacrylic acid, polyacrylate, polystyrene sulfonic acid, polystyrene sulfonate, polymethacrylic acid, polymethacrylate, polyvinylsulfonic acid, polyvinylsulfonate, polyethyleneimine, polyethyleneimine epoxylate, Ammonia chloride, polyarylamine hydrochloride, and mixtures thereof.

촉매를 탄소나노튜브 표면에 분포시키는 단계(B)는 고분자전해질로 랩핑 또는 코팅된 탄소나노튜브 100 중량부를 촉매용액 100 내지 300 중량부에 담지시켜 촉매를 탄소나노튜브의 표면에 분포시킨다.In the step (B) of distributing the catalyst on the surface of the carbon nanotube, 100 parts by weight of carbon nanotubes lapped or coated with a polymer electrolyte are supported on 100 to 300 parts by weight of the catalyst solution to distribute the catalyst on the surface of the carbon nanotubes.

촉매는 금속촉매고, 바람직하게는 팔라듐 또는 팔라듐과 주석의 합금이다.The catalyst is a metal catalyst, preferably an alloy of palladium or palladium and tin.

금속코팅층을 형성하는 단계(C)는 촉매가 표면에 분포된 탄소나노튜브 100 중량부에 대하여 금속염 2,000 내지 5,000 중량부를 포함하는 무전해 도금액을 사용하여 금속코팅층을 형성한다. In the step (C) of forming the metal coating layer, a metal coating layer is formed by using an electroless plating solution containing 2,000 to 5,000 parts by weight of metal salt based on 100 parts by weight of carbon nanotubes distributed on the surface of the catalyst.

무전해 도금액은 금속염, 환원제, 착화제, pH 조절제를 포함한다. 금속염은 니켈, 니켈-인 합금, 니켈-철 합금, 구리, 은, 코발트, 주석 및 이들의 혼합물이고, 금속염은 농도가 0.01 내지 1M이다. The electroless plating solution includes a metal salt, a reducing agent, a complexing agent, and a pH adjusting agent. The metal salt is nickel, a nickel-phosphorus alloy, a nickel-iron alloy, copper, silver, cobalt, tin and a mixture thereof, and the metal salt has a concentration of 0.01 to 1M.

본 발명의 금속코팅된 탄소나노섬유 복합체의 제조방법은 촉매를 탄소나노튜브의 표면적 100 nm2당 5 내지 40개 분포시킨다.In the method for producing a metal-coated carbon nanofiber composite according to the present invention, 5 to 40 catalysts are distributed per 100 nm 2 of the surface area of the carbon nanotubes.

본 발명에 따른 금속코팅된 탄소나노섬유 복합체는 상기 금속코팅된 탄소나노섬유 복합체의 제조방법에 따라 제조된다. 또한, 본 발명에 따른 전자파 차폐용품은 금속코팅된 탄소나노섬유 복합체로부터 제조된다. The metal coated carbon nanofiber composite according to the present invention is prepared according to the method for producing the metal coated carbon nanofiber composite. The electromagnetic shielding material according to the present invention is also manufactured from a metal-coated carbon nanofiber composite.

이하 본 발명의 구체적인 내용을 하기에 상세히 설명한다.
Hereinafter, the present invention will be described in detail.

본 발명은 전자파 차폐특성 및 전기전도도가 우수하고, 친환경적이며, 대량생산이 가능한 탄소나노섬유 복합체의 제조방법을 제공하는 발명의 효과를 갖는다.
INDUSTRIAL APPLICABILITY The present invention has the effect of providing a method for producing a carbon nanofiber composite material which is excellent in electromagnetic wave shielding property and electric conductivity, environmentally friendly, and mass-producible.

도 1은 고분자 전해질로 랩핑된 탄소나노튜브의 전자주사현미경 사진(SEM)이다.
도 2는 촉매가 표면에 분포된 탄소나노튜브의 전자주사현미경 사진(SEM)이다.
도 3은 금속코팅된 탄소나노섬유의 전자주사현미경 사진(SEM)이다.
도 4는 열처리 후 금속코팅된 탄소나노섬유의 전자주사현미경 사진(SEM)이다.
1 is a scanning electron micrograph (SEM) of a carbon nanotube wrapped with a polymer electrolyte.
2 is an electron micrograph (SEM) of a carbon nanotube in which a catalyst is distributed on the surface.
3 is a scanning electron micrograph (SEM) of the metal-coated carbon nanofibers.
FIG. 4 is a scanning electron micrograph (SEM) of the carbon nanofibers coated with metal after heat treatment.

본 발명은 전자파 차폐특성이 우수한 탄소나노섬유 복합체의 제조방법에 관한 것으로, 금속 코팅된 탄소나노섬유 복합체의 제조방법에 관한 것이다. The present invention relates to a method for producing a carbon nanofiber composite material excellent in electromagnetic wave shielding characteristics, and a method for manufacturing a metal-coated carbon nanofiber composite material.

본 발명에 따른 금속코팅된 탄소나노섬유 복합체의 제조방법은 (A) 탄소나노튜브를 고분자전해질로 랩핑(wrapping) 또는 코팅(coating)하는 단계, (B) 고분자전해질로 랩핑 또는 코팅된 탄소나노튜브를 촉매에 담지시켜 촉매를 탄소나노튜브 표면에 분포시키는 단계 및 (C) 촉매가 표면에 분포된 탄소나노튜브를 무전해 도금액으로 도금하여 금속코팅층을 형성하는 단계로 이루어져 있다.
A method for fabricating a metal-coated carbon nanofiber composite according to the present invention includes the steps of (A) wrapping or coating a carbon nanotube with a polymer electrolyte, (B) carbon nanotubes wrapped or coated with a polymer electrolyte (C) depositing carbon nanotubes distributed on the surface of the catalyst with an electroless plating solution to form a metal coating layer.

(A) 탄소나노튜브를 고분자전해질로 랩핑 ( wrapping ) 또는 코팅( coating )하는 단계 ( A) a carbon nanotube as a polymer electrolyte Wrapping (wrapping) or coated (coating) comprising:

탄소나노튜브를 무전해 도금액으로 도금하는 경우 금속촉매의 담지를 위한 결점이 존재하여야 한다. 일반적으로 이러한 결점을 생성하기 위하여 초강산 중탕단계를 포함하였으나, 초강산 사용에 따른 폐수처리의 문제가 발생하고, 사용할 수 있는 초강산의 함량이 제한되어 대량생산이 어렵다는 문제점이 있다.When carbon nanotubes are plated with an electroless plating solution, there must be a drawback for supporting a metal catalyst. Generally, in order to generate such drawbacks, it includes a super strong acid step, but there is a problem in that the use of super strong acid causes a problem of wastewater treatment and the amount of super strong acid which can be used is limited, thereby making it difficult to mass produce.

본 발명은 초강산 중탕단계를 사용하지 않고도 금속촉매의 담지를 위한 결점을 생성하기 위하여 탄소나노튜브를 고분자전해질로 랩핑 또는 코팅하는 단계(A)를 포함한다. 이러한 단계를 포함함으로써 화학적 결점없이 탄소나노튜브에 촉매의 담지를 고밀도로 고르게 할 수 있다. 여기에서 랩핑이란 고분자전해질로 탄소나노튜브를 부분적으로 둘러싸는 것을 의미하며, 코팅이란 탄소나노튜브 전체를 둘러싸는 것을 의미한다.The present invention includes a step (A) of lapping or coating carbon nanotubes with a polymer electrolyte to produce defects for supporting a metal catalyst without using a super strong acid bath step. By including such a step, it is possible to uniformly carry the catalyst on the carbon nanotube without any chemical defect. Here, lapping means that the carbon nanotube is partially surrounded by the polymer electrolyte, and the coating means that the carbon nanotube is surrounded.

고분자전해질로는 음이온성 고분자전해질 또는 양이온성 고분자전해질을 사용할 수 있다. 음이온성 고분자전해질은 폴리아크릴산, 폴리아크릴레이트, 폴리스티렌설폰산, 폴리스티렌설포네이트, 폴리메타크릴산, 폴리메타크릴레이트, 폴리비닐설폰산, 폴리비닐설포네이트 등이 있다. 양이온 고분자전해질은 폴리에틸렌이민, 폴리에틸렌이민에폭시레이트, 폴리비닐알코올, 폴리디아릴디메틸암모니움클로라이드, 폴리아릴아민하이드로클로라이드 등이 있다. As the polymer electrolyte, an anionic polymer electrolyte or a cationic polymer electrolyte can be used. Examples of the anionic polymer electrolyte include polyacrylic acid, polyacrylate, polystyrene sulfonic acid, polystyrene sulfonate, polymethacrylic acid, polymethacrylate, polyvinyl sulfonic acid, and polyvinyl sulfonate. Examples of the cationic polymer electrolyte include polyethyleneimine, polyethyleneimine epoxylate, polyvinyl alcohol, polydialyldimethylammonium chloride, and polyarylamine hydrochloride.

탄소나노튜브는 본 발명이 속하는 기술 분야에 통상의 지식을 가진 자에 의해서 용이하게 실시될 수 있으며, 탄소나노튜브로서 상업적으로 입수 가능한 제품을 제한없이 사용할 수 있다. Carbon nanotubes can be easily carried out by a person having ordinary skill in the art, and products commercially available as carbon nanotubes can be used without limitation.

탄소나노튜브를 합성하는 방법은 전기방전법(Arc-discharge), 열분해법(pyrolysis), 레이저 증착법(Laser vaporization), 플라즈마 화학기상증착법(plasma chemical vapor deposition), 열화학 기상증착법(Thermal chemical vapor deposition), 전기분해법, 플레임(flame) 합성법 등이 있으나, 본 발명에서 사용된 탄소나노튜브는 합성 방법에 관계없이 얻어진 탄소나노튜브 모두를 사용할 수 있다.Methods for synthesizing carbon nanotubes include, but are not limited to, arc-discharge, pyrolysis, laser vaporization, plasma chemical vapor deposition, thermal chemical vapor deposition, , An electrolysis method, and a flame synthesis method. However, the carbon nanotubes used in the present invention may be all carbon nanotubes obtained regardless of the synthesis method.

탄소나노튜브는 그 벽의 개수에 따라 단일벽탄소나노튜브(single wall carbon nanotube), 이중벽탄소타노튜브(double wall carbon nanotube), 다중벽탄소나노튜브(multi wall carbon nanotube), 절두된 원뿔형의 그래핀(truncated graphene)이 다수 적층된 내부가 비어있는 중공관 형태를 가진 탄소나노섬유(cup-stacked carbon nanofiber)로 나눌 수 있다. 본 발명에서 사용되는 탄소나노튜브는 그 종류에 제한을 두지 않으나, 다중벽탄소나노튜브를 사용하는 것이 경제적으로 바람직하다.Carbon nanotubes can be classified into a single wall carbon nanotube, a double wall carbon nanotube, a multi wall carbon nanotube, a truncated conical shape, And a cup-stacked carbon nanofiber in which a plurality of truncated graphene layers are stacked and an inner hollow tube shape is formed. The carbon nanotubes used in the present invention are not limited in their kind, but it is economically preferable to use multi-walled carbon nanotubes.

탄소나노튜브의 직경은 1 내지 100 nm, 바람직하게는 5 내지 20 nm이며, 길이는 0.01 μm 내지 100 μm, 바람직하게는 1 μm 내지 30 μm이다.The diameter of the carbon nanotubes is 1 to 100 nm, preferably 5 to 20 nm, and the length is 0.01 to 100 탆, preferably 1 to 30 탆.

탄소나노튜브의 종횡비(aspect ratio, L/D)는 50 내지 5,000 인 것이 바람직하다. 탄소나노튜브의 종횡비가 50 미만인 경우 전도성 열가소성 수지조성물 내에서 전기전도성을 구현하기 위한 전기적 구조의 형성이 어렵고, 5,000 초과인 경우 탄소나노튜브 합성 시간이 길어짐에 따른 가격상승이 문제된다.The aspect ratio (L / D) of the carbon nanotubes is preferably 50 to 5,000. When the aspect ratio of the carbon nanotubes is less than 50, it is difficult to form an electrical structure in order to realize electrical conductivity in the conductive thermoplastic resin composition. If the carbon nanotubes have an aspect ratio of more than 5,000, the increase in the carbon nanotube synthesis time is a problem.

탄소나노튜브를 고분자전해질로 랩핑 또는 코팅하는 단계(A)는 고분자전해질 100 중량부에 대하여 탄소나노튜브 30 내지 100 중량부를 고분자전해질로 랩핑 또는 코팅한다. 탄소나노튜브의 함량이 30 중량부 미만인 경우 탄소나노튜브의 랩핑 또는 코팅에 참여하지 않는 고분자전해질이 존재하여 무정형 금속입자가 형성될 수 있고, 과량의 고분자전해질이 코팅되어 무전해 도금 후 형성된 금속층과 탄소나노튜브 사이의 부착성이 좋지 않을 수 있으며, 100 중량부 초과인 경우 용매에 대한 탄소나노튜브의 분산성이 불량해 질 수 있다.
The step (A) of lapping or coating the carbon nanotubes with the polymer electrolyte includes laminating or coating 30 to 100 parts by weight of the carbon nanotubes with the polymer electrolyte with respect to 100 parts by weight of the polymer electrolyte. When the content of the carbon nanotubes is less than 30 parts by weight, amorphous metal particles may be formed due to the presence of the polymer electrolyte not participating in the lapping or coating of the carbon nanotubes, and an excessive amount of the polymer electrolyte may be coated, Adhesion between the carbon nanotubes may be poor, and if it exceeds 100 parts by weight, the dispersibility of the carbon nanotubes to the solvent may become poor.

(B) (B) 고분자전해질로As the polymer electrolyte 랩핑rapping 또는 코팅된 탄소나노튜브를 촉매에  Or coated carbon nanotubes on a catalyst 담지시켜Carry 촉매를 탄소나노튜브 표면에 분포시키는 단계 Distributing the catalyst on the surface of the carbon nanotube

탄소나노튜브를 고분자전해질로 랩핑 또는 코팅하는 단계(A)를 통하여 금속촉매의 담지를 위한 결점이 생성된 탄소나노튜브는, 표면에 촉매를 고르게 분포시키기 위하여, 촉매에 담지된다. 탄소나노튜브 표면에 촉매가 고르게 분포된 경우 무전해 도금시 치밀한 구조의 금속코팅층을 형성할 수 있다.The carbon nanotubes having defects for supporting the metal catalyst through the step (A) of wrapping or coating the carbon nanotubes with the polymer electrolyte are supported on the catalyst in order to uniformly distribute the catalyst on the surface. When the catalyst is uniformly distributed on the surface of the carbon nanotube, a metal coating layer having a dense structure can be formed during electroless plating.

본 발명에 사용되는 촉매는 금속촉매이고, 금속촉매로는 백금 또는 백금과 주석의 합금이 사용된다. 이 중 백금과 주석의 합금촉매를 사용하는 것이 바람직하다.The catalyst used in the present invention is a metal catalyst, and platinum or an alloy of platinum and tin is used as the metal catalyst. Among them, it is preferable to use an alloy catalyst of platinum and tin.

촉매를 탄소나노튜브 표면에 분포시키는 단계(B)는 고분자전해질로 랩핑 또는 코팅된 탄소나노튜브 100 중량부에 대하여 촉매용액 100 내지 300 중량부를 사용한다. 촉매용액의 함량이 100 중량부 미만인 경우 금속층의 연속상이 형성되기 어려우며, 300 중량부 초과인 경우 고가의 촉매를 필요이상으로 사용하게 되어 제조단가가 상승하는 문제점이 있다.In the step (B) of distributing the catalyst on the surface of the carbon nanotubes, 100 to 300 parts by weight of the catalyst solution is used for 100 parts by weight of the carbon nanotubes lapped or coated with the polymer electrolyte. When the content of the catalyst solution is less than 100 parts by weight, a continuous phase of the metal layer is difficult to form. When the amount of the catalyst solution is more than 300 parts by weight, an expensive catalyst is used more than necessary.

촉매를 탄소나노튜브 표면에 분포시키는 단계(B)는 촉매를 탄소나노튜브의 표면적 100 nm2당 5 내지 40개 분포시킨다. 이러한 범위로 촉매가 분포된 경우 연속적으로 금속코팅층을 형성할 수 있다. 5 개/100nm2 미만인 경우 불균일한 금속코팅층을 형성하고, 40 개/100nm2 초과인 경우 촉매를 필요 이상 사용하여 비용이 증가한다. The step (B) of distributing the catalyst on the surface of the carbon nanotube distributes 5 to 40 catalysts per 100 nm 2 of the surface area of the carbon nanotube. When the catalyst is distributed in this range, the metal coating layer can be continuously formed. If less than 5/100 nm 2 , a non-uniform metal coating layer is formed, and if more than 40/100 nm 2 , the cost is increased because the catalyst is used more than necessary.

(C) 촉매가 표면에 분포된 탄소나노튜브를 (C) Carbon nanotubes in which the catalyst is distributed on the surface 무전해Electroless 도금액으로 도금하여 금속코팅층을 형성하는 단계 Plating with a plating solution to form a metal coating layer

금속코팅층을 탄소나노튜브의 표면 위에 형성함으로써 높은 종횡비를 가지는 탄소나노튜브를 제조할 수 있다. 금속코팅층이 형성된 탄소나노튜브의 종횡비는 50 내지 5,000이다. 종횡비가 상기 범위에 포함되는 경우 우수한 투자율 및 전기전도성을 위한 네트워크 형성이 용이하다.By forming the metal coating layer on the surface of the carbon nanotube, a carbon nanotube having a high aspect ratio can be produced. The aspect ratio of the carbon nanotubes on which the metal coating layer is formed is 50 to 5,000. When the aspect ratio is included in the above range, it is easy to form a network for excellent permeability and electrical conductivity.

또한, 금속코팅층이 형성된 탄소나노튜브의 경우 매트릭스 수지와의 계면결합력이 우수하여 고기능성 복합체에 적용할 수 있다.Further, in the case of carbon nanotubes having a metal coating layer formed thereon, the carbon nanotubes can be applied to high-functional composites because of their excellent interfacial bonding strength with the matrix resin.

무전해 도금액은 금속염, 환원제, 착화제, pH 조절제를 포함한다. 금속염은 니켈, 니켈-인 합금, 니켈-철 합금, 구리, 은, 코발트, 주석 및 이들의 혼합물이고, 농도가 0.01 내지 1 M이다. The electroless plating solution includes a metal salt, a reducing agent, a complexing agent, and a pH adjusting agent. The metal salt is nickel, a nickel-phosphorus alloy, a nickel-iron alloy, copper, silver, cobalt, tin and mixtures thereof and has a concentration of 0.01 to 1 M.

금속코팅층을 형성하는 단계(C)는 촉매가 표면에 분포된 탄소나노튜브 100 중량부에 대하여 금속염 2,000 내지 5,000 중량부를 포함하는 무전해 도금액을 사용하여 무전해 도금하여 금속코팅층을 형성한다. 무전해 도금액내 금속염의 함량에 따라 금속코팅층의 두께를 조절할 수 있으며, 두께 조절을 통해 목적하는 직경을 가지는 탄소나노섬유 복합체를 제조할 수 있다.
In the step (C) of forming the metal coating layer, electroless plating is performed on 100 parts by weight of carbon nanotubes distributed on the surface of the catalyst using an electroless plating solution containing 2,000 to 5,000 parts by weight of metal salt to form a metal coating layer. The thickness of the metal coating layer can be controlled according to the content of the metal salt in the electroless plating solution, and the carbon nanofiber composite having the desired diameter can be manufactured through the thickness control.

(D) 금속코팅층이 형성된 탄소나노튜브를 열처리하는 단계(D) heat treating the carbon nanotube having the metal coating layer formed thereon

본 발명의 금속코팅된 탄소나노섬유 복합체의 제조방법은 열처리 단계(D)를 더 포함할 수 있다, 이러한 열처리 단계를 통해, 금속코팅층의 결정성을 증가시킬 수 있고, 동시에 접촉저항을 감소시켜 전기전도도 및 전자파 차폐특성을 향상시킬 수 있다.The method of manufacturing a metal-coated carbon nanofiber composite according to the present invention may further include a heat treatment step (D). Through this heat treatment step, the crystallinity of the metal coating layer can be increased and at the same time, The conductivity and the electromagnetic wave shielding property can be improved.

열처리 단계(D)는 아르곤/수소 혼합 가스 존재하에서 380 내지 450 ℃ 및 10 내지 30분 동안 수행된다.
The heat treatment step (D) is carried out in the presence of an argon / hydrogen mixed gas at 380 to 450 ° C and for 10 to 30 minutes.

본 발명에 따른 금속코팅된 탄소나노섬유 복합체는 상기 금속코팅된 탄소나노섬유 복합체의 제조방법에 따라 제조된다. 또한, 본 발명에 따른 전자파 차폐용품은 금속코팅된 탄소나노섬유 복합체로부터 제조된다.
The metal coated carbon nanofiber composite according to the present invention is prepared according to the method for producing the metal coated carbon nanofiber composite. The electromagnetic shielding material according to the present invention is also manufactured from a metal-coated carbon nanofiber composite.

본 발명은 하기의 실시예에 의하여 보다 구체화될 것이며, 하기 실시예는 본 발명의 구체적인 예시에 불과하며 본 발명의 보호범위를 한정하거나 제한하고자 하는 것은 아니다.
The present invention will be further illustrated by the following examples, which are to be construed as illustrative examples only and are not intended to limit or limit the scope of protection of the present invention.

실시예Example

본 발명의 실시예 및 비교실시예에서 사용된 각 성분의 사양은 다음과 같다.
The specifications of each component used in Examples and Comparative Examples of the present invention are as follows.

(A) 탄소나노튜브(A) Carbon nanotubes

직경이 15nm이고 길이가 20 내지 30 ㎛인 제이오社의 JC-420 grade를 사용하였다.A JC-420 grade of Zeon Corporation having a diameter of 15 nm and a length of 20 to 30 μm was used.

(B) 고분자전해질(B) Polymer electrolyte

시그마 알드리치社의 폴리스티렌설포네이트(분자량(Mw) 70,000)를 사용하였다.Polystyrene sulphonate (molecular weight (Mw) 70,000) from Sigma-Aldrich was used.

(C) 촉매용액(C) a catalyst solution

직경이 5n m 이하인 영인플라켐社의 백금/주석 합금촉매인 PT-activator를 산성계 용액에 분산하여 사용하였다.A PT-activator, a platinum / tin alloy catalyst of Young-In Plastics, having a diameter of 5 nm or less, was dispersed in an acidic solution.

(D) 무전해 도금액(D) Electroless plating solution

0.1M의 NiSO4ㆍ6H2O와 NaH2PO2를 환원제로 사용하는 통상의 무전해 도금액을 제조하였다.A conventional electroless plating solution using 0.1 M of NiSO 4 .6H 2 O and NaH 2 PO 2 as a reducing agent was prepared.

(E) 금속염 및 첨가제는 각각 대정화금社 및 삼전케미칼社의 제품을 사용하였다.
(E) metal salts and additives were respectively manufactured by DaeHwa Kim and SAME CHEMICAL CO., LTD.

실시예Example 1 One

교반기를 사용하여 탄소나노튜브에 복수전하를 가진 고분자전해질을 균일하게 랩핑하였다. 고분자전해질이 랩핑된 탄소나노튜브의 주사전자현미경(SEM)사진을 도 1에 나타내었다. 산성계 용액에 촉매를 분산시킨 후 탄소나노튜브의 수용액 분산액에 섞어 정전기적 인력을 통해 촉매를 고르게 담지시켰다. 촉매를 담지시킨 탄소나노튜브는 1M의 묽은 황산으로 가속화 과정을 시행한 후 증류수를 이용하여 세척하였다. 촉매가 담지된 탄소나노튜브의 주사전자현미경(SEM)사진을 도 2에 나타내었다. 교반기 및 초음파 발진기를 사용하여 촉매가 담지된 탄소나노튜브를 분산시킨 후 0.1M의 NiSO4ㆍ6H2O 무전해 도금액으로 도금을 실시하여 금속코팅된 탄소나노섬유 복합체를 제조하였다. 제조된 금속코팅된 탄소나노섬유 복합체의 주사전자현미경(SEM)사진을 도 3에 나타내었다.
The polymer electrolyte having multiple charges on the carbon nanotubes was uniformly wrapped using a stirrer. A scanning electron microscope (SEM) photograph of a carbon nanotube with a polymer electrolyte wrapped therein is shown in FIG. After the catalyst was dispersed in the acidic solution, it was mixed with the aqueous solution dispersion of the carbon nanotubes to carry the catalyst evenly through the electrostatic attraction. Carbon nanotubes loaded with catalyst were accelerated with 1 M dilute sulfuric acid and washed with distilled water. A scanning electron microscope (SEM) photograph of the catalyst-supported carbon nanotube is shown in FIG. The catalyst-supported carbon nanotubes were dispersed using a stirrer and an ultrasonic oscillator, and then plated with a 0.1 M NiSO 4 .6H 2 O electroless plating solution to prepare a metal-coated carbon nanofiber composite. A scanning electron microscope (SEM) photograph of the prepared metal-coated carbon nanofiber composite is shown in FIG.

비교실시예Comparative Example

고분자전해질을 랩핑하는 단계 대신 초강산 중탕 단계를 사용한 것을 제외하고는 실시예 1과 동일하게 제조하였다.
Except that the step of lapping the polymer electrolyte was used instead of the step of lapping the polymer electrolyte.

촉매가 담지된 탄소나노튜브에서 촉매의 개수를 측정하였으며, 금속코팅된 탄소나노섬유 복합체의 코팅의 균일성을 육안으로 관찰한 후 하기 표 1에 나타내었다.
The number of catalysts was measured on the catalyst-supported carbon nanotubes, and the uniformity of the coating of the metal-coated carbon nanofiber composite was visually observed, and the results are shown in Table 1 below.

  실시예 1Example 1 비교실시예 Comparative Example 백금/주석 합금촉매 나노입자의 평균개수
(개/100nm2)
Average number of platinum / tin alloy catalyst nanoparticles
(Number / 100 nm 2 )
1010 44
코팅의 균일성Uniformity of coating 균일함Uniformity 불균일함Inhomogeneity

상기 표 1에 나타나 있듯이, 초강산 중탕 단계 대신 고분자전해질 랩핑 단계를 사용한 실시예 1는 탄소나노튜브 표면에 더 많은 촉매가 분포되어 있다는 것을 확인할 수 있다. 또한, 실시예 1은 비교실시예에 비하여 금속코팅층이 더 균일하게 형성되어 있다는 것을 확인할 수 있다. 비교실시예는 금속코팅층이 불균일하게 형성되어 있기 때문에 전기전도성이 좋지 않음을 예측할 수 있다.As shown in Table 1, in Example 1 using the polymer electrolyte wrapping step instead of the super strong acid bathing step, it can be confirmed that more catalysts are distributed on the surface of the carbon nanotubes. In addition, it can be confirmed that the metal coating layer of Example 1 is formed more uniformly as compared with the comparative example. In the comparative example, it can be predicted that the electrical conductivity is not good because the metal coating layer is formed non-uniformly.

실시예Example 2 2

실시예 1에서 제조된 금속코팅된 탄소나노섬유 복합체에 추가적으로 아르곤/수소 혼합 가스 존재하에서 380 내지 450 ℃ 및 10 내지 30분 동안 열처리를 하였다. 열처리된 금속코팅된 탄소나노섬유 복합체의 주사전자현미경(SEM)사진을 도 4에 나타내었다.
The metal-coated carbon nanofiber composite prepared in Example 1 was further heat-treated at 380 to 450 ° C for 10 to 30 minutes in the presence of an argon / hydrogen mixed gas. A scanning electron microscope (SEM) photograph of the heat-treated metal-coated carbon nanofiber composite is shown in FIG.

본 발명의 단순한 변형 내지 변경은 이 분야의 통상의 지식을 가진 자에 의하여 용이하게 이용될 수 있으며, 이러한 변형이나 변경은 모두 본 발명의 영역에 포함되는 것으로 볼 수 있다.It will be understood by those skilled in the art that various changes in form and details may be made therein without departing from the spirit and scope of the invention as defined by the appended claims.

Claims (15)

(A) 탄소나노튜브를 고분자전해질로 랩핑(wrapping) 또는 코팅(coating)하는 단계;
(B) 상기 고분자전해질로 랩핑 또는 코팅된 탄소나노튜브를 촉매용액에 담지시켜 촉매를 상기 탄소나노튜브 표면에 분포시키는 단계; 및
(C) 상기 촉매가 표면에 분포된 탄소나노튜브를 무전해 도금액으로 도금하여 금속코팅층을 형성하는 단계;
를 포함하는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
(A) wrapping or coating a carbon nanotube with a polymer electrolyte;
(B) supporting carbon nanotubes lapped or coated with the polymer electrolyte in a catalyst solution to distribute the catalyst on the surface of the carbon nanotubes; And
(C) forming a metal coating layer by plating the carbon nanotubes distributed on the surface of the catalyst with an electroless plating solution;
Coated carbon nanofiber composite material.
제1항에 있어서, (D) 상기 금속코팅층이 형성된 탄소나노튜브를 열처리하는 단계를 더 포함하는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The method of claim 1, further comprising: (D) heat-treating the carbon nanotube having the metal coating layer formed thereon.
제2항에 있어서, 상기 열처리는 380 내지 450 ℃에서 수행하는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
3. The method of claim 2, wherein the heat treatment is performed at 380 to 450 < 0 > C.
제1항에 있어서, 상기 고분자전해질 100 중량부에 대하여 상기 탄소나노튜브 30 내지 100중량부를 상기 고분자전해질로 랩핑 또는 코팅하는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The method according to claim 1, wherein 30 to 100 parts by weight of the carbon nanotubes are wrapped or coated with 100 parts by weight of the polymer electrolyte by the polymer electrolyte.
제1항에 있어서, 상기 고분자전해질로 랩핑 또는 코팅된 탄소나노튜브 100 중량부를 상기 촉매용액 100 내지 300 중량부에 담지시켜 상기 촉매를 상기 탄소나노튜브의 표면에 분포시키는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
2. The method of claim 1, wherein 100 parts by weight of the carbon nanotubes lapped or coated with the polymer electrolyte is supported on 100 to 300 parts by weight of the catalyst solution to distribute the catalyst on the surface of the carbon nanotubes. A method for producing a carbon nanofiber composite material.
제1항에 있어서, 상기 촉매가 표면에 분포된 탄소나노튜브 100 중량부에 대하여 금속염 2,000 내지 5,000 중량부를 포함하는 무전해 도금액을 사용하여 금속코팅층을 형성하는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The metal-coated carbon nanofiber according to claim 1, wherein the metal-coated carbon nanofibers are formed by using an electroless plating solution containing 2,000 to 5,000 parts by weight of a metal salt with respect to 100 parts by weight of carbon nanotubes distributed on the surface of the catalyst ≪ / RTI >
제1항에 있어서, 상기 고분자전해질은 폴리아크릴산, 폴리아크릴레이트, 폴리스티렌설폰산, 폴리스티렌설포네이트, 폴리메타크릴산, 폴리메타크릴레이트, 폴리비닐설폰산, 폴리비닐설포네이트, 폴리에틸렌이민, 폴리에틸렌이민에폭시레이트, 폴리디아릴디메틸암모니움클로라이드, 폴리아릴아민하이드로클로라이드 및 이들의 혼합물로 이루어진 군으로부터 선택되는 하나 이상의 고분자전해질인 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The method of claim 1, wherein the polymer electrolyte is selected from the group consisting of polyacrylic acid, polyacrylate, polystyrene sulfonic acid, polystyrene sulfonate, polymethacrylic acid, polymethacrylate, polyvinylsulfonic acid, polyvinylsulfonate, polyethyleneimine, polyethyleneimine Wherein the polymer electrolyte is at least one polymer electrolyte selected from the group consisting of polyaniline, epoxylate, polydialyldimethylammonium chloride, polyarylamine hydrochloride, and mixtures thereof.
제1항에 있어서, 상기 촉매는 금속촉매인 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The method of claim 1, wherein the catalyst is a metal catalyst.
제8항에 있어서, 상기 금속촉매는 백금 또는 백금과 주석의 합금으로 이루어지는 군으로부터 선택되는 하나 이상의 금속촉매인 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The method of claim 8, wherein the metal catalyst is at least one metal catalyst selected from the group consisting of platinum or an alloy of platinum and tin.
제1항에 있어서, 상기 무전해 도금액은 금속염, 환원제, 착화제, pH 조절제를 포함하는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The method of claim 1, wherein the electroless plating solution comprises a metal salt, a reducing agent, a complexing agent, and a pH adjusting agent.
제10항에 있어서, 상기 금속염은 니켈, 니켈-인 합금, 니켈-철 합금, 구리, 은, 코발트, 주석 및 이들의 혼합물로 이루어진 군으로부터 선택되는 하나 이상의 금속을 포함하는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
11. The method of claim 10, wherein the metal salt comprises at least one metal selected from the group consisting of nickel, a nickel-phosphorus alloy, a nickel-iron alloy, copper, silver, cobalt, tin, Wherein the carbon nanofiber composite material is a carbon nanofiber composite material.
제10항에 있어서, 상기 금속염은 농도가 0.01 내지 1 M인 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
11. The method of claim 10, wherein the metal salt has a concentration of 0.01 to 1 M.
제1항에 있어서, 상기 촉매를 상기 탄소나노튜브의 표면적 100 nm2 당 5 내지 40개 분포시키는 것을 특징으로 하는 금속코팅된 탄소나노섬유 복합체의 제조방법.
The method of claim 1, wherein the catalyst is distributed in an amount of 5 to 40 per 100 nm 2 of the surface area of the carbon nanotubes.
제1항 내지 제13항의 어느 한 항에 따른 금속코팅된 탄소나노섬유 복합체의 제조방법에 따라 제조된 금속코팅된 탄소나노섬유 복합체.
A metal coated carbon nanofiber composite prepared by the method of any one of claims 1 to 13.
제14항의 금속코팅된 탄소나노섬유 복합체로부터 제조된 전자파 차폐용품.
An electromagnetic wave shielding article produced from the metal coated carbon nanofiber composite according to claim 14.
KR1020130036807A 2013-04-04 2013-04-04 Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property KR101574307B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
KR1020130036807A KR101574307B1 (en) 2013-04-04 2013-04-04 Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
KR1020130036807A KR101574307B1 (en) 2013-04-04 2013-04-04 Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property

Publications (2)

Publication Number Publication Date
KR20140120672A KR20140120672A (en) 2014-10-14
KR101574307B1 true KR101574307B1 (en) 2015-12-21

Family

ID=51992495

Family Applications (1)

Application Number Title Priority Date Filing Date
KR1020130036807A KR101574307B1 (en) 2013-04-04 2013-04-04 Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property

Country Status (1)

Country Link
KR (1) KR101574307B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020650A1 (en) * 2019-07-31 2021-02-04 (주)다인스 Conductive flexible carbon fibers

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016139521A1 (en) * 2015-03-03 2016-09-09 Epro Development Limited An electrically conductive textile element and method of producing same
KR20170012960A (en) 2015-07-27 2017-02-06 삼성전자주식회사 Electromagnetic wave shield thin film and method of forming the same
CN109136888A (en) * 2017-06-28 2019-01-04 罗奕兵 A kind of Fe-Ni-P amorphous alloy catalytic reactor and production method
CN115491665B (en) * 2022-09-16 2023-05-09 西南科技大学 Electroless copper plating process for super-cis-carbon nanotube film and application thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100721921B1 (en) * 2005-10-13 2007-05-28 주식회사 포스코 Method for manufacturing carbon nano tubes coated by transition metal elements in nanoscale for field emission based lighting source
KR101305072B1 (en) * 2009-12-30 2013-09-11 제일모직주식회사 Carbon nanofiber-metal composite and method for preparing the same
KR101307378B1 (en) * 2009-12-31 2013-09-11 제일모직주식회사 Thermoplastic resin composition having good EMI shielding property

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021020650A1 (en) * 2019-07-31 2021-02-04 (주)다인스 Conductive flexible carbon fibers

Also Published As

Publication number Publication date
KR20140120672A (en) 2014-10-14

Similar Documents

Publication Publication Date Title
KR101305072B1 (en) Carbon nanofiber-metal composite and method for preparing the same
KR101307378B1 (en) Thermoplastic resin composition having good EMI shielding property
Zhu et al. Highly efficient and stable transparent electromagnetic interference shielding films based on silver nanowires
Zhao et al. Enhanced X-band electromagnetic-interference shielding performance of layer-structured fabric-supported polyaniline/cobalt–nickel coatings
KR101574307B1 (en) Method for Carbon Nanofiber Complex Having Excellent EMI Shielding Property
Park et al. Microwave absorbing hybrid composites containing Ni–Fe coated carbon nanofibers prepared by electroless plating
Xu et al. Electroless deposition of silver nanoparticles on cellulose nanofibrils for electromagnetic interference shielding films
Zhan et al. Recent advances and perspectives on silver-based polymer composites for electromagnetic interference shielding
Bi et al. Comparative study of electroless Co-Ni-P plating on Tencel fabric by Co0-based and Ni0-based activation for electromagnetic interference shielding
KR101365457B1 (en) Method of Manufacturing Ni-coated Nano- carbons
Yang et al. Superhydrophobic and corrosion-resistant electrospun hybrid membrane for high-efficiency electromagnetic interference shielding
Li et al. Ni@ nylon mesh/PP composites with a novel tree-ring structure for enhancing electromagnetic shielding
CN107354752B (en) Surface-coated silver F-12 conductive fiber and preparation method thereof
Lu et al. Electroless nickel deposition on silane modified bamboo fabric through silver, copper or nickel activation
Zhao et al. Comparative study of electroless nickel film on different organic acids modified cuprammonium fabric (CF)
Lin et al. Electrically conductive silver/polyimide fabric composites fabricated by spray-assisted electroless plating
Orasugh et al. Graphene-based electrospun fibrous materials with enhanced EMI shielding: recent developments and future perspectives
Zhang et al. Flexible and ultra-thin silver films with superior electromagnetic interference shielding performance via spin-coating silver metal–organic decomposition inks
Zhong et al. Flexible and durable poly para-phenylene terephthalamide fabric constructed by polydopamine and corrugated Co-Ni-P alloy with reflection characteristic for electromagnetic interference shielding
Fatema et al. A new electroless Ni plating procedure of iodine-treated aramid fiber
Kim et al. Direct coating of copper nanoparticles on flexible substrates from copper precursors using underwater plasma and their EMI performance
Zhou et al. Continuous surface metallization of polyimide fibers for textile-substrate electromagnetic shielding applications
Li et al. CuxS/PAN 3D Nanofiber Mats as Ultra‐Lightweight and Flexible Electromagnetic Interference Shielding Materials
Lee et al. Electroless Ni-P metallization on palladium activated polyacrylonitrile (PAN) fiber by using a drying process
Guo et al. Highly flexible and ultrathin electromagnetic-interference-shielding film with a sandwich structure based on PTFE@ Cu and Ni@ PVDF nanocomposite materials

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
E701 Decision to grant or registration of patent right
FPAY Annual fee payment

Payment date: 20181008

Year of fee payment: 4

FPAY Annual fee payment

Payment date: 20191008

Year of fee payment: 5