JP2004300631A - Carbon nanofiber and method for producing the same - Google Patents

Carbon nanofiber and method for producing the same Download PDF

Info

Publication number
JP2004300631A
JP2004300631A JP2003096253A JP2003096253A JP2004300631A JP 2004300631 A JP2004300631 A JP 2004300631A JP 2003096253 A JP2003096253 A JP 2003096253A JP 2003096253 A JP2003096253 A JP 2003096253A JP 2004300631 A JP2004300631 A JP 2004300631A
Authority
JP
Japan
Prior art keywords
fiber
alloy
carbon
catalyst particles
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003096253A
Other languages
Japanese (ja)
Other versions
JP4157791B2 (en
Inventor
Yusuke Watarai
祐介 渡会
Akio Mizuguchi
暁夫 水口
Hiroyuki Imai
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003096253A priority Critical patent/JP4157791B2/en
Publication of JP2004300631A publication Critical patent/JP2004300631A/en
Application granted granted Critical
Publication of JP4157791B2 publication Critical patent/JP4157791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a carbon nanofiber having high electric conductivity and chemically stable surface, capable of being produced at lower temperature than a conventional method and forming a graphite structure having high crystals. <P>SOLUTION: The catalyst particles have 0.01 μm to 100 μm average particle diameter and is composed of one kind of metal or an alloy of two or more kinds of metals selected from a group consisting of Fe, Ni, Co, Mn, Cu, Mg, Al and Ca or a metal oxide containing at least one kind of the metal as growing nuclei for fiber. A mixed gas of CO with H<SB>2</SB>or a mixed gas of CO<SB>2</SB>with H<SB>2</SB>is fed to the catalyst particles at 400°C to 700°C for 0.01-24 hr under 0.08-10 MPa pressure. As a result, a plurality of flat graphite nets are laminated and carbon nanofiber composed of a fiber body which is substantially vertical to the axis of the fiber and an amorphous carbon layer for covering the surface of the fiber body is grown from the catalyst particles. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、ファイバ本体表面が無定形炭素で被覆されたカーボンナノファイバ及びその製造方法に関する。更に詳しくは、低温合成により得られ、黒鉛化処理を施すことなく高結晶の黒鉛構造を有するカーボンナノファイバ及びその製造方法に関するものである。
【0002】
【従来の技術】
カーボンナノファイバは一般的に長さが数十nm〜数千nm、直径は2〜20nmの外径と、1〜3nmの内径を有し、平板上のグラファイト網が複数積層した構造になっており、繊維状の繊維長と外径の比を示す縦横比(アスペクト比)が100〜1000程度である。
【0003】
従来この種のカーボンナノファイバの合成には、電極放電法、気相成長法、レーザ法等が用いられている。このうち、触媒成長法とも呼ばれる気相成長法によるカーボンナノファイバの製造方法は、1000℃以上の高温でカーボンナノファイバを成長させるのが一般的である。具体的には、触媒粒子が基板上に配置された製造装置内を加熱し、装置内に原料ガスを供給すると、原料ガスが熱分解する。熱分解した物質が基板上に配置された触媒粒子を種として長さ方向にカーボンが成長する。一定の長さに成長すると、長さ方向への成長が鈍化し、続いて太さ方向に徐々に成長することにより所定の大きさ、所定のアスペクト比を有するカーボンナノファイバに成長する。
【0004】
成長したカーボンナノファイバは、高い黒鉛質のものはなかなか得られず、その表面層は結晶性の低い層が形成されている。そのため、カーボンナノファイバを2500〜2800℃の高温で熱処理して結晶性の低い層を結晶化させる黒鉛化処理を施していた。しかし、このような黒鉛化処理を施すことで、カーボンナノファイバの原料コストが上昇してしまう問題があった。
【0005】
このような問題を解決する方策として、直径0.01〜0.5μm及びアスペクト比2〜30000を有し、熱分解炭素層の厚みが直径の20%以下である創生微細炭素繊維が開示されている(例えば、特許文献1参照。)。この特許文献1によると、熱分解炭素層は乱層構造層であり、炭素繊維の芯部分と比較してかなり結晶性が悪い。そこで、直径の20%以下に熱分解炭素被覆層を制御することで、従来の炭素繊維に比べて著しく機械的強度を向上させている。このような特性を有する創生微細炭素繊維の製造方法は、従来の基板に鉄やニッケルなどの超微粒子触媒を形成させる手法に代えて、有機遷移金属化合物のガスを使用して約1070℃に保たれた電気炉空間に流動する超微粒子触媒を形成しながら、原料となる混合ガスを供給することで炭素繊維を成長させている。
【0006】
一方、両端が閉じたシリンダー形になっているカーボンナノチューブやカーボンナノファイバを含む炭素材料は、リチウム二次電池のリチウムを担持させる負極材料として研究が盛んに行われている。例えば、黒鉛にリチウムを担持させた炭素材料を用いる場合には、電池の充電時にリチウムが黒鉛の層間に挿入され、放電時に黒鉛層間よりリチウムが放出される。しかしながら、黒鉛材料をリチウム二次電池の負極材料として用いる場合には、電解液として低温特性に優れたプロピレンカーボネートが黒鉛表面で電気化学的に分解されてしまうため、このプロピレンカーボネートを含む電解液が使用できない問題があった。
【0007】
この問題を解決する方策として、表面が熱分解アモルファス状炭素により被覆された黒鉛系炭素材料の製造方法において、熱分解炭素源となる原料を黒鉛系炭素材料に化学蒸着させて、熱分解炭素被覆層を生成させた後、蒸着温度よりも高い温度で熱処理することを特徴とする黒鉛系炭素材料の製造方法が開示されている(例えば、特許文献2参照。)。この製造方法では、出発原料として天然黒鉛、人造黒鉛、黒鉛化されたメソカーボンマイクロビーズ、黒鉛化されたピッチ系炭素繊維のような、平均粒径が0.1〜100μm程度の粒子状物を用い、この粒子状の出発原料表面に熱分解炭素被覆層を生成させた後、高温熱処理することにより黒鉛系炭素材料を得ている。このような黒鉛系炭素材料を負極材料として使用することでリチウム二次電池に低温特性の優れたプロピレンカーボネートを含む電解液を用いる場合においても、初期効率が良好でかつ放電容量が高い電池が得られる。
【0008】
【特許文献1】
特開昭61−70014号公報
【特許文献2】
特開2002−241117号公報
【0009】
【発明が解決しようとする課題】
しかし、上記特許文献1に示された創生微細炭素繊維では、炭素繊維表面の結晶性が悪いものの炭素繊維表面は依然として結晶構造であるため、その表面の活性は比較的高く、化学的安定性に劣る。それ以前にこの特許文献1に示された製造方法では、1000℃以上の条件においてファイバを製造できないことが判明した。
また、上記特許文献2に示される炭素材料では、粒子状の出発原料に熱分解炭素被覆層を生成し、更に高温熱処理を施さなければならないため、製造効率が悪い問題があった。
【0010】
本発明の第1の目的は、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有するカーボンナノファイバを製造する方法を提供することにある。
本発明の第2の目的は、高い電気伝導性を有し、かつ表面が安定なカーボンナノファイバ及びその製造方法を提供することにある。
本発明の第3の目的は、リチウム二次電池の負極材料として用いた場合、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能なカーボンナノファイバ及びその製造方法を提供することにある。
本発明の第4の目的は、樹脂と混合して成形する場合に優れた加工性を有するカーボンナノファイバ及びその製造方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、気相成長法によりカーボンナノファイバを製造する方法の改良であり、その特徴ある構成は、平均粒径が0.01μm〜100μmであってファイバの成長核としてFe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOとHの混合ガス又はCOとHの混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体とファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを触媒粒子から成長させるところにある。
【0012】
請求項1に係る発明では、上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有し、ファイバ本体表面が無定形炭素層で被覆されたカーボンナノファイバを得ることができる。
【0013】
請求項2に係る発明は、請求項1に係る発明であって、触媒粒子が所定の反応温度において、Feのα相を維持するような合金組成比で調製された金属触媒である製造方法である。
請求項3に係る発明は、請求項1又は2に係る発明であって、触媒粒子がFe−Ni合金、Fe−Co合金又はFe−Cu合金である製造方法である。
請求項4に係る発明は、請求項2又は3に係る発明であって、Fe−Ni合金に含まれるFeとNiのモル比(Fe/Ni)が20/80〜99/1である製造方法である。
請求項5に係る発明は、請求項2又は3に係る発明であって、Fe−Co合金に含まれるFeとCoのモル比(Fe/Co)が20/80〜99/1である製造方法である。
請求項6に係る発明は、請求項2又は3に係る発明であって、Fe−Cu合金に含まれるFeとCuのモル比(Fe/Cu)が20/80〜99/1である製造方法である。
請求項7に係る発明は、請求項1に係る発明であって、混合ガスのCOに対するHの混合容積比(CO/H)が20/80〜90/10である製造方法である。
請求項8に係る発明は、請求項7に係る発明であって、混合ガスのCOに対するHの混合容積比(CO/H)が40/60〜90/10である製造方法である。
請求項1ないし8に記載された条件で製造することにより、より確実に高結晶の黒鉛構造を有するファイバ本体表面を無定形炭素層で被覆することができる。
【0014】
請求項9に係る発明は、図1及び図2に示すように、平面状のグラファイト網が複数積層され、グラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体11を有し、ファイバ本体11が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバの改良であり、その特徴ある構成は、ファイバのX線回折において測定されるファイバ本体11のグラファイト網平面の積層間隔d002が0.3356nm〜0.3370nmであって、ファイバ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されたところにある。
請求項9に係るカーボンナノファイバは、ファイバ本体11がグラファイト網平面の積層間隔d002が0.3356nm〜0.3370nmであるため、高い電気伝導性を有する一方、ファイバ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されているため、表面活性度が低く化学的に安定であるとともに樹脂と混合して成形する場合にメルトフローインデックスの低下が非常に小さいため成形性に優れる。また本発明のカーボンナノファイバは、比表面積が300m/g以下であり、樹脂と混合した場合の吸油量が小さいので樹脂本来の物性の低下を抑制することができる。更に本発明のカーボンナノファイバをリチウム二次電池の負極材料として用いた場合、無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。
【0015】
請求項10に係る発明は、請求項9に係る発明であって、無定形炭素層12がファイバ本体11全表面の少なくとも80%の割合で被覆されたカーボンナノファイバである。
請求項10に係る発明では、ファイバ10全表面の少なくとも80%を無定形炭素層12で被覆することで、化学安定性がより向上し、加工性にも優れる。
【0016】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明は気相成長法によりカーボンナノファイバを製造する方法の改良である。その特徴ある構成は、平均粒径が0.01μm〜100μmであってファイバの成長核としてFe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOとHの混合ガス又はCOとHの混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体とファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを触媒粒子から成長させるところにある。
【0017】
シーディング工程として、先ず触媒粒子をファイバの成長核として石英などの基板上に配置する。触媒粒子は、平均粒径が0.01μm〜100μm、好ましくは0.1μm〜10μmの範囲内の微粉末がカーボンナノファイバを製造する際に好適な大きさであり、Fe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物が触媒材料として挙げられる。所定の反応温度において、Feのα相を維持するような合金組成比で調製された金属触媒が好ましく、具体的にはFe−Ni合金やFe−Co合金、Fe−Cu合金がより好ましい。Fe−Ni合金に含まれるFeとNiのモル比(Fe/Ni)は20/80〜99/1、好ましくは40/60〜90/10である。Fe−Co合金に含まれるFeとCoのモル比(Fe/Co)は20/80〜99/1、好ましくは50/50〜95/5である。Fe−Cu合金に含まれるFeとCuのモル比(Fe/Cu)は20/80〜99/1、好ましくは80/20〜95/5である。
【0018】
触媒粒子の基板上への配置は、触媒粒子をそのまま均一に振りかけてよい。また触媒粒子をアルコール等の溶媒に懸濁させて懸濁液を調製し、この懸濁液を基板上に散布して乾燥することにより、所定の間隔で所望の量を基板上に配置してもよい。また、触媒粒子を構成する金属の硝酸塩溶液を調製し、この溶液を基板表面に塗布あるいは散布し、熱処理炉内に基板を挿入して炉内を200℃以上に昇温することによっても所定の間隔で所望の量を基板上に配置することができる。更に、基板を事前に熱処理炉内に収容して炉内を加熱し、触媒粒子を構成する金属の有機化合物等を熱処理炉内に任意の流量で供給して熱分解させ、触媒粒子を直接基板上に形成させることでも所定の間隔で所望の量を基板上に配置することができる。
【0019】
触媒粒子はカーボンナノファイバを製造する前に前処理を施し活性化させることが好ましい。活性化は、触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱することにより行われる。
【0020】
続いて、カーボンナノファイバの原料となる所定の混合ガスを基板上に配置された触媒粒子に0.01〜24時間供給してファイバ表面が無定形炭素で被覆されたカーボンナノファイバを触媒粒子から成長させる。
【0021】
図3に本発明のカーボンナノファイバを製造する熱処理炉20を示す。この熱処理炉20は断熱性材質からなる装置本体21から構成され、装置本体21内部は所定の間隔をあけて2枚の仕切板26により水平に仕切られる。仕切板26,26により仕切られた装置本体21内部の頂部及び底部には発熱体22がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体22の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板26,26で仕切られた空間に原料となる混合ガスを供給するように装置本体21の一方の側部には、ガス供給口24が設けられる。
【0022】
カーボンナノファイバの原料となるガスとしては、CO及びHを含む混合ガス、COとHの混合ガスが挙げられる。混合ガスのCOに対するHの混合容積比(CO/H)は20/80〜90/10である。混合ガスのCOに対するHの混合容積比(CO/H)は40/60〜90/10が好ましい。なお、混合ガスのCOに対するHの混合容積比(CO/H)を示したが、混合ガスのCOに対するHの混合容積比(CO/H)も同様の混合容積比としてよい。
【0023】
仕切板26,26により仕切られた空間27は、粉末の触媒を散布した基板28が収容可能な大きさを有し、装置本体21の他方の側部には系外へ熱処理炉20内に供給した原料ガスを排出するガス排出口29が設けられる。空間27内に収容される基板28は取出し台31の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0024】
基板28に粉末の触媒32を載せた後、その基板28を取出し台31の上に載せて熱処理炉20まで搬送し、装置本体21の空間27内に収納する。その後、熱処理炉20内を0.08〜10MPaの範囲内に圧力を制御し、原料となる混合ガスをガス供給口24から供給し、発熱体22,22により加熱する。原料となる混合ガスの供給量は0.2L/min〜10L/min、加熱温度は400℃〜700℃、好ましくは500℃以上600℃未満に設定される。なお、混合ガスの供給量は触媒粒子の量や炉の大きさに依存する。従って、上記ガス供給量の数値範囲は一般的な製造方法における目安である。加熱温度を400℃〜700℃に規定したのは、下限値未満では反応速度が遅すぎてカーボンナノファイバを合成できず、上限値を越えるとファイバ状には合成されず、すすや黒鉛微粉が得られてしまうからである。原料となる混合ガスを供給しながら加熱し、0.01〜24時間保持しておくことにより、触媒粒子32を介してカーボンナノファイバ33が成長する。得られたカーボンナノファイバ33には触媒が含まれているので、必要に応じて熱処理炉20内より基板28を搬出して得られたカーボンナノファイバ33を取出し、このカーボンナノファイバ33を硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、カーボンナノファイバ33に含まれる触媒粒子32を除去する。なお、触媒粒子32をそのままカーボンナノファイバ中に含ませ、担持させた状態で使用してもよい。また、本実施の形態では、熱処理炉本体21の一方の側部より、原料となる混合ガスを供給する構成としたが、本体頂部又は底部より原料となる混合ガスを供給する構成としてもよい。
【0025】
このように上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有し、このファイバ本体が無定形炭素層で被覆されたカーボンナノファイバを得ることができる。
【0026】
本発明の製造方法により得られた本発明のカーボンナノファイバは、図1及び図2に示すように、平面状のグラファイト網がファイバの縦軸に対して実質的に垂直に複数積層され、10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するファイバ本体11を主体とする。
【0027】
本発明の特徴ある構成は、カーボンナノファイバのX線回折において測定されるファイバ本体11のグラファイト網平面の積層間隔d002は0.3356nm〜0.3370nmの範囲内であり、ファイバ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されたところにある。グラファイト網平面の積層間隔d002を0.3356nm〜0.3370nmの範囲内に規定することで高い電気伝導性を有する。0.3356nm未満のものは合成が難しく、0.3370nmを越えると結晶性が無く、安定性に欠け、また十分な導電性が得られない。好ましい積層間隔d002は、0.3356nm〜0.3360nmである。ファイバ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されているため、カーボンナノファイバ表面が化学的に安定になる。無定形炭素層12の厚さは上記製造条件により0.1nm〜5nmの範囲に形成される。0.1nm未満であると無定形炭素層12の存在価値が低く、本発明の効果が現れない。5nmを越えると表面の無定形炭素層が厚く、導電性が損なわれるとともにLiの侵入が困難となる。無定形炭素層12の厚さは0.5nm〜3.0nmが好ましい。
【0028】
無定形炭素層12はファイバ本体11全表面の少なくとも80%の割合で被覆される。ファイバ10全表面の少なくとも80%を無定形炭素層12で被覆することで、化学安定性がより向上し、加工性にも優れる。無定形炭素層12はファイバ本体全表面の90%以上の割合で被覆することが好ましい。
【0029】
本発明のカーボンナノファイバをリチウム二次電池の負極材料として用いた場合、無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。
【0030】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、平均粒径1μm以下のFe−Ni合金1g(モル比:Fe/Ni=70/30)を触媒粒子として用意した。この触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱して活性化させた。次いで図3に示すように、活性化させた触媒を基板28上に載せ、基板28を熱処理炉20内に収容した。次に、熱処理炉内を600〜630℃の温度に加熱し、COとHを含む混合ガス(混合容積比:CO/H=80/20)を原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内に供給しながら約10時間保持してカーボンナノファイバを含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒を除去して黒鉛化処理を行うことなくカーボンナノファイバを得た。
【0031】
<実施例2>
加熱温度を570〜600℃に変えた以外は実施例1と同様にしてカーボンナノファイバを得た。
<実施例3>
加熱温度を540〜570℃に変えた以外は実施例1と同様にしてカーボンナノファイバを得た。
【0032】
<実施例4>
平均粒径1μm以下のFe−Co合金1g(モル比:Fe/Co=90/10)を触媒粒子として用い、加熱温度を620〜660℃に変えた以外は実施例1と同様にしてカーボンナノファイバを得た。
<実施例5>
平均粒径1μm以下のFe−Cu合金1g(モル比:Fe/Cu=90/10)を触媒粒子として用い、加熱温度を600〜650℃に変えた以外は実施例1と同様にしてカーボンナノファイバを得た。
【0033】
<比較例1>
実施例1で得られたカーボンナノファイバを更に2800℃で2時間熱処理して黒鉛化処理を施した。
<比較例2>
実施例2で得られたカーボンナノファイバを更に2800℃で2時間熱処理して黒鉛化処理を施した。
【0034】
<比較例3>
実施例1における製造条件のうち、熱処理炉内の温度を1000℃に加熱した以外、実施例1と同様の製造条件でカーボンナノファイバを得ようとしたが、カーボンナノファイバを合成できなかった。これは反応温度が高すぎるため粉末が合成できなかったと考えられる。
【0035】
<比較試験及び評価>
実施例1〜5及び比較例1〜2でそれぞれカーボンナノファイバを透過型電子顕微鏡にて観察したところ、実施例1〜5のカーボンナノファイバ表面に無定形炭素層による被覆を確認した。比較例1〜2のカーボンナノファイバ表面には無定形炭素層による被覆は確認できなかった。また実施例1〜5及び比較例1〜2でそれぞれ得られたカーボンナノファイバをX線回折により黒鉛層間隔d002を測定した。また実施例1〜5及び比較例1〜2でそれぞれ得られたカーボンナノファイバの抵抗率を測定した。抵抗率の測定は、得られたカーボンナノファイバを100kg/cmの圧力でプレスし、四端子法で抵抗値を測定することにより求めた。実施例1〜5及び比較例1〜2でそれぞれ得られたカーボンナノファイバの黒鉛層間隔d002と粉末抵抗の結果を次の表1にそれぞれ示す。
【0036】
【表1】

Figure 2004300631
【0037】
表1より明らかなように、実施例1〜5と比較例1〜2を比較すると、比較例1〜2のカーボンナノファイバは、黒鉛化処理を行ったため、ファイバ表面に被覆されていた無定形炭素層が結晶化したため、やや黒鉛質の成長がみられ、面間隔d002値も僅かに低い結果となった。比較例1〜2は実施例1〜5の粉体抵抗値と同様の数値を示し、特に変化はみられなかった。この結果から、無定形炭素層を被覆しているカーボンナノファイバでも被覆していないカーボンナノファイバと同等の導電性能を有することが確認できた。また、本発明の製造方法により得られた実施例1〜5のカーボンナノファイバは高電気伝導性を有する結果となった。これは低温での製造条件でも高い結晶性の黒鉛構造を有することの裏付けとなる。
【0038】
【発明の効果】
以上述べたように、本発明の気相成長法でカーボンナノファイバを製造する方法では、平均粒径が0.01μm〜100μmであってファイバの成長核としてFe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOとHの混合ガス又はCOとHの混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体とファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを触媒粒子から成長させることにより、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有するカーボンナノファイバを得ることができる。
【0039】
また本発明のカーボンナノファイバは、平面状のグラファイト網が複数積層され、グラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体を有し、ファイバ本体が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するファイバ本体と、このファイバ本体の表面が厚さ0.1nm〜5nmの無定形炭素層で被覆され、ファイバのX線回折において測定されるファイバ本体のグラファイト網平面の積層間隔d002が0.3356nm〜0.3370nmであるため、第一に高い電気伝導性を有し、第二にファイバ表面が化学的に安定である。また本発明のカーボンナノファイバをリチウム二次電池の負極材料として用いた場合、無定形炭素層が活性なファイバ本体の黒鉛層を被覆しているため、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。また無定形炭素層がファイバ全表面の少なくとも80%の割合で被覆されることで、化学安定性がより向上し、加工性にも優れる。
【図面の簡単な説明】
【図1】本発明のカーボンナノファイバの模式図。
【図2】図1に対応するカーボンナノファイバの断面図。
【図3】カーボンナノファイバを作製する熱処理炉の断面構成図。
【符号の説明】
10 カーボンナノファイバ
11 ファイバ本体
12 無定形炭素層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a carbon nanofiber whose surface is coated with amorphous carbon and a method for producing the same. More specifically, the present invention relates to a carbon nanofiber obtained by low-temperature synthesis and having a highly crystalline graphite structure without performing a graphitization treatment, and a method for producing the same.
[0002]
[Prior art]
Carbon nanofibers generally have an outer diameter of several tens to several thousand nm, a diameter of 2 to 20 nm, and an inner diameter of 1 to 3 nm, and have a structure in which a plurality of graphite nets on a flat plate are laminated. The aspect ratio, which indicates the ratio of the fibrous fiber length to the outer diameter, is about 100 to 1,000.
[0003]
Conventionally, an electrode discharge method, a vapor phase growth method, a laser method, and the like have been used for synthesizing this type of carbon nanofiber. Among them, a method for producing carbon nanofibers by a vapor phase growth method also called a catalyst growth method generally grows carbon nanofibers at a high temperature of 1000 ° C. or higher. Specifically, when the inside of the manufacturing apparatus in which the catalyst particles are arranged on the substrate is heated and the source gas is supplied into the apparatus, the source gas is thermally decomposed. Carbon grows in the length direction from the thermally decomposed substance using the catalyst particles arranged on the substrate as seeds. When it grows to a certain length, the growth in the length direction slows down, and then grows gradually in the thickness direction to grow into a carbon nanofiber having a predetermined size and a predetermined aspect ratio.
[0004]
Highly graphitic carbon nanofibers are difficult to obtain, and a layer with low crystallinity is formed on the surface layer. Therefore, the carbon nanofiber has been subjected to a graphitization treatment for heat-treating the carbon nanofiber at a high temperature of 2500 to 2800 ° C. to crystallize a layer having low crystallinity. However, there has been a problem that such a graphitization treatment increases the raw material cost of the carbon nanofiber.
[0005]
As a measure for solving such a problem, there has been disclosed a fine carbon fiber having a diameter of 0.01 to 0.5 μm and an aspect ratio of 2 to 30,000, wherein the thickness of a pyrolytic carbon layer is 20% or less of the diameter. (For example, see Patent Document 1). According to Patent Document 1, the pyrolytic carbon layer is a turbostratic structure layer, and has considerably poor crystallinity as compared with the core portion of the carbon fiber. Therefore, by controlling the pyrolytic carbon coating layer to 20% or less of the diameter, the mechanical strength is significantly improved as compared with the conventional carbon fiber. The method for producing a fine carbon fiber having such characteristics is to use an organic transition metal compound gas at about 1070 ° C. instead of a conventional method of forming an ultrafine catalyst such as iron or nickel on a substrate. The carbon fibers are grown by supplying a mixed gas as a raw material while forming an ultra-fine catalyst flowing in the kept electric furnace space.
[0006]
On the other hand, carbon materials including carbon nanotubes and carbon nanofibers having a cylindrical shape with both ends closed have been actively studied as negative electrode materials for supporting lithium in lithium secondary batteries. For example, in the case of using a carbon material in which graphite is supported on lithium, lithium is inserted between graphite layers when the battery is charged, and lithium is released from the graphite layer when discharging. However, when a graphite material is used as a negative electrode material of a lithium secondary battery, propylene carbonate having excellent low-temperature characteristics as an electrolytic solution is electrochemically decomposed on the graphite surface. There was a problem that could not be used.
[0007]
As a measure to solve this problem, in a method for producing a graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, a raw material serving as a pyrolytic carbon source is chemically vapor-deposited on the graphite-based carbon material to form a pyrolytic carbon coating. A method for producing a graphite-based carbon material is disclosed in which, after forming a layer, a heat treatment is performed at a temperature higher than a vapor deposition temperature (for example, see Patent Document 2). In this production method, particles having an average particle size of about 0.1 to 100 μm, such as natural graphite, artificial graphite, graphitized mesocarbon microbeads, and graphitized pitch-based carbon fibers, are used as starting materials. After forming a pyrolytic carbon coating layer on the surface of the particulate starting material, a graphite-based carbon material is obtained by high-temperature heat treatment. By using such a graphite-based carbon material as a negative electrode material, a battery having good initial efficiency and high discharge capacity can be obtained even when an electrolyte containing propylene carbonate having excellent low-temperature characteristics is used in a lithium secondary battery. Can be
[0008]
[Patent Document 1]
JP-A-61-70014 [Patent Document 2]
JP-A-2002-241117
[Problems to be solved by the invention]
However, in the wound fine carbon fiber disclosed in Patent Document 1, although the crystallinity of the carbon fiber surface is poor, the surface of the carbon fiber still has a crystalline structure, so that the surface activity is relatively high and the chemical stability is low. Inferior. Prior to that, it was found that the manufacturing method disclosed in Patent Document 1 could not produce a fiber at a temperature of 1000 ° C. or higher.
Further, the carbon material disclosed in Patent Document 2 has a problem that the production efficiency is poor because a pyrolytic carbon coating layer must be formed on the particulate starting material and further subjected to a high-temperature heat treatment.
[0010]
A first object of the present invention is to provide a method for producing a carbon nanofiber which can be produced at a lower temperature than conventional ones and has a graphite structure in which the fiber main body has a high crystallinity without performing a graphitization treatment.
A second object of the present invention is to provide a carbon nanofiber having high electric conductivity and a stable surface, and a method for producing the same.
A third object of the present invention is to suppress the decomposition reaction of propylene carbonate contained in an electrolytic solution when used as a negative electrode material of a lithium secondary battery, obtain a high capacity of graphite, and further achieve a high rate of charge and discharge. An object of the present invention is to provide a possible carbon nanofiber and a method for manufacturing the same.
A fourth object of the present invention is to provide a carbon nanofiber having excellent workability when molded by mixing with a resin, and a method for producing the same.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is an improvement of a method for producing carbon nanofibers by a vapor phase growth method, and its characteristic configuration is that the average particle diameter is 0.01 μm to 100 μm, and Fe, The catalyst particles made of one metal selected from the group consisting of Ni, Co, Mn, Cu, Mg, Al and Ca, an alloy made of two or more metals, or a metal oxide containing at least one metal are used as catalyst particles. A mixed graphite gas of CO and H 2 or a mixed gas of CO 2 and H 2 is supplied to the catalyst particles for 0.01 to 24 hours at a temperature of 400 ° C. to 700 ° C. under a pressure of 0.08 to 10 MPa to produce a planar graphite network. Is a carbon nanofiber consisting of a fiber body whose graphite network is substantially perpendicular to the longitudinal axis of the fiber and an amorphous carbon layer covering the surface of the fiber body. It is a place to grow from a child.
[0012]
According to the first aspect of the present invention, the above-described manufacturing method enables lower-temperature manufacturing than before, the graphitization treatment is not performed, the fiber body has a highly crystalline graphite structure, and the fiber body surface has an amorphous carbon layer. Can be obtained.
[0013]
The invention according to claim 2 is the invention according to claim 1, wherein the catalyst particles are a metal catalyst prepared at an alloy composition ratio such that the α phase of Fe is maintained at a predetermined reaction temperature. is there.
The invention according to claim 3 is the invention according to claim 1 or 2, wherein the catalyst particles are a Fe—Ni alloy, an Fe—Co alloy, or an Fe—Cu alloy.
The invention according to claim 4 is the invention according to claim 2 or 3, wherein the molar ratio (Fe / Ni) of Fe to Ni contained in the Fe—Ni alloy is 20/80 to 99/1. It is.
The invention according to claim 5 is the invention according to claim 2 or 3, wherein the molar ratio (Fe / Co) of Fe and Co contained in the Fe—Co alloy is 20/80 to 99/1. It is.
The invention according to claim 6 is the invention according to claim 2 or 3, wherein the molar ratio (Fe / Cu) of Fe to Cu contained in the Fe-Cu alloy is 20/80 to 99/1. It is.
The invention according to claim 7 is the invention according to claim 1, the mixing volume ratio of H 2 to CO in the gas mixture (CO / H 2) is a production method is 20 / 80-90 / 10.
The invention according to claim 8 is the invention according to claim 7, the mixing volume ratio of H 2 to CO in the gas mixture (CO / H 2) is a production method is 40 / 60-90 / 10.
By producing under the conditions described in claims 1 to 8, the surface of the fiber body having a highly crystalline graphite structure can be more reliably covered with the amorphous carbon layer.
[0014]
The invention according to claim 9 has a fiber body 11 in which a plurality of planar graphite nets are laminated, and the graphite nets are substantially perpendicular to the longitudinal axis of the fiber, as shown in FIGS. 1 and 2. An improvement of carbon nanofibers in which the fiber body 11 has an average diameter of 10 nm to 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more, the characteristic configuration of which is a fiber measured by X-ray diffraction of the fiber. The lamination distance d 002 of the graphite net plane of the main body 11 is 0.3356 nm to 0.3370 nm, and the surface of the fiber main body 11 is covered with the amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm.
The carbon nanofiber according to claim 9 has high electrical conductivity because the fiber body 11 has a lamination interval d 002 of 0.3356 nm to 0.3370 nm on a graphite mesh plane, while the surface of the fiber body 11 has a thickness of 0.36 nm to 0.3370 nm. Since it is coated with the amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm, it has low surface activity and is chemically stable, and also has a very small decrease in the melt flow index when molded with a resin. Excellent in nature. In addition, the carbon nanofiber of the present invention has a specific surface area of 300 m 2 / g or less, and has a small oil absorption when mixed with a resin, so that it is possible to suppress a decrease in physical properties inherent in the resin. Furthermore, when the carbon nanofiber of the present invention is used as a negative electrode material of a lithium secondary battery, since the amorphous carbon layer covers the active graphite layer, the decomposition reaction of propylene carbonate contained in the electrolytic solution is suppressed, In addition, a high capacity of graphite can be obtained, and further high-rate charging and discharging can be performed.
[0015]
A tenth aspect of the present invention is the carbon nanofiber according to the ninth aspect, wherein the amorphous carbon layer 12 covers at least 80% of the entire surface of the fiber main body 11.
In the invention according to claim 10, by covering at least 80% of the entire surface of the fiber 10 with the amorphous carbon layer 12, chemical stability is further improved and workability is also excellent.
[0016]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
The present invention is an improvement in a method for producing carbon nanofibers by a vapor phase growth method. The characteristic configuration is such that the average particle diameter is 0.01 μm to 100 μm and one kind of metal selected from the group consisting of Fe, Ni, Co, Mn, Cu, Mg, Al and Ca two or more alloys, or made of a metal of at least one pressure of 0.08~10MPa catalyst particles comprising a metal oxide containing a metal, 400 ° C. to 700 mixed gas or CO at a temperature of ° C. CO and H 2 2 and the fiber body and the fiber body is substantially perpendicular to a gas mixture of H 2 with respect to the longitudinal axis of the planar graphite network to supply from 0.01 to 24 hours the catalyst particles are multiple stacked graphite network fiber Is to grow carbon nanofibers comprising an amorphous carbon layer covering the surface of the catalyst from the catalyst particles.
[0017]
As a seeding step, first, catalyst particles are arranged on a substrate such as quartz as a growth nucleus of a fiber. The catalyst particles have a mean particle size of 0.01 μm to 100 μm, preferably a fine powder having a size in the range of 0.1 μm to 10 μm, which is suitable for producing carbon nanofibers, and Fe, Ni, Co, Mn. , Cu, Mg, Al, and a metal selected from the group consisting of Al and Ca, an alloy of two or more metals, or a metal oxide containing at least one metal. A metal catalyst prepared with an alloy composition ratio that maintains the α phase of Fe at a predetermined reaction temperature is preferable, and specifically, an Fe—Ni alloy, an Fe—Co alloy, and an Fe—Cu alloy are more preferable. The molar ratio of Fe to Ni (Fe / Ni) contained in the Fe—Ni alloy is 20/80 to 99/1, preferably 40/60 to 90/10. The molar ratio of Fe to Co (Fe / Co) contained in the Fe—Co alloy is 20/80 to 99/1, preferably 50/50 to 95/5. The molar ratio of Fe to Cu (Fe / Cu) contained in the Fe-Cu alloy is 20/80 to 99/1, preferably 80/20 to 95/5.
[0018]
The catalyst particles may be arranged on the substrate by uniformly sprinkling the catalyst particles as they are. Also, a suspension is prepared by suspending the catalyst particles in a solvent such as alcohol, and the suspension is sprayed on a substrate and dried to arrange a desired amount on the substrate at predetermined intervals. Is also good. Also, a predetermined solution may be prepared by preparing a nitrate solution of a metal constituting the catalyst particles, applying or spraying the solution on the surface of the substrate, inserting the substrate into a heat treatment furnace and heating the furnace to 200 ° C. or more. A desired amount can be placed on the substrate at intervals. Furthermore, the substrate is housed in a heat treatment furnace in advance, the furnace is heated, and an organic compound such as a metal constituting the catalyst particles is supplied at an optional flow rate into the heat treatment furnace to be thermally decomposed. By forming them on the substrate, a desired amount can be arranged on the substrate at predetermined intervals.
[0019]
It is preferable that the catalyst particles are pretreated and activated before the production of the carbon nanofiber. Activation is carried out by heating the catalyst particles in a mixed gas atmosphere containing He and H 2.
[0020]
Subsequently, a predetermined mixed gas serving as a raw material of carbon nanofibers is supplied to the catalyst particles disposed on the substrate for 0.01 to 24 hours to convert the carbon nanofibers whose fiber surfaces are coated with amorphous carbon from the catalyst particles. Let it grow.
[0021]
FIG. 3 shows a heat treatment furnace 20 for producing the carbon nanofiber of the present invention. The heat treatment furnace 20 includes an apparatus main body 21 made of a heat insulating material, and the inside of the apparatus main body 21 is horizontally partitioned by two partition plates 26 at a predetermined interval. Heating elements 22 are installed at the top and bottom inside the apparatus main body 21 separated by the partition plates 26, 26, respectively. Examples of the heat source of the heating element 22 used for the heat treatment in the heat treatment furnace include an incandescent lamp, a halogen lamp, an arc lamp, and a graphite heater. A gas supply port 24 is provided on one side of the apparatus main body 21 so as to supply a mixed gas as a raw material to the space partitioned by the partition plates 26, 26.
[0022]
Examples of the gas serving as a raw material of the carbon nanofiber include a mixed gas containing CO and H 2 and a mixed gas of CO 2 and H 2 . Mixing volume ratio of H 2 to CO in the gas mixture (CO / H 2) is 20 / 80-90 / 10. Mixing volume ratio of H 2 to CO in the gas mixture (CO / H 2) is preferably 40 / 60-90 / 10. Although the mixed volume ratio of H 2 to CO of the mixed gas (CO / H 2 ) is shown, the mixed volume ratio of H 2 to CO 2 of the mixed gas (CO 2 / H 2 ) is also the same as the mixed volume ratio. Good.
[0023]
The space 27 divided by the partition plates 26 has a size capable of accommodating the substrate 28 on which the powdered catalyst has been dispersed, and the other side of the apparatus main body 21 is supplied outside the system into the heat treatment furnace 20. A gas outlet 29 for discharging the source gas is provided. The substrate 28 accommodated in the space 27 is placed on the take-out table 31 and provided so as to be accommodated in and out of the heat treatment furnace.
[0024]
After the powder catalyst 32 is placed on the substrate 28, the substrate 28 is placed on the take-out table 31, transported to the heat treatment furnace 20, and stored in the space 27 of the apparatus main body 21. Thereafter, the pressure inside the heat treatment furnace 20 is controlled within the range of 0.08 to 10 MPa, a mixed gas as a raw material is supplied from the gas supply port 24, and the heat is heated by the heating elements 22 and 22. The supply rate of the mixed gas as a raw material is set to 0.2 L / min to 10 L / min, and the heating temperature is set to 400 ° C. to 700 ° C., preferably 500 ° C. or more and less than 600 ° C. The supply amount of the mixed gas depends on the amount of the catalyst particles and the size of the furnace. Therefore, the above numerical range of the gas supply amount is a standard in a general manufacturing method. When the heating temperature is specified at 400 ° C. to 700 ° C., the reaction rate is too slow below the lower limit to synthesize carbon nanofibers, and if the heating temperature exceeds the upper limit, the carbon nanofibers are not synthesized, and soot and graphite fine powder are generated. It is because it is obtained. By heating while supplying a mixed gas as a raw material and holding the mixture for 0.01 to 24 hours, the carbon nanofibers 33 grow through the catalyst particles 32. Since the obtained carbon nanofibers 33 contain a catalyst, the carbon nanofibers 33 obtained by unloading the substrate 28 from the heat treatment furnace 20 are taken out if necessary, and the carbon nanofibers 33 are then replaced with nitric acid. The catalyst particles 32 contained in the carbon nanofibers 33 are removed by dipping in an acidic solution such as hydrochloric acid or hydrofluoric acid. The catalyst particles 32 may be directly contained in the carbon nanofibers and used in a state where they are supported. Further, in the present embodiment, the mixed gas serving as the raw material is supplied from one side of the heat treatment furnace main body 21, but the mixed gas serving as the raw material may be supplied from the top or bottom of the main body.
[0025]
Thus, the above-described manufacturing method enables lower-temperature manufacturing than before, without performing the graphitization treatment, the fiber body has a highly crystalline graphite structure, and the fiber body is coated with an amorphous carbon layer. Nanofibers can be obtained.
[0026]
As shown in FIG. 1 and FIG. 2, the carbon nanofiber of the present invention obtained by the manufacturing method of the present invention has a plurality of planar graphite nets laminated substantially perpendicularly to the longitudinal axis of the fiber. The main body is a fiber body 11 having an average diameter of about 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more.
[0027]
The characteristic configuration of the present invention is that the lamination distance d 002 of the graphite network plane of the fiber body 11 measured in the X-ray diffraction of the carbon nanofiber is in the range of 0.3356 nm to 0.3370 nm, and the surface of the fiber body 11 Is covered with an amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm. It has a high electrical conductivity by defining the laminated spacing d 002 of the graphite-net plane in the range of 0.3356Nm~0.3370Nm. If it is less than 0.3356 nm, it is difficult to synthesize, and if it exceeds 0.3370 nm, there is no crystallinity, lack of stability, and sufficient conductivity cannot be obtained. A preferred lamination interval d 002 is 0.3356 nm to 0.3360 nm. Since the surface of the fiber main body 11 is covered with the amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm, the surface of the carbon nanofiber becomes chemically stable. The thickness of the amorphous carbon layer 12 is formed in the range of 0.1 nm to 5 nm according to the above manufacturing conditions. If it is less than 0.1 nm, the existence value of the amorphous carbon layer 12 is low, and the effect of the present invention does not appear. If it exceeds 5 nm, the amorphous carbon layer on the surface becomes thick, the conductivity is impaired, and the penetration of Li becomes difficult. The thickness of the amorphous carbon layer 12 is preferably 0.5 nm to 3.0 nm.
[0028]
The amorphous carbon layer 12 covers at least 80% of the entire surface of the fiber body 11. By covering at least 80% of the entire surface of the fiber 10 with the amorphous carbon layer 12, the chemical stability is further improved and the workability is excellent. Preferably, the amorphous carbon layer 12 covers 90% or more of the entire surface of the fiber body.
[0029]
When the carbon nanofiber of the present invention is used as a negative electrode material of a lithium secondary battery, since the amorphous carbon layer covers the active graphite layer, the decomposition reaction of propylene carbonate contained in the electrolytic solution is suppressed, and A high capacity of graphite can be obtained, and a higher rate of charge / discharge can be achieved.
[0030]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 1 g (molar ratio: Fe / Ni = 70/30) of an Fe—Ni alloy having an average particle diameter of 1 μm or less was prepared as catalyst particles. The catalyst particles are activated by heating in a mixed gas atmosphere containing He and H 2. Next, as shown in FIG. 3, the activated catalyst was placed on the substrate 28, and the substrate 28 was housed in the heat treatment furnace 20. Next, the inside of the heat treatment furnace is heated to a temperature of 600 to 630 ° C., and a mixed gas containing CO and H 2 (mixing volume ratio: CO / H 2 = 80/20) is used as a source gas, and the flow rate of the source gas is 10 L / The mixture was kept for about 10 hours while supplying the mixture into the heat treatment furnace in minutes, to synthesize a mixture containing carbon nanofibers. The resulting mixture was immersed in a nitric acid solution to remove the catalyst contained in the mixture and obtain carbon nanofibers without performing graphitization.
[0031]
<Example 2>
A carbon nanofiber was obtained in the same manner as in Example 1 except that the heating temperature was changed to 570 to 600 ° C.
<Example 3>
A carbon nanofiber was obtained in the same manner as in Example 1 except that the heating temperature was changed to 540 to 570 ° C.
[0032]
<Example 4>
1 g of Fe—Co alloy having an average particle size of 1 μm or less (molar ratio: Fe / Co = 90/10) was used as the catalyst particles, and the carbon nano particles were prepared in the same manner as in Example 1 except that the heating temperature was changed to 620 to 660 ° C. Fiber was obtained.
<Example 5>
1 g of Fe—Cu alloy having an average particle size of 1 μm or less (molar ratio: Fe / Cu = 90/10) was used as the catalyst particles, and the carbon nano particles were processed in the same manner as in Example 1 except that the heating temperature was changed to 600 to 650 ° C. Fiber was obtained.
[0033]
<Comparative Example 1>
The carbon nanofiber obtained in Example 1 was further heat-treated at 2800 ° C. for 2 hours to perform graphitization.
<Comparative Example 2>
The carbon nanofibers obtained in Example 2 were further heat-treated at 2800 ° C. for 2 hours to perform graphitization.
[0034]
<Comparative Example 3>
Of the manufacturing conditions in Example 1, carbon nanofibers were obtained under the same manufacturing conditions as in Example 1 except that the temperature in the heat treatment furnace was heated to 1000 ° C., but carbon nanofibers could not be synthesized. This is presumably because the reaction temperature was too high to synthesize the powder.
[0035]
<Comparison test and evaluation>
In each of Examples 1 to 5 and Comparative Examples 1 and 2, the carbon nanofibers were observed with a transmission electron microscope. As a result, it was confirmed that the surfaces of the carbon nanofibers of Examples 1 to 5 were covered with an amorphous carbon layer. No coating with the amorphous carbon layer could be confirmed on the carbon nanofiber surfaces of Comparative Examples 1 and 2. The carbon nanofibers obtained in Examples 1 to 5 and Comparative Examples 1 and 2 were each measured for graphite layer distance d002 by X-ray diffraction. The resistivity of the carbon nanofibers obtained in Examples 1 to 5 and Comparative Examples 1 and 2 was measured. The resistivity was determined by pressing the obtained carbon nanofiber at a pressure of 100 kg / cm 2 and measuring the resistance value by a four-terminal method. The results of the graphite layer spacing d 002 and the powder resistance of the carbon nanofibers obtained in Examples 1 to 5 and Comparative Examples 1 and 2 are shown in Table 1 below.
[0036]
[Table 1]
Figure 2004300631
[0037]
As is clear from Table 1, when Examples 1 to 5 and Comparative Examples 1 and 2 are compared, the carbon nanofibers of Comparative Examples 1 and 2 were subjected to a graphitization treatment, so that the amorphous surface was coated on the fiber surface. Since the carbon layer was crystallized, a slight growth of graphite was observed, and the interplanar spacing d002 value was slightly lower. Comparative Examples 1 and 2 showed the same numerical values as the powder resistance values of Examples 1 to 5, and no particular change was observed. From this result, it was confirmed that even the carbon nanofiber coated with the amorphous carbon layer has the same conductive performance as the carbon nanofiber not coated. Further, the carbon nanofibers of Examples 1 to 5 obtained by the manufacturing method of the present invention resulted in high electric conductivity. This supports the fact that it has a highly crystalline graphite structure even under low-temperature production conditions.
[0038]
【The invention's effect】
As described above, in the method for producing carbon nanofibers by the vapor phase growth method of the present invention, the average particle diameter is 0.01 μm to 100 μm, and Fe, Ni, Co, Mn, Cu, Mg, Al and an alloy of two or more metals selected from the group consisting of Ca and catalyst particles of a metal oxide containing at least one metal, at a pressure of 0.08 to 10 MPa, A mixed gas of CO and H 2 or a mixed gas of CO 2 and H 2 is supplied to the catalyst particles at a temperature of 400 ° C. to 700 ° C. for 0.01 to 24 hours, and a plurality of planar graphite nets are laminated and the graphite net is a fiber. By growing from the catalyst particles carbon nanofibers consisting of a fiber body that is substantially perpendicular to the vertical axis and an amorphous carbon layer covering the surface of the fiber body, A carbon nanofiber that can be manufactured at a lower temperature than in the past and has a highly crystalline graphite structure can be obtained without performing a graphitization treatment.
[0039]
Further, the carbon nanofiber of the present invention has a plurality of planar graphite nets laminated, the graphite net has a fiber main body substantially perpendicular to the longitudinal axis of the fiber, and the fiber main body has an average diameter of 10 nm to 500 nm. And a fiber body having a length of 100 nm or more and an aspect ratio of 10 or more, and the surface of the fiber body is coated with an amorphous carbon layer having a thickness of 0.1 nm to 5 nm, and measured by X-ray diffraction of the fiber. Since the lamination interval d 002 of the graphite net plane of the fiber main body is 0.3356 nm to 0.3370 nm, firstly, it has high electrical conductivity, and secondly, the fiber surface is chemically stable. When the carbon nanofiber of the present invention is used as a negative electrode material of a lithium secondary battery, since the amorphous carbon layer covers the graphite layer of the active fiber body, the decomposition reaction of propylene carbonate contained in the electrolytic solution is performed. In addition, a high capacity of graphite can be obtained, and charging and discharging at a higher rate can be performed. In addition, since the amorphous carbon layer covers at least 80% of the entire surface of the fiber, the chemical stability is further improved and the workability is excellent.
[Brief description of the drawings]
FIG. 1 is a schematic view of a carbon nanofiber of the present invention.
FIG. 2 is a cross-sectional view of the carbon nanofiber corresponding to FIG.
FIG. 3 is a cross-sectional configuration diagram of a heat treatment furnace for producing carbon nanofibers.
[Explanation of symbols]
Reference Signs List 10 carbon nanofiber 11 fiber main body 12 amorphous carbon layer

Claims (10)

気相成長法によりカーボンナノファイバを製造する方法において、
平均粒径が0.01μm〜100μmであってファイバの成長核としてFe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOとHの混合ガス又はCOとHの混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層され前記グラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体と前記ファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを前記触媒粒子から成長させることを特徴とするカーボンナノファイバの製造方法。
In a method of producing carbon nanofibers by a vapor growth method,
The average particle diameter is 0.01 μm to 100 μm, and as a fiber growth nucleus, one or two or more metals selected from the group consisting of Fe, Ni, Co, Mn, Cu, Mg, Al and Ca comprising alloy or at least one pressure of 0.08~10MPa catalyst particles comprising a metal oxide containing a metal, mixed in 400 ° C. to 700 mixed gas of CO and H 2 at a temperature of ° C. or CO 2 and H 2 A gas is supplied to the catalyst particles for 0.01 to 24 hours, and a plurality of planar graphite nets are laminated, and the graphite net covers a fiber body substantially perpendicular to a longitudinal axis of the fiber and a surface of the fiber main body. A method for producing a carbon nanofiber, comprising growing a carbon nanofiber comprising an amorphous carbon layer to be formed from the catalyst particles.
触媒粒子が所定の反応温度において、Feのα相を維持するような合金組成比で調製された金属触媒である請求項1記載の製造方法。2. The method according to claim 1, wherein the catalyst particles are a metal catalyst prepared at an alloy composition ratio such that the α phase of Fe is maintained at a predetermined reaction temperature. 触媒粒子がFe−Ni合金、Fe−Co合金又はFe−Cu合金である請求項1又は2記載の製造方法。The method according to claim 1, wherein the catalyst particles are an Fe—Ni alloy, an Fe—Co alloy, or an Fe—Cu alloy. Fe−Ni合金に含まれるFeとNiのモル比(Fe/Ni)が20/80〜99/1である請求項2又は3記載の製造方法。The method according to claim 2 or 3, wherein the molar ratio of Fe to Ni (Fe / Ni) contained in the Fe-Ni alloy is 20/80 to 99/1. Fe−Co合金に含まれるFeとCoのモル比(Fe/Co)が20/80〜99/1である請求項2又は3記載の製造方法。The method according to claim 2 or 3, wherein the molar ratio (Fe / Co) of Fe and Co contained in the Fe-Co alloy is 20/80 to 99/1. Fe−Cu合金に含まれるFeとCuのモル比(Fe/Cu)が20/80〜99/1である請求項2又は3記載の製造方法。The method according to claim 2 or 3, wherein the molar ratio of Fe to Cu (Fe / Cu) contained in the Fe-Cu alloy is 20/80 to 99/1. 混合ガスのCOに対するHの混合容積比(CO/H)が20/80〜90/10である請求項1記載の製造方法。The process according to claim 1, wherein the mixing volume ratio of H 2 (CO / H 2) is 20 / 80-90 / 10 for CO gas mixture. 混合ガスのCOに対するHの混合容積比(CO/H)が40/60〜90/10である請求項7記載の製造方法。The process according to claim 7, wherein the mixing volume ratio of H 2 (CO / H 2) is 40 / 60-90 / 10 for CO gas mixture. 平面状のグラファイト網が複数積層され、前記グラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体(11)を有し、前記ファイバ本体(11)が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するカーボンナノファイバにおいて、
ファイバのX線回折において測定される前記ファイバ本体(11)のグラファイト網平面の積層間隔d002が0.3356nm〜0.3370nmであって、
前記ファイバ本体(11)の表面が厚さ0.1nm〜5nmの無定形炭素層(12)で被覆されたことを特徴とするカーボンナノファイバ。
A plurality of planar graphite nets are laminated, the graphite net having a fiber body (11) substantially perpendicular to the longitudinal axis of the fiber, wherein the fiber body (11) has an average diameter of 10 nm to 500 nm. In a carbon nanofiber having a length of 100 nm or more and an aspect ratio of 10 or more,
A lamination distance d 002 of a graphite network plane of the fiber body (11) measured by X-ray diffraction of the fiber is 0.3356 nm to 0.3370 nm;
A carbon nanofiber, wherein a surface of the fiber body (11) is coated with an amorphous carbon layer (12) having a thickness of 0.1 nm to 5 nm.
無定形炭素層(12)がファイバ本体(11)全表面の少なくとも80%の割合で被覆された請求項9記載のカーボンナノファイバ。The carbon nanofiber according to claim 9, wherein the amorphous carbon layer (12) is coated on at least 80% of the entire surface of the fiber body (11).
JP2003096253A 2003-03-31 2003-03-31 Method for producing carbon nanofiber Expired - Fee Related JP4157791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096253A JP4157791B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096253A JP4157791B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanofiber

Publications (2)

Publication Number Publication Date
JP2004300631A true JP2004300631A (en) 2004-10-28
JP4157791B2 JP4157791B2 (en) 2008-10-01

Family

ID=33408375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096253A Expired - Fee Related JP4157791B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanofiber

Country Status (1)

Country Link
JP (1) JP4157791B2 (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006152490A (en) * 2004-11-30 2006-06-15 Mitsubishi Materials Corp Carbon nanofiber excellent in dispersibility in resin and method for producing the same
JP2006327878A (en) * 2005-05-26 2006-12-07 Mitsubishi Materials Corp Carbon nanofiber dispersion, its dispersant, and composition
WO2007018078A1 (en) * 2005-08-10 2007-02-15 Electric Power Development Co., Ltd. Method for selectively synthesizing platelet carbon nanofiber
WO2009110570A1 (en) 2008-03-06 2009-09-11 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
WO2009128342A1 (en) * 2008-04-16 2009-10-22 日東電工株式会社 Aggregate of fibrous columnar structures and pressure-sensitive adhesive member using the same
WO2010114089A1 (en) 2009-04-02 2010-10-07 宇部興産株式会社 Conductive resin composition
WO2011016536A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
WO2011016535A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
WO2011027780A1 (en) 2009-09-04 2011-03-10 宇部興産株式会社 Electrically conductive thermoplastic resin composition
WO2011027863A1 (en) 2009-09-07 2011-03-10 宇部興産株式会社 Multilayer tube for delivery
WO2012053334A1 (en) * 2010-10-20 2012-04-26 電気化学工業株式会社 Method for producing carbon nanofibers, carbon composite and method for producing same
KR101327812B1 (en) 2012-02-13 2013-11-11 금호석유화학 주식회사 Highly conductive carbon nanotube having bundle moieties with ultra-low bulk density and highly conductive polymer nano-composite using the same
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber
WO2015119102A1 (en) 2014-02-05 2015-08-13 電気化学工業株式会社 Production method for carbon nanofibers, and carbon nanofibers
JP2016064972A (en) * 2014-09-22 2016-04-28 デンカ株式会社 Carbon nanofiber production process and carbon nanofiber
JP2017007891A (en) * 2015-06-22 2017-01-12 デンカ株式会社 Production method of carbon nanofiber-carbon material composite, and carbon nanofiber-carbon material composite
US10087557B2 (en) 2015-07-31 2018-10-02 Denka Company Limited Method for producing carbon nanofibers
KR20190045198A (en) 2016-09-07 2019-05-02 덴카 주식회사 Conductive composition for electrode and electrode, battery using same
US10714746B2 (en) 2014-08-11 2020-07-14 Denka Company Limited Conductive composition for electrode, electrode using same, and lithium ion secondary battery
CN114835111A (en) * 2022-05-30 2022-08-02 中北大学 Nano spiral graphite fiber material and preparation method and application thereof
CN114835111B (en) * 2022-05-30 2024-04-30 中北大学 Nano spiral graphite fiber material and preparation method and application thereof

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105817235B (en) * 2016-04-20 2018-09-11 北京中材人工晶体研究院有限公司 Low nickel multicomponent alloy catalyst of a kind of iron-based and the preparation method and application thereof

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119922A (en) * 1992-10-06 1994-04-28 Nikkiso Co Ltd Carbon electrode and secondary ion battery
JPH10140425A (en) * 1996-11-15 1998-05-26 Nikkiso Co Ltd Graphitized gas-phase grown carbon fiber, its production and non-aqueous electrolyte secondary battery using the same as negative electrode
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2001526164A (en) * 1997-12-08 2001-12-18 ナノグラム・コーポレーション Catalyst for carbon production
JP2002241117A (en) * 2001-02-13 2002-08-28 Osaka Gas Co Ltd Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
WO2003006726A1 (en) * 2001-07-10 2003-01-23 Catalytic Materials Ltd. Crystalline graphite nanofibers and a process for producing same
JP2003051310A (en) * 2001-05-30 2003-02-21 Gsi Creos Corp Electrode material of lithium secondary battery and lithium secondary using the same
JP2004131853A (en) * 2002-10-08 2004-04-30 Toyota Motor Corp Carbon nanofiber containing nitrogen atom and method for producing the same and hydrogen storage material

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119922A (en) * 1992-10-06 1994-04-28 Nikkiso Co Ltd Carbon electrode and secondary ion battery
JPH10140425A (en) * 1996-11-15 1998-05-26 Nikkiso Co Ltd Graphitized gas-phase grown carbon fiber, its production and non-aqueous electrolyte secondary battery using the same as negative electrode
JP2001526164A (en) * 1997-12-08 2001-12-18 ナノグラム・コーポレーション Catalyst for carbon production
JP2001288625A (en) * 2000-02-04 2001-10-19 Ulvac Japan Ltd Graphite nanofiber, electron emitting source and method for producing the same, display element having the electron emitting source, and lithium ion secondary battery
JP2002241117A (en) * 2001-02-13 2002-08-28 Osaka Gas Co Ltd Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP2003051310A (en) * 2001-05-30 2003-02-21 Gsi Creos Corp Electrode material of lithium secondary battery and lithium secondary using the same
WO2003006726A1 (en) * 2001-07-10 2003-01-23 Catalytic Materials Ltd. Crystalline graphite nanofibers and a process for producing same
JP2004131853A (en) * 2002-10-08 2004-04-30 Toyota Motor Corp Carbon nanofiber containing nitrogen atom and method for producing the same and hydrogen storage material

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565384B2 (en) * 2004-11-30 2010-10-20 三菱マテリアル株式会社 Method for producing carbon nanofibers with excellent dispersibility in resin
JP2006152490A (en) * 2004-11-30 2006-06-15 Mitsubishi Materials Corp Carbon nanofiber excellent in dispersibility in resin and method for producing the same
JP2006327878A (en) * 2005-05-26 2006-12-07 Mitsubishi Materials Corp Carbon nanofiber dispersion, its dispersant, and composition
JP4762990B2 (en) * 2005-08-10 2011-08-31 電源開発株式会社 Selective synthesis of platelet-type carbon nanofibers
WO2007018078A1 (en) * 2005-08-10 2007-02-15 Electric Power Development Co., Ltd. Method for selectively synthesizing platelet carbon nanofiber
WO2009110570A1 (en) 2008-03-06 2009-09-11 宇部興産株式会社 Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
JPWO2009128342A1 (en) * 2008-04-16 2011-08-04 日東電工株式会社 Fibrous columnar structure aggregate and adhesive member using the same
US8900701B2 (en) 2008-04-16 2014-12-02 Nitto Denko Corporation Fibrous columnar structure aggregate and pressure-sensitive adhesive member using the aggregate
JP4545827B1 (en) * 2008-04-16 2010-09-15 日東電工株式会社 Fibrous columnar structure aggregate and adhesive member using the same
JP2010254572A (en) * 2008-04-16 2010-11-11 Nitto Denko Corp Assembly of fibrous columnar structure and pressure-sensitive adhesive member using the same
JP4528359B2 (en) * 2008-04-16 2010-08-18 日東電工株式会社 Fibrous columnar structure aggregate and adhesive member using the same
WO2009128342A1 (en) * 2008-04-16 2009-10-22 日東電工株式会社 Aggregate of fibrous columnar structures and pressure-sensitive adhesive member using the same
WO2010114089A1 (en) 2009-04-02 2010-10-07 宇部興産株式会社 Conductive resin composition
WO2011016535A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
WO2011016536A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
JP2011057725A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Electrically conductive thermoplastic resin composition
WO2011027780A1 (en) 2009-09-04 2011-03-10 宇部興産株式会社 Electrically conductive thermoplastic resin composition
WO2011027863A1 (en) 2009-09-07 2011-03-10 宇部興産株式会社 Multilayer tube for delivery
WO2012053334A1 (en) * 2010-10-20 2012-04-26 電気化学工業株式会社 Method for producing carbon nanofibers, carbon composite and method for producing same
CN103180497A (en) * 2010-10-20 2013-06-26 电气化学工业株式会社 Method for producing carbon nanofibers, carbon composite and method for producing same
KR101327812B1 (en) 2012-02-13 2013-11-11 금호석유화학 주식회사 Highly conductive carbon nanotube having bundle moieties with ultra-low bulk density and highly conductive polymer nano-composite using the same
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber
WO2015119102A1 (en) 2014-02-05 2015-08-13 電気化学工業株式会社 Production method for carbon nanofibers, and carbon nanofibers
KR20160117480A (en) 2014-02-05 2016-10-10 덴카 주식회사 Production method for carbon nanofibers, and carbon nanofibers
US9738993B2 (en) 2014-02-05 2017-08-22 Denka Company Limited Production method for carbon nanofibers, and carbon nanofibers
US10714746B2 (en) 2014-08-11 2020-07-14 Denka Company Limited Conductive composition for electrode, electrode using same, and lithium ion secondary battery
JP2016064972A (en) * 2014-09-22 2016-04-28 デンカ株式会社 Carbon nanofiber production process and carbon nanofiber
JP2017007891A (en) * 2015-06-22 2017-01-12 デンカ株式会社 Production method of carbon nanofiber-carbon material composite, and carbon nanofiber-carbon material composite
US10087557B2 (en) 2015-07-31 2018-10-02 Denka Company Limited Method for producing carbon nanofibers
KR20190045198A (en) 2016-09-07 2019-05-02 덴카 주식회사 Conductive composition for electrode and electrode, battery using same
US11264616B2 (en) 2016-09-07 2022-03-01 Denka Company Limited Conductive composition for electrodes, and electrode and battery using same
CN114835111A (en) * 2022-05-30 2022-08-02 中北大学 Nano spiral graphite fiber material and preparation method and application thereof
CN114835111B (en) * 2022-05-30 2024-04-30 中北大学 Nano spiral graphite fiber material and preparation method and application thereof

Also Published As

Publication number Publication date
JP4157791B2 (en) 2008-10-01

Similar Documents

Publication Publication Date Title
JP3961440B2 (en) Method for producing carbon nanotube
JP4157791B2 (en) Method for producing carbon nanofiber
JP4266509B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
KR100835883B1 (en) Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
Guo et al. Polypyrrole‐assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous zinc‐ion battery
Yoo et al. Scalable fabrication of silicon nanotubes and their application to energy storage
KR100584671B1 (en) Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
KR100905691B1 (en) Anode active material hybridizing carbon nanofiber for lithium secondary battery
US6355377B1 (en) Negative active material for rechargeable lithium battery and method of preparing same
US20120264020A1 (en) Method of depositing silicon on carbon nanomaterials
KR102396863B1 (en) Manufacturing method of sulfur deposited carbon nano tube electrode, sulfur deposited carbon nano tube electrode by the same and lithium-sulfur battery comprising the same
WO2009005247A1 (en) Anode active material hybridizing carbon nanofiber for lithium secondary battery
WO2006067891A1 (en) Composite negative-electrode active material, process for producing the same and nonaqueous-electrolyte secondary battery
JP2010525549A (en) Method of depositing silicon on carbon material to form anode for lithium ion battery
JP2008027912A (en) Anode active material for lithium secondary cell mixed with carbon nanofiber
KR20190116011A (en) Silicon-Silicon Oxide-Carbon composite and manufacturing method for Silicon- Silicon Oxide-Carbon composite
JP6302878B2 (en) Method for producing carbon nanofiber electrode carrying metal oxide using electrodeposition method
JP7228141B2 (en) Nanostructured material and method of making same
CN106298274B (en) A kind of new graphene/carbon pipe/graphene composite material, with and its preparation method and application
JP5099300B2 (en) Nanocarbon material composite and method for producing the same
US20200295356A1 (en) Process for producing semiconductor nanowires and carbon/semiconductor nanowire hybrid materials
Hao et al. Structural Strategies for Germanium‐Based Anode Materials to Enhance Lithium Storage
JP2004303613A (en) Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode
Wang et al. Transition Metal Nitrides in Lithium‐and Sodium‐Ion Batteries: Recent Progress and Perspectives
WO2022205904A1 (en) Composite negative electrode material and preparation method therefor, and lithium ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4157791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees