JP2007152492A - Metallic nanotube and method of producing the same - Google Patents

Metallic nanotube and method of producing the same Download PDF

Info

Publication number
JP2007152492A
JP2007152492A JP2005350984A JP2005350984A JP2007152492A JP 2007152492 A JP2007152492 A JP 2007152492A JP 2005350984 A JP2005350984 A JP 2005350984A JP 2005350984 A JP2005350984 A JP 2005350984A JP 2007152492 A JP2007152492 A JP 2007152492A
Authority
JP
Japan
Prior art keywords
metal
polymer
compound
producing
aromatic ring
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005350984A
Other languages
Japanese (ja)
Inventor
Shinichi Toyosawa
真一 豊澤
Nobuko Kato
信子 加藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bridgestone Corp
Original Assignee
Bridgestone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Bridgestone Corp filed Critical Bridgestone Corp
Priority to JP2005350984A priority Critical patent/JP2007152492A/en
Publication of JP2007152492A publication Critical patent/JP2007152492A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of producing metallic nanotubes which have large surface areas and are preferably usable for an electrode etc., of various types of battery. <P>SOLUTION: The metallic nanotubes are produced by carrying out the following steps. (i) In the first step, a compound having an aromatic ring is oxidatively polymerized to generate a fibrillar polymer having a three-dimensional continuous structure. (ii) In the second step, a metallic layer is formed on a surface of the obtained fibrillar polymer. (iii) In the last step, the fibrillar polymer having the metallic layer formed on the surface thereof, is fired to remove the fibrillar polymer portion, and the metallic nanotubes having the three-dimensional continuous structure are generated. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は、金属ナノチューブ及び該金属ナノチューブの製造方法に関し、特に表面積が広く、各種電池の電極等に好適に使用できる金属ナノチューブの製造方法に関するものである。   The present invention relates to a metal nanotube and a method for producing the metal nanotube, and more particularly to a method for producing a metal nanotube which has a large surface area and can be suitably used for electrodes of various batteries.

一般に、アルカリ2次電池においては、正極として、ニッケル電極が使用されており、一方、負極としては、カドミウム電極、亜鉛電極、水素電極等が使用されている。また、これら正極及び負極においては、ニッケル等の導電性材料からなる多孔質の集電用極板の空隙中に各種の電極活物質の粒子が充填された構造となっている。   In general, in an alkaline secondary battery, a nickel electrode is used as a positive electrode, while a cadmium electrode, a zinc electrode, a hydrogen electrode, or the like is used as a negative electrode. The positive electrode and the negative electrode have a structure in which particles of various electrode active materials are filled in the voids of a porous current collecting electrode plate made of a conductive material such as nickel.

例えば、特開平5−38098号公報には、連結骨格を有する金属多孔体の空隙部にカーボンを充填したカーボン集電体が開示されており、該カーボン集電体は、電気抵抗が小さく、また、接触する部材を摩耗させ難いとのことである。   For example, Japanese Patent Laid-Open No. 5-38098 discloses a carbon current collector in which carbon is filled in a void portion of a porous metal body having a linking skeleton, and the carbon current collector has a low electrical resistance, It is difficult to wear the contact member.

また、特開2000−21415号公報には、連続気孔構造を有する合成樹脂製の多孔質体を芯材として、該芯材の表面に銀微粒子の集合体からなる導電層を形成した導電性多孔質体が開示されており、該導電性多孔質体は、生産性に優れると共に、電気抵抗が低く、電池用の極板として好適であるとのことである。なお、特開2000−21415号公報には、芯材として、ポリウレタンフォームや、ポリスチレン、ポリエチレン、ポリプロピレン、ポリ塩化ビニル等の熱可塑性樹脂の発泡体や、ポリエチレン、ポリエステル、ポリプロピレン、ナイロン等からなる有機繊維等が例示されており、これらの中でも、ポリウレタンフォーム等の汎用の多孔質体が好ましいとされている。また、特開2000−21415号公報には、上記導電性多孔質体に必要に応じて熱処理を施すことで、芯材を除去できることが開示されている。   Japanese Unexamined Patent Publication No. 2000-21415 discloses a conductive porous material in which a porous body made of a synthetic resin having a continuous pore structure is used as a core material, and a conductive layer made of an aggregate of silver fine particles is formed on the surface of the core material. A porous body is disclosed, and the conductive porous body has excellent productivity and low electrical resistance, and is suitable as an electrode plate for a battery. In JP-A-2000-21415, as a core material, polyurethane foam, a foam of a thermoplastic resin such as polystyrene, polyethylene, polypropylene, polyvinyl chloride, or an organic material made of polyethylene, polyester, polypropylene, nylon or the like is used. Fibers and the like are illustrated, and among these, general-purpose porous bodies such as polyurethane foam are preferred. Japanese Unexamined Patent Publication No. 2000-21415 discloses that the core material can be removed by subjecting the conductive porous body to a heat treatment as necessary.

特開平5−38098号公報JP-A-5-38098 特開2000−21415号公報JP 2000-21415 A

しかしながら、特開2000−21415号公報に開示の方法では、芯材として、上記に例示したものが使用されるため、上記導電性多孔質体は、細くとも直径が数十μm程度であり、また、該導電性多孔質体の芯材を除去してなる金属チューブも、細くとも直径が数十μm程度となる。そのため、特開2000−21415号公報に開示の方法では、直径が1μm未満のナノオーダー、好ましくは、20nm〜500nmの金属チューブを製造することができない。一方、金属チューブは、直径が小さくなる程、表面積が増えるため、電極等により好適に使用することが可能となる。   However, in the method disclosed in Japanese Patent Laid-Open No. 2000-21415, since the core exemplified above is used, the conductive porous body has a diameter of about several tens of μm even though it is thin. Even if the metal tube formed by removing the core material of the conductive porous body is thin, the diameter is about several tens of μm. Therefore, the method disclosed in Japanese Patent Application Laid-Open No. 2000-21415 cannot produce a metal tube having a diameter of less than 1 μm, preferably 20 nm to 500 nm. On the other hand, since the surface area of the metal tube increases as the diameter decreases, the metal tube can be suitably used for an electrode or the like.

そこで、本発明の目的は、表面積が広く、各種電池の電極等に好適に使用できるナノオーダーの金属チューブ、即ち、金属ナノチューブとその製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a nano-order metal tube that has a large surface area and can be suitably used for electrodes of various batteries, that is, a metal nanotube and a method for producing the same.

本発明者らは、上記目的を達成するために鋭意検討した結果、特定の方法で直径がナノオーダーの三次元連続構造を有するフィブリル状ポリマーを生成させ、該フィブリル状ポリマーの表面に金属層を形成した後、フィブリル状ポリマーを焼成・除去することで、高表面積の金属ナノチューブが得られることを見出し、本発明を完成させるに至った。   As a result of intensive studies to achieve the above object, the present inventors have produced a fibril-like polymer having a three-dimensional continuous structure with a nano-order diameter by a specific method, and formed a metal layer on the surface of the fibril-like polymer. After the formation, the inventors found that high-surface area metal nanotubes can be obtained by firing and removing the fibrillated polymer, and the present invention has been completed.

即ち、本発明の金属ナノチューブの製造方法は、
(i)芳香環を有する化合物を酸化重合して、三次元連続構造を有するフィブリル状ポリマーを生成させる工程と、
(ii)得られたフィブリル状ポリマーの表面に金属層を形成する工程と、
(iii)表面に金属層が形成されたフィブリル状ポリマーを焼成してフィブリル状ポリマー部分を除去し、三次元連続構造を有する金属ナノチューブを生成させる工程と
を含むことを特徴とする。
That is, the method for producing a metal nanotube of the present invention includes:
(I) oxidatively polymerizing a compound having an aromatic ring to produce a fibrillated polymer having a three-dimensional continuous structure;
(Ii) forming a metal layer on the surface of the obtained fibrillar polymer;
(Iii) firing a fibril-like polymer having a metal layer formed on the surface thereof to remove the fibril-like polymer portion and generating a metal nanotube having a three-dimensional continuous structure.

本発明の金属ナノチューブの製造方法の好適例においては、前記酸化重合が電解酸化重合である。   In a preferred example of the method for producing a metal nanotube of the present invention, the oxidative polymerization is electrolytic oxidative polymerization.

本発明の金属ナノチューブの製造方法の他の好適例においては、前記芳香環を有する化合物がベンゼン環又は芳香族複素環を有する化合物である。ここで、前記芳香環を有する化合物が、アニリン、ピロール、チオフェン及びそれらの誘導体からなる群から選択された少なくとも一種の化合物であることが更に好ましい。   In another preferred embodiment of the method for producing a metal nanotube of the present invention, the compound having an aromatic ring is a compound having a benzene ring or an aromatic heterocyclic ring. Here, the compound having an aromatic ring is more preferably at least one compound selected from the group consisting of aniline, pyrrole, thiophene and derivatives thereof.

本発明の金属ナノチューブの製造方法の他の好適例においては、前記(ii)工程における金属層の形成を、電気メッキ、無電解メッキ又は蒸着で行う。   In another preferred embodiment of the method for producing a metal nanotube of the present invention, the metal layer is formed in the step (ii) by electroplating, electroless plating or vapor deposition.

また、本発明の金属ナノチューブは、上記の方法で製造されたことを特徴とする。   In addition, the metal nanotube of the present invention is manufactured by the above-described method.

本発明によれば、直径がナノオーダーの三次元連続構造を有するフィブリル状ポリマーを生成させ、該フィブリル状ポリマーの表面に金属層を形成した後、フィブリル状ポリマーを焼成・除去することで、高表面積の金属ナノチューブを製造することができる。   According to the present invention, a fibril-like polymer having a three-dimensional continuous structure with a nano-order diameter is formed, a metal layer is formed on the surface of the fibril-like polymer, and then the fibril-like polymer is baked and removed, Surface area metal nanotubes can be produced.

以下に、本発明を詳細に説明する。本発明の金属ナノチューブの製造方法は、(i)芳香環を有する化合物を酸化重合して、三次元連続構造を有するフィブリル状ポリマーを生成させる工程と、(ii)得られたフィブリル状ポリマーの表面に金属層を形成する工程と、(iii)表面に金属層が形成されたフィブリル状ポリマーを焼成してフィブリル状ポリマー部分を除去し、三次元連続構造を有する金属ナノチューブを生成させる工程とを含むことを特徴とし、また、本発明の金属ナノチューブは、かかる方法で製造されたことを特徴とする。   The present invention is described in detail below. The method for producing a metal nanotube of the present invention comprises (i) a step of oxidatively polymerizing a compound having an aromatic ring to produce a fibril-like polymer having a three-dimensional continuous structure, and (ii) a surface of the obtained fibril-like polymer. Forming a metal layer, and (iii) firing a fibril polymer having a metal layer formed on the surface to remove the fibril polymer portion and generating a metal nanotube having a three-dimensional continuous structure. In addition, the metal nanotube of the present invention is manufactured by such a method.

本発明の金属ナノチューブの製造方法では、(i)工程で、直径がナノオーダーの三次元連続構造を有するフィブリル状ポリマーを生成させた後、(ii)工程で、フィブリル状ポリマーの表面に金属層を形成し、更に、(iii)工程で、フィブリル状ポリマーを焼成・除去して、金属ナノチューブを生成させるため、最終的に得られる金属ナノチューブの内径は、(i)工程で得られるフィブリル状ポリマーの直径にほぼ対応する。そのため、最終的に得られる金属ナノチューブの内径は、ナノオーダーとなる。また、(ii)工程で形成する金属層の厚さをナノオーダーとすることで、金属ナノチューブの外径も、ナノオーダーとなる。   In the method for producing a metal nanotube of the present invention, a fibril polymer having a three-dimensional continuous structure having a nano-order diameter is generated in step (i), and then a metal layer is formed on the surface of the fibril polymer in step (ii). In addition, in step (iii), the fibrillated polymer is baked and removed to form metal nanotubes, so that the final inner diameter of the metal nanotube is the fibrillated polymer obtained in step (i). Almost corresponds to the diameter of. Therefore, the inner diameter of the finally obtained metal nanotube is in the nano order. Further, by setting the thickness of the metal layer formed in the step (ii) to the nano order, the outer diameter of the metal nanotube also becomes the nano order.

本発明の金属ナノチューブの製造方法では、(i)工程で、芳香環を有する化合物を酸化重合して、三次元連続構造を有するフィブリル状ポリマーを生成させる。該フィブリル状ポリマーの原料となる芳香環を有する化合物としては、ベンゼン環を有する化合物、芳香族複素環を有する化合物を挙げることができる。ここで、ベンゼン環を有する化合物としては、アニリン及びアニリン誘導体が好まく、芳香族複素環を有する化合物としては、ピロール、チオフェン及びこれらの誘導体が好ましい。これら芳香環を有する化合物は、一種単独で用いてもよいし、二種以上の混合物として用いてもよい。   In the metal nanotube production method of the present invention, in step (i), a compound having an aromatic ring is oxidatively polymerized to produce a fibrillated polymer having a three-dimensional continuous structure. Examples of the compound having an aromatic ring as a raw material for the fibril-like polymer include a compound having a benzene ring and a compound having an aromatic heterocyclic ring. Here, aniline and aniline derivatives are preferred as the compound having a benzene ring, and pyrrole, thiophene and derivatives thereof are preferred as the compound having an aromatic heterocycle. These compounds having an aromatic ring may be used singly or as a mixture of two or more.

上記芳香環を有する化合物を酸化重合して得られるフィブリル状ポリマーは、三次元連続構造を有し、直径が1μm未満のナノオーダーであり、直径が20nm〜500nmであることが好ましい。また、該フィブリル状ポリマーは、長さが0.5μm〜100mmであることが好ましく、1μm〜10mmであることが更に好ましい。   The fibrillar polymer obtained by oxidative polymerization of the compound having an aromatic ring has a three-dimensional continuous structure, has a nano-order diameter of less than 1 μm, and preferably has a diameter of 20 nm to 500 nm. The fibrillated polymer preferably has a length of 0.5 μm to 100 mm, and more preferably 1 μm to 10 mm.

上記酸化重合法としては、電解酸化重合法及び化学的酸化重合法等の種々の方法が利用できるが、中でも電解酸化重合法が好ましい。なお、酸化重合においては、原料の芳香環を有する化合物と共に、酸を混在させてもよい。   As the oxidative polymerization method, various methods such as an electrolytic oxidative polymerization method and a chemical oxidative polymerization method can be used. Among them, the electrolytic oxidative polymerization method is preferable. In oxidative polymerization, an acid may be mixed together with the compound having an aromatic ring as a raw material.

上記電解酸化重合によりフィブリル状ポリマーを得る場合には、芳香環を有する化合物を含む溶液中に作用極及び対極となる一対の電極板を浸漬し、両極間に前記芳香環を有する化合物の酸化電位以上の電圧を印加するか、または該芳香環を有する化合物が重合するのに充分な電圧が確保できるような条件の電流を通電すればよく、これにより作用極上にフィブリル状ポリマーが生成する。この電解酸化重合法によるフィブリル状ポリマーの合成方法の一例を挙げると、作用極及び対極としてステンレススチール、白金、カーボン等の良導電性物質からなる板や多孔質材等を用い、これらをH2SO4、HBF4等の酸及び芳香環を有する化合物を含む電解溶液中に浸漬し、両極間に0.1〜1000mA/cm2、好ましくは0.2〜100mA/cm2の電流を通電して、作用極側にフィブリル状ポリマーを重合析出させる方法などが例示される。ここで、芳香環を有する化合物の電解溶液中の濃度は、0.05〜3mol/Lの範囲が好ましく、0.25〜1.5mol/Lの範囲が更に好ましい。また、電解溶液には、上記成分に加え、pHを調製するために可溶性塩等を適宜添加してもよい。 In the case of obtaining a fibrillated polymer by electrolytic oxidation polymerization, a pair of electrode plates serving as a working electrode and a counter electrode are immersed in a solution containing a compound having an aromatic ring, and the oxidation potential of the compound having the aromatic ring between both electrodes What is necessary is just to supply the above voltage, or to apply an electric current under such a condition that a voltage sufficient to polymerize the compound having an aromatic ring can be secured, and thereby a fibril polymer is formed on the working electrode. Used As an example of methods for the synthesis of fibrillar polymer by electrolytic oxidative polymerization method, stainless steel as a working electrode and a counter electrode, platinum, a plate or a porous material or the like made of a good conductive material such as carbon, these and H 2 SO 4, was immersed in an electrolyte solution containing a compound having an acid and an aromatic ring of HBF 4, etc., 0.1~1000mA / cm 2 between the electrodes, preferably by passing current of 0.2~100mA / cm 2, a working electrode Examples thereof include a method of polymerizing and depositing a fibrillated polymer on the side. Here, the concentration of the compound having an aromatic ring in the electrolytic solution is preferably in the range of 0.05 to 3 mol / L, and more preferably in the range of 0.25 to 1.5 mol / L. Moreover, in addition to the said component, you may add a soluble salt etc. to an electrolyte solution suitably in order to adjust pH.

本発明の金属ナノチューブの製造方法では、(ii)工程で、上記のようにして得られたフィブリル状ポリマーの表面に金属層を形成する。ここで、金属層の形成方法としては、特に限定されるものではないが、厚さの薄い金属層を形成する観点から、電気メッキ法、無電解メッキ法及び蒸着法が好ましい。また、形成する金属層の厚さは、1〜1000nmの範囲が好ましい。   In the method for producing metal nanotubes of the present invention, in the step (ii), a metal layer is formed on the surface of the fibrillated polymer obtained as described above. Here, the method for forming the metal layer is not particularly limited, but from the viewpoint of forming a thin metal layer, electroplating, electroless plating, and vapor deposition are preferable. The thickness of the metal layer to be formed is preferably in the range of 1 to 1000 nm.

上記電気メッキ法では、例えば、目的とする金属成分が溶解した液から、金属を電気化学的にフィブリル状ポリマーの表面に析出させることにより、金属層を形成することができ、しかも析出量を通電電荷量で正確に制御でき、また、この際、通電条件(電流密度、直流法かパルス法か、温度、金属イオン濃度、共存イオン種等)を適宜選択することで、析出させる金属の厚さ、形態、付着状況等をコントロールすることができる。   In the electroplating method, for example, a metal layer can be formed by electrochemically depositing a metal on the surface of a fibrillated polymer from a solution in which a target metal component is dissolved, and the amount of deposition is energized. The thickness of the metal to be deposited can be accurately controlled by the amount of charge, and the current conditions (current density, direct current method or pulse method, temperature, metal ion concentration, coexisting ion species, etc.) can be selected appropriately. It is possible to control the form, the adhesion state, and the like.

また、上記無電解メッキ法(化学メッキ法)では、例えば、メッキしたい金属イオンと還元剤とを含む容液を調製し、該溶液に上記フィブリル状ポリマーを浸漬することで、メッキされる金属イオンが還元剤との反応で還元され金属となってフィブリル状ポリマー上に析出する。なお、メッキされる金属イオンの還元され易さに応じて、適宜還元剤を選択することが好ましく、また、上記溶液中には、更にクエン酸ナトリウム等の錯体形成剤を添加することが好ましい。無電解メッキ法では、金属イオンの種類及び濃度、還元剤の種類及び濃度、メッキ時間(浸漬時間)、メッキ浴の温度等を適宜選択することで、金属の厚さ、形態、付着状況等をコントロールすることができる。   In the electroless plating method (chemical plating method), for example, a metal ion to be plated is prepared by preparing a solution containing a metal ion to be plated and a reducing agent, and immersing the fibrillated polymer in the solution. Is reduced by reaction with a reducing agent to be converted into metal and deposited on the fibrillar polymer. In addition, it is preferable to select a reducing agent as appropriate according to the ease of reduction of the metal ions to be plated, and it is preferable to add a complex-forming agent such as sodium citrate to the solution. In the electroless plating method, the metal thickness, shape, adhesion status, etc. can be selected by appropriately selecting the type and concentration of metal ions, the type and concentration of reducing agent, the plating time (dipping time), the temperature of the plating bath, etc. Can be controlled.

更に、上記蒸着法では、目的に応じて、数種類の金属を同時に、或いは、合金を担持することも可能である。なお、蒸着法では、ターゲットの種類、蒸着時間等を適宜選択することで、金属の厚さ、形態、付着状況等をコントロールすることができる。   Furthermore, in the above vapor deposition method, it is possible to carry several kinds of metals simultaneously or an alloy depending on the purpose. In the vapor deposition method, the thickness, form, adhesion state, and the like of the metal can be controlled by appropriately selecting the target type, vapor deposition time, and the like.

また、フィブリル状ポリマーの表面に形成する金属層の材質としては、使用目的に応じて、適宜選択することができ、例えば、電極に使用する場合は、Ni等が好ましい。なお、本発明の方法では、Pt等の貴金属からなる金属層を形成することもでき、この場合、高価な貴金属を少量用いて、表面積が非常に大きな貴金属ナノチューブを製造することができる。   Further, the material of the metal layer formed on the surface of the fibrillar polymer can be appropriately selected according to the purpose of use. For example, Ni is preferable when used for an electrode. In the method of the present invention, a metal layer made of a noble metal such as Pt can also be formed. In this case, a noble metal nanotube having a very large surface area can be produced using a small amount of an expensive noble metal.

本発明の金属ナノチューブの製造方法では、(iii)工程で、上記のようにして表面に金属層が形成されたフィブリル状ポリマーを焼成してフィブリル状ポリマー部分を除去し、三次元連続構造を有する金属ナノチューブを生成させる。ここで、フィブリル状ポリマーの焼成は、酸化性雰囲気中で行うことができ、空気中でも十分に行うことができる。ここで、フィブリル状ポリマーの焼成温度は、フィブリル状ポリマーの材質と金属層の材質に応じて適宜選択され、具体的には、200〜2000℃の範囲が好ましい。   In the method for producing metal nanotubes of the present invention, in the step (iii), the fibril-like polymer having the metal layer formed on the surface as described above is baked to remove the fibril-like polymer portion, thereby having a three-dimensional continuous structure. Metal nanotubes are generated. Here, the firing of the fibrillar polymer can be performed in an oxidizing atmosphere, and can be sufficiently performed in air. Here, the firing temperature of the fibril-like polymer is appropriately selected according to the material of the fibril-like polymer and the material of the metal layer, and specifically, a range of 200 to 2000 ° C. is preferable.

なお、(iii)工程における焼成で、金属層が酸化されている場合は、(iii)工程の後に、公知の方法で、酸化された金属層(金属酸化物層)を還元してもよい。還元方法としては、還元剤で還元する方法や、高温下において水素で還元する方法等が挙げられる。   In addition, when the metal layer is oxidized by baking in the (iii) step, the oxidized metal layer (metal oxide layer) may be reduced by a known method after the (iii) step. Examples of the reduction method include a method of reducing with a reducing agent, a method of reducing with hydrogen at a high temperature, and the like.

上記のようにして製造された本発明の金属ナノチューブは、チューブ状で且つ三次元連続構造を有する。ここで、該金属ナノチューブは、内径が20nm〜500nmであることが好ましく、また、外径が25nm〜2500nmであることが好ましく、外径が1μm未満のナノオーダーであることが更に好ましい。また、該金属ナノチューブは、長さが0.5μm〜100mmであることが好ましく、1μm〜10mmであることが更に好ましい。本発明の金属ナノチューブは、3次元的に連続した構造を有する上、表面積が非常に大きいため、導電性が非常に高い。   The metal nanotube of the present invention produced as described above is tubular and has a three-dimensional continuous structure. Here, the metal nanotubes preferably have an inner diameter of 20 nm to 500 nm, preferably an outer diameter of 25 nm to 2500 nm, and more preferably nano-order with an outer diameter of less than 1 μm. The metal nanotubes preferably have a length of 0.5 μm to 100 mm, and more preferably 1 μm to 10 mm. Since the metal nanotube of the present invention has a three-dimensional continuous structure and a very large surface area, the conductivity is very high.

以下に、実施例を挙げて本発明を更に詳しく説明するが、本発明は下記の実施例に何ら限定されるものではない。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples.

(実施例1)
アニリン 0.5mol/Lと硫酸 1.0mol/Lとを含む水溶液中に、作用極としてカーボンペーパー[東レ製, 厚さ150μm]を設置し、対極としてパンチングメタル[SUS316製, 厚さ0.3mm]を設置し、室温にて15mA/cm2の定電流で4分間電解酸化重合を行い(通電量3.6C)、作用極上にポリアニリンを電析させた。得られたポリアニリンを純水で十分に洗浄した後、風乾し、更に100℃のオーブンで水分を乾燥除去した。測定の結果、生成したポリアニリンの質量は、0.82g/cm2であった。また、SEMで観察したところ、三次元連続構造を有するフィブリル状のポリアニリンがカーボンペーパー上に生成していることが確認された。
Example 1
In an aqueous solution containing aniline 0.5 mol / L and sulfuric acid 1.0 mol / L, a carbon paper (manufactured by Toray, thickness 150 μm) is installed as the working electrode, and a punching metal (SUS316, thickness 0.3 mm) is installed as the counter electrode. Then, electrolytic oxidation polymerization was carried out at room temperature at a constant current of 15 mA / cm 2 for 4 minutes (amount of electricity applied: 3.6 C), and polyaniline was electrodeposited on the working electrode. The obtained polyaniline was thoroughly washed with pure water, then air-dried, and moisture was further removed by drying in an oven at 100 ° C. As a result of the measurement, the mass of the produced polyaniline was 0.82 g / cm 2 . Moreover, when observed by SEM, it was confirmed that the fibrillar polyaniline which has a three-dimensional continuous structure was producing | generating on carbon paper.

一方、塩化パラジウム 0.2g/Lと塩化スズ 20g/Lとを含み、35%の塩酸を20体積%含む混合液を調製し、該混合液を40℃に保温しつつ、上記フィブリル状ポリアニリンをカーボンペーパーごと1分間浸漬した。その後、混合液からフィブリル状ポリアニリンを取り出し、純水で十分に洗浄した。   On the other hand, a mixed liquid containing palladium chloride 0.2 g / L and tin chloride 20 g / L and containing 20% by volume of 35% hydrochloric acid was prepared, and the fibrillar polyaniline was carbonized while keeping the mixed liquid at 40 ° C. The paper was immersed for 1 minute. Thereafter, fibrillar polyaniline was taken out from the mixed solution, and thoroughly washed with pure water.

次に、硫酸ニッケル 20g/L、酢酸ナトリウム 5g/L、次亜リン酸ナトリウム 10g/L、クエン酸ナトリウム 5g/L及び乳酸 3mL/Lを含む混合液(無電解ニッケルメッキ浴)を調製し、該混合液を60℃に保温しつつ、上記フィブリル状ポリアニリンをカーボンペーパーごと5分間浸漬した。得られたニッケルの無電解メッキが施されたポリアニリンを純水で十分に洗浄した後、風乾し、更に100℃のオーブンで水分を乾燥除去した。   Next, prepare a mixed solution (electroless nickel plating bath) containing nickel sulfate 20g / L, sodium acetate 5g / L, sodium hypophosphite 10g / L, sodium citrate 5g / L and lactic acid 3mL / L. The fibrillar polyaniline was immersed together with the carbon paper for 5 minutes while keeping the mixed solution at 60 ° C. The obtained polyaniline on which electroless plating of nickel was performed was thoroughly washed with pure water, then air-dried, and moisture was further removed by drying in an oven at 100 ° C.

次に、窒素/酸素混合ガス(90%/10%)の雰囲気下、500℃で、ニッケルメッキが施されたポリアニリンを3時間焼成し、金属ナノチューブを作製した。SEMで観察したところ、直径が100〜200nmで、三次元連続状の金属ナノチューブがカーボンペーパー上に生成していることが確認された。得られた金属ナノチューブのSEM写真を図1に示す。   Next, the nickel-plated polyaniline was baked for 3 hours at 500 ° C. in an atmosphere of nitrogen / oxygen mixed gas (90% / 10%) to produce metal nanotubes. When observed by SEM, it was confirmed that a three-dimensional continuous metal nanotube having a diameter of 100 to 200 nm was formed on the carbon paper. An SEM photograph of the obtained metal nanotube is shown in FIG.

本発明の方法で製造された金属ナノチューブは、3次元的に連続した構造を有する上、表面積が非常に大きいため、導電性が非常に高く、各種電池の電極等に使用することができる。   The metal nanotubes produced by the method of the present invention have a three-dimensionally continuous structure and a very large surface area, so that they have very high conductivity and can be used for various battery electrodes.

実施例1で得られた金属ナノチューブのSEM写真である。2 is a SEM photograph of the metal nanotube obtained in Example 1.

Claims (6)

(i)芳香環を有する化合物を酸化重合して、三次元連続構造を有するフィブリル状ポリマーを生成させる工程と、
(ii)得られたフィブリル状ポリマーの表面に金属層を形成する工程と、
(iii)表面に金属層が形成されたフィブリル状ポリマーを焼成してフィブリル状ポリマー部分を除去し、三次元連続構造を有する金属ナノチューブを生成させる工程と
を含むことを特徴とする金属ナノチューブの製造方法。
(I) oxidatively polymerizing a compound having an aromatic ring to produce a fibrillated polymer having a three-dimensional continuous structure;
(Ii) forming a metal layer on the surface of the obtained fibrillar polymer;
And (iii) firing a fibril polymer having a metal layer formed on the surface thereof to remove the fibril polymer portion to produce a metal nanotube having a three-dimensional continuous structure. Method.
前記酸化重合が電解酸化重合であることを特徴とする請求項1に記載の金属ナノチューブの製造方法。   The method for producing a metal nanotube according to claim 1, wherein the oxidative polymerization is electrolytic oxidative polymerization. 前記芳香環を有する化合物がベンゼン環又は芳香族複素環を有する化合物であることを特徴とする請求項1に記載の金属ナノチューブの製造方法。   The method for producing a metal nanotube according to claim 1, wherein the compound having an aromatic ring is a compound having a benzene ring or an aromatic heterocyclic ring. 前記芳香環を有する化合物が、アニリン、ピロール、チオフェン及びそれらの誘導体からなる群から選択された少なくとも一種の化合物であることを特徴とする請求項3に記載の金属ナノチューブの製造方法。   The method for producing a metal nanotube according to claim 3, wherein the compound having an aromatic ring is at least one compound selected from the group consisting of aniline, pyrrole, thiophene, and derivatives thereof. 前記(ii)工程における金属層の形成を、電気メッキ、無電解メッキ又は蒸着で行うことを特徴とする請求項1に記載の金属ナノチューブの製造方法。   The method for producing a metal nanotube according to claim 1, wherein the formation of the metal layer in the step (ii) is performed by electroplating, electroless plating, or vapor deposition. 請求項1〜5のいずれかに記載の方法で製造された金属ナノチューブ。   The metal nanotube manufactured by the method in any one of Claims 1-5.
JP2005350984A 2005-12-05 2005-12-05 Metallic nanotube and method of producing the same Withdrawn JP2007152492A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005350984A JP2007152492A (en) 2005-12-05 2005-12-05 Metallic nanotube and method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005350984A JP2007152492A (en) 2005-12-05 2005-12-05 Metallic nanotube and method of producing the same

Publications (1)

Publication Number Publication Date
JP2007152492A true JP2007152492A (en) 2007-06-21

Family

ID=38237481

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005350984A Withdrawn JP2007152492A (en) 2005-12-05 2005-12-05 Metallic nanotube and method of producing the same

Country Status (1)

Country Link
JP (1) JP2007152492A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226161B (en) * 2008-01-31 2010-11-03 浙江大学 Preparation method of polymethyl methacrylate/polyaniline nano fibre composite resistor type film gas sensor
JP2010275624A (en) * 2009-04-27 2010-12-09 Shinshu Univ Composite nanotube, metal nanotube, and methods for producing them
JP2011214074A (en) * 2010-03-31 2011-10-27 Okuno Chemical Industries Co Ltd Metal nanostructure and method for producing the same
JP2012516386A (en) * 2008-10-09 2012-07-19 ユニバーシティー オブ ニューキャッスル Preparation of nanostructured microporous composite foam
JP2012206908A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Method for manufacturing titanium oxide nanotube
CN102962467A (en) * 2012-10-26 2013-03-13 上海交通大学 Method for preparing noble metal nano material with adjustable particle size by bacteria
JP2013193954A (en) * 2012-03-15 2013-09-30 Dh Holdings Co Ltd Method for producing nickel coating nanocarbon by using electroless plating
CN103540966A (en) * 2013-10-29 2014-01-29 常熟市伟达电镀有限责任公司 Anti-abrasive electroplating solution

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101226161B (en) * 2008-01-31 2010-11-03 浙江大学 Preparation method of polymethyl methacrylate/polyaniline nano fibre composite resistor type film gas sensor
JP2012516386A (en) * 2008-10-09 2012-07-19 ユニバーシティー オブ ニューキャッスル Preparation of nanostructured microporous composite foam
JP2010275624A (en) * 2009-04-27 2010-12-09 Shinshu Univ Composite nanotube, metal nanotube, and methods for producing them
JP2011214074A (en) * 2010-03-31 2011-10-27 Okuno Chemical Industries Co Ltd Metal nanostructure and method for producing the same
JP2012206908A (en) * 2011-03-30 2012-10-25 Osaka Gas Co Ltd Method for manufacturing titanium oxide nanotube
JP2013193954A (en) * 2012-03-15 2013-09-30 Dh Holdings Co Ltd Method for producing nickel coating nanocarbon by using electroless plating
CN102962467A (en) * 2012-10-26 2013-03-13 上海交通大学 Method for preparing noble metal nano material with adjustable particle size by bacteria
CN102962467B (en) * 2012-10-26 2015-04-01 上海交通大学 Method for preparing noble metal nano material with adjustable particle size by bacteria
CN103540966A (en) * 2013-10-29 2014-01-29 常熟市伟达电镀有限责任公司 Anti-abrasive electroplating solution

Similar Documents

Publication Publication Date Title
KR101036164B1 (en) composite electrode and method for manufacturing the same
JP5714724B2 (en) Nanoporous electrode for supercapacitor and method for producing the same
TWI478185B (en) Super capacitor and method for manufacturing the same
JP2007152492A (en) Metallic nanotube and method of producing the same
JP5691107B2 (en) Metal porous body having high corrosion resistance and method for producing the same
WO2007052861A1 (en) Metal oxide supercapacitor having metal oxide electrode coated onto the titanium dioxide ultrafine and its fabrication method
JP2007186823A (en) Method for treating surface of carbon fiber, hydrophilic carbon fiber and electrode and method for producing the same
JP2007087789A (en) Negative electrode for lithium ion secondary battery and its manufacturing method
CN111060575A (en) Porous Co-P composite electrode for glucose enzyme-free detection and preparation method and application thereof
JP6246828B2 (en) Method of coating organic or metallic material surface with organic compound by electrochemical reduction of diazonium ion of specific organic compound by pulse current
JP5142264B2 (en) Non-aqueous electrolyte secondary battery current collector and method for producing the same, and positive electrode for non-aqueous electrolyte secondary battery and method for producing the same
JP2009176517A (en) Nonwoven fabric-like nickel chromium current collector for nonaqueous electrolyte secondary battery and electrode using it
JP4822554B2 (en) Foamed nickel chromium current collector for capacitor, electrode using the same, capacitor
JP4393459B2 (en) Membrane electrode assembly for polymer electrolyte fuel cell and polymer electrolyte fuel cell
JP5196392B2 (en) Positive electrode for non-aqueous electrolyte secondary battery
KR101060288B1 (en) composite electrode and method for manufacturing the same
JP5735265B2 (en) Method for producing porous metal body having high corrosion resistance
JP4298578B2 (en) Porous metal foil with carrier foil and method for producing the same
KR101709249B1 (en) Method of manufacturing porous cathode for metal-air electrochemical cell
JP2007227088A (en) Electrode for polymer electrolyte fuel cell, its manufacturing method and treating method, and polymer electrolyte fuel cell
JP2012122096A (en) Manufacturing method of metallic porous body having high corrosion resistance
JP5681916B2 (en) Method for producing polyelectrolyte composite
JP2007227064A (en) Electrode for solid polymer fuel cell, its manufacturing method and activation method, as well as solid polymer fuel cell
CN1482633A (en) Process for preparing sintered nickel electrode for hybrid ultracapacitor anode
RU2616584C1 (en) Method of producing metal-felt bases for oxide-nickel electrodes of alkaline accumulators

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081114

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20091028