JP2006062924A - Method for controlling density in formation of carbon nanotube - Google Patents

Method for controlling density in formation of carbon nanotube Download PDF

Info

Publication number
JP2006062924A
JP2006062924A JP2004249465A JP2004249465A JP2006062924A JP 2006062924 A JP2006062924 A JP 2006062924A JP 2004249465 A JP2004249465 A JP 2004249465A JP 2004249465 A JP2004249465 A JP 2004249465A JP 2006062924 A JP2006062924 A JP 2006062924A
Authority
JP
Japan
Prior art keywords
density
carbon nanotubes
gas
carbon nanotube
metal layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004249465A
Other languages
Japanese (ja)
Inventor
Momoyo Sawai
百世 澤井
Jirou Ishibe
二朗 石辺
Masaaki Kishida
将明 岸田
Yoshio Fujimoto
良男 藤本
Yoshikazu Nakayama
喜萬 中山
Rogun Han
路軍 潘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Zosen Corp
Original Assignee
Hitachi Zosen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Zosen Corp filed Critical Hitachi Zosen Corp
Priority to JP2004249465A priority Critical patent/JP2006062924A/en
Publication of JP2006062924A publication Critical patent/JP2006062924A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method capable of controlling the density of carbon nanotubes inexpensively by a conventional carbon nanotube producing apparatus. <P>SOLUTION: A substrate having a catalyst metal layer is charged in a thermochemical vapor phase deposition system and an inert gas and a raw material gas are supplied into the system. Then, the catalyst metal layer is made into fine particles and carbon nanotubes are grown on the formed catalyst fine particles by a thermochemical vapor phase deposition method. At that time, the growth density of the carbon nanotubes is controlled by controlling the concentration change amount of the raw material gas being supplied. "The concentration change amount" means a change amount of the raw material gas being supplied with respect to a time. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、カーボンナノチューブ生成における密度制御方法に関するものである。   The present invention relates to a density control method for producing carbon nanotubes.

カーボンナノチューブは、熱化学気相蒸着法(CVD法)を始め、種々の方法にて生成が可能となり、電子放出源、電極、触媒等、様々な応用製品について研究がなされている。これら分野ヘカーボンナノチューブを適用するのに重要となるのが、カーボンナノチューブの長さ、径、密度等の制御である。これらの長さ、径、密度等の制御パラメータは、応用製品の性能に大きく係わってくるため、各研究機関でも鋭意研究されている。   Carbon nanotubes can be produced by various methods including thermal chemical vapor deposition (CVD), and various applied products such as electron emission sources, electrodes, and catalysts have been studied. What is important for the application of carbon nanotubes in these fields is the control of the length, diameter, density, etc. of the carbon nanotubes. These control parameters such as length, diameter, density, etc. are greatly related to the performance of applied products, and are therefore intensively studied by each research institution.

その中で、カーボンナノチューブの外径および長さは、CVD法では、温度、時間により比較的容易に制御可能である。カーボンナノチューブの成長密度を制御するには、例えば触媒金属を形成する基板表面に細孔を設ける等のパターニングによる方法(特許文献1参照)や、アンモニア等の蝕刻ガスを所定の温度および時間で供給することでカーボンナノチューブの成長密度を変化させる方法(特許文献2参照)が提案されている。
特開2003−160332号公報 特開2001−20071号公報
Among them, the outer diameter and length of the carbon nanotube can be controlled relatively easily by the temperature and time in the CVD method. In order to control the growth density of carbon nanotubes, for example, a patterning method such as providing pores on the surface of the substrate on which the catalytic metal is formed (see Patent Document 1), or an etching gas such as ammonia is supplied at a predetermined temperature and time. Thus, a method of changing the growth density of carbon nanotubes (see Patent Document 2) has been proposed.
JP 2003-160332 A Japanese Patent Laid-Open No. 2001-20071

しかし、カーボンナノチューブの密度を制御するにあたり、基板の表面を加工する方法は、微細な加工を必要とするうえ、要求されるカーボンナノチューブ密度が変わる毎に基板表面を再度加工する必要があり、時間とコスト面で不利である。蝕刻ガスを用いる方法は、要求される密度の変化には対応できるものの、蝕刻ガスと蝕刻ガスの供給工程、設備の付加により、コスト高を招く。   However, in order to control the density of carbon nanotubes, the method of processing the surface of the substrate requires fine processing, and it is necessary to process the surface of the substrate again each time the required carbon nanotube density changes. And disadvantageous in terms of cost. Although the method using the etching gas can cope with the required change in density, the cost increases due to the addition of the etching gas, the supply process of the etching gas, and the equipment.

本発明では、従来のカーボンナノチューブの製造設備にて低コストでカーボンナノチューブ密度制御を行えるカーボンナノチューブの密度制御方法を提供することを課題とする。   An object of the present invention is to provide a carbon nanotube density control method capable of controlling the density of carbon nanotubes at a low cost with a conventional carbon nanotube production facility.

本発明は、触媒金属層を有する基板を熱化学気相蒸着装置に入れ、同装置内に不活性ガスおよび原料ガスを供給し、熱化学気相蒸着法により触媒金属層を微粒化すると共に生成した触媒微粒子にカーホンナノチューブを成長させるに当たり、供給する原料ガスの濃度変化量を制御することでカーホンナノチューブの成長密度を制御することを特徴とするカーボンナノチューブの密度制御方法である。   In the present invention, a substrate having a catalytic metal layer is placed in a thermal chemical vapor deposition apparatus, an inert gas and a source gas are supplied into the apparatus, and the catalytic metal layer is atomized and generated by thermal chemical vapor deposition. A carbon nanotube density control method is characterized by controlling the growth density of carbon nanotubes by controlling the amount of change in the concentration of the raw material gas supplied when growing the carbon nanotubes on the catalyst fine particles.

特許請求の範囲および明細書全体を通して、「濃度変化量」とは供給する原料ガスの時間に対する変化量を意味する。   Throughout the claims and the entire specification, the “concentration change amount” means a change amount of the supplied raw material gas with respect to time.

供給される原料ガスの濃度変化量を制御することにより、触媒金属層の微粒化により生成する触媒微粒子の粒径および/または密度を制御することができる。   By controlling the amount of change in concentration of the supplied raw material gas, the particle size and / or density of the catalyst fine particles generated by atomization of the catalyst metal layer can be controlled.

前記触媒金属層は、好ましくはコバルト、ニッケル、鉄またはこれらの合金である。   The catalytic metal layer is preferably cobalt, nickel, iron or an alloy thereof.

前記原料ガスは、好ましくは炭化水素ガスである。   The source gas is preferably a hydrocarbon gas.

ブラシ状カーボンナノチューブは、公知の方法で作製できる。例えば、シリコン基板の少なくとも片面上に、ニッケル、コバルト、鉄などの金属の錯体を含む溶液をスプレーや刷毛で塗布した後、加熱して形成した皮膜上に、あるいは、クラスター銃で打ち付けて形成した皮膜上に、アセチレン(C)のような炭化水素ガスを用いて一般的な熱化学気相蒸着法を施すことにより、直径12〜38nmのカーボンナノチューブが多層構造で基板上に垂直に起毛される。 The brush-like carbon nanotube can be produced by a known method. For example, a solution containing a metal complex such as nickel, cobalt, or iron is applied on at least one surface of a silicon substrate by spraying or brushing, and then heated on a film formed or struck with a cluster gun. By applying a general thermal chemical vapor deposition method using a hydrocarbon gas such as acetylene (C 2 H 2 ) on the film, carbon nanotubes having a diameter of 12 to 38 nm have a multilayer structure and are perpendicular to the substrate. Brushed.

以下に、本発明の実施の形態について説明をする。   Hereinafter, embodiments of the present invention will be described.

まず、基板上に触媒微粒子を形成し、触媒微粒子を核として高温雰囲気で原料ガスからカーボンナノチューブを成長させる。基板は触媒微粒子を支持するものであればよく、触媒微粒子が濡れにくいものが好ましく、シリコン基板であってよい。触媒微粒子はニッケル、コバルト、鉄などの金属微粒子であってよい。これらの金属またはその錯体等の化合物の溶液をスプレーや刷毛で基板に塗布し、またはクラスター銃で基板に打ち付け、乾燥させ、必要であれば加熱し、皮膜を形成する。皮膜の形成は電子ビーム蒸着法によって行ってもよい。皮膜の厚みは、厚過ぎると加熱による微粒子化が困難になるので、好ましくは1〜100nmである。次いでこの皮膜を好ましくは減圧下または非酸化雰囲気中で好ましくは650〜800℃に加熱すると、直径1〜50nm程度の触媒微粒子が形成される。カーボンナノチューブの原料ガスとしては、アセチレン、メタン、エチレン等の脂肪族炭化水素が使用でき、とりわけアセチレンガスが好ましい。アセチレンの場合、多層構造で太さ12〜38nmのカーボンナノチューブが触媒微粒子を核として基板上にブラシ状に形成される。カーボンナノチューブの形成温度は、好ましくは650〜800℃である。   First, catalyst fine particles are formed on a substrate, and carbon nanotubes are grown from a raw material gas in a high temperature atmosphere using the catalyst fine particles as nuclei. The substrate is not particularly limited as long as it supports the catalyst fine particles, and is preferably one in which the catalyst fine particles are difficult to wet, and may be a silicon substrate. The catalyst fine particles may be metal fine particles such as nickel, cobalt, and iron. A solution of a compound such as a metal or a complex thereof is applied to the substrate with a spray or a brush, or is applied to the substrate with a cluster gun, dried, and heated if necessary to form a film. The film may be formed by electron beam evaporation. If the thickness of the film is too thick, it becomes difficult to make fine particles by heating, and therefore it is preferably 1 to 100 nm. Subsequently, when this film is heated preferably under reduced pressure or in a non-oxidizing atmosphere, preferably at 650 to 800 ° C., catalyst fine particles having a diameter of about 1 to 50 nm are formed. As a raw material gas for carbon nanotubes, aliphatic hydrocarbons such as acetylene, methane, and ethylene can be used, and acetylene gas is particularly preferable. In the case of acetylene, carbon nanotubes having a multilayer structure and a thickness of 12 to 38 nm are formed in a brush shape on a substrate with catalyst fine particles as nuclei. The formation temperature of the carbon nanotube is preferably 650 to 800 ° C.

本発明方法を従来の一般的なカーボンナノチューブ生成方法と比較すると下記のとおりになる。   A comparison between the method of the present invention and a conventional general method for producing carbon nanotubes is as follows.

従来法
(1)基板に触媒金属層を形成する。
Conventional Method (1) A catalytic metal layer is formed on a substrate.

(2)基板を不活性ガス(He等)下で加熱し、触媒金属を微粒子化する。   (2) The substrate is heated under an inert gas (He or the like) to atomize the catalyst metal.

(3)熱CVD装置内に基板を入れ、不活性ガス(He等)および原料ガス(アセチレン等)を供給し、所定温度で加熱し、カーボンナノチューブを生成する。   (3) A substrate is placed in a thermal CVD apparatus, an inert gas (He or the like) and a raw material gas (acetylene or the like) are supplied, and heated at a predetermined temperature to generate carbon nanotubes.

本発明方法
(1)基板に触媒金属層を形成する。
Method of the present invention (1) A catalytic metal layer is formed on a substrate.

(2)よく洗浄された(タール成分等残留物の無い)熱CVD装置内に基板を入れ、不活性ガス(He等)に加え、所定濃度の原料ガス(アセチレン等)を供給し、所定温度で加熱し、触媒金属層の微粒子化およびカーボンナノチューブの生成を連続して実施する。   (2) The substrate is placed in a well-cleaned thermal CVD apparatus (no residue such as tar components), and a predetermined concentration of source gas (acetylene, etc.) is supplied in addition to an inert gas (He, etc.) at a predetermined temperature. The catalyst metal layer is atomized and the carbon nanotube is continuously produced.

従来法では、触媒金属層を加熱により微粒化していたのに対し、本発明では、熱CVD装置内で所定濃度の原料ガスを供給した時点で触媒金属層の微粒化が始まり、これに連続して、触媒金属層の微粒化により生成する触媒微粒子にカーボンナノチューブを成長させることができる。この原料ガスの濃度変化量を制御することにより、触媒微粒子の密度分布が変化するため、個々の微粒子から成長するカーボンナノチューブの密度を制御することができる。   In the conventional method, the catalyst metal layer is atomized by heating, whereas in the present invention, atomization of the catalyst metal layer starts at the time when the raw material gas of a predetermined concentration is supplied in the thermal CVD apparatus and continues to this. Thus, carbon nanotubes can be grown on the catalyst fine particles generated by atomization of the catalyst metal layer. By controlling the amount of change in the concentration of the raw material gas, the density distribution of the catalyst fine particles changes, so that the density of the carbon nanotubes grown from the individual fine particles can be controlled.

なお、原料ガスの濃度変化量とカーボンナノチューブの生成密度の関係は、アセチレンの場合、濃度を早く上げると、カーボンナノチューブは密になり(内径は小さくなる)、逆に、濃度を遅く上げると、カーボンナノチューブは疎になる(内径は大きくなる)。   It should be noted that the relationship between the amount of change in the concentration of the source gas and the generation density of the carbon nanotubes is as follows. Carbon nanotubes become sparse (inner diameter increases).

よって、従来の設備のままで、余分な装置を付加することなく、カーボンナノチューブの成長密度制御が可能となる。   Therefore, it is possible to control the growth density of the carbon nanotubes without adding an extra device with the conventional equipment.

本発明では、熱化学気相蒸着法により基板上の触媒金属層を微粒化すると共に生成した触媒微粒子にカーホンナノチューブを成長させるに当たり、供給する原料ガスの濃度変化量を制御することでカーホンナノチューブの成長密度および内径を制御するので、従来のカーボンナノチューブの製造設備をそのまま用い低コストでカーボンナノチューブ密度制御を行うことができる。   In the present invention, when the catalytic metal layer on the substrate is atomized by the thermal chemical vapor deposition method and the carbon nanotubes are grown on the generated catalyst fine particles, the concentration of the raw material gas to be supplied is controlled. Since the growth density and the inner diameter of the nanotube are controlled, the carbon nanotube density can be controlled at a low cost by using a conventional carbon nanotube production facility as it is.

つぎに、本発明を具体的に説明するために、本発明の実施例を挙げる。   Next, in order to describe the present invention specifically, examples of the present invention will be given.

実施例1
厚さ0.5mmの低抵抗N型半導体シリコン基板上に、電子ビーム蒸着法により厚さ5nmの鉄皮膜を形成した。
Example 1
An iron film having a thickness of 5 nm was formed by electron beam evaporation on a low resistance N-type semiconductor silicon substrate having a thickness of 0.5 mm.

鉄皮膜を有する基板を、図1に示す熱化学気相蒸着実験装置に入れた。同実験装置は石英製の反応管(1) と、反応管(1) を外装する電気ヒータ(2) と、反応管(1) 内に配かれた基台(3) と、反応管(1) の一端に接続された不活性ガス供給管(4) および原料ガス供給管(5) と、反応管(1) の他端に接続された排気管(6) とかる主に構成されている。鉄皮膜付き基板(7) を基台(3) の上に置いた。   The board | substrate which has an iron film was put into the thermal chemical vapor deposition experimental apparatus shown in FIG. The experimental apparatus consists of a quartz reaction tube (1), an electric heater (2) covering the reaction tube (1), a base (3) arranged in the reaction tube (1), and a reaction tube (1 ) Is mainly composed of an inert gas supply pipe (4) and a raw material gas supply pipe (5) connected to one end of the reaction pipe, and an exhaust pipe (6) connected to the other end of the reaction pipe (1). . A substrate (7) with an iron coating was placed on the base (3).

不活性ガスとしてヘリウムガス(He)を供給管(4) から反応管(1) 内に供給すると共に、カーボンナノチューブの原料ガスとして濃度3%のアセチレンガス(C)を流量600ml/min、温度約700℃、時間5分、反応管(1) 内に流した。反応管(1) 内の鉄皮膜付き基板(7) の位置におけるアセチレンガスの濃度変化を図2に示す。この加熱により鉄皮膜は微粒子化し、生成した触媒微粒子を核としてブラシ状カーボンナノチューブが生成し、徐々に成長した。カーボンナノチューブの走査電子顕微鏡写真(1万倍)を図3に、透過電子顕微鏡写真(50万倍)を図4にそれぞれ示す。 Helium gas (He) is supplied from the supply pipe (4) into the reaction pipe (1) as an inert gas, and acetylene gas (C 2 H 2 ) with a concentration of 3% is used as a carbon nanotube raw material gas at a flow rate of 600 ml / min. For about 5 minutes at a temperature of about 700 ° C. The change in the concentration of acetylene gas at the position of the iron-coated substrate (7) in the reaction tube (1) is shown in FIG. By this heating, the iron film became fine particles, and brush-like carbon nanotubes were generated with the generated catalyst fine particles as nuclei, and gradually grew. A scanning electron micrograph (10,000 times) of the carbon nanotube is shown in FIG. 3, and a transmission electron micrograph (500,000 times) is shown in FIG.

アセチレンガスの濃度を20%に変え、上記と同様の操作を行った。反応管(1) 内の鉄皮膜付き基板(7) の位置におけるアセチレンガスの濃度変化を図2に、カーボンナノチューブの走査電子顕微鏡写真(1万倍)を図5に、透過電子顕微鏡写真(50万倍)を図6にそれぞれ示す。   The same operation as described above was performed while changing the concentration of acetylene gas to 20%. The concentration change of the acetylene gas at the position of the substrate (7) with the iron film in the reaction tube (1) is shown in FIG. 2, the scanning electron micrograph (10,000 times) of the carbon nanotube is shown in FIG. 5, and the transmission electron micrograph (50 6) are shown in FIG.

アセチレンガス濃度3%ではゆっくりと、アセチレンガス濃度20%の条件では急激に、鉄皮膜の微粒子化およびカーボンナノチューブの生成が起こる。カーボンナノチューブが生成される瞬間の触媒微粒子の状態については、アセチレン濃度20%では3%に比べ微粒子が多数存在する。カーボンナノチューブの密度については、図3と図5の比較から分かるように、アセチレン濃度変化量が大きいほど、生成したカーボンナノチューブの本数が多い。カーボンナノチューブの内径については、図4と図6の比較から分かるように、アセチレン濃度変化量が大きいほど、生成したカーボンナノチューブの内径が小さい。   Fine graining of the iron film and generation of carbon nanotubes occur slowly at an acetylene gas concentration of 3% and abruptly at an acetylene gas concentration of 20%. Regarding the state of the catalyst fine particles at the moment when the carbon nanotubes are generated, there are many fine particles compared to 3% at an acetylene concentration of 20%. Regarding the density of the carbon nanotubes, as can be seen from the comparison between FIG. 3 and FIG. 5, the greater the amount of change in the acetylene concentration, the greater the number of generated carbon nanotubes. As can be seen from the comparison between FIG. 4 and FIG. 6, the larger the acetylene concentration change amount, the smaller the inner diameter of the carbon nanotube produced.

このように、アセチレンガス濃度は3%と20%としたが、同じ濃度であっても、濃度変化量を変えることにより、同様にカーボンナノチューブの成長密度を制御することができる。   Thus, although the acetylene gas concentrations were 3% and 20%, the growth density of the carbon nanotubes can be similarly controlled by changing the concentration change amount even if the concentration is the same.

熱化学気相蒸着実験装置を示す概略図である。It is the schematic which shows a thermal chemical vapor deposition experimental apparatus. アセチレンガスの濃度変化を示すグラフである。It is a graph which shows the density | concentration change of acetylene gas. アセチレン濃度3%の場合の成長したカーボンナノチューブの走査電子顕微鏡(SEM)写真(1万倍)である。It is a scanning electron microscope (SEM) photograph (10,000 times) of the grown carbon nanotube in the case of acetylene concentration 3%. アセチレン濃度3%の場合の成長したカーボンナノチューブの走査電子顕微鏡(TEM)写真(50万倍)である。It is a scanning electron microscope (TEM) photograph (500,000 times) of the grown carbon nanotube in the case of acetylene concentration 3%. アセチレン濃度20%の場合の成長したカーボンナノチューブの走査電子顕微鏡(SEM)写真(1万倍)である。It is a scanning electron microscope (SEM) photograph (10,000 times) of the grown carbon nanotube in the case of acetylene concentration 20%. アセチレン濃度20%の場合の成長したカーボンナノチューブの走査電子顕微鏡(TEM)写真(50万倍)である。It is a scanning electron microscope (TEM) photograph (500,000 times) of the grown carbon nanotube in the case of acetylene concentration 20%.

符号の説明Explanation of symbols

(1) 反応管
(2) 電気ヒータ
(3) 基台
(4) 不活性ガス供給管
(5) 原料ガス供給管
(6) 排気管
(7) 鉄皮膜付き基板


(1) Reaction tube
(2) Electric heater
(3) Base
(4) Inert gas supply pipe
(5) Source gas supply pipe
(6) Exhaust pipe
(7) Substrate with iron coating


Claims (4)

触媒金属層を有する基板を熱化学気相蒸着装置に入れ、同装置内に不活性ガスおよび原料ガスを供給し、熱化学気相蒸着法により触媒金属層を微粒化すると共に生成した触媒微粒子にカーホンナノチューブを成長させるに当たり、供給する原料ガスの濃度変化量を制御することでカーホンナノチューブの成長密度を制御することを特徴とするカーボンナノチューブの密度制御方法。 A substrate having a catalytic metal layer is put into a thermal chemical vapor deposition apparatus, an inert gas and a raw material gas are supplied into the apparatus, the catalytic metal layer is atomized by thermal chemical vapor deposition, and the generated catalyst fine particles are formed. A carbon nanotube density control method characterized by controlling a growth density of a carphone nanotube by controlling a concentration change amount of a source gas to be supplied in growing the carphone nanotube. 供給される原料ガスの濃度変化量を制御することにより、触媒金属層の微粒化により生成する触媒微粒子の粒径および/または密度を制御することを特徴とする請求項1記載のカーボンナノチューブの密度制御方法。 2. The density of carbon nanotubes according to claim 1, wherein the particle size and / or density of the catalyst fine particles produced by atomization of the catalyst metal layer is controlled by controlling the amount of change in concentration of the supplied raw material gas. Control method. 前記触媒金属層がコバルト、ニッケル、鉄またはこれらの合金からなることを特徴とする請求項1または2記載のカーボンナノチューブの密度制御方法。 3. The carbon nanotube density control method according to claim 1, wherein the catalytic metal layer is made of cobalt, nickel, iron, or an alloy thereof. 前記原料ガスが炭化水素ガスであることを特徴とする請求項1のいずれかに記載のカーボンナノチューブの密度制御方法。
2. The carbon nanotube density control method according to claim 1, wherein the source gas is a hydrocarbon gas.
JP2004249465A 2004-08-30 2004-08-30 Method for controlling density in formation of carbon nanotube Pending JP2006062924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249465A JP2006062924A (en) 2004-08-30 2004-08-30 Method for controlling density in formation of carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249465A JP2006062924A (en) 2004-08-30 2004-08-30 Method for controlling density in formation of carbon nanotube

Publications (1)

Publication Number Publication Date
JP2006062924A true JP2006062924A (en) 2006-03-09

Family

ID=36109720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249465A Pending JP2006062924A (en) 2004-08-30 2004-08-30 Method for controlling density in formation of carbon nanotube

Country Status (1)

Country Link
JP (1) JP2006062924A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099975A1 (en) * 2006-02-28 2007-09-07 Toyo Boseki Kabushiki Kaisha Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber
JP2008308355A (en) * 2007-06-13 2008-12-25 Denso Corp Method for manufacturing carbon nanotube

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510236A (en) * 1999-09-23 2003-03-18 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Patterned carbon nanotubes
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system
WO2004085309A1 (en) * 2003-03-24 2004-10-07 Japan Science And Technology Agency High-efficiency synthetic method for carbon nanostructure, apparatus and carbon nanostructure
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003510236A (en) * 1999-09-23 2003-03-18 コモンウエルス サイエンティフィック アンド インダストリアル リサーチ オーガナイゼーション Patterned carbon nanotubes
JP2004182573A (en) * 2002-12-05 2004-07-02 Japan Science & Technology Agency Method and apparatus for manufacturing carbon nanostructure by raw material blasting system
WO2004085309A1 (en) * 2003-03-24 2004-10-07 Japan Science And Technology Agency High-efficiency synthetic method for carbon nanostructure, apparatus and carbon nanostructure
WO2005102924A1 (en) * 2004-04-19 2005-11-03 Japan Science And Technology Agency Carbon-based fine structure group, aggregate of carbon based fine structures, use thereof and method for preparation thereof

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007099975A1 (en) * 2006-02-28 2007-09-07 Toyo Boseki Kabushiki Kaisha Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber
JP2008308355A (en) * 2007-06-13 2008-12-25 Denso Corp Method for manufacturing carbon nanotube
JP4692520B2 (en) * 2007-06-13 2011-06-01 株式会社デンソー Carbon nanotube manufacturing method
US8173212B2 (en) 2007-06-13 2012-05-08 Denso Corporation Method for manufacturing carbon nano tube

Similar Documents

Publication Publication Date Title
CN100462301C (en) Method for preparing carbon nano tube array
KR100537512B1 (en) carbon-nano tube structure and manufacturing method thereof and field emitter and display device both adopting the same
JP4988330B2 (en) Method for producing nitrogen-doped single-walled carbon nanotubes
JPWO2004085309A1 (en) Highly efficient synthesis method of carbon nanostructure, apparatus and carbon nanostructure
JP5358045B2 (en) Method for producing carbon nanotube
JP4834957B2 (en) Catalyst structure and carbon nanotube production method using the same
JPWO2007116434A1 (en) Method for producing carbon nanotube
JP2008201648A (en) Carbon nanotube production apparatus and carbon nanotube production method
Yousefi et al. Possible high efficiency platform for biosensors based on optimum physical chemistry of carbon nanotubes
JP2007186363A (en) Method and apparatus for producing carbon nanotube
JP4977982B2 (en) Method for producing linear carbon material and method for producing functional device
JP2006062924A (en) Method for controlling density in formation of carbon nanotube
US8080289B2 (en) Method for making an aligned carbon nanotube
JP2005112659A (en) Apparatus and method for manufacturing carbon nanotube
KR20080012009A (en) Method of forming a carbon nanotube
JP5500850B2 (en) Method for producing carbon nanotube
JP2007210853A (en) Method for producing carbon nanotube
Devaux et al. On the low-temperature synthesis of SWCNTs by thermal CVD
JP2007254167A (en) Method for production of carbon nanotube
JP2006305554A (en) Method of forming catalyst and method of manufacturing carbon film using the same
JP4545530B2 (en) Method for producing fine carbon fiber
JP2005097015A (en) Method for manufacturing carbon nanotube
JP2016088787A (en) Method for producing oriented carbon nanotube aggregates
JP2008056529A (en) Carbon nanotubes synthesis method, carbon nanotube, silicon substrate, electron source and field emission type display
TWI251250B (en) A method of forming carbon nanotubes

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100607

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110125