WO2007099975A1 - Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber - Google Patents

Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber Download PDF

Info

Publication number
WO2007099975A1
WO2007099975A1 PCT/JP2007/053693 JP2007053693W WO2007099975A1 WO 2007099975 A1 WO2007099975 A1 WO 2007099975A1 JP 2007053693 W JP2007053693 W JP 2007053693W WO 2007099975 A1 WO2007099975 A1 WO 2007099975A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon nanotube
carbon
aggregate
carbon nanotubes
ratio
Prior art date
Application number
PCT/JP2007/053693
Other languages
French (fr)
Japanese (ja)
Inventor
Nobuyuki Taniguchi
Kouji Kita
Masaki Nishimura
Tomoyuki Akai
Osamu Suekane
Atsuko Nagataki
Makoto Horiguchi
Hironobu Hori
Yoshikazu Nakayama
Original Assignee
Toyo Boseki Kabushiki Kaisha
Osaka Prefectural Government
Osaka University
The Kansai Electric Power Co., Inc.
Osaka Industrial Promotion Organization
Public University Corporation Osaka Prefecture University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyo Boseki Kabushiki Kaisha, Osaka Prefectural Government, Osaka University, The Kansai Electric Power Co., Inc., Osaka Industrial Promotion Organization, Public University Corporation Osaka Prefecture University filed Critical Toyo Boseki Kabushiki Kaisha
Priority to JP2008502808A priority Critical patent/JP4968854B2/en
Publication of WO2007099975A1 publication Critical patent/WO2007099975A1/en

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F9/00Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments
    • D01F9/08Artificial filaments or the like of other substances; Manufacture thereof; Apparatus specially adapted for the manufacture of carbon filaments of inorganic material
    • D01F9/12Carbon filaments; Apparatus specially adapted for the manufacture thereof
    • D01F9/127Carbon filaments; Apparatus specially adapted for the manufacture thereof by thermal decomposition of hydrocarbon gases or vapours or other carbon-containing compounds in the form of gas or vapour, e.g. carbon monoxide, alcohols
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment

Definitions

  • Carbon nanotube aggregate, carbon nanotube fiber, and carbon nanotube fiber manufacturing method Carbon nanotube aggregate, carbon nanotube fiber, and carbon nanotube fiber manufacturing method
  • the present invention relates to a carbon nanotube aggregate, a carbon nanotube fiber, and a method for producing a carbon nanotube fiber.
  • Carbon nanotubes are excellent in electrical characteristics, mechanical characteristics, and the like, and are expected to be used and applied in various industries including field emission displays.
  • Non-patent Documents 1 and 2 fibers composed of carbon nanotubes and carbon nanotube sheets using the same have been proposed.
  • Non-Patent Document 1 carbon nanotube aggregates (also called “carbon nanotube forest”) grown on a substrate with high density and high orientation by chemical vapor deposition are used. A method for forming nanotube fibers is disclosed.
  • Non-Patent Document 2 proposes a method of forming a carbon nanotube sheet from an aggregate of carbon nanotubes grown in a high density and high orientation on a substrate by a chemical vapor deposition method.
  • Non-Patent Document 1 Zhang et al., Science, 306, 1358-1361, 2004
  • Non-Patent Document 2 Zhang et al., Science, 309, 1215-1219, 2005
  • an object of the present invention is to provide a carbon nanotube aggregate from which a long carbon nanotube fiber can be pulled out with high probability, a carbon nanotube fiber obtained from the aggregate, and the like.
  • the present inventors have intensively studied to solve the above problems. As a result, contrary to the method that has been actively performed in recent years, it is an aggregate of carbon nanotubes that is not highly crystallized and in which a large amount of amorphous carbon is laminated, and has a specific structure. As a result, it was found that long carbon nanotube fibers can be pulled out with an excellent probability by using the aggregate of carbon nanotubes, and the present invention (Embodiment 1) was completed. In addition, even if a large amount of amorphous carbon is not laminated, it has been subjected to a predetermined treatment, and even by using a carbon nanotube aggregate having a specific structure, it is long with an excellent probability. The inventors have found that carbon nanotube fibers can be pulled out, and have completed the present invention (Embodiment 2). That is, the present invention relates to the following.
  • Item 1 A carbon nanochu having a plurality of carbon nanotubes formed on a substrate (1) Amorphous carbon is laminated on the surface of the carbon nanotube at a coverage of 55 to 100%, and (2) the average thickness of the amorphous carbon is 0.3 to 5 nm. (3) The order parameter of the aggregate of carbon nanotubes is 0.85 to 1.0, (4) The bulk density of the aggregate of carbon nanotubes is 1 to:! OOOmgZcm 3 and (5) (6) In the Raman spectrum of the carbon nanotube aggregate, the G band that appears near 1590c ⁇ 1 and the lSSOcnT 1 vicinity An aggregate of carbon nanotubes, characterized in that the area ratio (G / D ratio) to the appearing D band is 0.45 to 0.75.
  • Item 2 A carbon nanotube fiber obtained by drawing a plurality of carbon nanotube aggregates according to Item 1 from the substrate in a continuous manner.
  • Item 3 The carbon nanotube fiber according to Item 2, which is formed by twisting.
  • Item 4 The carbon nanotube fiber according to Item 2 or 3, further comprising a binder.
  • Item 5 A carbon nanotube cross-layered product comprising the carbon nanotube fibers according to any one of Items 2 to 4.
  • Item 6 The carbon nanotube cross-layered product according to Item 5, further comprising a binder.
  • Item 7 A carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate, wherein ( a ) a polarization treatment is applied, and (b) the order parameter of the carbon nanotube aggregate. Is from 0.85 to 1.0, and (c) the density of the carbon nanotube aggregate is:! To 1000 mg / cm 3 , and (d) the number of oxygen / carbon atoms in the carbon nanotube aggregate. (E) The area ratio between the G band that appears near ⁇ ⁇ 1 and the D band that appears near lSSOcnT 1 (G / D) The carbon nanotube assembly is characterized in that the ratio is 0.45-0.60.
  • Item 8 The aggregate of carbon nanotubes according to Item 7, wherein the polarization treatment is an oxidation treatment.
  • Item 9 The aggregate of carbon nanotubes according to Item 8, wherein the oxidation treatment is a plasma treatment.
  • Item 10 A method for producing a long carbon nanotube fiber, wherein a plurality of the carbon nanotube assemblies are bowed from an end surface of the carbon nanotube assembly according to any one of Items 1 and 7-9. I pull out the long carbon nanotube fiber continuously A method for producing a carbon nanotube fiber comprising a forming step.
  • the carbon nanotube aggregate that is Embodiment 1 of the present invention is a carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate,
  • Amorphous carbon is laminated on the surface of the carbon nanotube with a coverage of 55-100%
  • the average thickness of the amorphous carbon is 0.3-5 nm
  • the oxygen-to-carbon atom ratio of the carbon nanotube aggregate is 0.002 to 0.350
  • a known or commercially available substrate can be used without limitation.
  • a plastic substrate; a glass substrate; a silicon substrate; a metal substrate containing a metal such as iron or copper or an alloy thereof can be used.
  • a silicon dioxide film may be laminated on the surface of these substrates.
  • a plurality of carbon nanotubes stand on a substrate in high density and high orientation.
  • the carbon nanotubes formed on the substrate have amorphous carbon (amorphous component) laminated on the surface with an average coverage of 55 to 100%, and the average thickness of the laminated amorphous carbon. Is 0.3 to 5 nm. Because of these characteristics, the surface of the carbon nanotube of the present invention has minute irregularities that become the hooking force part, and when pulled out (carbon nanotube During the manufacture of the fiber, it is possible to increase the force similar to the frictional force between adjacent carbon nanotubes. As a result, it exhibits excellent pull-out properties, and long carbon nanotube fibers can be easily obtained.
  • the coverage is preferably 57 to 90%. As a result, it is possible to exert an excellent pull-out characteristic while suppressing a decrease in physical properties (high conductivity, high strength, etc.) inherent to the carbon nanotube.
  • the average thickness of the amorphous carbon is preferably 0.7 to 2 nm. The coverage and average thickness of the amorphous carbon can be confirmed by observing an image (magnification: about 6 million times) obtained by a transmission electron microscope (TEM).
  • the carbon nanotube preferably has a plurality of bent portions. Preferably, there are about 20 or more per carbon nanotube, more preferably about 50 to about 1000 per one. As a result, the bent portion becomes a catching portion, and the force similar to the frictional force between the adjacent carbon nanotubes is increased, so that the drawing characteristics of the carbon nanotube aggregate can be further improved.
  • the bent portion may be present at any portion with respect to the long axis direction of the carbon nanotube.
  • the carbon nanotube may be present at any of the root part (the vicinity of the substrate), the tip part (the part farthest from the substrate), and the intermediate part between the root part and the tip part.
  • the presence or absence and the number of bent portions of the carbon nanotube can be confirmed by observing an image (magnification: about 40,000 to 120,000 times) obtained by a transmission electron microscope (TEM).
  • TEM transmission electron microscope
  • the average diameter of the carbon nanotubes is not limited and is usually from lnm to about! OOnm, preferably about 5 to 50nm.
  • the average length is not limited and is preferably ⁇ ⁇ ⁇ or more. It may be a single-walled carbon nanotube or a multi-walled carbon nanotube.
  • the carbon nanotubes may contain elements other than carbon and oxygen, and may have a functional group such as a carboxyl group, a hydroxyl group, a carbonyl group, and an ether group.
  • the aggregate of carbon nanotubes of Embodiment 1 is such that the carbon nanotubes are formed in a highly oriented and high density on the substrate, and the carbon nanotube aggregates
  • the order parameter is 0 ⁇ 85 to: 1.0, the bulk density of the carbon nanotube aggregate is 1 to 1000 mg / cm 3 , and the oxygen / carbon atomic ratio of the carbon nanotube aggregate (ie, O / C ratio) is 0 - 002 to 0.350, the area ratio of the Raman spectrum of the carbon nanotube aggregate, the G band and 1350Cm- D band appearing in the vicinity of 1 appearing in the vicinity 1590cm- 1 (GZD ratio) It is 0.45-0.75.
  • carbon nanotubes are formed on a substrate in a highly oriented state.
  • High orientation means that carbon nanotubes stand adjacent to each other and are perpendicular to the substrate plane.
  • the order parameter ( ⁇ P) represented by the following formula (1) is in the range of 0.85 to 1.0 (preferably 0.90 to 0.99).
  • ⁇ j represents the angle formed by the molecular axis of an arbitrary carbon nanotube formed on the substrate and the substrate.
  • ⁇ Cos 2 (90- ⁇ j)> is defined on the substrate. (The average value of all the carbon nanotubes formed is shown.)
  • carbon nanotubes are formed on a substrate at a high density. That is, the bulk density of the carbon nanotubes on the substrate:! ⁇ 1 OOOmg / cm 3 , preferably 10 to 500 mg / cm 3, more preferably 10 to: a 100 mg / cm 3. If the bulk density is lower than this range, the interaction between the adjacent carbon nanotube molecules is weakened, and the drawing characteristics may be deteriorated. If the bulk density is larger than this range and a large amount of carbon nanotubes are pulled out at the same time when being pulled out, there is a possibility that long fibers having a uniform thickness cannot be obtained.
  • the aggregate of carbon nanotubes of Embodiment 1 has an oxygen Z-carbon atom number ratio (OZC ratio) of 0.002 to 0.350. Preferably ⁇ , 0.002 to 0.27.
  • OZC ratio oxygen Z-carbon atom number ratio
  • the O / C ratio is obtained by obtaining the peak area of carbon atoms having a binding energy of 282 to 298 eV and the peak area of oxygen atoms having 526 to 540 eV in a spectrum obtained by photoelectron spectroscopy (ESCA). These values can be calculated by taking into consideration the peak areas and sensitivity correction values for each element.
  • the aggregate of carbon nanotubes of Embodiment 1 has an area ratio (G / D ratio) between the G band appearing near 1590 cm- 1 and the D band appearing near lSSOcnT 1 in the Raman spectrum of 0 • 45 to 0.75. It is in the range.
  • the upper limit of G / Di is 0.75 to ⁇ , preferably 0.75 to 0.60, and more preferably 0.56.
  • the G / D ratio exceeds 0.75, the catching will be insufficient and the drawing characteristics may deteriorate. On the other hand, if the G / D ratio is less than 0.45, the strength of the drawn carbon nanotube fibers may be reduced, and long carbon nanotube fibers may not be obtained.
  • absorption peak area of G-band and D-band of the present invention Ramansu Bae Kutonore 800 to 2000 cm _ 1 wavenumber region Niore Te, a line connecting the both ends of the spectrum in a straight line as a base line, 1350 cm _ 1 D band absorption peak appearing in the vicinity of the absorption peak appearing in the vicinity of 1590 cm _ 1 as G band, which is determined by performing a waveform separation by these two absorption peaks curve fitting using Lorentz function It is.
  • Figure 1 shows an example of the spectrum obtained by Raman spectroscopy.
  • the absorption peak area of the D band is indicated by the hatched portion
  • the absorption peak area of the G band is indicated by the vertical line portion.
  • the area of the G band and D band can be calculated using commercially available software (for example, origin Ver6 manufactured by Microcal Software. Inc.).
  • the G / D ratio is obtained by dividing the absorption peak area of the G band (vertical line) by the absorption peak area of the D band (shaded area).
  • the method for producing the aggregate of carbon nanotubes of Embodiment 1 is not particularly limited. For example, it can be produced by adjusting the O / C ratio, the G / D ratio, and the like within the above ranges. More specifically, by performing chemical vapor deposition using a hydrocarbon gas such as acetylene, a desired carbon nanotube aggregate can be suitably produced on the substrate.
  • a hydrocarbon gas such as acetylene
  • the substrate examples include those described above.
  • the iron is obtained by evaporating or sputtering iron on a silicon substrate coated with a silicon dioxide film by vapor deposition or thermal oxidation. It is a film laminated silicon substrate.
  • the iron film takes in carbon and makes fine particles on the substrate surface with a suitable particle size and density, so that the aggregate of carbon nanotubes formed in a high-density and highly-oriented state is formed. It can be manufactured more reliably.
  • the temperature is not limited, but is preferably 600 to 1000. About C, more preferably about 650 to 750 ° C.
  • the pressure is not limited, it is usually carried out under atmospheric pressure (preferably about 0.8 to about 1.2 atm).
  • the gas to be introduced is not limited as long as it has carbon atoms, but hydrocarbons such as acetylene can be preferably used.
  • a rare gas such as helium may be used in combination as a carrier gas.
  • the rate of increase in the concentration of the acetylene gas supplied onto the substrate at the initial stage of the carbon nanotube synthesis reaction it is particularly preferable to control the rate of increase in the concentration of the acetylene gas supplied onto the substrate at the initial stage of the carbon nanotube synthesis reaction.
  • the substrate material such as iron takes in carbon and is easily formed into fine particles on the substrate surface with an optimum particle size and density
  • the aggregate of carbon nanotubes of the present invention can be suitably manufactured.
  • the rising speed may be a force that can be appropriately set according to the manufacturing conditions, for example, about 0.01 to 0.45 vol%, preferably about 0.05 to 0. 20 vol%.
  • reaction time it is possible to control the coverage, average thickness, and the like of amorphous carbon laminated on the surface layer of carbon nanotubes.
  • the reaction time can be appropriately set depending on the production conditions, but it may be, for example, about 3 seconds to 2 hours, preferably about 15 seconds to 30 minutes.
  • the carbon nanotube aggregate of Embodiment 2 is a carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate,
  • Examples of the substrate are the same as those described above in Embodiment 1. Each measurement method and the like are all the same as in the first embodiment.
  • the carbon nanotube aggregate of Embodiment 2 is subjected to a polarization treatment.
  • Polarization treatment refers to treatment for introducing a functional group such as a carboxyl group, a hydroxyl group, a carbonyl group, or an ether group into a carbon nanotube. A specific example of the polarization process will be described later. Since Embodiment 2 is subjected to this polarization treatment and has a specific structure, it exhibits excellent drawing characteristics when producing carbon nanotube fibers, and a long carbon nanotube fiber can be obtained.
  • the average diameter of the carbon nanotubes constituting the aggregate of Embodiment 2 is not limited, and is usually about lnm to about OOnm, preferably about 5 to 50nm.
  • the average length is not limited and is preferably 1 ⁇ or more. It may be a single-walled carbon nanotube or a multi-walled carbon nanotube. Further, it may contain other elements other than carbon and oxygen.
  • the carbon nanotube may have a functional group such as a carboxyl group, a hydroxyl group, a carbonyl group, or an ether group. Further, for the same reason as in the first embodiment, it is preferable to have a plurality of bent portions. Preferably, there are about 20 or more carbon nanotubes, more preferably about 50 to about 1000 carbon nanotubes.
  • the aggregate of carbon nanotubes of Embodiment 2 is such that the carbon nanotubes are formed in a highly oriented and high density state on the substrate, and the order parameter of the aggregate of carbon nanotubes is 0.85 to: 1. 0 (preferably 0.90 to 0.99) and the bulk density of the carbon nanotube aggregate is:! To lOOOOmgZcm 3 (preferably 10 to 500 mgZcm 3 , more preferably 10 to 100 mg / cm 3 ). is there. If the bulk density is smaller than this range, the interaction between the adjacent force-bonn nanotube molecules becomes weak, and the pulling-out property may be deteriorated.
  • the aggregate of carbon nanotubes of Embodiment 2 has an oxygen / carbon atomic number ratio (ie, O / Ci) force SO. 05 to 0.35. It is preferably ⁇ , 0.09 to 0.27.
  • the aggregate of carbon nanotubes of Embodiment 2 has an area ratio G / D ratio of 0.45 to 0.60 between the G band appearing near 1590 cm-1 in the Raman spectrum and the D band appearing near l S SOcnT 1 . (Preferably 0.47-0.60).
  • G / D the soot in this range, the defects introduced on the surface of the carbon nanotube and the force derived from the amorphous component are attracted by the minute irregularities on the surface of the single-bonn nanotube, and the adjacent carbon nanotube A force similar to the friction force between them can be increased. For this reason, it is possible to easily obtain a long carbon nanotube fiber exhibiting excellent drawing characteristics.
  • the method for producing the carbon nanotube aggregate of Embodiment 2 is not limited as long as the polarization treatment is performed.
  • the polarization treatment is not particularly limited as long as polarity can be imparted to the carbon nanotube, but oxidation treatment is preferable.
  • oxidation treatment include plasma treatment, acid treatment, electrolytic oxidation treatment, and dry oxidation treatment.
  • the atmosphere is not limited. Examples include oxygen, argon, nitrogen, hydrogen, ammonia, methane, and ethylene. More preferred are oxygen, argon and the like. These gases may be used alone or in combination of two or more.
  • the pressure is not limited, specifically, it is preferable to carry out under reduced pressure, and it is preferably carried out at about 0.01 to about ⁇ ⁇ rr (especially 0 ⁇ ! To lTorr).
  • the processing time of the plasma treatment may be appropriately determined according to the apparatus used, the OZC ratio before the plasma treatment, the GZD ratio, the amorphous carbon coverage, etc., for example:! To 60 minutes, preferably 5 to 20 minutes. If the processing time is extremely shortened, the effect of the processing will be reduced. On the other hand, if the treatment time is extremely long, damage to the carbon nanotubes becomes excessive, and the high strength, high conductivity, etc. of the carbon nanotubes are significantly impaired, which is preferable.
  • the output in plasma processing is as follows: equipment used, OZC ratio before plasma processing, G / D ratio, What is necessary is just to determine suitably according to the coverage of an amorphous carbon, etc., for example, 10-: 1000 w, What is necessary is just to be 100-500 w.
  • An extremely small output is not preferable because the effect of the processing is reduced.
  • the output is extremely increased, damage to the carbon nanotubes becomes excessively large, and the high strength, high conductivity, etc. of the carbon nanotubes are significantly impaired.
  • the acid treatment method is not particularly limited.
  • a known method such as treatment with a nitric acid / sulfuric acid mixture can be applied.
  • the anion species serving as the radical generation source is not limited.
  • nitrate ions can be used as the radical generation source.
  • the amount of electricity to be energized during the electrolytic oxidation treatment may be appropriately selected according to the O / C ratio, G / D ratio, amorphous carbon coverage, etc. before the electrolytic oxidation treatment. If the amount of electricity is extremely small, the effect of treatment becomes small, which is not preferable. On the other hand, an extremely large amount of electricity is not preferable because damage to the carbon nanotubes increases, and the high strength and high conductivity of the carbon nanotubes are impaired.
  • the dry oxidation treatment method is not particularly limited, and for example, a known method such as ozone-promoted oxidation treatment can be applied.
  • the aggregate of carbon nanotubes before the polarization treatment can be produced, for example, in the same manner as the aggregate of embodiment 1.
  • the carbon nanotube fiber of the present invention includes a long fiber formed by being drawn from the carbon nanotube assembly of Embodiment 1 or Embodiment 2, and carbon. It is a bundle of multiple nanotubes, and has a continuous structure.
  • the carbon nanotube fiber may be twisted or untwisted. From the viewpoint of higher strength and easy handling, twisted fibers (carbon nanotube twisted yarn) are preferred.
  • the fiber length may be appropriately determined according to the use of the final product without limitation, and the fiber length is preferably 25 cm or more, more preferably 30 cm or more.
  • the fiber diameter is not limited and may be appropriately determined according to the use of the final product.
  • the carbon nanotube fiber may contain a binder. Thereby, the strength of the carbon nanotube fiber can be further increased, and the handling becomes easy.
  • the binder is not limited as long as it binds the carbon nanotubes, and a known binder can be used. For example, polybulu alcohol etc. are mentioned.
  • the binding method is not limited, for example, after forming carbon nanotube fibers, a method of immersing the carbon nanotube fibers in a binder, a method of applying or spraying the binder on the carbon nanotube fibers, and the like.
  • the amount of binder adhering to the binder is limited and may be appropriately determined according to the type of binder to be used, the use of the final product, and the like.
  • the carbon nanotube two-dimensional structure of the present invention is formed by two-dimensionally arranging the above-described carbon nanotube fibers of the present invention.
  • the two-dimensional structure of carbon nanotubes only needs to be formed in a planar shape, and may be in any form such as a woven shape, a film shape, and a plate shape.
  • a carbon nanotube sheet in which a plurality of carbon nanotube fibers of the present invention are adjacent in parallel is preferred.
  • the two-dimensional structure of carbon nanotubes may contain a binder or the like.
  • the binder is not limited as long as it binds carbon nanotube fibers, and the above-mentioned known binders can be used.
  • the two-dimensional structure of carbon nanotubes is obtained by linearly pulling out carbon nanotubes, which may be carbon nanotubes drawn from a carbon nanotube aggregate in a planar shape.
  • carbon nanotubes which may be carbon nanotubes drawn from a carbon nanotube aggregate in a planar shape.
  • a plurality of (or knitted) carbon nanotube fibers may be obtained.
  • the carbon nanotube two-dimensional structure of the present invention is formed in combination with a known fiber other than the carbon nanotube fiber of the present invention, as long as the carbon nanotube fiber of the present invention is included in part. Motole.
  • the carbon nanochu laminate of the present invention is formed by laminating the carbon nanotube two-dimensional structure of the present invention.
  • two or more carbon nanotube sheets in which a plurality of carbon nanotube fibers are adjacent to each other in parallel are laminated
  • the angle formed by adjacent single-walled carbon nanotube fibers may be a right angle or an oblique angle.
  • the average thickness of the laminate is not limited and can be selected from a wide range according to the use of the final product.
  • the carbon nanotube fiber production method of the present invention is the carbon nanotube from the end face (side surface) of the carbon nanotube aggregate formed in a high density and high orientation on the substrate according to the present invention (Embodiment 1 or Embodiment 2). It is characterized by comprising a step of continuously forming long carbon nanotube fibers by pulling out a part of the aggregate.
  • a force similar to a frictional force acts between the extracted carbon nanotubes and the carbon nanotubes (on the substrate) in the aggregate adjacent to the carbon nanotubes. it is conceivable that.
  • the carbon nanotubes in the aggregate are further pulled out following the drawn carbon nanotubes, and this process proceeds continuously one after the other, so that a long carbon nanotube fiber or a two-dimensional structure of carbon nanotubes is obtained.
  • the body is formed.
  • a carbon nanotube two-dimensional structure can be manufactured.
  • a carbon nanotube two-dimensional structure can also be produced by arranging or weaving a plurality of carbon nanotube fibers.
  • the method of pulling out is not limited.
  • a known method can be used as a method for producing a carbon nanotube two-dimensional structure or a carbon nanotube laminate from a carbon nanotube fiber.
  • a known weaving method such as plain weave or twill weave may be employed.
  • a binder or the like may be applied and dried during production of the carbon nanotube fiber, the carbon nanotube two-dimensional structure, or the carbon nanotube laminate. Moreover, you may employ
  • a long carbon nanotube fiber or the like can be produced with high probability.
  • the carbon nanotube fibers and the like of the present invention have high strength and high conductivity derived from carbon nanotubes, various fiber products such as bulletproof and protective clothing; It can be used for a wide variety of applications such as product parts.
  • the Raman spectrum was measured using a micro Raman spectrophotometer.
  • the measurement conditions were as follows.
  • Irradiation beam diameter ⁇ ⁇ ⁇ ⁇ ⁇ ⁇
  • the O / C ratio was measured by photoelectron spectroscopy (ESCA) using an X-ray photoelectron spectrometer.
  • the measurement conditions were as follows.
  • the degree of vacuum in the chamber one: 1 X 10- 7 Pa ⁇ l X 10- 8 Pa
  • the Cls peak area was obtained by drawing a straight baseline in the range of binding energy 282 to 298 eV, and the oxygen (Ols) peak area was in the range of 526-540 eV. Obtained by drawing the ground.
  • the intensity of the two endpoints when drawing the background was obtained by numerically averaging the intensity of 10 points near each endpoint.
  • the O / C ratio was calculated by dividing the ratio of the Cls peak area to the Ols peak area determined above by the device-specific sensitivity correction value.
  • the inherent sensitivity correction value of “ESCA — 58 01MC” manufactured by ULVAC-FUY) used in the present invention was 2.40.
  • This substrate was placed in a thermal CVD apparatus, and a carbon nanotube aggregate was formed in a substrate shape by performing a thermal CVD method.
  • Gas supplied into the thermal CVD is acetylene gas and A mixed gas of helium gas (acetylene gas 5 ⁇ 77 vt%) was used.
  • the thermal CVD conditions were as follows: temperature: 700 ° C, pressure: atmospheric pressure, acetylene gas concentration increase rate in the initial stage: 0.10 vol% / second, reaction time: 10 minutes.
  • the coverage of amorphous carbon was 57%, and the average thickness of amorphous carbon was 1. lnm.
  • the carbon nanotube aggregate of Example 1 has a G / D ratio of 0.66, an oxygen Z carbon atom number ratio ( ⁇ / C ratio) of 0.008, a bulk density of 40 mg / cm 3 , and an order parameter (OP) of 0. 94.
  • the average length of the carbon nanotube was 190 ⁇ m.
  • Fig. 2 shows a scanning electron microscope (SEM) photograph of the cross section of the carbon nanotube aggregate obtained.
  • a carbon nanotube assembly of Example 2 was produced in the same manner as Example 1 except that the reaction time was 30 minutes.
  • the amorphous carbon coverage rate S100%, and the average thickness of the amorphous carbon was 1.7 nm.
  • the carbon nanotubes of Example 2 had a G / D ratio of 0.60, a ⁇ / C ratio of 0.002, a bulk density of 20 mg / cm 3 , and an OP of 0.92.
  • the average length of the carbon nanotubes was 220 / im.
  • a carbon nanotube of Comparative Example 1 was produced in the same manner as in Example 1 except that the reaction time was 5 minutes and the rate of increase in the acetylene gas concentration at the initial stage was 0.25 vol% / sec.
  • the coverage rate of amorphous carbon was 7%, and the average thickness of amorphous carbon was 0.2 nm.
  • the aggregate of carbon nanotubes had a GZD ratio of 0.69, an OZC ratio of 0.01, a bulk density of 60 mgZcm 3 , and an OP of 0.95.
  • the average length of the carbon nanotubes was 160 ⁇ m.
  • a carbon nanotube aggregate of Comparative Example 2 was produced in the same manner as in Example 1 except that the reaction time was 2 minutes and the rate of increase in the acetylene gas concentration at the initial stage was 0.35 vol% / second.
  • the coverage rate of amorphous carbon was 3 ⁇ 4%, and the average thickness of amorphous carbon was 0 ⁇ lnm.
  • the aggregate of carbon nanotubes had a G / D ratio of 1.60, an O / C ratio of 0.00, a bulk density of 15 mg / cm 3 , and an OP of 0.75.
  • the average length of the carbon nanotubes was 160 ⁇ m.
  • the carbon nanotube assembly of Example 3 was subjected to plasma treatment on the aggregate of carbon nanotubes produced in Comparative Example 1 using a low-temperature plasma surface treatment apparatus (produced by Hirano Kotone Co., Ltd., low-temperature plasma surface treatment apparatus). Aggregates were produced.
  • This plasma treatment was started at room temperature while a carbon nanotube aggregate substrate was placed on a parallel plate electrode having a diameter of 30 cm, and cooling water (room temperature) was passed through the electrode.
  • the irradiation power was 300 W
  • the oxygen gas flow rate was 45.9 ccm
  • the pressure inside the chamber was 0.221 Torr
  • the treatment time was 10 minutes.
  • the amorphous carbon coverage ratio was 7%, and the average thickness of the amorphous carbon was 0.7 nm.
  • the G / D ratio of the aggregate of carbon nanotubes of Example 3 was 0.56, the ⁇ / C ratio was 0.14, the bulk density was 60 mg / cm 3 , and OP was 0.91.
  • a carbon nanotube aggregate of Example 4 was manufactured in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 5 minutes.
  • the aggregate of carbon nanotubes of Example 4 had a G / D ratio of 0.55, an O / C ratio of 0.10, a bulk density of 60 mg / cm ", and an OP of 0.95.
  • a carbon nanotube aggregate of Example 5 was manufactured in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 20 minutes.
  • the aggregate of carbon nanotubes of Example 5 had a GZD ratio of 0.53, an O / C ratio of 0.27, a bulk density of 60 mg / cm 3 , and ⁇ P of 0.92.
  • Plasma treatment is performed on the aggregate of carbon nanotubes manufactured in Example 2 using a low-temperature plasma surface treatment apparatus (manufactured by Hirano Kotone Co., Ltd., low-temperature plasma surface treatment apparatus).
  • a low-temperature plasma surface treatment apparatus manufactured by Hirano Kotone Co., Ltd., low-temperature plasma surface treatment apparatus.
  • This plasma treatment was started at room temperature while a carbon nanotube assembly substrate was placed on a parallel plate electrode having a diameter of 30 cm, and cooling water (room temperature) was passed through the electrode.
  • the irradiation power was 500 W
  • the argon gas flow rate was 45.9 ccm
  • the pressure inside the chamber was 0.221 Torr
  • the treatment time was 10 minutes.
  • the aggregate of carbon nanotubes of Example 6 had a GZD ratio of 0.50, an O / C ratio of 0.09, a bulk density of 20 mg / cm 3 , and ⁇ P of 0.91.
  • a carbon nanotube aggregate of Example 7 was produced in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 100 W and treatment time: 50 minutes.
  • the aggregate of carbon nanotubes of Example 7 had a GZD ratio of 0.57, an O / C ratio of 0.20, a bulk density of 55 mg / cm 3 , and ⁇ P of 0.88.
  • a carbon nanotube aggregate of Comparative Example 3 was produced in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 40 minutes.
  • the carbon nanotube aggregate of Comparative Example 3 had a G / D ratio of 0.45, an O / C ratio of 0.40, a bulk density of 58 mg / cm 3 , and an OP of 0.75.
  • a carbon nanotube aggregate of Comparative Example 4 was produced in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 35 minutes.
  • the carbon nanotube aggregate of Comparative Example 4 had a G / D ratio of 0.55, an O / C ratio of 0.45, a bulk density of 57 mg / cm 3 , and an OP of 0.70.
  • the tip of X-type tweezers (manufactured by FONTAX, product model number “4X_S”) is pierced by 0.5 to lmm to pinch multiple carbon nanotubes, and then pinch carbon nanotubes into XYZ Carbon nanotube fiber (carbon nanotube twisted yarn) by pulling it while twisting at a spinning speed of lcm / min after fixing to a stage twisting machine (manufactured by Daiei Science Equipment Mfg., Product model number “M_ 1”) was manufactured. This measurement was performed 10 times, and the length of the longest drawn yarn was taken as the maximum twisted yarn length. This is shown in Table 1.
  • the length of 25 cm which is a length that sufficiently squeezes one round, was used as the standard for the twisted yarn length. That is, the case where the maximum twist length was 25 cm or more was evaluated as “ ⁇ ”, and the case where it was less than 25 cm was evaluated as “X”.
  • FIG. 3 A SEM photograph of the carbon nanotube twisted yarn obtained using the carbon nanotube aggregate of Example 3 is shown in FIG. 3, and a SEM photograph of the carbon nanotube twisted yarn obtained using the carbon nanotube aggregate of Example 4 is shown in FIG. Figure 4 shows.
  • Example 10 The end of the carbon nanotube assembly produced in Example 5 was pinched with a tip of X-type tweezers 0.5 to 1 mm to pinch a plurality of carbon nanotubes, and then the pinned carbon nanotubes were twisted on the XYZ stage.
  • a carbon nanotube twisted yarn was produced by fixing to (made by Daiei Scientific Instruments Mfg., Product model number “M — 1”) and pulling it while twisting at a spinning speed of 1 cmZ.
  • the obtained carbon nanotube twisted yarn was cut to a length of 6 cm and made into polybulal alcohol 0.01 wt% aqueous solution (manufacturer name “Nacalai Testa”, product name “Polybutalol (Code 28310-35)”). After soaking for 30 minutes, the binder-containing carbon nanotube twisted yarn of Example 10 was produced by air drying.
  • Example 8 The carbon nanotube sheet produced in Example 8 was dipped in an aqueous solution of 0.01% by weight polybutyl alcohol for 45 minutes and then air-dried to produce the binder-containing carbon nanotube sheet of Example 11.
  • Figure 1 shows the spectrum obtained by Raman spectroscopy.
  • FIG. 2 shows an SEM photograph of the carbon nanotube assembly of Example 1.
  • FIG. 3 shows an SEM photograph of the carbon nanotube tube of Example 3.
  • FIG. 4 shows an SEM photograph of the carbon nanotube tube of Example 4.
  • FIG. 5 shows a SEM photograph of the carbon nanotube sheet of Example 8.
  • FIG. 6 shows an optical micrograph of the carbon nanotube cross-layered product of Example 9.

Abstract

A carbon nanotube assembly having multiple carbon nanotubes formed on a substrate, characterized in that (1) amorphous carbon is superimposed on the surface of each of the carbon nanotubes with a coating ratio of 55 to 100%; (2) the amorphous carbon has an average thickness of 0.3 to 5 nm; (3) the carbon nanotube assembly has an order parameter of 0.85 to 1.0; (4) the carbon nanotube assembly has a bulk density of 1 to 1000 mg/cm3; (5) the carbon nanotube assembly has an oxygen/carbon atomic number ratio of 0.002 to 0.350; and (6) in the Raman spectrum of carbon nanotube assembly, the area ratio of G-band appearing in the vicinity of 1590 cm-1 to D-band appearing in the vicinity of 1350 cm-1 (G/D ratio) is in the range of 0.45 to 0.75.

Description

明 細 書  Specification
カーボンナノチューブ集合体、カーボンナノチューブ繊維及びカーボンナ ノチューブ繊維の製造方法  Carbon nanotube aggregate, carbon nanotube fiber, and carbon nanotube fiber manufacturing method
技術分野  Technical field
[0001] 本発明は、カーボンナノチューブ集合体、カーボンナノチューブ繊維及びカーボン ナノチューブ繊維の製造方法に関する。  The present invention relates to a carbon nanotube aggregate, a carbon nanotube fiber, and a method for producing a carbon nanotube fiber.
背景技術  Background art
[0002] カーボンナノチューブは、電気特性、力学特性等に優れており、電界放出型デイス プレイ等をはじめ、様々な産業への利用及び応用が期待されている。  [0002] Carbon nanotubes are excellent in electrical characteristics, mechanical characteristics, and the like, and are expected to be used and applied in various industries including field emission displays.
[0003] 近年、カーボンナノチューブからなる繊維及びそれを使ったカーボンナノチューブ シートが提案されている (非特許文献 1、 2)。  In recent years, fibers composed of carbon nanotubes and carbon nanotube sheets using the same have been proposed (Non-patent Documents 1 and 2).
[0004] 非特許文献 1におレ、ては、化学気相成長法で基板上に高密度 ·高配向に成長させ たカーボンナノチューブ集合体(「カーボンナノチューブフォレスト」とも呼ばれている) 力 カーボンナノチューブ繊維を形成する方法が開示されている。  [0004] In Non-Patent Document 1, carbon nanotube aggregates (also called “carbon nanotube forest”) grown on a substrate with high density and high orientation by chemical vapor deposition are used. A method for forming nanotube fibers is disclosed.
[0005] 非特許文献 2においては、化学気相成長法で基板上に高密度 ·高配向に成長させ たカーボンナノチューブ集合体からカーボンナノチューブシートを形成する方法が提 案されている。  [0005] Non-Patent Document 2 proposes a method of forming a carbon nanotube sheet from an aggregate of carbon nanotubes grown in a high density and high orientation on a substrate by a chemical vapor deposition method.
[0006] これらのカーボンナノチューブ繊維及びカーボンナノチューブシートは、その既存 にない形態のため、新たな用途への使用が予想され、種々の産業への応用が期待 されている。  [0006] Since these carbon nanotube fibers and carbon nanotube sheets are not present, they are expected to be used for new applications and are expected to be applied to various industries.
[0007] し力 ながら、基板上に成長したカーボンナノチューブ集合体からカーボンナノチュ ーブ繊維やシートを引き出そうとしても、実際に引き出せる確率(引き出し特性)は小 さい。また、カーボンナノチューブ繊維等を引き出すことができたとしても、その引き出 し過程でカーボンナノチューブ繊維が切断され易ぐ製品に用いることができる程十 分な長さのカーボンナノチューブ繊維を生産できる効率は極めて悪レ、。従って、長尺 なカーボンナノチューブ繊維及びカーボンナノチューブシートを安定的に製造するこ とは困難であるという問題が生じている。 [0008] ところで、一般的に、カーボンナノチューブ 1分子ごとの強度は、分子中に欠陥が無 く高結晶化されている方が高いとされている。したがって、不純物である非晶成分 (ァ モルファスカーボン)が少ないカーボンナノチューブ集合体から製造する方が、得ら れるカーボンナノチューブ繊維の強度も高くなると言われている。 [0007] However, even if an attempt is made to pull out carbon nanotube fibers or sheets from the aggregate of carbon nanotubes grown on the substrate, the probability of being pulled out (drawing characteristics) is small. Even if carbon nanotube fibers can be pulled out, the efficiency with which carbon nanotube fibers long enough to be used in products that can be easily cut in the pulling process can be produced. Very bad. Therefore, there is a problem that it is difficult to stably produce long carbon nanotube fibers and carbon nanotube sheets. [0008] By the way, in general, the strength of each molecule of carbon nanotube is considered to be higher when the molecule is highly crystallized without defects. Therefore, it is said that the strength of the obtained carbon nanotube fiber is increased when the carbon nanotube aggregate is produced from an amorphous component (amorphous carbon) which is an impurity.
[0009] そこで、特に近年では、高結晶化されたカーボンナノチューブ集合体からカーボン ナノチューブ繊維を製造することが盛んに行われている。  [0009] Thus, particularly in recent years, production of carbon nanotube fibers from a highly crystallized carbon nanotube aggregate has been actively performed.
[0010] しかしながら、高結晶化されたカーボンナノチューブ集合体からカーボンナノチュー ブ繊維を製造しても、未だ、その引き出し特性は十分なものではなぐまた、長尺な力 一ボンナノチューブ繊維を得ることは難しいのが現状である。  [0010] However, even if carbon nanotube fibers are produced from a highly crystallized carbon nanotube aggregate, the pulling characteristics are still not sufficient, and a long force single-bonn nanotube fiber can be obtained. Is currently difficult.
非特許文献 1 : Zhangら, Science, 306, 1358-1361, 2004  Non-Patent Document 1: Zhang et al., Science, 306, 1358-1361, 2004
非特許文献 2 : Zhangら, Science, 309, 1215-1219, 2005  Non-Patent Document 2: Zhang et al., Science, 309, 1215-1219, 2005
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0011] 従って、本発明では、高確率で長尺なカーボンナノチューブ繊維を引き出すことが できるカーボンナノチューブ集合体、その集合体から得られるカーボンナノチューブ 繊維等を提供することを目的とする。  Accordingly, an object of the present invention is to provide a carbon nanotube aggregate from which a long carbon nanotube fiber can be pulled out with high probability, a carbon nanotube fiber obtained from the aggregate, and the like.
課題を解決するための手段  Means for solving the problem
[0012] 本発明者らは、上記課題を解決するため鋭意研究を重ねてきた。その結果、近年 盛んに行われていた方法とは反対に、高結晶化されていない、アモルファスカーボン が多量に積層された状態のカーボンナノチューブ集合体であって、さらに特定の構 造を有しているカーボンナノチューブ集合体を用いることにより、優れた確率で長尺 なカーボンナノチューブ繊維を引き出せることを見出し、本発明(実施態様 1)を完成 するに至った。また、アモルファスカーボンが多量に積層されていなくとも、所定の処 理を施したものであって、さらに特定の構造を有するカーボンナノチューブ集合体を 用いることによつても、優れた確率で長尺なカーボンナノチューブ繊維を引き出せる ことを見出し、本発明(実施態様 2)を完成するに至った。すなわち、本発明は下記に 係る。  [0012] The present inventors have intensively studied to solve the above problems. As a result, contrary to the method that has been actively performed in recent years, it is an aggregate of carbon nanotubes that is not highly crystallized and in which a large amount of amorphous carbon is laminated, and has a specific structure. As a result, it was found that long carbon nanotube fibers can be pulled out with an excellent probability by using the aggregate of carbon nanotubes, and the present invention (Embodiment 1) was completed. In addition, even if a large amount of amorphous carbon is not laminated, it has been subjected to a predetermined treatment, and even by using a carbon nanotube aggregate having a specific structure, it is long with an excellent probability. The inventors have found that carbon nanotube fibers can be pulled out, and have completed the present invention (Embodiment 2). That is, the present invention relates to the following.
[0013] 項 1.基板上にカーボンナノチューブが複数本形成されているカーボンナノチュー ブ集合体であって、(1)当該カーボンナノチューブの表面にアモルファスカーボンが 5 5〜: 100%の被覆率で積層されており、(2)当該アモルファスカーボンの平均厚みが 0 . 3〜5nmであり、(3)当該カーボンナノチューブ集合体の秩序パラメータが 0. 85〜1 . 0であり、(4)当該カーボンナノチューブ集合体の嵩密度が 1〜: !OOOmgZcm3であ り、(5)当該カーボンナノチューブ集合体の酸素 Z炭素の原子数比が 0. 002-0. 3 50であり、(6)当該カーボンナノチューブ集合体のラマンスペクトルにおいて、 1590c π 1付近に現れる Gバンドと lSSOcnT1付近に現れる Dバンドとの面積比(G/D比) が 0. 45〜0. 75である、ことを特徴とするカーボンナノチューブ集合体。 [0013] Item 1. A carbon nanochu having a plurality of carbon nanotubes formed on a substrate (1) Amorphous carbon is laminated on the surface of the carbon nanotube at a coverage of 55 to 100%, and (2) the average thickness of the amorphous carbon is 0.3 to 5 nm. (3) The order parameter of the aggregate of carbon nanotubes is 0.85 to 1.0, (4) The bulk density of the aggregate of carbon nanotubes is 1 to:! OOOmgZcm 3 and (5) (6) In the Raman spectrum of the carbon nanotube aggregate, the G band that appears near 1590c π 1 and the lSSOcnT 1 vicinity An aggregate of carbon nanotubes, characterized in that the area ratio (G / D ratio) to the appearing D band is 0.45 to 0.75.
[0014] 項 2.項 1に記載のカーボンナノチューブ集合体が前記基板から複数本連なりなが ら引き出されることにより得られるカーボンナノチューブ繊維。 [0014] Item 2. A carbon nanotube fiber obtained by drawing a plurality of carbon nanotube aggregates according to Item 1 from the substrate in a continuous manner.
[0015] 項 3.撚られて形成されている、項 2に記載のカーボンナノチューブ繊維。 [0015] Item 3. The carbon nanotube fiber according to Item 2, which is formed by twisting.
[0016] 項 4.さらにバインダーを含む、項 2又は 3に記載のカーボンナノチューブ繊維。 Item 4. The carbon nanotube fiber according to Item 2 or 3, further comprising a binder.
[0017] 項 5.項 2〜4のいずれかに記載のカーボンナノチューブ繊維から構成されるカー ボンナノチューブ交叉積層体。 [0017] Item 5. A carbon nanotube cross-layered product comprising the carbon nanotube fibers according to any one of Items 2 to 4.
[0018] 項 6.さらにバインダーを含む、項 5に記載のカーボンナノチューブ交叉積層体。 [0018] Item 6. The carbon nanotube cross-layered product according to Item 5, further comprising a binder.
[0019] 項 7.基板上にカーボンナノチューブが複数本形成されているカーボンナノチュー ブ集合体であって、(a)極性化処理が施されており、(b)カーボンナノチューブ集合体 の秩序パラメータが 0. 85〜: 1. 0であり、(c)当該カーボンナノチューブ集合体の嵩密 度が:!〜 1000mg/cm3であり、 (d)当該カーボンナノチューブ集合体の酸素/炭素 の原子数比が 0. 05〜0. 35であり、(e)当該カーボンナノチューブ集合体のラマンス ベクトルにおいて、 Ι δθΟοπ 1付近に現れる Gバンドと lSSOcnT1付近に現れる Dバ ンドとの面積比(G/D比)が 0. 45-0. 60である、ことを特徴とするカーボンナノチ ユーブ集合体。 [0019] Item 7. A carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate, wherein ( a ) a polarization treatment is applied, and (b) the order parameter of the carbon nanotube aggregate. Is from 0.85 to 1.0, and (c) the density of the carbon nanotube aggregate is:! To 1000 mg / cm 3 , and (d) the number of oxygen / carbon atoms in the carbon nanotube aggregate. (E) The area ratio between the G band that appears near Ι δθΟοπ 1 and the D band that appears near lSSOcnT 1 (G / D) The carbon nanotube assembly is characterized in that the ratio is 0.45-0.60.
[0020] 項 8.極性化処理が酸化処理である、項 7に記載のカーボンナノチューブ集合体。  [0020] Item 8. The aggregate of carbon nanotubes according to Item 7, wherein the polarization treatment is an oxidation treatment.
[0021] 項 9.酸化処理がプラズマ処理である、項 8に記載のカーボンナノチューブ集合体。 Item 9. The aggregate of carbon nanotubes according to Item 8, wherein the oxidation treatment is a plasma treatment.
[0022] 項 10.長尺なカーボンナノチューブ繊維の製造方法であって、項 1及び項 7〜9の いずれかに記載のカーボンナノチューブ集合体の端面から当該カーボンナノチュー ブ集合体を複数本弓 Iき出すことにより、長尺なカーボンナノチューブ繊維を連続的に 形成する工程、を備えたカーボンナノチューブ繊維の製造方法。 [0022] Item 10. A method for producing a long carbon nanotube fiber, wherein a plurality of the carbon nanotube assemblies are bowed from an end surface of the carbon nanotube assembly according to any one of Items 1 and 7-9. I pull out the long carbon nanotube fiber continuously A method for producing a carbon nanotube fiber comprising a forming step.
[0023] 1.カーボンナノチューブ集合体 (実施熊様 1)  [0023] 1. Carbon nanotube assembly (Implementation Bear 1)
本発明の実施態様 1であるカーボンナノチューブ集合体は、基板上にカーボンナノ チューブが複数本形成されているカーボンナノチューブ集合体であって、  The carbon nanotube aggregate that is Embodiment 1 of the present invention is a carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate,
(1)当該カーボンナノチューブの表面にアモルファスカーボンが 55〜100%の被覆 率で積層されており、  (1) Amorphous carbon is laminated on the surface of the carbon nanotube with a coverage of 55-100%,
(2)当該アモルファスカーボンの平均厚みが 0. 3〜5nmであり、  (2) The average thickness of the amorphous carbon is 0.3-5 nm,
(3)カーボンナノチューブ集合体の秩序パラメータが 0. 85-1. 0であり、 (3) The order parameter of the aggregate of carbon nanotubes is 0.85-1.0,
(4)当該カーボンナノチューブ集合体の嵩密度が:!〜 1000mg/cm3であり、(4) the bulk density of the carbon nanotube aggregate is:! A ~ 1000mg / cm 3,
(5)カーボンナノチューブ集合体の酸素 Z炭素の原子数比が 0. 002〜0. 350であ り、 (5) The oxygen-to-carbon atom ratio of the carbon nanotube aggregate is 0.002 to 0.350,
(6)カーボンナノチューブ集合体のラマンスペクトルにおいて、 1590cm_ 1付近に現 れる Gバンドと 1350cm_ 1付近に現れる Dバンドとの面積比(G/D比)が 0· 45〜0. 75である、ことを特徴とする。以下、詳述する。 In the Raman spectrum of (6) the aggregate of carbon nanotubes, the area ratio of the G band and 1350 cm _ 1 appears in the vicinity of D band current is near 1590 cm _ 1 (G / D ratio) is 0 - 45 to 0.75 It is characterized by that. Details will be described below.
[0024] <基板 >  [0024] <Board>
基板は限定的でなぐ公知又は市販のものを使用することができる。例えば、プラス チック基板;ガラス基板;シリコン基板;鉄、銅等の金属又はこれらの合金を含む金属 基板;などを用いることができる。これらの基板の表面には二酸化ケイ素膜が積層さ れていてもよい。本発明では、特に、蒸着又は熱酸化による二酸化ケイ素膜が被膜 したシリコン基板上に鉄を蒸着又はスパッタリング等することにより得られる鉄皮膜積 層シリコン基板を用いることが好ましい。  A known or commercially available substrate can be used without limitation. For example, a plastic substrate; a glass substrate; a silicon substrate; a metal substrate containing a metal such as iron or copper or an alloy thereof can be used. A silicon dioxide film may be laminated on the surface of these substrates. In the present invention, it is particularly preferable to use an iron-coated laminated silicon substrate obtained by depositing or sputtering iron on a silicon substrate coated with a silicon dioxide film by vapor deposition or thermal oxidation.
[0025] <カーボンナノチューブ > [0025] <Carbon nanotube>
実施態様 1のカーボンナノチューブ集合体は、基板上に複数本のカーボンナノチュ ーブが高密度かつ高配向状で林立している。基板上に形成しているカーボンナノチ ユーブは、その表面にアモルファスカーボン(非晶成分)が平均で 55〜100%の被 覆率で積層されており、かつ当該積層されているアモルファスカーボンの平均厚み は 0. 3〜5nmであることを特徴とする。これらの特徴により、本発明のカーボンナノチ ユーブの表面に、引っ掛力 部となる微小な凹凸を有し、引き出し時 (カーボンナノチ ユーブ繊維の製造時)に、隣接したカーボンナノチューブ間に摩擦力に類する力を 増大させることができる。そのため、優れた引き出し特性を発揮し、長尺なカーボンナ ノチューブ繊維が容易に得られる。 In the aggregate of carbon nanotubes of Embodiment 1, a plurality of carbon nanotubes stand on a substrate in high density and high orientation. The carbon nanotubes formed on the substrate have amorphous carbon (amorphous component) laminated on the surface with an average coverage of 55 to 100%, and the average thickness of the laminated amorphous carbon. Is 0.3 to 5 nm. Because of these characteristics, the surface of the carbon nanotube of the present invention has minute irregularities that become the hooking force part, and when pulled out (carbon nanotube During the manufacture of the fiber, it is possible to increase the force similar to the frictional force between adjacent carbon nanotubes. As a result, it exhibits excellent pull-out properties, and long carbon nanotube fibers can be easily obtained.
[0026] 被覆率は好ましくは 57〜90%である。これにより、カーボンナノチューブが本来有 する物性 (高導電性、高強度等)の低下を抑制しながら、優れた引き出し特性を発揮 すること力 Sできる。アモルファスカーボンの平均厚みは好ましくは 0. 7〜2nmである。 ァモルカーボンの被覆率及び平均厚みは、透過型電子顕微鏡 (TEM)により得られ た画像 (拡大倍率: 600万倍程度)を観察することにより確認できる。  [0026] The coverage is preferably 57 to 90%. As a result, it is possible to exert an excellent pull-out characteristic while suppressing a decrease in physical properties (high conductivity, high strength, etc.) inherent to the carbon nanotube. The average thickness of the amorphous carbon is preferably 0.7 to 2 nm. The coverage and average thickness of the amorphous carbon can be confirmed by observing an image (magnification: about 6 million times) obtained by a transmission electron microscope (TEM).
[0027] カーボンナノチューブは、屈曲部を複数有することが好ましい。好ましくはカーボン ナノチューブ 1本当たり 20個程度以上、より好ましくは 1本当たり 50〜: 1000個程度 存在することが好ましい。これにより、屈曲部が引掛り部となり、隣接したカーボンナノ チューブ間の摩擦力に類する力を増大させるため、カーボンナノチューブ集合体の 引き出し特性をより一層向上させることができる。  [0027] The carbon nanotube preferably has a plurality of bent portions. Preferably, there are about 20 or more per carbon nanotube, more preferably about 50 to about 1000 per one. As a result, the bent portion becomes a catching portion, and the force similar to the frictional force between the adjacent carbon nanotubes is increased, so that the drawing characteristics of the carbon nanotube aggregate can be further improved.
[0028] 屈曲部は、カーボンナノチューブの長軸方向に対してどの部分に存在していてもよ レ、。カーボンナノチューブの根元部(基板付近部)、先端部(基板から最も離れた部 分)、及び根元部と先端部との中間部のいずれの部分に存在していてもよい。  [0028] The bent portion may be present at any portion with respect to the long axis direction of the carbon nanotube. The carbon nanotube may be present at any of the root part (the vicinity of the substrate), the tip part (the part farthest from the substrate), and the intermediate part between the root part and the tip part.
[0029] カーボンナノチューブの屈曲部の有無及び個数は、透過型電子顕微鏡 (TEM)に より得られた画像 (拡大倍率: 4万〜 12万倍程度)を観察することにより確認できる。  [0029] The presence or absence and the number of bent portions of the carbon nanotube can be confirmed by observing an image (magnification: about 40,000 to 120,000 times) obtained by a transmission electron microscope (TEM).
[0030] カーボンナノチューブの平均直径は限定的でなぐ通常 lnm〜: !OOnm程度、好ま しくは 5〜50nm程度とすればよい。平均長さも限定的ではなぐ好ましくは Ι μ ΐη以 上である。単層カーボンナノチューブであってもよぐ多層カーボンナノチューブであ つてもよい。  [0030] The average diameter of the carbon nanotubes is not limited and is usually from lnm to about! OOnm, preferably about 5 to 50nm. The average length is not limited and is preferably Ι μ ΐη or more. It may be a single-walled carbon nanotube or a multi-walled carbon nanotube.
[0031] また、カーボンナノチューブは、炭素及び酸素以外の他の元素を含んでいてもよい し、カルボキシル基、ヒドロキシル基、カルボニル基、エーテル基等の官能基を有して いてもよい。  [0031] The carbon nanotubes may contain elements other than carbon and oxygen, and may have a functional group such as a carboxyl group, a hydroxyl group, a carbonyl group, and an ether group.
[0032] <カーボンナノチューブ集合体 (実施態様 1) >  <Carbon nanotube aggregate (Embodiment 1)>
実施態様 1のカーボンナノチューブ集合体は、上記カーボンナノチューブが基板上 に高配向及び高密度に形成しているものであって、カーボンナノチューブ集合体の 秩序パラメータが 0· 85〜: 1. 0であり、当該カーボンナノチューブ集合体の嵩密度が 1〜: 1000mg/cm3であり、カーボンナノチューブ集合体の酸素/炭素の原子数比( すなわち、 O/C比)が 0· 002〜0. 350であり、カーボンナノチューブ集合体のラマ ンスペクトルにおいて、 1590cm— 1付近に現れる Gバンドと 1350cm— 1付近に現れる Dバンドとの面積比(GZD比)が 0. 45〜0. 75である。 The aggregate of carbon nanotubes of Embodiment 1 is such that the carbon nanotubes are formed in a highly oriented and high density on the substrate, and the carbon nanotube aggregates The order parameter is 0 · 85 to: 1.0, the bulk density of the carbon nanotube aggregate is 1 to 1000 mg / cm 3 , and the oxygen / carbon atomic ratio of the carbon nanotube aggregate (ie, O / C ratio) is 0 - 002 to 0.350, the area ratio of the Raman spectrum of the carbon nanotube aggregate, the G band and 1350Cm- D band appearing in the vicinity of 1 appearing in the vicinity 1590cm- 1 (GZD ratio) It is 0.45-0.75.
[0033] 実施態様 1のカーボンナノチューブ集合体は、基板上にカーボンナノチューブが高 配向の状態で形成されている。高配向とは、カーボンナノチューブ同士が隣接しなが ら基板平面に対して垂直に林立していることをいう。具体的には、下記式(1)で示さ れる秩序パラメータ(〇P)が 0. 85〜: 1. 0 (好ましくは 0. 90〜0. 99)の範囲内である [0033] In the aggregate of carbon nanotubes of Embodiment 1, carbon nanotubes are formed on a substrate in a highly oriented state. High orientation means that carbon nanotubes stand adjacent to each other and are perpendicular to the substrate plane. Specifically, the order parameter (◯ P) represented by the following formula (1) is in the range of 0.85 to 1.0 (preferably 0.90 to 0.99).
[0034] [数 1] [0034] [Equation 1]
O = (3 < cos2 (90 - ^) > -1) / 2 ( 1 ) O = (3 <cos 2 (90-^)> -1) / 2 (1)
[0035] (但し、 Θ jは、基板上に形成されている任意のカーボンナノチューブの分子軸と、基 板とのなす角度を示す。 <cos2(90- Θ j)>は、基板上に形成されている全てのカーボン ナノチューブにおける平均値を示す。 ) [0035] (where Θ j represents the angle formed by the molecular axis of an arbitrary carbon nanotube formed on the substrate and the substrate. <Cos 2 (90-Θ j)> is defined on the substrate. (The average value of all the carbon nanotubes formed is shown.)
実施態様 1のカーボンナノチューブ集合体は、基板上にカーボンナノチューブが高 密度で形成されている。すなわち、基板上のカーボンナノチューブの嵩密度が:!〜 1 OOOmg/cm3,好ましくは 10〜500mg/cm3、さらに好ましくは 10〜: 100mg/cm3 である。この範囲より嵩密度が小さいと隣接するカーボンナノチューブの分子間の相 互作用が弱くなり、引き出し特性が悪くなるおそれがある。この範囲より嵩密度が大き レ、と引き出し時に一度に多量のカーボンナノチューブが引き出されてしまレ、、均一な 太さでかつ長尺な繊維が得られないおそれがある。 In the carbon nanotube aggregate of Embodiment 1, carbon nanotubes are formed on a substrate at a high density. That is, the bulk density of the carbon nanotubes on the substrate:! ~ 1 OOOmg / cm 3 , preferably 10 to 500 mg / cm 3, more preferably 10 to: a 100 mg / cm 3. If the bulk density is lower than this range, the interaction between the adjacent carbon nanotube molecules is weakened, and the drawing characteristics may be deteriorated. If the bulk density is larger than this range and a large amount of carbon nanotubes are pulled out at the same time when being pulled out, there is a possibility that long fibers having a uniform thickness cannot be obtained.
[0036] 実施態様 1のカーボンナノチューブ集合体は酸素 Z炭素の原子数比(OZC比)が 0. 002〜0. 350である。好ましく ίま、 0. 002〜0. 27である。本発明にぉレヽて、〇/ C比は、光電子分光法 (ESCA)によって得られるスペクトルにおいて、結合エネルギ 一 282〜298eVの炭素原子のピーク面積、及び 526〜540eVの酸素原子のピーク 面積を求め、これらのピーク面積及び各元素の感度補正値等を参酌することにより、 算出することができる。 [0037] 実施態様 1のカーボンナノチューブ集合体は、ラマンスペクトルにおいて 1590cm— 1付近に現れる Gバンドと lSSOcnT1付近に現れる Dバンドとの面積比(G/D比)が 0 • 45〜0. 75の範囲にある。 G/Di の上限 ίま 0. 75、好ましく ίま 0. 60、より好ましく は 0. 56である。 GZD比をこの範囲とすることにより、カーボンナノチューブの表面に 導入された欠陥及び非晶成分に由来するカーボンナノチューブ表面の微小な凹凸 が引掛りとなり、隣接したカーボンナノチューブ間の摩擦力に類する力を増大させる こと力 Sできる。そのため、優れた引き出し特性を発揮し、長尺なカーボンナノチューブ 繊維が容易に得られる。 G/D比が 0. 75を超えると、引掛りが不十分となり、引き出 し特性が悪くなるおそれがある。一方、 G/D比が 0. 45未満であると、引き出される カーボンナノチューブ繊維の強度が衰え、長尺なカーボンナノチューブ繊維が得ら れないおそれがある。 [0036] The aggregate of carbon nanotubes of Embodiment 1 has an oxygen Z-carbon atom number ratio (OZC ratio) of 0.002 to 0.350. Preferably ί, 0.002 to 0.27. In the present invention, the O / C ratio is obtained by obtaining the peak area of carbon atoms having a binding energy of 282 to 298 eV and the peak area of oxygen atoms having 526 to 540 eV in a spectrum obtained by photoelectron spectroscopy (ESCA). These values can be calculated by taking into consideration the peak areas and sensitivity correction values for each element. [0037] The aggregate of carbon nanotubes of Embodiment 1 has an area ratio (G / D ratio) between the G band appearing near 1590 cm- 1 and the D band appearing near lSSOcnT 1 in the Raman spectrum of 0 • 45 to 0.75. It is in the range. The upper limit of G / Di is 0.75 to ί, preferably 0.75 to 0.60, and more preferably 0.56. By setting the GZD ratio within this range, defects introduced on the surface of the carbon nanotubes and minute irregularities on the surface of the carbon nanotubes derived from the amorphous component are caught, and a force similar to the frictional force between adjacent carbon nanotubes is obtained. Increase power S. Therefore, it exhibits excellent pull-out characteristics, and long carbon nanotube fibers can be easily obtained. If the G / D ratio exceeds 0.75, the catching will be insufficient and the drawing characteristics may deteriorate. On the other hand, if the G / D ratio is less than 0.45, the strength of the drawn carbon nanotube fibers may be reduced, and long carbon nanotube fibers may not be obtained.
[0038] 本発明の Gバンド及び Dバンドの吸収ピーク面積は、ラマンスぺクトノレ 800〜2000 cm_ 1の波数領域にぉレ、て、このスペクトルの両端を直線で結んだ線をベースライン とし、 1350cm_ 1付近に現れる吸収ピークを Dバンド、 1590cm_ 1付近に現れる吸収 ピークを Gバンドとして、これらの 2つの吸収ピークをローレンツ関数を用いてカーブ フィッティングすることにより波形分離を行って求められるものである。図 1にラマン分 光法によって得られるスぺタトノレの一例を示す。 Dバンドの吸収ピーク面積は斜線部 分で示し、 Gバンドの吸収ピーク面積は縦線部分で示す。なお、 Gバンド及び Dバンド の面積は、市販のソフトウェア(例えば、 Microcal Software. Inc製 origin Ver6 等)を用いて算出できる。 Gバンドの吸収ピーク面積 (縦線部分)を Dバンドの吸収ピ ーク面積 (斜線部分)で除した値が G/D比となる。 [0038] absorption peak area of G-band and D-band of the present invention, Ramansu Bae Kutonore 800 to 2000 cm _ 1 wavenumber region Niore Te, a line connecting the both ends of the spectrum in a straight line as a base line, 1350 cm _ 1 D band absorption peak appearing in the vicinity of the absorption peak appearing in the vicinity of 1590 cm _ 1 as G band, which is determined by performing a waveform separation by these two absorption peaks curve fitting using Lorentz function It is. Figure 1 shows an example of the spectrum obtained by Raman spectroscopy. The absorption peak area of the D band is indicated by the hatched portion, and the absorption peak area of the G band is indicated by the vertical line portion. The area of the G band and D band can be calculated using commercially available software (for example, origin Ver6 manufactured by Microcal Software. Inc.). The G / D ratio is obtained by dividing the absorption peak area of the G band (vertical line) by the absorption peak area of the D band (shaded area).
[0039] <カーボンナノチューブ集合体 (実施態様 1)の製造方法 >  <Method for producing carbon nanotube aggregate (Embodiment 1)>
実施態様 1のカーボンナノチューブ集合体の製造方法は特に制限されるものでは なぐ例えば、〇/C比及び G/D比等を上述の範囲内に調整することにより製造で きる。より具体的には、アセチレン等の炭化水素ガスを用いて化学気相成長法を行う ことにより、基板上に所望のカーボンナノチューブ集合体を好適に製造できる。  The method for producing the aggregate of carbon nanotubes of Embodiment 1 is not particularly limited. For example, it can be produced by adjusting the O / C ratio, the G / D ratio, and the like within the above ranges. More specifically, by performing chemical vapor deposition using a hydrocarbon gas such as acetylene, a desired carbon nanotube aggregate can be suitably produced on the substrate.
[0040] 基板は上述したものが挙げられ、好ましくは蒸着又は熱酸化による二酸化ケイ素膜 が被膜したシリコン基板上に鉄を蒸着又はスパッタリング等することにより得られる鉄 皮膜積層シリコン基板である。これにより、化学気相成長時に、鉄皮膜が炭素を取り 込んで、好適な粒子径及び密度で基板表面上に微粒子化するため、高密度及び高 配向の状態で形成されたカーボンナノチューブ集合体をより確実に製造することがで きる。 [0040] Examples of the substrate include those described above. Preferably, the iron is obtained by evaporating or sputtering iron on a silicon substrate coated with a silicon dioxide film by vapor deposition or thermal oxidation. It is a film laminated silicon substrate. As a result, during chemical vapor deposition, the iron film takes in carbon and makes fine particles on the substrate surface with a suitable particle size and density, so that the aggregate of carbon nanotubes formed in a high-density and highly-oriented state is formed. It can be manufactured more reliably.
[0041] 温度は限定的でないが、好ましくは 600〜1000。C程度、より好ましくは 650〜750 °C程度である。  [0041] The temperature is not limited, but is preferably 600 to 1000. About C, more preferably about 650 to 750 ° C.
[0042] 圧力は限定的でないが、通常、大気圧下 (好ましくは、 0. 8〜: 1. 2atm程度)で行 えばよい。  [0042] Although the pressure is not limited, it is usually carried out under atmospheric pressure (preferably about 0.8 to about 1.2 atm).
[0043] 導入するガスは、炭素原子を有していれば限定的でないが、アセチレン等の炭化 水素が好ましく使用できる。ヘリウム等の希ガスをキャリアガスとして併用してもよい。  [0043] The gas to be introduced is not limited as long as it has carbon atoms, but hydrocarbons such as acetylene can be preferably used. A rare gas such as helium may be used in combination as a carrier gas.
[0044] 本発明では、特に、カーボンナノチューブの合成反応の初期段階において基板上 に供給するアセチレンガスの濃度の上昇速度を低く制御することが好ましい。これに より、鉄等の基板材料が炭素を取り込んで、最適な粒子径及び密度で基板表面上に 微粒子化しやすくなるため、本発明のカーボンナノチューブ集合体を好適に製造で きる。上昇速度は、製造条件により応じて適宜設定できる力 例えば 0. 01〜0. 45v ol%程度、好ましくは、 0. 05-0. 20vol%程度とすればよい。  In the present invention, it is particularly preferable to control the rate of increase in the concentration of the acetylene gas supplied onto the substrate at the initial stage of the carbon nanotube synthesis reaction. As a result, since the substrate material such as iron takes in carbon and is easily formed into fine particles on the substrate surface with an optimum particle size and density, the aggregate of carbon nanotubes of the present invention can be suitably manufactured. The rising speed may be a force that can be appropriately set according to the manufacturing conditions, for example, about 0.01 to 0.45 vol%, preferably about 0.05 to 0. 20 vol%.
[0045] また、反応時間を制御することにより、カーボンナノチューブの表層に積層したァモ ルファスカーボンの被覆率及び平均厚み等を制御できる。反応時間は、製造条件に より応じて適宜設定できるが、例えば 3秒〜 2時間程度、好ましくは 15秒〜 30分程度 とすればよい。  [0045] Further, by controlling the reaction time, it is possible to control the coverage, average thickness, and the like of amorphous carbon laminated on the surface layer of carbon nanotubes. The reaction time can be appropriately set depending on the production conditions, but it may be, for example, about 3 seconds to 2 hours, preferably about 15 seconds to 30 minutes.
[0046] 2.カーボンナノチューブ集合体(実施熊様 2)  [0046] 2. Assembly of carbon nanotubes (Kuma 2)
実施態様 2のカーボンナノチューブ集合体は、基板上にカーボンナノチューブが複 数本形成されているカーボンナノチューブ集合体であって、  The carbon nanotube aggregate of Embodiment 2 is a carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate,
(a)極性化処理が施されており、  (a) Polarization treatment is applied,
(b)カーボンナノチューブ集合体の秩序パラメータが 0. 85-1. 0であり、  (b) the order parameter of the aggregate of carbon nanotubes is 0.85-1.0,
(c)当該カーボンナノチューブ集合体の嵩密度が:!〜 1000mg/cm3であり、 (c) the bulk density of the carbon nanotube aggregate: a ~ 1000mg / cm 3,
(d)カーボンナノチューブ集合体の酸素 Z炭素の原子数比が 0. 05〜0. 35であり、 (d) the atomic ratio of oxygen to carbon in the aggregate of carbon nanotubes is 0.05 to 0.35,
(e)カーボンナノチューブ集合体のラマンスペクトルにおいて、 1590cm_1付近に現 れる Gバンドと 1350cm_ 1付近に現れる Dバンドとの面積比(G/D比)が 0· 45〜0. 60である、ことを特徴とする。 (e) in the Raman spectrum of the carbon nanotube aggregate, the current in the vicinity of 1590 cm _1 Area ratio of the G band and 1350 cm _ 1 appears in the vicinity of D band to (G / D ratio) is 0-45 to 0.60, and wherein the.
[0047] 基板は実施態様 1で上述したものと同様のものが挙げられる。各測定方法等は全て 上記実施態様 1と同一である。  [0047] Examples of the substrate are the same as those described above in Embodiment 1. Each measurement method and the like are all the same as in the first embodiment.
[0048] <カーボンナノチューブ集合体 (実施態様 2) >  <Carbon nanotube aggregate (Embodiment 2)>
実施態様 2のカーボンナノチューブ集合体は、極性化処理が施されている。極性化 処理とは、カーボンナノチューブにカルボキシル基、ヒドロキシル基、カルボニル基、 エーテル基等の官能基を導入する処理のことをいう。極性化処理の具体例は後述す る。実施態様 2はこの極性化処理が施され、かつ特定の構造を有するため、カーボン ナノチューブ繊維の製造時に優れた引き出し特性を発揮し、長尺なカーボンナノチ ユーブ繊維を得ることができる。  The carbon nanotube aggregate of Embodiment 2 is subjected to a polarization treatment. Polarization treatment refers to treatment for introducing a functional group such as a carboxyl group, a hydroxyl group, a carbonyl group, or an ether group into a carbon nanotube. A specific example of the polarization process will be described later. Since Embodiment 2 is subjected to this polarization treatment and has a specific structure, it exhibits excellent drawing characteristics when producing carbon nanotube fibers, and a long carbon nanotube fiber can be obtained.
[0049] 実施態様 2の集合体を構成するカーボンナノチューブの平均直径は限定的でなく 、通常 lnm〜: !OOnm程度、好ましくは 5〜50nm程度とすればよレ、。平均長さも限定 的ではなぐ好ましくは 1 μ ΐη以上である。単層カーボンナノチューブであってもよぐ 多層カーボンナノチューブであってもよい。また、炭素及び酸素以外の他の元素を含 んでいてもよい。カーボンナノチューブは、カルボキシル基、ヒドロキシル基、カルボ ニル基、エーテル基等の官能基を有していてもよい。また、上述した実施態様 1と同 様の理由により、屈曲部を複数有することが好ましい。好ましくはカーボンナノチュー ブ 1本当たり 20個程度以上、より好ましくは 1本当たり 50〜: 1000個程度存在すること が好ましい。  [0049] The average diameter of the carbon nanotubes constituting the aggregate of Embodiment 2 is not limited, and is usually about lnm to about OOnm, preferably about 5 to 50nm. The average length is not limited and is preferably 1 μΐη or more. It may be a single-walled carbon nanotube or a multi-walled carbon nanotube. Further, it may contain other elements other than carbon and oxygen. The carbon nanotube may have a functional group such as a carboxyl group, a hydroxyl group, a carbonyl group, or an ether group. Further, for the same reason as in the first embodiment, it is preferable to have a plurality of bent portions. Preferably, there are about 20 or more carbon nanotubes, more preferably about 50 to about 1000 carbon nanotubes.
[0050] 実施態様 2のカーボンナノチューブ集合体は、カーボンナノチューブが基板上に高 配向及び高密度の状態で形成しているものであり、カーボンナノチューブ集合体の 秩序パラメータが 0. 85〜: 1. 0 (好ましくは 0. 90〜0. 99)であり、当該カーボンナノ チューブ集合体の嵩密度が:!〜 lOOOmgZcm3 (好ましくは 10〜500mgZcm3、よ り好ましくは 10〜100mg/cm3)である。この範囲より嵩密度が小さいと隣接する力 一ボンナノチューブの分子間の相互作用が弱くなり、引き出し特性が衰えるおそれが ある。この範囲より嵩密度が大きいと引き出し時に一度に多量のカーボンナノチュー ブが引き出されてしまレ、、均一な太さでかつ長尺な繊維を得られないおそれがある。 [0051] 実施態様 2のカーボンナノチューブ集合体は酸素/炭素の原子数比(すなわち、 O /Ci )力 SO. 05〜0. 35である。好ましく ίま、 0. 09〜0. 27である。 [0050] The aggregate of carbon nanotubes of Embodiment 2 is such that the carbon nanotubes are formed in a highly oriented and high density state on the substrate, and the order parameter of the aggregate of carbon nanotubes is 0.85 to: 1. 0 (preferably 0.90 to 0.99) and the bulk density of the carbon nanotube aggregate is:! To lOOOOmgZcm 3 (preferably 10 to 500 mgZcm 3 , more preferably 10 to 100 mg / cm 3 ). is there. If the bulk density is smaller than this range, the interaction between the adjacent force-bonn nanotube molecules becomes weak, and the pulling-out property may be deteriorated. If the bulk density is larger than this range, a large amount of carbon nanotubes are pulled out at the time of pulling out, and there is a possibility that long fibers having a uniform thickness cannot be obtained. [0051] The aggregate of carbon nanotubes of Embodiment 2 has an oxygen / carbon atomic number ratio (ie, O / Ci) force SO. 05 to 0.35. It is preferably ί, 0.09 to 0.27.
[0052] 実施態様 2のカーボンナノチューブ集合体は、ラマンスペクトルにおいて 1590cm— 1付近に現れる Gバンドと l S SOcnT1付近に現れる Dバンドとの面積比 G/D比が 0. 45〜0. 60の範囲(好ましくは 0. 47〜0. 60)にある。 G/D]:匕をこの範囲とすること により、カーボンナノチューブの表面に導入された欠陥及び非晶成分に由来する力 一ボンナノチューブ表面の微小な凹凸が引掛りとなり、隣接したカーボンナノチュー ブ間の摩擦力に類する力を増大させることができる。そのため、優れた引き出し特性 を発揮し、長尺なカーボンナノチューブ繊維が容易に得られる。 [0052] The aggregate of carbon nanotubes of Embodiment 2 has an area ratio G / D ratio of 0.45 to 0.60 between the G band appearing near 1590 cm-1 in the Raman spectrum and the D band appearing near l S SOcnT 1 . (Preferably 0.47-0.60). G / D]: By setting the soot in this range, the defects introduced on the surface of the carbon nanotube and the force derived from the amorphous component are attracted by the minute irregularities on the surface of the single-bonn nanotube, and the adjacent carbon nanotube A force similar to the friction force between them can be increased. For this reason, it is possible to easily obtain a long carbon nanotube fiber exhibiting excellent drawing characteristics.
[0053] <カーボンナノチューブ集合体 (実施態様 2)の製造方法 >  <Method for producing carbon nanotube aggregate (Embodiment 2)>
実施態様 2のカーボンナノチューブ集合体の製造方法は、極性化処理を行う限り 限定的でない。  The method for producing the carbon nanotube aggregate of Embodiment 2 is not limited as long as the polarization treatment is performed.
[0054] 極性化処理は、カーボンナノチューブに極性を付与させることができる限り、特に限 定されるものではなレ、が、酸化処理が好ましい。酸化処理としては、例えば、プラズマ 処理、酸処理、電解酸化処理、乾式酸化処理等が挙げられる。  [0054] The polarization treatment is not particularly limited as long as polarity can be imparted to the carbon nanotube, but oxidation treatment is preferable. Examples of the oxidation treatment include plasma treatment, acid treatment, electrolytic oxidation treatment, and dry oxidation treatment.
[0055] 1 )例えば、プラズマ処理を行う場合、雰囲気は限定的でなぐ例えば、酸素、アル ゴン、窒素、水素、アンモニア、メタン、エチレン等が挙げられる。より好ましくは酸素、 アルゴン等である。これらのガスは単体で用いてもよぐ 2種以上混合して用いてもよ レ、。  [0055] 1) For example, when plasma treatment is performed, the atmosphere is not limited. Examples include oxygen, argon, nitrogen, hydrogen, ammonia, methane, and ethylene. More preferred are oxygen, argon and the like. These gases may be used alone or in combination of two or more.
[0056] 圧力は限定的でないが、減圧下で行うのが好ましぐ具体的には、 0. 01〜: Ι ΟΟΤο rr程度(特に 0·:!〜 lTorr)で行うのが好ましい。  [0056] Although the pressure is not limited, specifically, it is preferable to carry out under reduced pressure, and it is preferably carried out at about 0.01 to about Ι ΟΟΤο rr (especially 0 ·! To lTorr).
[0057] プラズマ処理の処理時間は、使用装置、プラズマ処理前の OZC比、 GZD比、ァ モルファスカーボンの被覆率等に応じて適宜決定すればょレ、が、例えば:!〜 60分、 好ましくは 5〜20分とすればよい。処理時間を極端に短くすると処理の効果が小さく なるため好ましくなレ、。一方、処理時間を極端に長くすると、カーボンナノチューブの 損傷が大きくなり過ぎ、カーボンナノチューブの持つ高強度、高導電性等が著しく損 なわれるため好ましくなレ、。  [0057] The processing time of the plasma treatment may be appropriately determined according to the apparatus used, the OZC ratio before the plasma treatment, the GZD ratio, the amorphous carbon coverage, etc., for example:! To 60 minutes, preferably 5 to 20 minutes. If the processing time is extremely shortened, the effect of the processing will be reduced. On the other hand, if the treatment time is extremely long, damage to the carbon nanotubes becomes excessive, and the high strength, high conductivity, etc. of the carbon nanotubes are significantly impaired, which is preferable.
[0058] プラズマ処理における出力は、使用装置、プラズマ処理前の OZC比、 G/D比、 アモルファスカーボンの被覆率等に応じて適宜決定すればよいが、例えば 10〜: 100 0w、好ましくは 100〜500wとすればよい。出力を極端に小さくすると処理の効果が 小さくなるため好ましくない。一方、出力を極端に大きくすると、カーボンナノチューブ の損傷が大きくなり過ぎ、カーボンナノチューブの持つ高強度、高導電性等が著しく 損なわれるため好ましくなレ、。 [0058] The output in plasma processing is as follows: equipment used, OZC ratio before plasma processing, G / D ratio, What is necessary is just to determine suitably according to the coverage of an amorphous carbon, etc., for example, 10-: 1000 w, What is necessary is just to be 100-500 w. An extremely small output is not preferable because the effect of the processing is reduced. On the other hand, if the output is extremely increased, damage to the carbon nanotubes becomes excessively large, and the high strength, high conductivity, etc. of the carbon nanotubes are significantly impaired.
[0059] プラズマ処理を行う際には、化学気相成長法で基板上に高密度 ·高配向に成長さ せたカーボンナノチューブを、基板上に保持したまま行うことが好ましい。基板上に保 持したカーボンナノチューブの鉛直方向上部からプラズマを照射することにより、カー ボンナノチューブ集合体の上表面部分 (基板から最も離れたカーボンナノチューブ 部分)に極性化処理を効果的に施すことができる。この結果、上表面部分で隣接する カーボンナノチューブ同士に摩擦力に類する力をより強く生じさせることができ、優れ た引き出し特性を発揮させることができる。 [0059] When performing the plasma treatment, it is preferable to carry out the carbon nanotubes grown on the substrate in a high density and high orientation by a chemical vapor deposition method while being held on the substrate. By irradiating plasma from the upper part of the carbon nanotubes held on the substrate in the vertical direction, it is possible to effectively polarize the upper surface portion of the carbon nanotube aggregate (the carbon nanotube portion farthest from the substrate). it can. As a result, a force similar to a frictional force can be generated more strongly between adjacent carbon nanotubes in the upper surface portion, and excellent drawing characteristics can be exhibited.
[0060] 2)酸処理を行う場合、酸処理の方法は特に限定されるものではなぐ例えば、硝酸 /硫酸混合物による処理など公知の方法を適用することができる。  [0060] 2) When the acid treatment is performed, the acid treatment method is not particularly limited. For example, a known method such as treatment with a nitric acid / sulfuric acid mixture can be applied.
[0061] 3)電解酸化処理を行う場合、ラジカル発生源となる陰イオン種は限定的でなぐ例 えば硝酸イオンをラジカル発生源として用いることができる。電解酸化処理に際して 通電する電気量は、電解酸化処理前の〇/C比、 G/D比、アモルファスカーボンの 被覆率等に応じて適宜選択すればよい。電気量が極端に小さいと、処理の効果が小 さくなるため好ましくない。一方、電気量を極端に大きくすると、カーボンナノチューブ の損傷が大きくなり、カーボンナノチューブの持つ高強度、高導電性等が損なわれる ため好ましくない。  [0061] 3) When electrolytic oxidation treatment is performed, the anion species serving as the radical generation source is not limited. For example, nitrate ions can be used as the radical generation source. The amount of electricity to be energized during the electrolytic oxidation treatment may be appropriately selected according to the O / C ratio, G / D ratio, amorphous carbon coverage, etc. before the electrolytic oxidation treatment. If the amount of electricity is extremely small, the effect of treatment becomes small, which is not preferable. On the other hand, an extremely large amount of electricity is not preferable because damage to the carbon nanotubes increases, and the high strength and high conductivity of the carbon nanotubes are impaired.
[0062] 4)乾式酸化処理を行う場合、乾式酸化処理の方法は特に限定されるものではなく 、例えば、オゾン促進酸化処理など公知の方法を適用することができる。  [0062] 4) In the case of performing the dry oxidation treatment, the dry oxidation treatment method is not particularly limited, and for example, a known method such as ozone-promoted oxidation treatment can be applied.
[0063] 極性化処理前のカーボンナノチューブ集合体は、例えば実施態様 1の集合体と同 様に製造することができる。  [0063] The aggregate of carbon nanotubes before the polarization treatment can be produced, for example, in the same manner as the aggregate of embodiment 1.
[0064] 3.カーボンナノチューブ繊維  [0064] 3. Carbon nanotube fiber
本発明のカーボンナノチューブ繊維は、実施態様 1又は実施態様 2のカーボンナノ チューブ集合体から引き出されることにより形成される長尺な繊維をレ、い、カーボン ナノチューブが複数本連なることにより束状となったものであって、連続的に連なった 構造を有している。 The carbon nanotube fiber of the present invention includes a long fiber formed by being drawn from the carbon nanotube assembly of Embodiment 1 or Embodiment 2, and carbon. It is a bundle of multiple nanotubes, and has a continuous structure.
[0065] カーボンナノチューブ繊維は撚りがかかっていてもよぐ撚りがかかっていなくてもよ レ、。より高い強度を有し、取り扱いが容易である観点から、撚りがかかっている繊維( カーボンナノチューブ撚糸)が好ましい。  [0065] The carbon nanotube fiber may be twisted or untwisted. From the viewpoint of higher strength and easy handling, twisted fibers (carbon nanotube twisted yarn) are preferred.
[0066] 繊維長は限定的でなぐ最終製品の用途等に応じて適宜決定すればよいが、繊維 長は好ましくは 25cm以上、より好ましくは 30cm以上である。繊維径も限定的でなく 、最終製品の用途等に応じて適宜決定すればよい。  [0066] The fiber length may be appropriately determined according to the use of the final product without limitation, and the fiber length is preferably 25 cm or more, more preferably 30 cm or more. The fiber diameter is not limited and may be appropriately determined according to the use of the final product.
[0067] カーボンナノチューブ繊維は、バインダーが含まれていてもよレ、。これにより、カー ボンナノチューブ繊維の強度より一層増すことができ、取り扱いが容易となる。バイン ダ一は、カーボンナノチューブ同士を結着するものであれば限定されず、公知のバイ ンダーを使用することができる。例えば、ポリビュルアルコール等が挙げられる。結着 方法も限定的でなぐ例えばカーボンナノチューブ繊維を形成した後、カーボンナノ チューブ繊維をバインダーに浸漬する方法、バインダーをカーボンナノチューブ繊維 に塗布又は噴霧する方法等が挙げられる。バインダーの付着量は限定的でなぐバ インダ一の種類、最終製品の用途等に応じて適宜決定すればよい。  [0067] The carbon nanotube fiber may contain a binder. Thereby, the strength of the carbon nanotube fiber can be further increased, and the handling becomes easy. The binder is not limited as long as it binds the carbon nanotubes, and a known binder can be used. For example, polybulu alcohol etc. are mentioned. The binding method is not limited, for example, after forming carbon nanotube fibers, a method of immersing the carbon nanotube fibers in a binder, a method of applying or spraying the binder on the carbon nanotube fibers, and the like. The amount of binder adhering to the binder is limited and may be appropriately determined according to the type of binder to be used, the use of the final product, and the like.
[0068] 4.カーボンナノチューブ二次元構造体  [0068] 4. Carbon nanotube two-dimensional structure
本発明のカーボンナノチューブ二次元構造体は、上記本発明カーボンナノチュー ブ繊維が二次元に配置してなるものである。  The carbon nanotube two-dimensional structure of the present invention is formed by two-dimensionally arranging the above-described carbon nanotube fibers of the present invention.
[0069] カーボンナノチューブ二次元構造体は平面状に形成されていればよぐ例えば、織 物状、フィルム状、板状等のいずれの形態であってもよい。本発明では、特に、本発 明のカーボンナノチューブ繊維が複数本平行に隣接してなるカーボンナノチューブ シートであることが好ましレ、。  [0069] The two-dimensional structure of carbon nanotubes only needs to be formed in a planar shape, and may be in any form such as a woven shape, a film shape, and a plate shape. In the present invention, in particular, a carbon nanotube sheet in which a plurality of carbon nanotube fibers of the present invention are adjacent in parallel is preferred.
[0070] カーボンナノチューブ二次元構造体は、バインダー等が含まれてレ、てもよレ、。バイ ンダ一は、カーボンナノチューブ繊維を結着するものであれば限定されず、上記した 公知のバインダーを使用することができる。  [0070] The two-dimensional structure of carbon nanotubes may contain a binder or the like. The binder is not limited as long as it binds carbon nanotube fibers, and the above-mentioned known binders can be used.
[0071] カーボンナノチューブ二次元構造体は、カーボンナノチューブ集合体からカーボン ナノチューブを面状に引き出したものでもよぐカーボンナノチューブを線状に引き出 すことにより得られたカーボンナノチューブ繊維を複数配列 (又は編織)したものでも よい。 [0071] The two-dimensional structure of carbon nanotubes is obtained by linearly pulling out carbon nanotubes, which may be carbon nanotubes drawn from a carbon nanotube aggregate in a planar shape. A plurality of (or knitted) carbon nanotube fibers may be obtained.
[0072] 本発明のカーボンナノチューブ二次元構造体は、本発明のカーボンナノチューブ 繊維を一部に含んでいればよぐ本発明のカーボンナノチューブ繊維以外の公知の 繊維と組み合わせて形成されたものであってもょレ、。  [0072] The carbon nanotube two-dimensional structure of the present invention is formed in combination with a known fiber other than the carbon nanotube fiber of the present invention, as long as the carbon nanotube fiber of the present invention is included in part. Motole.
[0073] 5.カーボンナノチューブ精層体  [0073] 5. Carbon nanotube layered body
本発明のカーボンナノチュー積層体は、上記本発明カーボンナノチューブ二次元 構造体が積層されてなるものである。  The carbon nanochu laminate of the present invention is formed by laminating the carbon nanotube two-dimensional structure of the present invention.
[0074] 特に、本発明では、カーボンナノチューブ繊維が複数本平行に隣接してなるカーボ ンナノチューブシート(単層)が 2層以上積層されたものであって、 P 接する各単層同 士において、当該単層を構成するカーボンナノチューブ繊維の向きが同一でない積 層体 (交叉積層体)が好ましい。隣接する単層のカーボンナノチューブ繊維 (長軸方 向)のなす角度は直角であってもよぐ斜めであってもよい。  [0074] In particular, in the present invention, two or more carbon nanotube sheets (single wall) in which a plurality of carbon nanotube fibers are adjacent to each other in parallel are laminated, A stacked body (cross-layered body) in which the directions of the carbon nanotube fibers constituting the single layer are not the same is preferable. The angle formed by adjacent single-walled carbon nanotube fibers (major axis direction) may be a right angle or an oblique angle.
[0075] 積層体の平均厚みは限定的でなぐ最終製品の用途等に応じて幅広い範囲から 選択できる。 [0075] The average thickness of the laminate is not limited and can be selected from a wide range according to the use of the final product.
[0076] 6.カーボンナノチューブ繊維の製造方法  [0076] 6. Method for producing carbon nanotube fiber
本発明のカーボンナノチューブ繊維の製造方法は、本発明(実施態様 1又は実施 態様 2)である、基板上に高密度かつ高配向で形成されたカーボンナノチューブ集合 体の端面 (側面)から上記カーボンナノチューブ集合体の一部を引き出すことにより、 長尺なカーボンナノチューブ繊維を連続的に形成する、工程を備えることを特徴とす る。本発明のカーボンナノチューブ集合体の一部を引き出すことにより、引き出され たカーボンナノチューブと当該カーボンナノチューブに隣接する集合体中の(基板上 にある)カーボンナノチューブとの間に摩擦力に類する力が働くと考えられる。そのた め、集合体中のカーボンナノチューブが引き出されたカーボンナノチューブに追随し てさらに引き出され、この過程が次々と連続的に進行することより、長尺なカーボンナ ノチューブ繊維又はカーボンナノチューブ二次元構造体が形成される。  The carbon nanotube fiber production method of the present invention is the carbon nanotube from the end face (side surface) of the carbon nanotube aggregate formed in a high density and high orientation on the substrate according to the present invention (Embodiment 1 or Embodiment 2). It is characterized by comprising a step of continuously forming long carbon nanotube fibers by pulling out a part of the aggregate. By pulling out a part of the aggregate of carbon nanotubes of the present invention, a force similar to a frictional force acts between the extracted carbon nanotubes and the carbon nanotubes (on the substrate) in the aggregate adjacent to the carbon nanotubes. it is conceivable that. For this reason, the carbon nanotubes in the aggregate are further pulled out following the drawn carbon nanotubes, and this process proceeds continuously one after the other, so that a long carbon nanotube fiber or a two-dimensional structure of carbon nanotubes is obtained. The body is formed.
[0077] この連続過程において、カーボンナノチューブを線状に引き出すと、すなわち、力 一ボンナノチューブ集合体の端面の一点を把持し引き抜くと、カーボンナノチューブ 繊維を製造できる。 [0077] In this continuous process, when the carbon nanotubes are pulled out linearly, that is, when one point on the end face of the force-bonded nanotube aggregate is gripped and pulled out, the carbon nanotubes Fiber can be manufactured.
[0078] 一方、カーボンナノチューブを面状に引き出すと、すなわち、カーボンナノチューブ 集合体の端面をある程度の幅を把持した後当該幅を保持したまま引き抜くと、カーボ ンナノチューブ二次元構造体を製造できる。また、カーボンナノチューブ繊維を複数 配列又は編織することによつても、カーボンナノチューブ二次元構造体を製造できる  [0078] On the other hand, when the carbon nanotubes are pulled out in a planar shape, that is, when the end surfaces of the carbon nanotube aggregates are gripped to some extent and then pulled out while maintaining the widths, a carbon nanotube two-dimensional structure can be manufactured. A carbon nanotube two-dimensional structure can also be produced by arranging or weaving a plurality of carbon nanotube fibers.
[0079] 引き出す方法は限定的でなぐ例えば、(1)カーボンナノチューブ集合体の一部を 公知のジグで把持してカーボンナノチューブ集合体の基板から引き離すことにより、 当該基板とジグとの間にカーボンナノチューブ繊維又は二次元構造体を形成する方 法、(2)カーボンナノチューブ集合体の基板を二分割し、当該基板を引き離すことに より、当該二分割された基板の間にカーボンナノチューブ繊維又は二次元構造体を 形成する方法、等が挙げられる。 [0079] The method of pulling out is not limited. For example, (1) by holding a part of the carbon nanotube aggregate with a known jig and pulling it away from the substrate of the carbon nanotube aggregate, the carbon can be interposed between the substrate and the jig. A method of forming a nanotube fiber or a two-dimensional structure; (2) dividing the substrate of the carbon nanotube aggregate into two parts and separating the substrate to separate the carbon nanotube fiber or the two-dimensional structure between the two divided substrates; And a method for forming a structure.
[0080] カーボンナノチューブ繊維に撚りをかけたい場合は、(3)上記(1)又は(2)の形成 方法において、ジグ又は基板を回転させながら引き出す方法、 (4)上記(1)又は(2) の方法によりカーボンナノチューブ繊維を形成した後、当該カーボンナノチューブ繊 維の両端を逆方向に回転させる方法、等を行えばよい。  [0080] When the carbon nanotube fiber is to be twisted, (3) in the formation method of (1) or (2) above, a method of pulling out the jig or substrate while rotating, (4) (1) or (2 After the carbon nanotube fiber is formed by the method (2), the both ends of the carbon nanotube fiber may be rotated in the opposite direction.
[0081] カーボンナノチューブ繊維からカーボンナノチューブ二次元構造体又はカーボン ナノチューブ積層体を製造する方法も限定的でなぐ公知の方法を使用することがで きる。例えば、カーボンナノチューブ二次元構造体を織物状とする場合は、平織り、 綾織り等の公知の織り方を採用すればよい。  [0081] A known method can be used as a method for producing a carbon nanotube two-dimensional structure or a carbon nanotube laminate from a carbon nanotube fiber. For example, when making the carbon nanotube two-dimensional structure into a woven shape, a known weaving method such as plain weave or twill weave may be employed.
[0082] 必要に応じて、カーボンナノチューブ繊維、カーボンナノチューブ二次元構造体又 はカーボンナノチューブ積層体の製造時にバインダー等を塗布及び乾燥させてもよ レ、。また、必要に応じて公知の繊維と組み合わせて上記方法を採用してもよい。 発明の効果 [0082] If necessary, a binder or the like may be applied and dried during production of the carbon nanotube fiber, the carbon nanotube two-dimensional structure, or the carbon nanotube laminate. Moreover, you may employ | adopt the said method in combination with a well-known fiber as needed. The invention's effect
[0083] 本発明のカーボンナノチューブ集合体によれば、長尺なカーボンナノチューブ繊 維等を高確率で製造することができる。  [0083] According to the aggregate of carbon nanotubes of the present invention, a long carbon nanotube fiber or the like can be produced with high probability.
[0084] 本発明のカーボンナノチューブ繊維等は、カーボンナノチューブ由来の高強度、 高導電性等を有するため、防弾'防護衣料等の各種繊維製品;電線等の各種電気 製品の部材;などの多種多様の用途に用いることができる。 [0084] Since the carbon nanotube fibers and the like of the present invention have high strength and high conductivity derived from carbon nanotubes, various fiber products such as bulletproof and protective clothing; It can be used for a wide variety of applications such as product parts.
[0085] また、本発明の製造方法によれば、カーボンナノチューブ繊維を長尺なカーボンナ ノチューブ繊維等を高確率で製造することができる。また、大面積を有するカーボン ナノチューブ二次元構造体又は積層体を製造することができる。  [0085] Furthermore, according to the production method of the present invention, it is possible to produce a carbon nanotube fiber or the like having a long carbon nanotube fiber with high probability. In addition, a carbon nanotube two-dimensional structure or laminate having a large area can be produced.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0086] 以下に実施例及び比較例を挙げて本発明を詳細に説明する。なお、本発明は以 下の実施例に限定されるものではない。 [0086] Hereinafter, the present invention will be described in detail with reference to Examples and Comparative Examples. The present invention is not limited to the following examples.
[0087] 沏 I [0087] 沏 I
実施例及び比較例のカーボンナノチューブ集合体の G/D比及び O/C比の測定 は下記の方法で行った。  The G / D ratio and O / C ratio of the carbon nanotube aggregates of Examples and Comparative Examples were measured by the following methods.
[0088] ( 1 ) G/D比 [0088] (1) G / D ratio
顕微ラマン分光光度計を用いて、ラマンスペクトルを測定した。測定条件は下記の 通りとした。  The Raman spectrum was measured using a micro Raman spectrophotometer. The measurement conditions were as follows.
[0089] 機器名称: RENISHAW RAMASCOPE1000  [0089] Device name: RENISHAW RAMASCOPE1000
入射プローブ:レーザー  Incident probe: Laser
検出信号:散乱光  Detection signal: scattered light
使用レーザー: He- Neレーザー  Laser used: He-Ne laser
出力: 10mW  Output: 10mW
照射ビーム径: φ Ι Α μ πι  Irradiation beam diameter: φ Ι Α μ πι
対物レンズ倍率: 20倍  Objective lens magnification: 20x
測定波数範囲: 150〜4000cm— 1 Measurement wavenumber range: 150-4000cm— 1
積算回数 : 3回  Integration count: 3 times
[0090] 測定したラマンスペクトルの 800〜2000cm_ 1の波数領域において、このスぺクトノレ の両端を直線で結んでベースラインとし、 1350cm_ 1付近に現れる吸収ピークを Dバ ンド、 1590cm_ 1付近に現れる吸収ピークを Gバンドとして、これらの 2つの吸収ピー クをローレンツ関数を用いてカーブフィッティングすることにより波形分離を行って各 バンドの面積を求めた。求めた Gバンドの吸収ピーク面積を Dバンドの吸収ピーク面 積で除することにより、 G/D比を算出した。なお、 Gバンド及び Dバンドの面積は、巿 販のソフトウェア(Microcal Software. Inc製 origin Ver6)を用いて算出した。 [0090] In the wave number region of 800~2000cm _ 1 of the measured Raman spectrum, the scan both ends of the pair Kutonore a baseline with straight lines, the absorption peak D bands appearing near 1350cm _ 1, 1590cm _ 1 near The absorption peak appearing in Fig. 4 was taken as the G band, and these two absorption peaks were subjected to curve fitting using the Lorentz function to perform waveform separation to obtain the area of each band. The G / D ratio was calculated by dividing the obtained absorption peak area of the G band by the absorption peak area of the D band. The area of G band and D band is Calculation was performed using commercially available software (origin Ver6 manufactured by Microcal Software. Inc.).
[0091] (2)酸素/炭素の原子数比(〇/C比) [0091] (2) Oxygen / carbon atomic ratio (O / C ratio)
O/C比は、 X線光電子分光測定装置を用いて、光電子分光法 (ESCA)により測 定した。測定条件は下記の通りとした。  The O / C ratio was measured by photoelectron spectroscopy (ESCA) using an X-ray photoelectron spectrometer. The measurement conditions were as follows.
[0092] 測定機器名称: ESCA-5801MC (アルバック'フアイ社製) [0092] Name of measuring instrument: ESCA-5801MC (manufactured by ULVAC'HUA)
X線源: Al Kひ  X-ray source: Al K
1, 2  1, 2
出力: 14kV、 25mA  Output: 14kV, 25mA
検出器のパスエネルギー: 11.75eV  Detector path energy: 11.75eV
光電子の脱出角度: 45度  Photoelectron escape angle: 45 degrees
測定ピッチ: 0. leVピッチ  Measuring pitch: 0. leV pitch
測定時間: 1ピッチあたり 100ms  Measurement time: 100ms per pitch
積算回数 : 50回  Integration count: 50 times
チャンバ一内の真空度: 1 X 10— 7Pa〜l X 10— 8Pa The degree of vacuum in the chamber one: 1 X 10- 7 Pa~l X 10- 8 Pa
[0093] なお、測定時の帯電に伴うピークの補正として、炭素(Cls)の主ピークの結合エネ ノレギー値を 284. 8eVに合わせた。  [0093] As a correction of the peak accompanying charging during measurement, the bond energy value of the main peak of carbon (Cls) was adjusted to 284.8 eV.
[0094] 得られたスペクトルにおいて、 Clsピーク面積は結合エネルギー 282〜298eVの 範囲で直線のベースラインを引くことにより求め、酸素(Ols)ピーク面積は、 526-5 40eVの範囲で Shirley法のバックグラウンドを引くことにより求めた。バックグラウンド を引く際の 2端点強度はそれぞれの端点付近の 10点の強度を数値平均した値を用 いた。  [0094] In the obtained spectrum, the Cls peak area was obtained by drawing a straight baseline in the range of binding energy 282 to 298 eV, and the oxygen (Ols) peak area was in the range of 526-540 eV. Obtained by drawing the ground. The intensity of the two endpoints when drawing the background was obtained by numerically averaging the intensity of 10 points near each endpoint.
[0095] O/C比は、上記で求めた Olsピーク面積に対する Clsピーク面積の比を、装置固 有の感度補正値で除することにより算出した。なお、本発明で使用した「ESCA_ 58 01MC」(アルバック'フアイ社製)の固有の感度補正値は 2. 40であった。  [0095] The O / C ratio was calculated by dividing the ratio of the Cls peak area to the Ols peak area determined above by the device-specific sensitivity correction value. Incidentally, the inherent sensitivity correction value of “ESCA — 58 01MC” (manufactured by ULVAC-FUY) used in the present invention was 2.40.
[0096] 実施例 1  [0096] Example 1
シリコン基板(市販品、 1cm2)に鉄をスパッタリングすることにより、厚さ 4nmの鉄皮 膜が積層されたシリコン基板を製造した。 By sputtering iron on a silicon substrate (commercial product, 1 cm 2 ), a silicon substrate on which an iron skin film having a thickness of 4 nm was laminated was manufactured.
[0097] この基板を熱 CVD装置内に設置し、熱 CVD法を行うことにより基板状にカーボン ナノチューブ集合体を形成させた。熱 CVD内に供給したガスは、アセチレンガス及び ヘリウムガスの混合ガス(アセチレンガス 5· 77vt%)とした。熱 CVD条件としては、温 度: 700°C、圧力:大気圧下、初期段階におけるアセチレンガス濃度の上昇速度: 0. 10vol%/秒、反応時間: 10分とした。 [0097] This substrate was placed in a thermal CVD apparatus, and a carbon nanotube aggregate was formed in a substrate shape by performing a thermal CVD method. Gas supplied into the thermal CVD is acetylene gas and A mixed gas of helium gas (acetylene gas 5 · 77 vt%) was used. The thermal CVD conditions were as follows: temperature: 700 ° C, pressure: atmospheric pressure, acetylene gas concentration increase rate in the initial stage: 0.10 vol% / second, reaction time: 10 minutes.
[0098] 実施例 1のカーボンナノチューブ集合体において、アモルファスカーボンの被覆率 は 57%、アモルファスカーボンの平均厚みは 1. lnmであった。実施例 1のカーボン ナノチューブ集合体の G/D比は 0. 66、酸素 Z炭素原子数比(〇/C比)は 0. 008 、嵩密度は 40mg/cm3、秩序パラメータ(OP)は 0. 94であった。カーボンナノチュ ーブの平均長さは 190 μ mであった。得られたカーボンナノチューブ集合体の断面 の走査型電子顕微鏡 (SEM)写真を図 2に示す。 [0098] In the aggregate of carbon nanotubes of Example 1, the coverage of amorphous carbon was 57%, and the average thickness of amorphous carbon was 1. lnm. The carbon nanotube aggregate of Example 1 has a G / D ratio of 0.66, an oxygen Z carbon atom number ratio (◯ / C ratio) of 0.008, a bulk density of 40 mg / cm 3 , and an order parameter (OP) of 0. 94. The average length of the carbon nanotube was 190 μm. Fig. 2 shows a scanning electron microscope (SEM) photograph of the cross section of the carbon nanotube aggregate obtained.
[0099] 実施例 2  [0099] Example 2
反応時間を 30分とした以外は実施例 1と同様にして、実施例 2のカーボンナノチュ ーブ集合体を製造した。  A carbon nanotube assembly of Example 2 was produced in the same manner as Example 1 except that the reaction time was 30 minutes.
[0100] 実施例 2のカーボンナノチューブ集合体において、アモルファスカーボンの被覆率 力 S100%、アモルファスカーボンの平均厚みは 1 · 7nmであった。実施例の 2のカー ボンナノチューブの G/D比は 0. 60、〇/C比は 0· 002、嵩密度は 20mg/cm3、 OPは 0. 92であった。カーボンナノチューブの平均長さは 220 /i mであった。 [0100] In the aggregate of carbon nanotubes of Example 2, the amorphous carbon coverage rate S100%, and the average thickness of the amorphous carbon was 1.7 nm. The carbon nanotubes of Example 2 had a G / D ratio of 0.60, a ○ / C ratio of 0.002, a bulk density of 20 mg / cm 3 , and an OP of 0.92. The average length of the carbon nanotubes was 220 / im.
[0101] 比較例 1  [0101] Comparative Example 1
反応時間を 5分とし、初期段階におけるアセチレンガス濃度の上昇速度度を 0. 25 vol%/秒とした以外は実施例 1と同様にして、比較例 1のカーボンナノチューブを製 造した。  A carbon nanotube of Comparative Example 1 was produced in the same manner as in Example 1 except that the reaction time was 5 minutes and the rate of increase in the acetylene gas concentration at the initial stage was 0.25 vol% / sec.
[0102] 比較例 1のカーボンナノチューブ集合体において、アモルファスカーボンの被覆率 力 7%、アモルファスカーボンの平均厚みは 0. 2nmであった。カーボンナノチューブ 集合体の GZD比は 0. 69、 OZC比は 0. 01、嵩密度は 60mgZcm3、 OPは 0. 95 であった。カーボンナノチューブの平均長さは 160 μ mであった。 [0102] In the aggregate of carbon nanotubes of Comparative Example 1, the coverage rate of amorphous carbon was 7%, and the average thickness of amorphous carbon was 0.2 nm. The aggregate of carbon nanotubes had a GZD ratio of 0.69, an OZC ratio of 0.01, a bulk density of 60 mgZcm 3 , and an OP of 0.95. The average length of the carbon nanotubes was 160 μm.
[0103] 比較例 2  [0103] Comparative Example 2
反応時間を 2分とし、初期段階におけるアセチレンガス濃度の上昇速度を 0. 35 vol % /秒とした以外は実施例 1と同様にして、比較例 2のカーボンナノチューブ集合体 を作製した。 [0104] 比較例 2のカーボンナノチューブ集合体において、アモルファスカーボンの被覆率 力 ¾%、アモルファスカーボンの平均厚みは 0· lnmであった。カーボンナノチューブ 集合体の G/D比は 1. 60、 O/C比は 0. 00、嵩密度は 15mg/cm3、 OPは 0. 75 であった。カーボンナノチューブの平均長さは 160 μ mであった。 A carbon nanotube aggregate of Comparative Example 2 was produced in the same manner as in Example 1 except that the reaction time was 2 minutes and the rate of increase in the acetylene gas concentration at the initial stage was 0.35 vol% / second. [0104] In the aggregate of carbon nanotubes of Comparative Example 2, the coverage rate of amorphous carbon was ¾%, and the average thickness of amorphous carbon was 0 · lnm. The aggregate of carbon nanotubes had a G / D ratio of 1.60, an O / C ratio of 0.00, a bulk density of 15 mg / cm 3 , and an OP of 0.75. The average length of the carbon nanotubes was 160 μm.
[0105] 実施例 3  [0105] Example 3
比較例 1で製造したカーボンナノチューブ集合体に対して、低温プラズマ表面処理 装置(ヒラノ光音株式会社製、低温プラズマ表面処理装置)を用いて、プラズマ処理 を行うことにより、実施例 3のカーボンナノチューブ集合体を製造した。このプラズマ 処理は、直径 30cmの平行平板電極にカーボンナノチューブ集合体基板を置き、こ の電極に冷却水(室温)を流しながら室温で開始した。照射出力は 300W、酸素ガス 流量は 45. 9ccm、チャンバ一内の圧力は 0. 221Torr、処理時間は 10分間とした。  The carbon nanotube assembly of Example 3 was subjected to plasma treatment on the aggregate of carbon nanotubes produced in Comparative Example 1 using a low-temperature plasma surface treatment apparatus (produced by Hirano Kotone Co., Ltd., low-temperature plasma surface treatment apparatus). Aggregates were produced. This plasma treatment was started at room temperature while a carbon nanotube aggregate substrate was placed on a parallel plate electrode having a diameter of 30 cm, and cooling water (room temperature) was passed through the electrode. The irradiation power was 300 W, the oxygen gas flow rate was 45.9 ccm, the pressure inside the chamber was 0.221 Torr, and the treatment time was 10 minutes.
[0106] 実施例 3のカーボンナノチューブ集合体において、アモルファスカーボンの被覆率 力 ¾7%、アモルファスカーボンの平均厚みは 0. 7nmであった。実施例 3のカーボン ナノチューブ集合体の G/D比は 0. 56、〇/C比は 0. 14、嵩密度は 60mg/cm3、 OPは 0. 91であった。 [0106] In the aggregate of carbon nanotubes of Example 3, the amorphous carbon coverage ratio was 7%, and the average thickness of the amorphous carbon was 0.7 nm. The G / D ratio of the aggregate of carbon nanotubes of Example 3 was 0.56, the ○ / C ratio was 0.14, the bulk density was 60 mg / cm 3 , and OP was 0.91.
[0107] 実施例 4  [0107] Example 4
プラズマ処理の条件を、照射出力: 500W、処理時間: 5分間とした以外は実施例 3 と同様にして、実施例 4のカーボンナノチューブ集合体を製造した。  A carbon nanotube aggregate of Example 4 was manufactured in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 5 minutes.
[0108] 実施例 4のカーボンナノチューブ集合体の G/D比は 0. 55、 O/C比は 0. 10、嵩 密度は 60mg/cm"、 OPは 0. 95であった。  The aggregate of carbon nanotubes of Example 4 had a G / D ratio of 0.55, an O / C ratio of 0.10, a bulk density of 60 mg / cm ", and an OP of 0.95.
[0109] 実施例 5  [0109] Example 5
プラズマ処理の条件を、照射出力: 500W、処理時間: 20分間とした以外は実施例 3と同様にして、実施例 5のカーボンナノチューブ集合体を製造した。  A carbon nanotube aggregate of Example 5 was manufactured in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 20 minutes.
[0110] 実施例 5のカーボンナノチューブ集合体の GZD比は 0. 53、 O/C比は 0. 27、嵩 密度は 60mg/cm3、〇Pは 0. 92であった。 [0110] The aggregate of carbon nanotubes of Example 5 had a GZD ratio of 0.53, an O / C ratio of 0.27, a bulk density of 60 mg / cm 3 , and ○ P of 0.92.
[0111] 実施例 6  [0111] Example 6
実施例 2で製造したカーボンナノチューブ集合体に、低温プラズマ表面処理装置( ヒラノ光音株式会社製、低温プラズマ表面処理装置)を用いて、プラズマ処理を行う ことにより、実施例 6のカーボンナノチューブ集合体を製造した。このプラズマ処理は 、直径 30cmの平行平板電極にカーボンナノチューブ集合体基板を置き、この電極 に冷却水(室温)を流しながら室温で開始した。照射出力は 500W、アルゴンガス流 量は 45. 9ccm、チャンバ一内の圧力は 0. 221Torr、処理時間は 10分間とした。 Plasma treatment is performed on the aggregate of carbon nanotubes manufactured in Example 2 using a low-temperature plasma surface treatment apparatus (manufactured by Hirano Kotone Co., Ltd., low-temperature plasma surface treatment apparatus). Thus, the carbon nanotube aggregate of Example 6 was produced. This plasma treatment was started at room temperature while a carbon nanotube assembly substrate was placed on a parallel plate electrode having a diameter of 30 cm, and cooling water (room temperature) was passed through the electrode. The irradiation power was 500 W, the argon gas flow rate was 45.9 ccm, the pressure inside the chamber was 0.221 Torr, and the treatment time was 10 minutes.
[0112] 実施例 6のカーボンナノチューブ集合体の GZD比は 0. 50、 O/C比は 0. 09、嵩 密度は 20mg/cm3、〇Pは 0. 91であった。 [0112] The aggregate of carbon nanotubes of Example 6 had a GZD ratio of 0.50, an O / C ratio of 0.09, a bulk density of 20 mg / cm 3 , and ○ P of 0.91.
[0113] 実施例 7  [0113] Example 7
プラズマ処理の条件を、照射出力: 100W、処理時間: 50分間とした以外は実施例 3と同様にして、実施例 7のカーボンナノチューブ集合体を製造した。  A carbon nanotube aggregate of Example 7 was produced in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 100 W and treatment time: 50 minutes.
[0114] 実施例 7のカーボンナノチューブ集合体の GZD比は 0. 57、 O/C比は 0. 20、嵩 密度は 55mg/cm3、〇Pは 0. 88であった。 [0114] The aggregate of carbon nanotubes of Example 7 had a GZD ratio of 0.57, an O / C ratio of 0.20, a bulk density of 55 mg / cm 3 , and ○ P of 0.88.
[0115] 比較例 3  [0115] Comparative Example 3
プラズマ処理の条件を、照射出力: 500W、処理時間: 40分間とした以外は実施例 3と同様にして、比較例 3のカーボンナノチューブ集合体を製造した。  A carbon nanotube aggregate of Comparative Example 3 was produced in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 40 minutes.
[0116] 比較例 3のカーボンナノチューブ集合体の G/D比は 0. 45、 O/C比は 0. 40、嵩 密度は 58mg/cm3、 OPは 0. 75であった。 [0116] The carbon nanotube aggregate of Comparative Example 3 had a G / D ratio of 0.45, an O / C ratio of 0.40, a bulk density of 58 mg / cm 3 , and an OP of 0.75.
[0117] 比較例 4  [0117] Comparative Example 4
プラズマ処理の条件を、照射出力: 500W、処理時間: 35分間とした以外は実施例 3と同様にして、比較例 4のカーボンナノチューブ集合体を製造した。  A carbon nanotube aggregate of Comparative Example 4 was produced in the same manner as in Example 3 except that the conditions of the plasma treatment were irradiation power: 500 W and treatment time: 35 minutes.
[0118] 比較例 4のカーボンナノチューブ集合体の G/D比は 0. 55、 O/C比は 0. 45、嵩 密度は 57mg/cm3、 OPは 0. 70であった。 [0118] The carbon nanotube aggregate of Comparative Example 4 had a G / D ratio of 0.55, an O / C ratio of 0.45, a bulk density of 57 mg / cm 3 , and an OP of 0.70.
[0119] カーボンナノチューブ集合体の引き出し特件試験 [0119] Extraction special test of carbon nanotube aggregates
(1)引き出し確率の測定  (1) Measurement of drawer probability
製造したカーボンナノチューブ集合体の端面に、 X型ピンセット(FONTAX製、製 品型番号「4X_S」)の先端を 0. 5〜 lmm突き刺してカーボンナノチューブを複数 本つまみ、引き出し速度 0. 5〜2cmZ秒で基板に対して平行な方向に引き出した。 長さ 2. 0cm以上のカーボンナノチューブ繊維を引き出せた場合を「〇」とした。 2. 0c m未満で繊維が切れた時を「X」とした。この測定を、実施例:!〜 7及び比較例:!〜 4 の各カーボンナノチューブ集合体について、それぞれ 10回ずつ行い、「〇」の数を 測定した。これを表 1に示す。 Insert the tip of X-type tweezers (manufactured by FONTAX, product model number “4X_S”) 0.5 to lmm into the end face of the manufactured carbon nanotube aggregate, pinch multiple carbon nanotubes, and draw speed 0.5 to 2 cmZ sec. And pulled out in a direction parallel to the substrate. A case where a carbon nanotube fiber having a length of 2.0 cm or more could be pulled out was marked with “◯”. 2. When the fiber was cut below 0 cm, it was defined as “X”. This measurement was carried out using Examples:! -7 and Comparative Examples:! -4 Each of the carbon nanotube aggregates was repeated 10 times and the number of “◯” was measured. This is shown in Table 1.
[0120] (2)最大撚糸長の測定  [0120] (2) Measurement of maximum twist length
製造したカーボンナノチューブ集合体の端面に、 X型ピンセット(FONTAX製、製 品型番号「4X_S」)の先端を 0. 5〜 lmm突き刺してカーボンナノチューブを複数 本つまんだ後、つまんだカーボンナノチューブを XYZステージ上の検撚機(大栄科 学機器製作所製、製品型番号「M_ 1」)に固定して紡速 lcm/分で撚りを掛けなが ら引き出すことにより、カーボンナノチューブ繊維 (カーボンナノチューブ撚糸)を製 造した。この測定を 10回行い、そのうち、最も長く引き出せた撚糸の長さを最大撚糸 長とした。これを表 1に示す。  At the end of the carbon nanotube aggregate produced, the tip of X-type tweezers (manufactured by FONTAX, product model number “4X_S”) is pierced by 0.5 to lmm to pinch multiple carbon nanotubes, and then pinch carbon nanotubes into XYZ Carbon nanotube fiber (carbon nanotube twisted yarn) by pulling it while twisting at a spinning speed of lcm / min after fixing to a stage twisting machine (manufactured by Daiei Science Equipment Mfg., Product model number “M_ 1”) Was manufactured. This measurement was performed 10 times, and the length of the longest drawn yarn was taken as the maximum twisted yarn length. This is shown in Table 1.
[0121] 検燃機の卷取りロールの円周が 20cmであるため、 1周分を十分に捲きつける長さ である 25cmを撚糸長の基準とした。すなわち、最大撚糸長が 25cm以上の場合を「 〇」とし、 25cm未満であった場合を「 X」と評価した。  [0121] Since the circumference of the scoring roll of the inspector is 20 cm, the length of 25 cm, which is a length that sufficiently squeezes one round, was used as the standard for the twisted yarn length. That is, the case where the maximum twist length was 25 cm or more was evaluated as “◯”, and the case where it was less than 25 cm was evaluated as “X”.
なお、実施例 3のカーボンナノチューブ集合体を用いて得られたカーボンナノチュー ブ撚糸の SEM写真を図 3に、実施例 4のカーボンナノチューブ集合体を用いて得ら れたカーボンナノチューブ撚糸の SEM写真を図 4に示す。  A SEM photograph of the carbon nanotube twisted yarn obtained using the carbon nanotube aggregate of Example 3 is shown in FIG. 3, and a SEM photograph of the carbon nanotube twisted yarn obtained using the carbon nanotube aggregate of Example 4 is shown in FIG. Figure 4 shows.
[0122] [表 1] [0122] [Table 1]
引き出し確率 最大燃糸長 Pull-out probability Maximum fiber length
(10回中) 長さ [m] 評価  (10 times) Length [m] Evaluation
実施例 1 6 1 . 2 〇  Example 1 6 1.2 〇
実施例 2 5 0. 3 〇  Example 2 5 0. 3 〇
実施例 3 8 2. 0 〇  Example 3 8 2. 0 〇
実施例 4 7 1 . 5 〇  Example 4 7 1.5
実施例 5 7 1 . 6 〇  Example 5 7 1.6.
実施例 6 7 1 . 4 〇  Example 6 7 1.4
実施例フ 8 1 . 8 〇  Example 8 8 1.8
比較例 1 6 o 0. 2 X  Comparative Example 1 6 o 0. 2 X
比較例 2 1 0. o 0 X  Comparative Example 2 1 0.o 0 X
比較例 3 3 X  Comparative Example 3 3 X
比較例 4 2 0. 04 X  Comparative Example 4 2 0. 04 X
[0123] 実施例 8 [0123] Example 8
XYZステージ上に固定した金属平板(幅 5mm、長さ 5cm)の先端にポリビュルアル コール 5wt%水溶液(ナカライテスタ社製、製品名「ポリビュルアルコール(Code 28 310— 35)」)を塗布した。次いで、この金属平板の先端部に、実施例 2で作製した力 一ボンナノチューブ集合体の端面を差し込み、 1cm/分の速度で XYZステージを移 動させることにより、カーボンナノチューブシート(幅 5mm、長さ 15mm)を作製した。 作製したカーボンナノチューブシートの光学顕微写真 (ニコン製システム実体顕微鏡 SMZ— 1500にて撮影)を図 5に示す。  A 5 wt% polybulal alcohol aqueous solution (manufactured by Nacalai Testa Co., product name “polybulal alcohol (Code 28 310-35))” was applied to the tip of a metal flat plate (width 5 mm, length 5 cm) fixed on the XYZ stage. Next, the end face of the force-bonn nanotube assembly prepared in Example 2 was inserted into the tip of this metal flat plate, and the XYZ stage was moved at a speed of 1 cm / min, so that the carbon nanotube sheet (width 5 mm, long 15 mm). Figure 5 shows an optical micrograph of the produced carbon nanotube sheet (taken with a Nikon system stereo microscope SMZ-1500).
[0124] 実施例 9 [0124] Example 9
実施例 1で作製したカーボンナノチューブ集合体を用いること以外は実施例 8と同 様にして、カーボンナノチューブシート(幅 5mm、長さ 10mm)を 3枚作製した。次い で、これら 4枚のカーボンナノチューブシートを各シートの繊維軸方向がそれぞれ 0° 、30° 、90° 及び 150° の角度をなすようにそれぞれ重ね合わせることにより、カー ボンナノチューブ交叉積層体を作製した。作製した交叉積層体の写真を図 6に示す  Three carbon nanotube sheets (width 5 mm, length 10 mm) were produced in the same manner as in Example 8, except that the carbon nanotube aggregate produced in Example 1 was used. Next, these four carbon nanotube sheets are overlapped so that the fiber axis directions of the respective sheets form angles of 0 °, 30 °, 90 °, and 150 °, respectively. Produced. Fig. 6 shows a photograph of the produced crossover laminate.
[0125] 実施例 10 実施例 5で作製したカーボンナノチューブ集合体の端面に、 X型ピンセットの先端 を 0. 5〜: 1mm突き刺してカーボンナノチューブを複数本つまんだ後、つまんだカー ボンナノチューブを XYZステージ上の検撚機 (大栄科学機器製作所製、製品型番号 「M _ 1」)に固定して紡速 1 cmZ分で撚りを掛けながら引き出すことにより、カーボン ナノチューブ撚糸を作製した。得られたカーボンナノチューブ撚糸を 6cmの長さに切 り取り、ポリビュルアルコール 0. 01wt%水溶液 (製造者名「ナカライテスタ社製」、製 品名「ポリビュルアルコール(Code 28310— 35)」)に 30分間浸した後、風乾するこ とにより、実施例 10のバインダー含有カーボンナノチューブ撚糸を製造した。 [0125] Example 10 The end of the carbon nanotube assembly produced in Example 5 was pinched with a tip of X-type tweezers 0.5 to 1 mm to pinch a plurality of carbon nanotubes, and then the pinned carbon nanotubes were twisted on the XYZ stage. A carbon nanotube twisted yarn was produced by fixing to (made by Daiei Scientific Instruments Mfg., Product model number “M — 1”) and pulling it while twisting at a spinning speed of 1 cmZ. The obtained carbon nanotube twisted yarn was cut to a length of 6 cm and made into polybulal alcohol 0.01 wt% aqueous solution (manufacturer name “Nacalai Testa”, product name “Polybutalol (Code 28310-35)”). After soaking for 30 minutes, the binder-containing carbon nanotube twisted yarn of Example 10 was produced by air drying.
[0126] 得られたカーボンナノチューブ撚糸に手を触れても粉々になることはなぐ撚糸の 形状を保持していたため、実用可能な強度を有することが分力 た。  [0126] Since the shape of the twisted yarn that does not become shattered even when the carbon nanotube twisted yarn was touched was maintained, it was possible to have a practical strength.
[0127] 実施例 11  [0127] Example 11
実施例 8で作製したカーボンナノチューブシートをポリビュルアルコール 0. 01wt% 水溶液に 45分間浸した後、風乾することにより、実施例 11のバインダー含有カーボ ンナノチューブシートを製造した。  The carbon nanotube sheet produced in Example 8 was dipped in an aqueous solution of 0.01% by weight polybutyl alcohol for 45 minutes and then air-dried to produce the binder-containing carbon nanotube sheet of Example 11.
[0128] 得られたカーボンナノチューブシートに手を触れても粉々になることはなぐシート の形状を保持していたため、実用可能な強度を有することが分かった。 [0128] It was found that the carbon nanotube sheet thus obtained had a practically usable strength because it retained the shape of the sheet that would not shatter even when touched.
図面の簡単な説明  Brief Description of Drawings
園 1]図 1は、 Raman分光法によって得られるスぺクトノレを示す。  1] Figure 1 shows the spectrum obtained by Raman spectroscopy.
[図 2]図 2は、実施例 1のカ -ボンナノチュ -ブ集合体の SEM写真を示す。  [FIG. 2] FIG. 2 shows an SEM photograph of the carbon nanotube assembly of Example 1.
[図 3]図 3は、実施例 3のカ -ボンナノチュ -ブ繊維の SEM写真を示す。  FIG. 3 shows an SEM photograph of the carbon nanotube tube of Example 3.
[図 4]図 4は、実施例 4のカ -ボンナノチュ -ブ繊維の SEM写真を示す。  FIG. 4 shows an SEM photograph of the carbon nanotube tube of Example 4.
[図 5]図 5は、実施例 8のカ -ボンナノチュ -ブシートの SEM写真を示す。  FIG. 5 shows a SEM photograph of the carbon nanotube sheet of Example 8.
[図 6]図 6は、実施例 9のカ -ボンナノチュ -ブ交叉積層体の光学顕微鏡写真を示す  FIG. 6 shows an optical micrograph of the carbon nanotube cross-layered product of Example 9.

Claims

請求の範囲 [1] 基板上にカーボンナノチューブが複数本形成されてレ、るカーボンナノチューブ集 合体であって、 Claims [1] A carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate,
(1)当該カーボンナノチューブの表面にアモルファスカーボンが 55〜100%の被覆 率で積層されており、  (1) Amorphous carbon is laminated on the surface of the carbon nanotube with a coverage of 55-100%,
(2)当該アモルファスカーボンの平均厚みが 0. 3〜5nmであり、  (2) The average thickness of the amorphous carbon is 0.3-5 nm,
(3)当該カーボンナノチューブ集合体の秩序パラメータが 0. 85〜: 1. 0であり、 (3) The order parameter of the aggregate of carbon nanotubes is from 0.85 to 1.0.
(4)当該カーボンナノチューブ集合体の嵩密度が:!〜 1000mg/cm3であり、(4) the bulk density of the carbon nanotube aggregate is:! A ~ 1000mg / cm 3,
(5)当該カーボンナノチューブ集合体の酸素/炭素の原子数比が 0. 002-0. 350 であり、 (5) The carbon / nanotube aggregate has an oxygen / carbon atomic ratio of 0.002-0.350,
(6)当該カーボンナノチューブ集合体のラマンスペクトルにおいて、 1590cm_ 1付近 に現れる Gバンドと 1350cm_ 1付近に現れる Dバンドとの面積比(G/D比)が 0. 45 〜0· 75である、 (6) in the Raman spectrum of the carbon nanotube aggregate, the area ratio of the G band and 1350 cm _ 1 appears in the vicinity of D band appearing in the vicinity of 1590 cm _ 1 (G / D ratio) is from 0.45 to 0 · 75 ,
ことを特徴とするカーボンナノチューブ集合体。  A carbon nanotube aggregate characterized by that.
[2] 請求項 1に記載のカーボンナノチューブ集合体が前記基板から複数本連なりなが ら引き出されることにより得られるカーボンナノチューブ繊維。 [2] A carbon nanotube fiber obtained by drawing a plurality of carbon nanotube aggregates according to claim 1 from the substrate in a continuous manner.
[3] 撚られて形成されている、請求項 2に記載のカーボンナノチューブ繊維。 [3] The carbon nanotube fiber according to claim 2, which is formed by twisting.
[4] さらにバインダーを含む、請求項 2又は 3に記載のカーボンナノチューブ繊維。 [4] The carbon nanotube fiber according to claim 2 or 3, further comprising a binder.
[5] 請求項 2に記載のカーボンナノチューブ繊維から構成されるカーボンナノチューブ 交叉積層体。 [5] A carbon nanotube cross-layered product comprising the carbon nanotube fibers according to claim 2.
[6] さらにバインダーを含む、請求項 5に記載のカーボンナノチューブ交叉積層体。  6. The carbon nanotube cross-layered product according to claim 5, further comprising a binder.
[7] 基板上にカーボンナノチューブが複数本形成されてレ、るカーボンナノチューブ集 合体であって、 [7] A carbon nanotube aggregate in which a plurality of carbon nanotubes are formed on a substrate,
(a)極性化処理が施されており、  (a) Polarization treatment is applied,
(b)カーボンナノチューブ集合体の秩序パラメータが 0. 85-1. 0であり、  (b) the order parameter of the aggregate of carbon nanotubes is 0.85-1.0,
(c)当該カーボンナノチューブ集合体の嵩密度が:!〜 1 OOOmg/cm3であり、(c) the bulk density of the carbon nanotube aggregate: a ~ 1 OOOmg / cm 3,
(d)当該カーボンナノチューブ集合体の酸素/炭素の原子数比が 0. 05-0. 35であ り、 (e)当該カーボンナノチューブ集合体のラマンスペクトルにおいて、 1590cm 付近 に現れる Gバンドと lSSOcnT1付近に現れる Dバンドとの面積比(G/D比)が 0. 45 〜0· 60である、 (d) The carbon nanotube aggregate has an oxygen / carbon atomic ratio of 0.05-0.35, (e) In the Raman spectrum of the aggregate of carbon nanotubes, the area ratio (G / D ratio) between the G band appearing near 1590 cm and the D band appearing near lSSOcnT 1 is 0.45 to 0.660.
ことを特徴とするカーボンナノチューブ集合体。  A carbon nanotube aggregate characterized by that.
[8] 極性化処理が酸化処理である、請求項 7に記載のカーボンナノチューブ集合体。 [8] The aggregate of carbon nanotubes according to claim 7, wherein the polarization treatment is an oxidation treatment.
[9] 酸化処理がプラズマ処理である、請求項 8に記載のカーボンナノチューブ集合体。 [9] The aggregate of carbon nanotubes according to claim 8, wherein the oxidation treatment is a plasma treatment.
[10] 長尺なカーボンナノチューブ繊維の製造方法であって、 [10] A method for producing a long carbon nanotube fiber,
請求項 1及び請求項 7〜9のいずれかに記載のカーボンナノチューブ集合体の端 面から当該カーボンナノチューブ集合体を複数本引き出すことにより、長尺なカーボ ンナノチューブ繊維を連続的に形成する工程、  A step of continuously forming long carbon nanotube fibers by pulling out a plurality of carbon nanotube aggregates from the end face of the carbon nanotube aggregate according to any one of claims 1 and 7 to 9,
を備えたカーボンナノチューブ繊維の製造方法。  The manufacturing method of the carbon nanotube fiber provided with.
PCT/JP2007/053693 2006-02-28 2007-02-27 Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber WO2007099975A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008502808A JP4968854B2 (en) 2006-02-28 2007-02-27 Carbon nanotube aggregate, carbon nanotube fiber, and method for producing carbon nanotube fiber

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006054203 2006-02-28
JP2006-054203 2006-02-28

Publications (1)

Publication Number Publication Date
WO2007099975A1 true WO2007099975A1 (en) 2007-09-07

Family

ID=38459078

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/053693 WO2007099975A1 (en) 2006-02-28 2007-02-27 Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber

Country Status (2)

Country Link
JP (1) JP4968854B2 (en)
WO (1) WO2007099975A1 (en)

Cited By (114)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008102813A1 (en) * 2007-02-20 2008-08-28 National Institute Of Advanced Industrial Science And Technology Beam-like material comprising carbon nanotube, and method for production thereof
JP2008308355A (en) * 2007-06-13 2008-12-25 Denso Corp Method for manufacturing carbon nanotube
JP2009146413A (en) * 2007-12-12 2009-07-02 Qinghua Univ Touch panel and display device using the same
JP2009146412A (en) * 2007-12-12 2009-07-02 Qinghua Univ Touch panel and display device using the same
JP2009146424A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel, method for manufacturing the same, and display using the touch panel
JP2009146422A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel and display device using the same
JP2009151779A (en) * 2007-12-21 2009-07-09 Qinghua Univ Touch panel and display using the same
JP2009157926A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
JP2009174093A (en) * 2008-01-25 2009-08-06 Sonac Kk Method for producing carbon fiber
JP2009184906A (en) * 2008-02-01 2009-08-20 Qinghua Univ Carbon nanotube structure and manufacturing method thereof
JP2009215120A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
WO2009128374A1 (en) * 2008-04-16 2009-10-22 日信工業株式会社 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP2009268108A (en) * 2008-04-28 2009-11-12 Qinghua Univ Thermoacoustic device
JP2009265667A (en) * 2008-04-23 2009-11-12 Qinghua Univ Method for making liquid crystal display panel
EP2120274A2 (en) 2008-05-14 2009-11-18 Tsing Hua University Carbon Nanotube Thin Film Transistor
JP2009278106A (en) * 2008-05-14 2009-11-26 Qinghua Univ Thin film transistor
JP2009278104A (en) * 2008-05-16 2009-11-26 Qinghua Univ Thin film transistor
JP2009278105A (en) * 2008-05-14 2009-11-26 Qinghua Univ Method of manufacturing thin film transistor
JP2009278110A (en) * 2008-05-14 2009-11-26 Qinghua Univ Thin film transistor
JP2009278109A (en) * 2008-05-16 2009-11-26 Qinghua Univ Thin film transistor
JP2009278111A (en) * 2008-05-14 2009-11-26 Qinghua Univ Thin film transistor
JP2009296594A (en) * 2008-06-04 2009-12-17 Qinghua Univ Thermoacoustic device
JP2009296593A (en) * 2008-06-04 2009-12-17 Qinghua Univ Thermoacoustic device
JP2009303217A (en) * 2008-06-13 2009-12-24 Qinghua Univ Thermoacoustic device
JP2010004536A (en) * 2008-06-18 2010-01-07 Qinghua Univ Thermoacoustic device
JP2010004537A (en) * 2008-06-18 2010-01-07 Qinghua Univ Thermoacoustic device
JP2010004535A (en) * 2008-06-18 2010-01-07 Qinghua Univ Thermoacoustic device
JP2010015576A (en) * 2008-07-04 2010-01-21 Qinghua Univ Touch panel
JP2010049691A (en) * 2008-08-22 2010-03-04 Qinghua Univ Personal digital assistant
JP2010116632A (en) * 2008-11-11 2010-05-27 Osaka Prefecture Apparatus and method for producing fine carbon fiber twisted yarn
JP2010136369A (en) * 2008-12-05 2010-06-17 Qinghua Univ Thermoacoustic device
JP2010248069A (en) * 2009-04-20 2010-11-04 Qinghua Univ Method for fabricating carbon nanotube film and device for drawing the same
JP2010275178A (en) * 2009-05-29 2010-12-09 Korea Advanced Inst Of Science & Technology Carbon nanotube bulk material and method for producing the same
JP2011026758A (en) * 2009-06-30 2011-02-10 Toyobo Co Ltd High-strength carbon fiber
JP2011098885A (en) * 2008-02-29 2011-05-19 National Institute Of Advanced Industrial Science & Technology Carbon nanotube film structure and carbon nanotube microstructure
JP2011153392A (en) * 2010-01-28 2011-08-11 Osaka Prefecture Carbon nanotube twisted yarn, and method for producing the same
US8019098B2 (en) 2008-04-28 2011-09-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8030623B2 (en) 2008-07-25 2011-10-04 Tsinghua University Method and device for measuring electromagnetic signal
US8050431B2 (en) 2008-04-28 2011-11-01 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
JP2011219343A (en) * 2010-03-26 2011-11-04 Aisin Seiki Co Ltd Carbon nanotube composite and method for producing same
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
JP2012067277A (en) * 2010-08-25 2012-04-05 Kitami Institute Of Technology Asphalt material and method for producing the asphalt material
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8208661B2 (en) 2008-10-08 2012-06-26 Tsinghua University Headphone
US8208675B2 (en) 2008-08-22 2012-06-26 Tsinghua University Loudspeaker
US8225501B2 (en) 2009-08-07 2012-07-24 Tsinghua University Method for making thermoacoustic device
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
US8238586B2 (en) 2008-12-30 2012-08-07 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8249280B2 (en) 2009-09-25 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
EP2073109A3 (en) * 2007-12-21 2012-08-22 Tsing Hua University Touch panel and display device using the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8259967B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8259968B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8292436B2 (en) 2009-07-03 2012-10-23 Tsinghua University Projection screen and image projection system using the same
US8300854B2 (en) 2008-10-08 2012-10-30 Tsinghua University Flexible thermoacoustic device
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8331586B2 (en) 2008-12-30 2012-12-11 Tsinghua University Thermoacoustic device
KR101212421B1 (en) 2007-10-23 2012-12-13 혼하이 프리시젼 인더스트리 컴퍼니 리미티드 Touch panel, method for making the same, and electronic device adopting the same
KR101210701B1 (en) 2007-10-23 2012-12-18 혼하이 프리시젼 인더스트리 컴퍼니 리미티드 Touch panel, method for making the same, and electronic device adopting the same
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8406450B2 (en) 2009-08-28 2013-03-26 Tsinghua University Thermoacoustic device with heat dissipating structure
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8452031B2 (en) 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
US8457331B2 (en) 2009-11-10 2013-06-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8494187B2 (en) 2009-11-06 2013-07-23 Tsinghua University Carbon nanotube speaker
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
US8537640B2 (en) 2009-09-11 2013-09-17 Tsinghua University Active sonar system
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8603585B2 (en) 2007-12-14 2013-12-10 Tsinghua University Method for making carbon nanotube composite
KR101376139B1 (en) 2012-08-07 2014-03-19 포항공과대학교 산학협력단 Method of manufacturing carbon nanotube yarn and apparatus for the same
WO2014055699A1 (en) * 2012-10-04 2014-04-10 Applied Nanostructured Solutions, Llc Methods for making carbon nanostructure layers
US8811631B2 (en) 2009-11-16 2014-08-19 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8906338B2 (en) 2009-04-22 2014-12-09 Tsinghua University Method for making carbon nanotube film
US8905320B2 (en) 2009-06-09 2014-12-09 Tsinghua University Room heating device capable of simultaneously producing sound waves
JP2015510034A (en) * 2012-01-12 2015-04-02 センター ナショナル デ ラ レシェルシェ サイエンティフィック(シーエヌアールエス)Centre National De La Recherche Scientifique(Cnrs) Improved adhesion or adhesion of carbon nanotubes to the material surface via the carbon layer
JP2015078120A (en) * 2008-12-30 2015-04-23 独立行政法人産業技術総合研究所 Monolayer oriented carbon nanotube aggregate, bulky monolayer oriented carbon nanotube aggregate, powdery monolayer oriented carbon nanotube aggregate
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
US9107292B2 (en) 2012-12-04 2015-08-11 Applied Nanostructured Solutions, Llc Carbon nanostructure-coated fibers of low areal weight and methods for producing the same
US9327969B2 (en) 2012-10-04 2016-05-03 Applied Nanostructured Solutions, Llc Microwave transmission assemblies fabricated from carbon nanostructure polymer composites
JP2016516137A (en) * 2013-03-08 2016-06-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for bonding and orienting carbon nanotubes in a non-woven sheet and orientation sheet made thereby
JP2016526619A (en) * 2013-06-28 2016-09-05 ザ・ボーイング・カンパニーThe Boeing Company Hybrid fiber reinforced with whiskers by substrate injection into whisker yarn
US9447259B2 (en) 2012-09-28 2016-09-20 Applied Nanostructured Solutions, Llc Composite materials formed by shear mixing of carbon nanostructures and related methods
CN106521971A (en) * 2016-08-25 2017-03-22 北京浩运盛跃新材料科技有限公司 Method for improving performance of carbon nanotube fibers
US9802373B2 (en) 2014-06-11 2017-10-31 Applied Nanostructured Solutions, Llc Methods for processing three-dimensional printed objects using microwave radiation
US9836133B2 (en) 2010-12-27 2017-12-05 Tsinghua University Touch pen
JP2018172250A (en) * 2017-03-31 2018-11-08 日立造船株式会社 Method for making carbon nanotube web and method for producing carbon nanotube yarn
JP2019509909A (en) * 2016-01-29 2019-04-11 中国科学院蘇州納米技術与納米▲ファン▼生研究所 Carbon nanotube assembly
US10399322B2 (en) 2014-06-11 2019-09-03 Applied Nanostructured Solutions, Llc Three-dimensional printing using carbon nanostructures
CN110352176A (en) * 2017-03-30 2019-10-18 日本瑞翁株式会社 Fibrous carbon nanostructure dispersion liquid and its manufacturing method and fibrous carbon nanostructure
WO2020050142A1 (en) * 2018-09-03 2020-03-12 住友電気工業株式会社 Carbon nanotube composite bundled wire, heat-treated carbon nanotube composite bundled wire, method for producing carbon nanotube composite bundled wire, and method for producing heat-treated carbon nanotube composite bundled wire
WO2020050140A1 (en) * 2018-09-03 2020-03-12 住友電気工業株式会社 Carbon nanotube composite, method for producing same, and method for producing refined carbon nanotubes
JP2020534231A (en) * 2017-08-29 2020-11-26 ナワテクノロジーズ How to make vertically oriented carbon nanotubes, and electrochemical capacitors that use such nanotubes as electrodes
JP2021524545A (en) * 2018-05-16 2021-09-13 リンテック オブ アメリカ インクLintec Of America, Inc. Nanofiber fabric
JP7434810B2 (en) 2019-11-05 2024-02-21 Toppanホールディングス株式会社 Pellicle membrane and pellicle

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105696138B (en) 2004-11-09 2019-02-01 得克萨斯大学体系董事会 The manufacture and application of nano-fibre yams, band and plate
EP2880755B1 (en) 2012-08-01 2019-10-02 The Board of Regents,The University of Texas System Coiled and non-coiled twisted nanofiber yarn and polymer fiber torsional and tensile actuators
KR102558864B1 (en) * 2021-02-15 2023-07-24 부산대학교 산학협력단 High strength filament based on carbon nanofiber and method for preparing thereof

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049435A (en) * 2004-08-02 2006-02-16 Sony Corp Carbon nanotube and its arrangement method, field effect transistor using the same and its manufacturing method, and semiconductor device
JP2006062924A (en) * 2004-08-30 2006-03-09 Hitachi Zosen Corp Method for controlling density in formation of carbon nanotube

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006049435A (en) * 2004-08-02 2006-02-16 Sony Corp Carbon nanotube and its arrangement method, field effect transistor using the same and its manufacturing method, and semiconductor device
JP2006062924A (en) * 2004-08-30 2006-03-09 Hitachi Zosen Corp Method for controlling density in formation of carbon nanotube

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
JIANG K. ET AL.: "Spinning continuous carbon nanotube yarns", NATURE, vol. 419, 2002, pages 801, XP002298429 *
SUEKANE O. ET AL.: "Netsu CVD-ho o Mochiita Brush-jo Taso Carbon Nanotube no Kosoku Seicho", OYO BUTSURI, vol. 73, no. 5, 2004, pages 615 - 619, XP003017367 *
ZHANG M. ET AL.: "Multifunctional carbon nanotube yarns by downsizing an ancient technology", SCIENCE, vol. 306, 2004, pages 1358 - 1361, XP003017368 *

Cited By (178)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2008102813A1 (en) * 2007-02-20 2010-05-27 独立行政法人産業技術総合研究所 Beam-like body made of carbon nanotube and method for producing the same
WO2008102813A1 (en) * 2007-02-20 2008-08-28 National Institute Of Advanced Industrial Science And Technology Beam-like material comprising carbon nanotube, and method for production thereof
JP2008308355A (en) * 2007-06-13 2008-12-25 Denso Corp Method for manufacturing carbon nanotube
KR101210701B1 (en) 2007-10-23 2012-12-18 혼하이 프리시젼 인더스트리 컴퍼니 리미티드 Touch panel, method for making the same, and electronic device adopting the same
US8502786B2 (en) 2007-10-23 2013-08-06 Tsinghua University Touch panel
KR101212421B1 (en) 2007-10-23 2012-12-13 혼하이 프리시젼 인더스트리 컴퍼니 리미티드 Touch panel, method for making the same, and electronic device adopting the same
US8248377B2 (en) 2007-10-23 2012-08-21 Tsinghua University Touch panel
US8115742B2 (en) 2007-12-12 2012-02-14 Tsinghua University Touch panel and display device using the same
US8237670B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8248381B2 (en) 2007-12-12 2012-08-21 Tsinghua University Touch panel and display device using the same
US8237671B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US9040159B2 (en) 2007-12-12 2015-05-26 Tsinghua University Electronic element having carbon nanotubes
US8237674B2 (en) 2007-12-12 2012-08-07 Tsinghua University Touch panel and display device using the same
US8325585B2 (en) 2007-12-12 2012-12-04 Tsinghua University Touch panel and display device using the same
US8199119B2 (en) 2007-12-12 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
US8542212B2 (en) 2007-12-12 2013-09-24 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8363017B2 (en) 2007-12-12 2013-01-29 Beijing Funate Innovation Technology Co., Ltd. Touch panel and display device using the same
JP2009146412A (en) * 2007-12-12 2009-07-02 Qinghua Univ Touch panel and display device using the same
JP2009146413A (en) * 2007-12-12 2009-07-02 Qinghua Univ Touch panel and display device using the same
US8603585B2 (en) 2007-12-14 2013-12-10 Tsinghua University Method for making carbon nanotube composite
US8248379B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel, method for making the same, and display device adopting the same
KR101212372B1 (en) 2007-12-14 2012-12-13 혼하이 프리시젼 인더스트리 컴퍼니 리미티드 Touch panel and display device using the same
JP2009146424A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel, method for manufacturing the same, and display using the touch panel
JP2009146422A (en) * 2007-12-14 2009-07-02 Qinghua Univ Touch panel and display device using the same
US8237672B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8237673B2 (en) 2007-12-14 2012-08-07 Tsinghua University Touch panel and display device using the same
US8243029B2 (en) 2007-12-14 2012-08-14 Tsinghua University Touch panel and display device using the same
US8253701B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8253700B2 (en) 2007-12-14 2012-08-28 Tsinghua University Touch panel and display device using the same
US8411044B2 (en) 2007-12-14 2013-04-02 Tsinghua University Touch panel, method for making the same, and display device adopting the same
US8248380B2 (en) 2007-12-14 2012-08-21 Tsinghua University Touch panel and display device using the same
JP2009151779A (en) * 2007-12-21 2009-07-09 Qinghua Univ Touch panel and display using the same
EP2073109A3 (en) * 2007-12-21 2012-08-22 Tsing Hua University Touch panel and display device using the same
US8325146B2 (en) 2007-12-21 2012-12-04 Tsinghua University Touch panel and display device using the same
KR101210747B1 (en) 2007-12-21 2012-12-10 혼하이 프리시젼 인더스트리 컴퍼니 리미티드 Touch panel and display device using the same
US8248378B2 (en) 2007-12-21 2012-08-21 Tsinghua University Touch panel and display device using the same
US8243030B2 (en) 2007-12-21 2012-08-14 Tsinghua University Touch panel and display device using the same
US8111245B2 (en) 2007-12-21 2012-02-07 Tsinghua University Touch panel and display device using the same
US8585855B2 (en) 2007-12-21 2013-11-19 Tsinghua University Method for making touch panel
US8574393B2 (en) 2007-12-21 2013-11-05 Tsinghua University Method for making touch panel
US8237668B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch control device
US8325145B2 (en) 2007-12-27 2012-12-04 Tsinghua University Touch panel and display device using the same
US8237669B2 (en) 2007-12-27 2012-08-07 Tsinghua University Touch panel and display device using the same
JP2009157926A (en) * 2007-12-27 2009-07-16 Qinghua Univ Touch panel and display using the same
US8125878B2 (en) 2007-12-27 2012-02-28 Tsinghua University Touch panel and display device using the same
JP2009174093A (en) * 2008-01-25 2009-08-06 Sonac Kk Method for producing carbon fiber
JP2009184906A (en) * 2008-02-01 2009-08-20 Qinghua Univ Carbon nanotube structure and manufacturing method thereof
JP2011098885A (en) * 2008-02-29 2011-05-19 National Institute Of Advanced Industrial Science & Technology Carbon nanotube film structure and carbon nanotube microstructure
JP2009215120A (en) * 2008-03-11 2009-09-24 National Institute For Materials Science Nanocarbon material composite, method for producing the same, and electron emission element using nanocarbon material composite
CN102007236B (en) * 2008-04-16 2013-08-07 日信工业株式会社 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
US8263698B2 (en) 2008-04-16 2012-09-11 Nissin Kogyo Co., Ltd. Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
WO2009128374A1 (en) * 2008-04-16 2009-10-22 日信工業株式会社 Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
US8415420B2 (en) 2008-04-16 2013-04-09 Nissin Kogyo Co., Ltd. Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP2009275337A (en) * 2008-04-16 2009-11-26 Nissin Kogyo Co Ltd Carbon nanofiber, method for production thereof, method for production of carbon fiber composite material using carbon nanofiber, and carbon fiber composite material
JP2009265667A (en) * 2008-04-23 2009-11-12 Qinghua Univ Method for making liquid crystal display panel
US8068624B2 (en) 2008-04-28 2011-11-29 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8050430B2 (en) 2008-04-28 2011-11-01 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8059841B2 (en) 2008-04-28 2011-11-15 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8073164B2 (en) 2008-04-28 2011-12-06 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8270639B2 (en) 2008-04-28 2012-09-18 Tsinghua University Thermoacoustic device
US8073163B2 (en) 2008-04-28 2011-12-06 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8199938B2 (en) 2008-04-28 2012-06-12 Beijing Funate Innovation Technology Co., Ltd. Method of causing the thermoacoustic effect
US8073165B2 (en) 2008-04-28 2011-12-06 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8259968B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
US8259966B2 (en) 2008-04-28 2012-09-04 Beijing Funate Innovation Technology Co., Ltd. Acoustic system
US8068625B2 (en) 2008-04-28 2011-11-29 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8068626B2 (en) 2008-04-28 2011-11-29 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8259967B2 (en) 2008-04-28 2012-09-04 Tsinghua University Thermoacoustic device
JP2009268108A (en) * 2008-04-28 2009-11-12 Qinghua Univ Thermoacoustic device
US8050431B2 (en) 2008-04-28 2011-11-01 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8452031B2 (en) 2008-04-28 2013-05-28 Tsinghua University Ultrasonic thermoacoustic device
US8249279B2 (en) 2008-04-28 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8019097B2 (en) 2008-04-28 2011-09-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8019099B2 (en) 2008-04-28 2011-09-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8019100B2 (en) 2008-04-28 2011-09-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8019098B2 (en) 2008-04-28 2011-09-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
EP2120274A2 (en) 2008-05-14 2009-11-18 Tsing Hua University Carbon Nanotube Thin Film Transistor
JP2009278111A (en) * 2008-05-14 2009-11-26 Qinghua Univ Thin film transistor
EP2120274B1 (en) * 2008-05-14 2018-01-03 Tsing Hua University Carbon Nanotube Thin Film Transistor
JP2009278106A (en) * 2008-05-14 2009-11-26 Qinghua Univ Thin film transistor
JP2009278110A (en) * 2008-05-14 2009-11-26 Qinghua Univ Thin film transistor
JP2009278105A (en) * 2008-05-14 2009-11-26 Qinghua Univ Method of manufacturing thin film transistor
JP2009278104A (en) * 2008-05-16 2009-11-26 Qinghua Univ Thin film transistor
JP2009278109A (en) * 2008-05-16 2009-11-26 Qinghua Univ Thin film transistor
JP2009296594A (en) * 2008-06-04 2009-12-17 Qinghua Univ Thermoacoustic device
JP2009296593A (en) * 2008-06-04 2009-12-17 Qinghua Univ Thermoacoustic device
JP2009303217A (en) * 2008-06-13 2009-12-24 Qinghua Univ Thermoacoustic device
JP2010004537A (en) * 2008-06-18 2010-01-07 Qinghua Univ Thermoacoustic device
JP2010004536A (en) * 2008-06-18 2010-01-07 Qinghua Univ Thermoacoustic device
JP2010004535A (en) * 2008-06-18 2010-01-07 Qinghua Univ Thermoacoustic device
JP2010015576A (en) * 2008-07-04 2010-01-21 Qinghua Univ Touch panel
US8228308B2 (en) 2008-07-04 2012-07-24 Tsinghua University Method for making liquid crystal display adopting touch panel
US8105126B2 (en) 2008-07-04 2012-01-31 Tsinghua University Method for fabricating touch panel
US8237677B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8199123B2 (en) 2008-07-04 2012-06-12 Tsinghua University Method for making liquid crystal display screen
US8237680B2 (en) 2008-07-04 2012-08-07 Tsinghua University Touch panel
US8237679B2 (en) 2008-07-04 2012-08-07 Tsinghua University Liquid crystal display screen
US8411052B2 (en) 2008-07-09 2013-04-02 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8411051B2 (en) 2008-07-09 2013-04-02 Tsinghua University Liquid crystal display screen
US8390580B2 (en) 2008-07-09 2013-03-05 Tsinghua University Touch panel, liquid crystal display screen using the same, and methods for making the touch panel and the liquid crystal display screen
US8030623B2 (en) 2008-07-25 2011-10-04 Tsinghua University Method and device for measuring electromagnetic signal
US8208675B2 (en) 2008-08-22 2012-06-26 Tsinghua University Loudspeaker
US8260378B2 (en) 2008-08-22 2012-09-04 Tsinghua University Mobile phone
US8346316B2 (en) 2008-08-22 2013-01-01 Tsinghua University Personal digital assistant
JP2010049691A (en) * 2008-08-22 2010-03-04 Qinghua Univ Personal digital assistant
US8208661B2 (en) 2008-10-08 2012-06-26 Tsinghua University Headphone
US8300854B2 (en) 2008-10-08 2012-10-30 Tsinghua University Flexible thermoacoustic device
JP2010116632A (en) * 2008-11-11 2010-05-27 Osaka Prefecture Apparatus and method for producing fine carbon fiber twisted yarn
JP2010136369A (en) * 2008-12-05 2010-06-17 Qinghua Univ Thermoacoustic device
JP2015078120A (en) * 2008-12-30 2015-04-23 独立行政法人産業技術総合研究所 Monolayer oriented carbon nanotube aggregate, bulky monolayer oriented carbon nanotube aggregate, powdery monolayer oriented carbon nanotube aggregate
US8306246B2 (en) 2008-12-30 2012-11-06 Beijing FUNATE Innovation Technology Co., Ld. Thermoacoustic device
US8331586B2 (en) 2008-12-30 2012-12-11 Tsinghua University Thermoacoustic device
US8331587B2 (en) 2008-12-30 2012-12-11 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325949B2 (en) 2008-12-30 2012-12-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8325948B2 (en) 2008-12-30 2012-12-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8315414B2 (en) 2008-12-30 2012-11-20 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8315415B2 (en) 2008-12-30 2012-11-20 Beijing Funate Innovation Technology Co., Ltd. Speaker
US8345896B2 (en) 2008-12-30 2013-01-01 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8311245B2 (en) 2008-12-30 2012-11-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8379885B2 (en) 2008-12-30 2013-02-19 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8311244B2 (en) 2008-12-30 2012-11-13 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8763234B2 (en) 2008-12-30 2014-07-01 Beijing Funate Innovation Technology Co., Ltd. Method for making thermoacoustic module
US8238586B2 (en) 2008-12-30 2012-08-07 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8300855B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8300856B2 (en) 2008-12-30 2012-10-30 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8462965B2 (en) 2008-12-30 2013-06-11 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic module, thermoacoustic device, and method for making the same
US8325947B2 (en) 2008-12-30 2012-12-04 Bejing FUNATE Innovation Technology Co., Ltd. Thermoacoustic device
JP2010248069A (en) * 2009-04-20 2010-11-04 Qinghua Univ Method for fabricating carbon nanotube film and device for drawing the same
US8906338B2 (en) 2009-04-22 2014-12-09 Tsinghua University Method for making carbon nanotube film
JP2010275178A (en) * 2009-05-29 2010-12-09 Korea Advanced Inst Of Science & Technology Carbon nanotube bulk material and method for producing the same
US8905320B2 (en) 2009-06-09 2014-12-09 Tsinghua University Room heating device capable of simultaneously producing sound waves
US9077793B2 (en) 2009-06-12 2015-07-07 Tsinghua University Carbon nanotube based flexible mobile phone
JP2011026758A (en) * 2009-06-30 2011-02-10 Toyobo Co Ltd High-strength carbon fiber
JP2011026750A (en) * 2009-06-30 2011-02-10 Toyobo Co Ltd Method for producing high-strength polyacrylonitrile-based carbon fiber
US8292436B2 (en) 2009-07-03 2012-10-23 Tsinghua University Projection screen and image projection system using the same
US8225501B2 (en) 2009-08-07 2012-07-24 Tsinghua University Method for making thermoacoustic device
US8615096B2 (en) 2009-08-07 2013-12-24 Tsinghua University Thermoacoustic device
US8406450B2 (en) 2009-08-28 2013-03-26 Tsinghua University Thermoacoustic device with heat dissipating structure
US8537640B2 (en) 2009-09-11 2013-09-17 Tsinghua University Active sonar system
US8249280B2 (en) 2009-09-25 2012-08-21 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8494187B2 (en) 2009-11-06 2013-07-23 Tsinghua University Carbon nanotube speaker
US8457331B2 (en) 2009-11-10 2013-06-04 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
US8811631B2 (en) 2009-11-16 2014-08-19 Beijing Funate Innovation Technology Co., Ltd. Thermoacoustic device
JP2011153392A (en) * 2010-01-28 2011-08-11 Osaka Prefecture Carbon nanotube twisted yarn, and method for producing the same
JP2011219343A (en) * 2010-03-26 2011-11-04 Aisin Seiki Co Ltd Carbon nanotube composite and method for producing same
JP2012067277A (en) * 2010-08-25 2012-04-05 Kitami Institute Of Technology Asphalt material and method for producing the asphalt material
US9836133B2 (en) 2010-12-27 2017-12-05 Tsinghua University Touch pen
JP2015510034A (en) * 2012-01-12 2015-04-02 センター ナショナル デ ラ レシェルシェ サイエンティフィック(シーエヌアールエス)Centre National De La Recherche Scientifique(Cnrs) Improved adhesion or adhesion of carbon nanotubes to the material surface via the carbon layer
KR101376139B1 (en) 2012-08-07 2014-03-19 포항공과대학교 산학협력단 Method of manufacturing carbon nanotube yarn and apparatus for the same
US9447259B2 (en) 2012-09-28 2016-09-20 Applied Nanostructured Solutions, Llc Composite materials formed by shear mixing of carbon nanostructures and related methods
US9327969B2 (en) 2012-10-04 2016-05-03 Applied Nanostructured Solutions, Llc Microwave transmission assemblies fabricated from carbon nanostructure polymer composites
WO2014055699A1 (en) * 2012-10-04 2014-04-10 Applied Nanostructured Solutions, Llc Methods for making carbon nanostructure layers
US9133031B2 (en) 2012-10-04 2015-09-15 Applied Nanostructured Solutions, Llc Carbon nanostructure layers and methods for making the same
US9107292B2 (en) 2012-12-04 2015-08-11 Applied Nanostructured Solutions, Llc Carbon nanostructure-coated fibers of low areal weight and methods for producing the same
JP2016516137A (en) * 2013-03-08 2016-06-02 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニーE.I.Du Pont De Nemours And Company Method for bonding and orienting carbon nanotubes in a non-woven sheet and orientation sheet made thereby
JP2016526619A (en) * 2013-06-28 2016-09-05 ザ・ボーイング・カンパニーThe Boeing Company Hybrid fiber reinforced with whiskers by substrate injection into whisker yarn
US10399322B2 (en) 2014-06-11 2019-09-03 Applied Nanostructured Solutions, Llc Three-dimensional printing using carbon nanostructures
US9802373B2 (en) 2014-06-11 2017-10-31 Applied Nanostructured Solutions, Llc Methods for processing three-dimensional printed objects using microwave radiation
JP2019509909A (en) * 2016-01-29 2019-04-11 中国科学院蘇州納米技術与納米▲ファン▼生研究所 Carbon nanotube assembly
CN106521971A (en) * 2016-08-25 2017-03-22 北京浩运盛跃新材料科技有限公司 Method for improving performance of carbon nanotube fibers
CN110352176A (en) * 2017-03-30 2019-10-18 日本瑞翁株式会社 Fibrous carbon nanostructure dispersion liquid and its manufacturing method and fibrous carbon nanostructure
KR20190127745A (en) * 2017-03-30 2019-11-13 니폰 제온 가부시키가이샤 Fibrous carbon nanostructure dispersions and preparation methods thereof, and fibrous carbon nanostructures
KR102552129B1 (en) 2017-03-30 2023-07-05 니폰 제온 가부시키가이샤 Fibrous carbon nanostructure dispersion and preparation method therefor, and fibrous carbon nanostructure
CN110352176B (en) * 2017-03-30 2022-11-18 日本瑞翁株式会社 Fibrous carbon nanostructure dispersion liquid, method for producing same, and fibrous carbon nanostructure
JP2018172250A (en) * 2017-03-31 2018-11-08 日立造船株式会社 Method for making carbon nanotube web and method for producing carbon nanotube yarn
JP2020534231A (en) * 2017-08-29 2020-11-26 ナワテクノロジーズ How to make vertically oriented carbon nanotubes, and electrochemical capacitors that use such nanotubes as electrodes
JP7345453B2 (en) 2017-08-29 2023-09-15 ナワテクノロジーズ Method of manufacturing vertically oriented carbon nanotubes and electrochemical capacitors using such nanotubes as electrodes
JP2021524545A (en) * 2018-05-16 2021-09-13 リンテック オブ アメリカ インクLintec Of America, Inc. Nanofiber fabric
JP7354153B2 (en) 2018-05-16 2023-10-02 リンテック オブ アメリカ インク nanofiber fabric
JPWO2020050142A1 (en) * 2018-09-03 2021-08-26 住友電気工業株式会社 A method for producing a carbon nanotube composite assembly line, a heat-treated product of a carbon nanotube complex assembly line, a method for producing a carbon nanotube complex assembly line, and a method for producing a heat-treated product of a carbon nanotube complex assembly line.
JPWO2020050140A1 (en) * 2018-09-03 2021-08-26 住友電気工業株式会社 Carbon Nanotube Composite, Its Manufacturing Method, and Purified Carbon Nanotube Manufacturing Method
WO2020050140A1 (en) * 2018-09-03 2020-03-12 住友電気工業株式会社 Carbon nanotube composite, method for producing same, and method for producing refined carbon nanotubes
US11511996B2 (en) 2018-09-03 2022-11-29 Sumitomo Electric Industries, Ltd. Carbon nanotube composite, method for manufacturing the same, and method for manufacturing refined carbon nanotube
US11673806B2 (en) 2018-09-03 2023-06-13 Sumitomo Electric Industries, Ltd. Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
WO2020050142A1 (en) * 2018-09-03 2020-03-12 住友電気工業株式会社 Carbon nanotube composite bundled wire, heat-treated carbon nanotube composite bundled wire, method for producing carbon nanotube composite bundled wire, and method for producing heat-treated carbon nanotube composite bundled wire
JP7340527B2 (en) 2018-09-03 2023-09-07 住友電気工業株式会社 Carbon nanotube composite assembled wire, heat-treated carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated carbon nanotube composite assembled wire
JP7446228B2 (en) 2018-09-03 2024-03-08 住友電気工業株式会社 Carbon nanotube composite, method for producing the same, and method for producing purified carbon nanotubes
JP7434810B2 (en) 2019-11-05 2024-02-21 Toppanホールディングス株式会社 Pellicle membrane and pellicle

Also Published As

Publication number Publication date
JP4968854B2 (en) 2012-07-04
JPWO2007099975A1 (en) 2009-07-23

Similar Documents

Publication Publication Date Title
WO2007099975A1 (en) Carbon nanotube assembly, carbon nanotube fiber and process for producing carbon nanotube fiber
US11466380B2 (en) Composite graphene structures
JP5429751B2 (en) Carbon nanotube twisted yarn and method for producing the same
US10035706B2 (en) Systems and methods for growth of nanostructures on substrates, including substrates comprising fibers
Klein et al. Surface characterization and functionalization of carbon nanofibers
Nozaki et al. Fabrication of vertically aligned single-walled carbon nanotubes in atmospheric pressure non-thermal plasma CVD
CN106276870B (en) The preparation method of the pure carbon compound film of graphene-carbon nano tube
KR20080014750A (en) Methods and apparatuses for depositing nanometric filamentary structures
US20120058296A1 (en) Metal substrates having carbon nanotubes grown thereon and processes for production thereof
US20130101495A1 (en) Systems and methods for continuously producing carbon nanostructures on reusable substrates
Wei et al. Ultrathin single–layered membranes from double–walled carbon nanotubes
JP2010116632A (en) Apparatus and method for producing fine carbon fiber twisted yarn
AU2010328139A1 (en) CNT-infused fibers in thermoplastic matrices
Zaldivar et al. Surface functionalization without lattice degradation of highly crystalline nanoscaled carbon materials using a carbon monoxide atmospheric plasma treatment
JP7305146B2 (en) Carbon nanostructure production method and carbon nanostructure
Acosta Gentoiu et al. Morphology, microstructure, and hydrogen content of carbon nanostructures obtained by PECVD at various temperatures
EP2244538A2 (en) Charge exchange device
CN110300726A (en) Carbon nano-tube material, the method for the production and processing carbon nano-tube material
US9315385B2 (en) Increasing the specific strength of spun carbon nanotube fibers
Kleinsorge et al. Growth of aligned carbon nanofibres over large areas using colloidal catalysts at low temperatures
US9970130B2 (en) Carbon nanofibers with sharp tip ends and a carbon nanofibers growth method using a palladium catalyst
Shulga et al. Functionalisation of aligned carbon nanotubes with nitric acid vapour
Plšek et al. Towards catalytically active porous graphene membranes with pulsed laser deposited ceria nanoparticles
Patole et al. The effect of barrier layer-mediated catalytic deactivation in vertically aligned carbon nanotube growth
Gentoiu et al. Research Article Morphology, Microstructure, and Hydrogen Content of Carbon Nanostructures Obtained by PECVD at Various Temperatures

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application
DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)
ENP Entry into the national phase

Ref document number: 2008502808

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07715028

Country of ref document: EP

Kind code of ref document: A1

DPE1 Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101)