JP2006152490A - Carbon nanofiber excellent in dispersibility in resin and method for producing the same - Google Patents

Carbon nanofiber excellent in dispersibility in resin and method for producing the same Download PDF

Info

Publication number
JP2006152490A
JP2006152490A JP2004345423A JP2004345423A JP2006152490A JP 2006152490 A JP2006152490 A JP 2006152490A JP 2004345423 A JP2004345423 A JP 2004345423A JP 2004345423 A JP2004345423 A JP 2004345423A JP 2006152490 A JP2006152490 A JP 2006152490A
Authority
JP
Japan
Prior art keywords
carbon
carbon nanofiber
oil absorption
resin
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004345423A
Other languages
Japanese (ja)
Other versions
JP4565384B2 (en
Inventor
Hiroyuki Imai
浩之 今井
Osamu Sakatani
修 坂谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Mitsubishi Materials Electronic Chemicals Co Ltd
Original Assignee
Mitsubishi Materials Corp
Jemco Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp, Jemco Inc filed Critical Mitsubishi Materials Corp
Priority to JP2004345423A priority Critical patent/JP4565384B2/en
Publication of JP2006152490A publication Critical patent/JP2006152490A/en
Application granted granted Critical
Publication of JP4565384B2 publication Critical patent/JP4565384B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbon nanofiber having a surface of a lipophilic amorphous carbon layer, high in DBP (dibutylphthalate) absorption and thereby excellent in dispersibility in resin, and to provide a method for producing the carbon nanofiber. <P>SOLUTION: The method for producing carbon nanofiber having a surface of a lipophilic amorphous carbon layer and ≥150 ml/100g DBP absorption comprises a vapor growth method growing graphite by contacting a carbon-containing material gas with a catalyst at a high temperature and regulating the catalyst particles and the mixed gas composition, wherein a mixed gas of CO and/or CO<SB>2</SB>and H is used as the material gas and a mixed oxide composition comprising one or more selected from oxide of Ni, Co, Mn and Cu and one or more selected from oxide of Mg, Ca, Al and Si is used as the catalyst particles. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は樹脂に対する分散性に優れたカーボンナノファイバーとその製造方法に関する。より詳しくは、表面が親油性の無定形炭素層を有し、従って、ジブチルフタレート吸油量(DBP給油量:以下単に吸油量と云う場合がある)が高く、樹脂に対する分散性に優れたカーボンナノファイバーとその製造方法に関する。本発明のカーボンナノファイバーはプラスチック、セラミックス、塗料などのフィラーとして好適であり、各種成形材料、部品、電池やキャパシターなど各種分野の導電性付与材や補強材などに広く用いることができる。 The present invention relates to a carbon nanofiber excellent in dispersibility for a resin and a method for producing the same. More specifically, the surface has a lipophilic amorphous carbon layer, and therefore has a high dibutyl phthalate oil absorption amount (DBP oil supply amount: hereinafter sometimes referred to simply as oil absorption amount), and has excellent dispersibility for resins. The present invention relates to a fiber and a manufacturing method thereof. The carbon nanofibers of the present invention are suitable as fillers for plastics, ceramics, paints, etc., and can be widely used for various molding materials, parts, conductivity imparting materials and reinforcing materials in various fields such as batteries and capacitors.

従来、この種のカーボンナノファイバーは電極放電法、気相成長法、レーザ法などによって合成されている。このうち、触媒を用いた気相成長法は、加熱した装置内に原料ガスを供給して熱分解させ、鉄やニッケルなどの金属触媒粒子を核として長さ方向にカーボンを成長させる方法である。この方法は、量産性に優れるとのことから、各種の改良方法が試みられており、触媒粒子についても各種検討されている。一般的に、鉄、ニッケル、コバルトなどの金属微粒子あるいは金属微粒子を担持した酸化物(アルミナ、シリカ、ゼオライトなど)が知られている(特許文献1)。 Conventionally, this type of carbon nanofiber has been synthesized by an electrode discharge method, a vapor phase growth method, a laser method, or the like. Among these, the vapor phase growth method using a catalyst is a method in which a raw material gas is supplied into a heated apparatus and thermally decomposed, and carbon is grown in the length direction using metal catalyst particles such as iron and nickel as nuclei. . Since this method is excellent in mass productivity, various improvement methods have been attempted, and various studies have been made on catalyst particles. Generally, metal fine particles such as iron, nickel and cobalt or oxides carrying metal fine particles (alumina, silica, zeolite, etc.) are known (Patent Document 1).

しかし、従来の方法によって製造されたカーボンナノファイバーは化学的安定性に劣り、また製造温度が高く、また結晶性を高めるために黒鉛化処理を行っているのでコスト高であると云う問題があり、これを解消するために、特定の金属微粒子を触媒に用い、かつ原料ガスを従来のハイドロカーボンに代えて一酸化炭素ガスまたは二酸化炭素ガスと水素ガスの混合ガスを用いることによって化学的安定性の高いカーボンナノファイバーを従来よりも低温で製造する方法が開発されている(特許文献2)。
特開 2003−206117号公報 特開 2004−299986号公報
However, the carbon nanofibers produced by the conventional method have inferior chemical stability, a high production temperature, and a problem of high cost because graphitization is performed to improve crystallinity. In order to solve this problem, chemical stability is achieved by using specific metal fine particles as a catalyst and using carbon monoxide gas or a mixed gas of carbon dioxide gas and hydrogen gas instead of conventional hydrocarbon as the raw material gas. A method for producing carbon nanofibers having a high temperature at a lower temperature than conventional ones has been developed (Patent Document 2).
JP 2003-206117 A JP 2004-299986 A

従来のカーボンナノファイバーは形状、構造等について検討されているが、樹脂中の分散性については考慮されていない。しかし、カーボンナノファイバーの分散性はこれを含有する組成物の物性に大きな影響を与える。例えば、樹脂に対する分散性の指標となるDBP給油量について、従来のカーボンナノファイバーは10〜50ml/100g程度である。このようなDBP吸油量が小さく、従って分散性の低いカーボンナノファイバーを含有した樹脂組成物では、カーボンナノファイバーの含有量が多くなると樹脂の物性がしだいに損なわれ、樹脂組成物の伸長性が大幅に低下して紡糸不能になり、また導電性が不均一になり、温度湿度に対する比抵抗の変化も大きく、混練性や成形性が低下するなどの問題を生じる。 Conventional carbon nanofibers have been studied for shape, structure, etc., but dispersibility in the resin is not considered. However, the dispersibility of the carbon nanofiber has a great influence on the physical properties of the composition containing the carbon nanofiber. For example, the conventional carbon nanofiber is about 10 to 50 ml / 100 g with respect to the DBP oil supply amount serving as an index of dispersibility for the resin. In a resin composition containing carbon nanofibers having such a low DBP oil absorption amount and thus low dispersibility, the physical properties of the resin are gradually impaired as the carbon nanofiber content increases, and the extensibility of the resin composition is reduced. This greatly reduces the spinning ability, makes the conductivity non-uniform, causes a large change in specific resistance with respect to temperature and humidity, and causes problems such as a decrease in kneadability and moldability.

本発明は、従来の上記課題を解決したものであって、樹脂に対してDBP吸油量を指標とする分散性に優れたカーボンナノファイバーとその製造方法を提供する。なお、本発明においてカーボンナノファイバーとは、例えば直径が数十ナノメータ以下、長さが数百ミクロンメータ以下であるナノサイズの極微細炭素繊維であり、内部が中空構造のカーボンナノチューブに限らず、内部が充填された構造のものを含み、炭素層が単層構造あるいは多層構造の何れの場合も含み、炭素層が螺旋構造に限らず、また炭素層が繊維の軸長方向に伸びた構造に限らず、炭素層が径方向に伸びた構造のものも含む。 The present invention solves the above-mentioned conventional problems, and provides a carbon nanofiber excellent in dispersibility using a DBP oil absorption amount as an index for a resin, and a method for producing the same. In the present invention, the carbon nanofiber is, for example, a nano-sized ultrafine carbon fiber having a diameter of several tens of nanometers or less and a length of several hundreds of micrometers or less, and is not limited to a carbon nanotube having a hollow structure. Including the structure filled inside, including the case where the carbon layer is either a single layer structure or a multilayer structure, the carbon layer is not limited to a spiral structure, and the carbon layer extends in the axial direction of the fiber. Not only the thing of the structure where the carbon layer extended in the diameter direction is included.

本発明は、以下のカーボンナノファイバーとその製造方法に関する。
(1)DBP吸油量が150ml/100g以上であることを特徴とするカーボンナノファイバー。
(2)DBP吸油量150ml/100g以上であって、圧密体の体積抵抗値が1.0Ωcm以下、直径5〜100nmおよびアスペクト比10以上、BET比表面積400m2/g以下である内部が中空構造である上記(1)のカーボンナノファイバー。
(3)触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法において、触媒および混合ガス組成を調整することによって、表面が親油性の無定形炭素層を有するカーボンナノファイバーを製造することを特徴とする方法。
(4)上記(3)の製造方法において、触媒としてCo34とMgOの混合粉末、またはMgOの表面がCo34によって被覆された粉末を用い、原料混合ガスのCO/H2比を50/50~99/1に調整し、反応後に連続して反応温度と同一温度下で水素ガスで10分間以上処理することによって、DBP吸油量が150ml/100g以上のカーボンナノファイバーを製造する方法。
The present invention relates to the following carbon nanofibers and a method for producing the same.
(1) A carbon nanofiber having a DBP oil absorption of 150 ml / 100 g or more.
(2) DBP oil absorption of 150 ml / 100g or more, the volume resistance of the compact is 1.0 Ωcm or less, the diameter is 5 to 100 nm, the aspect ratio is 10 or more, and the BET specific surface area is 400 m 2 / g or less. The carbon nanofiber according to (1) above.
(3) One or more selected from oxides of Fe, Ni, Co, Mn and Cu as catalyst particles, and one or more selected from oxides of Mg, Ca, Al and Si In the vapor phase growth method in which carbon nanofibers are produced by contacting carbon monoxide or a mixed gas of carbon dioxide and hydrogen with the catalyst particles at a temperature of 400 ° C. to 800 ° C. using a mixed oxide powder of And producing a carbon nanofiber having an amorphous carbon layer having a lipophilic surface by adjusting the composition of the mixed gas.
(4) In the production method of (3), a mixed powder of Co 3 O 4 and MgO, or a powder whose surface of MgO is coated with Co 3 O 4 is used as a catalyst, and the CO / H 2 ratio of the raw material mixed gas is set. A method of producing carbon nanofibers having a DBP oil absorption of 150 ml / 100 g or more by adjusting to 50/50 to 99/1 and treating with hydrogen gas for 10 minutes or more continuously at the same temperature as the reaction temperature after the reaction. .

本発明のカーボンナノファイバーはDBP吸油量が150ml/100g以上であるので、樹脂に対する分散性に優れており、従来よりも多量に樹脂に配合しても、樹脂本来の引張強度や伸長性を維持することができる。また、本発明のカーボンナノファイバーは分散性が良いので樹脂に比較的少量配合しても高い導電性や強度の補強効果を得ることができる。 Since the carbon nanofiber of the present invention has a DBP oil absorption of 150 ml / 100 g or more, it has excellent dispersibility in the resin and maintains the original tensile strength and extensibility of the resin even when blended in a larger amount than before. can do. In addition, since the carbon nanofibers of the present invention have good dispersibility, a high electrical conductivity and strength reinforcing effect can be obtained even if a relatively small amount is added to the resin.

本発明に係るカーボンナノファイバーは、例えば、DBP吸油量150ml/100g以上であって、圧密体の体積抵抗値が1.0Ωcm以下、直径5〜100nmおよびアスペクト比10以上、BET比表面積400m2/g以下である内部が中空構造のカーボンナノファイバー(カーボンナノチューブ)である。これは導電フィラーとして好適であり、樹脂に配合したものは、例えば、導電性シート、導電性糸、導電性コーテング材、導電性塗膜、導電性成形品などの導電性材料として広く利用することができる。また、上記カーボンナノファイバーは補強材として好適であり、樹脂に配合することによって機械的強度を高めた高強度樹脂材料として利用することができる。 The carbon nanofiber according to the present invention has, for example, a DBP oil absorption of 150 ml / 100 g or more, a volume resistance value of the compacted body of 1.0 Ωcm or less, a diameter of 5 to 100 nm, an aspect ratio of 10 or more, and a BET specific surface area of 400 m 2 / The inside which is g or less is a carbon nanofiber (carbon nanotube) having a hollow structure. This is suitable as a conductive filler, and what is blended in a resin is widely used as a conductive material such as a conductive sheet, conductive yarn, conductive coating material, conductive coating film, and conductive molded article. Can do. Moreover, the said carbon nanofiber is suitable as a reinforcing material, and can be utilized as a high-strength resin material which raised the mechanical strength by mix | blending with resin.

本発明のカーボンナノファイバーは、例えば、触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法において、触媒および混合ガス組成を調整することによって製造することができる。上記方法によって製造したカーボンナノファイバーは表面が親油性の無定形炭素層を有するので、DBP吸油量が150ml/100g以上のカーボンナノファイバーを得ることができる。 The carbon nanofiber of the present invention is selected from, for example, one or more selected from oxides of Fe, Ni, Co, Mn, and Cu as catalyst particles, and oxides of Mg, Ca, Al, and Si. In addition, one or two or more mixed oxide powders are used, and carbon monoxide or a mixed gas of carbon dioxide and hydrogen is brought into contact with the catalyst particles at a temperature of 400 ° C. to 800 ° C. to produce carbon nanofibers. In the vapor phase growth method, it can be produced by adjusting the catalyst and mixed gas composition. Since the carbon nanofibers produced by the above method have a lipophilic amorphous carbon layer, carbon nanofibers having a DBP oil absorption of 150 ml / 100 g or more can be obtained.

以下、本発明を具体的な実施の形態に基づいて説明する。
本発明のカーボンナノファイバーは、DBP吸油量が150ml/100g以上であることを特徴とし、好ましくはDBP吸油量が200ml/100g、より好ましくは300ml/100g以上である。従って、本発明のカーボンナノファイバーは樹脂に対する分散性に優れており、従来のものより多量に樹脂に配合しても、樹脂本来の物性を損なわず、引張強度や伸長性などを実用範囲内に維持することができる。
Hereinafter, the present invention will be described based on specific embodiments.
The carbon nanofiber of the present invention has a DBP oil absorption of 150 ml / 100 g or more, preferably a DBP oil absorption of 200 ml / 100 g, more preferably 300 ml / 100 g or more. Therefore, the carbon nanofibers of the present invention are excellent in resin dispersibility, and even if blended in a larger amount than conventional ones, the original physical properties of the resin are not impaired, and the tensile strength and extensibility are within the practical range. Can be maintained.

具体的には、実施例に示すように、本発明のDBP吸油量が250ml/100gのカーボンナノファイバーをPET樹脂に5wt%配合した樹脂組成物は、これを紡糸して単糸太さ8(dT/f)の導電糸を製造することができ、この導電糸の引張強度は3.0g/dT、伸度15%であり、PET樹脂本来の引張強度および伸度をやや下回る程度で糸として充分な機械的特性を有する。一方、DBP吸油量が80ml/100gである従来のカーボンナノファイバーをPET樹脂に5wt%配合した樹脂組成物は樹脂本来の物性が大きく損なわれて紡糸不能であった。 Specifically, as shown in the Examples, a resin composition in which 5 wt% of carbon nanofibers having a DBP oil absorption of the present invention of 250 ml / 100 g are blended with PET resin is spun to obtain a single yarn thickness of 8 ( dT / f) conductive yarn can be produced. The conductive yarn has a tensile strength of 3.0 g / dT and an elongation of 15%. As a yarn that is slightly below the original tensile strength and elongation of PET resin. Has sufficient mechanical properties. On the other hand, a resin composition in which 5 wt% of a conventional carbon nanofiber having a DBP oil absorption of 80 ml / 100 g is blended in a PET resin cannot be spun because the original physical properties of the resin are greatly impaired.

本発明のカーボンナノファイバーは樹脂に対して馴染みやすいので、例えば、DBP吸油量150ml/100g以上であって、圧密体の体積抵抗値が1.0Ωcm以下、直径5〜100nmおよびアスペクト比10以上、BET比表面積250m2/g以下である内部が中空構造のカーボンナノファイバー(カーボンナノチューブ)を樹脂に配合した樹脂組成物では、カーボンナノファイバーの配合量が従来のものより少なくても、分散性が良いので、高い導電性と強度の補強効果を得ることができる。 Since the carbon nanofibers of the present invention are easily adapted to the resin, for example, the DBP oil absorption is 150 ml / 100 g or more, the volume resistance value of the compact is 1.0 Ωcm or less, the diameter is 5 to 100 nm, and the aspect ratio is 10 or more. In a resin composition in which carbon nanofibers (carbon nanotubes) having a BET specific surface area of 250 m 2 / g or less and having a hollow inside are blended with a resin, the dispersibility is improved even if the amount of carbon nanofibers is less than that of the conventional one. Since it is good, a high conductivity and strength reinforcing effect can be obtained.

具体的には、DBP吸油量300ml/100g、圧密体の体積抵抗値5.0×10-2Ωcm、直径20nm、スペクト比が平均約100、BET比表面積400m2/gの本発明に係るカーボンナノファイバーをPC樹脂に4wt%配合した樹脂組成物を、厚さ100μmのPCフィルムに成形したものは、表面抵抗が1×105Ω・cm(100V電圧下)で、引張強度が60(MPa)、引張伸びが100%である。一方、DBP吸油量が10ml/100gであって圧密体の体積抵抗およびBET比表面積が上記と同程度である従来のカーボンナノファイバーをPC樹脂に5wt%配合した樹脂組成物では、充分な強度と伸びが得られないためシート化はできなかった。本発明のカーボンナノファイバーを用いたものは、カーボンナノファイバーの配合量が少なくても従来と同等または同等以上の導電性を有することができる。 Specifically, carbon according to the present invention having a DBP oil absorption of 300 ml / 100 g, a volume resistance value of a compacted body of 5.0 × 10 −2 Ωcm, a diameter of 20 nm, an average spect ratio of about 100, and a BET specific surface area of 400 m 2 / g. A resin composition obtained by blending 4% by weight of nanofibers with PC resin and molded into a PC film with a thickness of 100 μm has a surface resistance of 1 × 10 5 Ω · cm (under 100 V voltage) and a tensile strength of 60 (MPa ), The tensile elongation is 100%. On the other hand, a resin composition in which 5 wt% of conventional carbon nanofibers having a DBP oil absorption of 10 ml / 100 g and a compact body having the same volume resistance and BET specific surface area as those described above are blended in a PC resin has sufficient strength. The sheet could not be formed because no elongation was obtained. The thing using the carbon nanofiber of this invention can have the electroconductivity equivalent to or equivalent to the past even if there are few compounding quantities of a carbon nanofiber.

本発明に係るカーボンナノファイバーは、従来よりも低温製造が可能で、黒鉛処理を必要とせずに、本体が結晶質の黒鉛構造を有し、表面が無定形炭素層を有するカーボンナノファイバーの製造方法に基づき、この製造条件を調整して製造することができる。 The carbon nanofiber according to the present invention can be produced at a lower temperature than conventional carbon nanofibers without the need for graphite treatment, and the main body has a crystalline graphite structure and the surface has an amorphous carbon layer. Based on the method, the manufacturing conditions can be adjusted and manufactured.

上記製造方法は、例えば、触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法である。 The above production method is, for example, one or more kinds selected from oxides of Fe, Ni, Co, Mn, and Cu as catalyst particles and one kind selected from oxides of Mg, Ca, Al, and Si. Alternatively, vapor phase growth in which carbon nanofibers are produced by using two or more mixed oxide powders and contacting carbon monoxide or a mixed gas of carbon dioxide and hydrogen with the catalyst particles at a temperature of 400 ° C. to 800 ° C. Is the law.

上記製造方法において、具体的には、触媒として第VIIa族、第VII族I、第Ib族(遷移金属)元素の酸化物、特にFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの各酸化物の1種または2種以上からなる混合酸化物粉末を用いる。これらの金属酸化物粉末は混合粉末、複合粉末、固溶粉末の何れでも良い。 In the above production method, specifically, the catalyst was selected from Group VIIa, Group VII I, Group Ib (transition metal) element oxides, particularly oxides of Fe, Ni, Co, Mn, and Cu. A mixed oxide powder composed of one or more kinds and one or more kinds of oxides of Mg, Ca, Al, and Si is used. These metal oxide powders may be mixed powders, composite powders, or solid solution powders.

上記金属酸化物粉末のうち、Co酸化物とMgの酸化物の混合粉末あるいはMg酸化物表面がCo酸化物によって被覆された粉末、さらに好ましくはCo34とMgOの混合粉末またはのMgO表面がCo34によって被覆された粉末が好ましい。これらのCo酸化物とMg酸化物からなる混合粉末の重量比(Co酸化物/Mg酸化物)は90/10〜10/90が適当であり、80/20〜50/50が好ましい。 Among the above metal oxide powders, a mixed powder of Co oxide and Mg oxide or a powder in which the Mg oxide surface is coated with Co oxide, more preferably a mixed powder of Co 3 O 4 and MgO or an MgO surface Is preferably a powder coated with Co 3 O 4 . The weight ratio (Co oxide / Mg oxide) of the mixed powder composed of Co oxide and Mg oxide is suitably 90/10 to 10/90, and preferably 80/20 to 50/50.

触媒粒子の大きさは、一次粒子の平均粒径が1nm〜1μm、好ましくは5nm〜100nmnmの範囲内が好ましい。通常、このような粒径の微粉末は凝集して100μm前後の凝集粒子を形成する場合があるが、凝集粒子であっても、ガスは粒子表面に浸透するので反応に大きな影響はない。なお、触媒粒子のハンドリング性を高めるには、粒径100nm〜50μmの範囲が好ましい。この触媒粒子をファイバーの成長核として石英などの基板上に配置する。触媒粒子の基板上への配置は、触媒粒子をそのまま均一にボートに振りかければよい。または触媒粒子をアルコール等の溶媒に懸濁させて懸濁液を調製し、この懸濁液を基板上に散布して乾燥することによって均一にボート上に配置してもよい。 The size of the catalyst particles is such that the average primary particle diameter is in the range of 1 nm to 1 μm, preferably 5 nm to 100 nm. Usually, the fine powder having such a particle size may be aggregated to form aggregated particles of about 100 μm. However, even the aggregated particles have no significant influence on the reaction because the gas penetrates the particle surface. In order to improve the handling property of the catalyst particles, the particle size is preferably in the range of 100 nm to 50 μm. The catalyst particles are arranged on a substrate such as quartz as a fiber growth nucleus. The catalyst particles may be arranged on the substrate as long as the catalyst particles are uniformly shaken on the boat. Alternatively, the catalyst particles may be suspended in a solvent such as alcohol to prepare a suspension, and the suspension may be sprayed on a substrate and dried to be uniformly disposed on the boat.

反応室内で0.08〜10MPaの圧力下、450℃〜800℃の温度で、原料ガスを上記触媒粒子に接触させて反応させることによって多結晶構造グラファイトナノファイバーを成長させる。このカーボンナノファイバーの気相合成においては、予め十分に合成雰囲気を定常化する必要がある。そのため、水素を10%程度含む不活性ガスを反応室に導入して合成雰囲気を置換した後に加熱を開始し、合成温度に1〜2時間ほど保持することが望ましい。 Polycrystalline graphite nanofibers are grown by bringing the raw material gas into contact with the catalyst particles and reacting them at a temperature of 450 to 800 ° C. under a pressure of 0.08 to 10 MPa in a reaction chamber. In the gas phase synthesis of carbon nanofibers, it is necessary to sufficiently stabilize the synthesis atmosphere in advance. Therefore, it is desirable to start heating after introducing an inert gas containing about 10% of hydrogen into the reaction chamber to replace the synthesis atmosphere, and to maintain the synthesis temperature for about 1 to 2 hours.

反応室内の温度および雰囲気を定常状態にしてから、原料ガスを導入し、触媒粒子に接触させ、原料ガスを熱分解させてグラファイトを成長させる。原料ガスとしては一酸化炭素および/または二酸化炭素と水素の混合ガスを用いることができる。混合ガスのCOおよび/またはCO2に対するH2の混合容積比(CO/H2)は20/80〜99/1が適当であり、50/50〜99/1が好ましい。この原料ガスを例えば0.01〜24時間供給してカーボンナノファイバーを触媒粒子から成長させる。 After bringing the temperature and atmosphere in the reaction chamber to a steady state, the raw material gas is introduced, brought into contact with the catalyst particles, and the raw material gas is thermally decomposed to grow graphite. As the source gas, carbon monoxide and / or a mixed gas of carbon dioxide and hydrogen can be used. The mixing volume ratio (CO / H 2 ) of H 2 to CO and / or CO 2 in the mixed gas is suitably 20/80 to 99/1, preferably 50/50 to 99/1. This raw material gas is supplied, for example, for 0.01 to 24 hours to grow carbon nanofibers from the catalyst particles.

上記製造方法において、DBP吸油量が高いカーボンナノファイバーを得るには、触媒粒子の組合せと原料ガス組成を調整し、反応後に水素ガスで処理すると良い。具体的には、触媒としてCo酸化物とMgの酸化物の混合粉末あるいはMg酸化物表面がCo酸化物によって被覆された粉末、さらに好ましくはCo34とMgOの混合粉末またはMgOの表面がCo34によって被覆された粉末を用い、ハイドロカーボンを含まない炭素源を使用し、具体的には一酸化炭素および/または二酸化炭素を使用し、合成温度を550℃〜650℃にし、原料混合ガスのCO/H2比を50/50~99/1に調整し、反応後に連続して反応温度と同一温度下で水素ガスで10分間以上処理することによって、DBP吸油量が150ml/100g以上のカーボンナノファイバーを製造することができる。 In the above production method, in order to obtain carbon nanofibers having a high DBP oil absorption, the combination of catalyst particles and the raw material gas composition are adjusted, and the reaction is preferably performed with hydrogen gas after the reaction. Specifically, as a catalyst, a mixed powder of Co oxide and Mg oxide or a powder in which the surface of Mg oxide is coated with Co oxide, more preferably a mixed powder of Co 3 O 4 and MgO or the surface of MgO is used. Using a powder coated with Co 3 O 4 , using a carbon source that does not contain hydrocarbons, specifically using carbon monoxide and / or carbon dioxide, setting the synthesis temperature to 550 ° C. to 650 ° C. By adjusting the CO / H2 ratio of the mixed gas to 50/50 to 99/1 and continuously treating with hydrogen gas for 10 minutes or more under the same temperature as the reaction temperature after the reaction, the DBP oil absorption is 150 ml / 100 g or more. The carbon nanofiber can be produced.

上記製造方法を実施する装置として、図1に示す熱処理炉20を用いることができる。この熱処理炉20は断熱材からなる装置本体21を有し、この本体21の内部は2枚の仕切板26によって仕切ることによって装置中央を貫通するガス流路27が形成されており、該ガス流路27を囲むように発熱体22が設置されている。発熱体22としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等を用いることができる。このガス流路27の一方の開口部はガス供給口24であり、他方の開口部はガス排出口29である。ガス流路27には基板28が取出し台31の上に載置される。 As an apparatus for performing the above manufacturing method, a heat treatment furnace 20 shown in FIG. 1 can be used. The heat treatment furnace 20 has an apparatus main body 21 made of a heat insulating material, and a gas flow path 27 penetrating the center of the apparatus is formed inside the main body 21 by partitioning with two partition plates 26. A heating element 22 is installed so as to surround the path 27. As the heating element 22, an incandescent lamp, a halogen lamp, an arc lamp, a graphite heater, or the like can be used. One opening of the gas flow path 27 is a gas supply port 24, and the other opening is a gas discharge port 29. A substrate 28 is placed on the extraction table 31 in the gas flow path 27.

基板28に触媒粉末32を載せた後、その基板28を取出し台31の上に載せて熱処理炉20のガス流路内に収納する。次いで、熱処理炉20の圧力を0.08〜10MPaの範囲内に制御して、原料の混合ガスを供給口24から導入し、発熱体22によって炉内を450℃〜800℃、好ましくは550℃〜650℃に加熱し、原料ガスを触媒粒子に接触させて反応させ、グラファイトを成長させてカーボンナノファイバー33を形成させる。 After the catalyst powder 32 is placed on the substrate 28, the substrate 28 is taken out and placed on the stand 31 and stored in the gas flow path of the heat treatment furnace 20. Subsequently, the pressure of the heat treatment furnace 20 is controlled within a range of 0.08 to 10 MPa, a raw material mixed gas is introduced from the supply port 24, and the inside of the furnace is heated to 450 ° C. to 800 ° C., preferably 550 ° C. by the heating element 22. It is heated to ˜650 ° C., the raw material gas is brought into contact with the catalyst particles and reacted, and graphite is grown to form carbon nanofibers 33.

製造したカーボンナノファイバーには触媒が残存するので、硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、触媒粒子を除去する。なお、触媒粒子をそのままカーボンファイバーに含有させて担持させた状態で使用してもよい。 Since the catalyst remains in the produced carbon nanofibers, the catalyst particles are removed by dipping in an acidic solution such as nitric acid, hydrochloric acid, or hydrofluoric acid. In addition, you may use it in the state made to carry | support the catalyst particle as it is in carbon fiber.

以下に本発明の実施例を比較例と共に示す。
〔実施例1〜5、比較例1〜3〕
図1に示す熱処理炉を用い、表1に示す条件下でカーボンナノファイバーを合成した。このカーボンナノファイバーについて、DBP吸油量および抵抗率を測定した。抵抗率の測定はカーボンナノファイバーを100kg/cm2の圧力でプレスし、四端子法で抵抗値を測定することにより求めた。また、製造したカーボンナノファイバーを樹脂に配合して樹脂組成物を形成し、この樹脂組成物を熔融紡糸法により紡糸して、太さ380dT/48fマルチフィラメントを得た。得られた糸について、体積抵抗値、表面状態、強度、伸度を表2に示した。
Examples of the present invention are shown below together with comparative examples.
[Examples 1-5, Comparative Examples 1-3]
Carbon nanofibers were synthesized under the conditions shown in Table 1 using the heat treatment furnace shown in FIG. About this carbon nanofiber, DBP oil absorption and resistivity were measured. The resistivity was determined by pressing carbon nanofibers at a pressure of 100 kg / cm 2 and measuring the resistance value by the four probe method. Moreover, the produced carbon nanofiber was blended with a resin to form a resin composition, and this resin composition was spun by a melt spinning method to obtain a multifilament having a thickness of 380 dT / 48f. Table 2 shows the volume resistance, surface state, strength, and elongation of the obtained yarn.

表1の結果に示すように、触媒と原料ガス組成を調整することによって、カーボンナノファイバーのDBP吸油量が異なる。具体的には、触媒としてCo34とMgOの混合粉末を用い、また原料ガスに一酸化炭素と水素の混合ガスを用い、これらの混合比率を変えて製造した。一方、比較例として、鉄ニッケル金属粉末担持アルミナ触媒を使用し、原料ガスにエチレンガスと一酸化炭素の混合ガスを使用した場合を示す。表2の結果に示すように、カーボンナノファイバーを配合した樹脂組成物は、カーボンナノファイバーのDBP吸油量によって物性が大幅に異なる。 As shown in the results of Table 1, the DBP oil absorption of the carbon nanofibers is different by adjusting the catalyst and the raw material gas composition. Specifically, a mixed powder of Co 3 O 4 and MgO was used as a catalyst, a mixed gas of carbon monoxide and hydrogen was used as a raw material gas, and the mixing ratio was changed. On the other hand, as a comparative example, an iron nickel metal powder-supported alumina catalyst is used and a mixed gas of ethylene gas and carbon monoxide is used as a raw material gas. As shown in the results of Table 2, the physical properties of the resin composition containing carbon nanofibers vary greatly depending on the DBP oil absorption of the carbon nanofibers.

Figure 2006152490
Figure 2006152490

Figure 2006152490
Figure 2006152490

本発明のカーボンナノファイバーの製造装置を示す模式断面図Schematic cross-sectional view showing the carbon nanofiber production apparatus of the present invention

符号の説明Explanation of symbols

20−熱処理炉、21−装置本体、22−発熱体、24−供給口、26−仕切板、27−ガス流路、28−基板、29−排出口、31−取出し台、32−触媒粉末、33−カーボンナノファイバー。
20-heat treatment furnace, 21-device main body, 22-heating element, 24-supply port, 26-partition plate, 27-gas flow path, 28-substrate, 29-discharge port, 31-extraction stand, 32-catalyst powder, 33-carbon nanofiber.

Claims (4)

DBP吸油量が150ml/100g以上であることを特徴とするカーボンナノファイバー。
A carbon nanofiber having a DBP oil absorption of 150 ml / 100 g or more.
DBP吸油量150ml/100g以上であって、圧密体の体積抵抗値が1.0Ωcm以下、直径5〜100nmおよびアスペクト比10以上、BET比表面積400m2/g以下である内部が中空構造である請求項1のカーボンナノファイバー。
A is a DBP oil absorption of 150 ml / 100 g or more, volume resistance value of the compacted body is 1.0Ωcm or less, a diameter 5~100nm and an aspect ratio of 10 or more, which is an internal hollow structure is less than the BET specific surface area of 400 meters 2 / g according Item 1. Carbon nanofiber according to item 1.
触媒粒子としてFe、Ni、Co、Mn、Cuの酸化物から選ばれた1種または2種以上と、Mg、Ca、Al、Siの酸化物から選ばれた1種または2種以上の混合酸化物粉末を用い、400℃〜800℃の温度で、一酸化炭素および/または二酸化炭素と水素の混合ガスを上記触媒粒子に接触させて、カーボンナノファイバーを製造する気相成長法において、触媒および混合ガス組成を調整することによって、表面が親油性の無定形炭素層を有するカーボンナノファイバーを製造することを特徴とする方法。
One or more selected from oxides of Fe, Ni, Co, Mn and Cu as catalyst particles and one or more mixed oxidations selected from oxides of Mg, Ca, Al and Si In the vapor phase growth method for producing carbon nanofibers by using carbon powder and contacting carbon monoxide and / or a mixed gas of carbon dioxide and hydrogen with the catalyst particles at a temperature of 400 ° C. to 800 ° C. A method of producing a carbon nanofiber having an amorphous carbon layer having a lipophilic surface by adjusting a mixed gas composition.
請求項3の製造方法において、触媒としてCo34とMgOの混合粉末、またはMgOの表面がCo34によって被覆された粉末を用い、原料混合ガスのCO/H2比を50/50~99/1に調整し、反応後に連続して反応温度と同一温度下で水素ガスで10分間以上処理することによって、DBP吸油量が150ml/100g以上のカーボンナノファイバーを製造する方法。
4. The production method according to claim 3, wherein a mixed powder of Co 3 O 4 and MgO, or a powder whose surface of MgO is coated with Co 3 O 4 is used as a catalyst, and the CO / H 2 ratio of the raw material mixed gas is 50/50. A method of producing carbon nanofibers having a DBP oil absorption of 150 ml / 100 g or more by adjusting to ~ 99/1 and treating with hydrogen gas for 10 minutes or more continuously at the same temperature as the reaction temperature after the reaction.
JP2004345423A 2004-11-30 2004-11-30 Method for producing carbon nanofibers with excellent dispersibility in resin Active JP4565384B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004345423A JP4565384B2 (en) 2004-11-30 2004-11-30 Method for producing carbon nanofibers with excellent dispersibility in resin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004345423A JP4565384B2 (en) 2004-11-30 2004-11-30 Method for producing carbon nanofibers with excellent dispersibility in resin

Publications (2)

Publication Number Publication Date
JP2006152490A true JP2006152490A (en) 2006-06-15
JP4565384B2 JP4565384B2 (en) 2010-10-20

Family

ID=36631111

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004345423A Active JP4565384B2 (en) 2004-11-30 2004-11-30 Method for producing carbon nanofibers with excellent dispersibility in resin

Country Status (1)

Country Link
JP (1) JP4565384B2 (en)

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138304A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fiber and use thereof
JP2008138039A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Carbon nanofiber-dispersed polyimide varnish and coating film thereof
JP2008173608A (en) * 2007-01-22 2008-07-31 Mitsubishi Chemicals Corp Catalyst for producing vapor-phase growth carbon fiber and vapor-phase growth carbon fiber
JP2010010661A (en) * 2008-06-25 2010-01-14 Commiss Energ Atom Horizontal interconnection architecture based on carbon nanotube
JP2011058100A (en) * 2009-09-07 2011-03-24 Ube Industries Ltd Fine carbon fiber, and method of producing the same
JP2011173743A (en) * 2010-02-23 2011-09-08 Toyo Univ Method for manufacturing carbon nanotube
WO2013047782A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Carbon nanofibers encapsulting metal cobalt, and production method therefor
JP2014001493A (en) * 2013-09-04 2014-01-09 Mitsubishi Chemicals Corp Aggregate of hollow carbon microfiber and method of manufacturing aggregate of hollow carbon microfiber
JP2014019619A (en) * 2012-07-20 2014-02-03 Ube Ind Ltd Fine carbon dispersion liquid and method of producing the same, and electrode paste and electrode for lithium ion battery using the same
JP2015514054A (en) * 2012-04-16 2015-05-18 シーアストーン リミテッド ライアビリティ カンパニー Method and structure for reducing carbon oxides with non-ferrous catalysts
WO2015119102A1 (en) 2014-02-05 2015-08-13 電気化学工業株式会社 Production method for carbon nanofibers, and carbon nanofibers
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
US10087557B2 (en) 2015-07-31 2018-10-02 Denka Company Limited Method for producing carbon nanofibers
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
KR20190045198A (en) 2016-09-07 2019-05-02 덴카 주식회사 Conductive composition for electrode and electrode, battery using same
US10714746B2 (en) 2014-08-11 2020-07-14 Denka Company Limited Conductive composition for electrode, electrode using same, and lithium ion secondary battery
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075848A (en) * 2002-08-19 2004-03-11 Asahi Glass Co Ltd Conductive fluoro-copolymer composition and laminate using the same
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2004299986A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanotube, and its production method

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004075848A (en) * 2002-08-19 2004-03-11 Asahi Glass Co Ltd Conductive fluoro-copolymer composition and laminate using the same
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2004299986A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanotube, and its production method

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008138039A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Carbon nanofiber-dispersed polyimide varnish and coating film thereof
JP2008138304A (en) * 2006-11-30 2008-06-19 Mitsubishi Materials Corp Conductive fiber and use thereof
JP2008173608A (en) * 2007-01-22 2008-07-31 Mitsubishi Chemicals Corp Catalyst for producing vapor-phase growth carbon fiber and vapor-phase growth carbon fiber
JP2010010661A (en) * 2008-06-25 2010-01-14 Commiss Energ Atom Horizontal interconnection architecture based on carbon nanotube
JP2011058100A (en) * 2009-09-07 2011-03-24 Ube Industries Ltd Fine carbon fiber, and method of producing the same
JP2011173743A (en) * 2010-02-23 2011-09-08 Toyo Univ Method for manufacturing carbon nanotube
CN103764554B (en) * 2011-09-30 2016-03-30 三菱综合材料株式会社 Include carbon nanofiber and the manufacture method thereof of cobalt metal
WO2013047782A1 (en) * 2011-09-30 2013-04-04 三菱マテリアル株式会社 Carbon nanofibers encapsulting metal cobalt, and production method therefor
JP2013075805A (en) * 2011-09-30 2013-04-25 Mitsubishi Materials Corp Carbon nanofiber including metal cobalt and method for producing the same
US9505622B2 (en) 2011-09-30 2016-11-29 Mitsubishi Materials Corporation Carbon nanofibers encapsulating metal cobalt, and production method therefor
CN103764554A (en) * 2011-09-30 2014-04-30 三菱综合材料株式会社 Carbon nanofibers encapsulting metal cobalt, and production method therefor
US9796591B2 (en) 2012-04-16 2017-10-24 Seerstone Llc Methods for reducing carbon oxides with non ferrous catalysts and forming solid carbon products
US9731970B2 (en) 2012-04-16 2017-08-15 Seerstone Llc Methods and systems for thermal energy recovery from production of solid carbon materials by reducing carbon oxides
JP2015514054A (en) * 2012-04-16 2015-05-18 シーアストーン リミテッド ライアビリティ カンパニー Method and structure for reducing carbon oxides with non-ferrous catalysts
US10106416B2 (en) 2012-04-16 2018-10-23 Seerstone Llc Methods for treating an offgas containing carbon oxides
JP2014019619A (en) * 2012-07-20 2014-02-03 Ube Ind Ltd Fine carbon dispersion liquid and method of producing the same, and electrode paste and electrode for lithium ion battery using the same
JP2014001493A (en) * 2013-09-04 2014-01-09 Mitsubishi Chemicals Corp Aggregate of hollow carbon microfiber and method of manufacturing aggregate of hollow carbon microfiber
US9738993B2 (en) 2014-02-05 2017-08-22 Denka Company Limited Production method for carbon nanofibers, and carbon nanofibers
WO2015119102A1 (en) 2014-02-05 2015-08-13 電気化学工業株式会社 Production method for carbon nanofibers, and carbon nanofibers
KR20160117480A (en) 2014-02-05 2016-10-10 덴카 주식회사 Production method for carbon nanofibers, and carbon nanofibers
US10714746B2 (en) 2014-08-11 2020-07-14 Denka Company Limited Conductive composition for electrode, electrode using same, and lithium ion secondary battery
US10087557B2 (en) 2015-07-31 2018-10-02 Denka Company Limited Method for producing carbon nanofibers
US11951428B2 (en) 2016-07-28 2024-04-09 Seerstone, Llc Solid carbon products comprising compressed carbon nanotubes in a container and methods of forming same
KR20190045198A (en) 2016-09-07 2019-05-02 덴카 주식회사 Conductive composition for electrode and electrode, battery using same
US11264616B2 (en) 2016-09-07 2022-03-01 Denka Company Limited Conductive composition for electrodes, and electrode and battery using same

Also Published As

Publication number Publication date
JP4565384B2 (en) 2010-10-20

Similar Documents

Publication Publication Date Title
JP4565384B2 (en) Method for producing carbon nanofibers with excellent dispersibility in resin
JP6131516B2 (en) Catalyst for producing carbon nanotube and carbon nanotube produced using the same
Ren et al. Aligned carbon nanotubes: physics, concepts, fabrication and devices
US9855551B2 (en) Catalyst and methods for producing multi-wall carbon nanotubes
KR100682425B1 (en) Fine carbon fibers having various configurations
KR101414560B1 (en) method for producing conductive film
KR100519418B1 (en) Carbon nano particle having novel structure and properties
KR20130041152A (en) Vapor grown carbon fiber aggregate
JP6237225B2 (en) Catalyst for carbon nanotube synthesis
CN1768002B (en) Method of preparing carbon nanotube from liquid phased-carbon source
Zhao et al. Catalysts for single-wall carbon nanotube synthesis—From surface growth to bulk preparation
US7405178B2 (en) Catalysts for manufacturing carbon substances
KR100962171B1 (en) Metal Nano Catalyst for Synthesizing Carbon Nanotube and Method for Preparing Carbon Nanotubes Using thereof
Zhang et al. Hollow graphitic carbon nanospheres: synthesis and properties
KR101241035B1 (en) Process for preparing catalyst compositions for the synthesis of carbon nanotube having high bulk density
Bhagabati et al. Synthesis/preparation of carbon materials
Zhi et al. Boron carbonitride nanotubes
JP2015150515A (en) Catalyst for synthesis of carbon nanotube
JP3834640B2 (en) Method for producing boron nitride nanotubes
Zhang et al. The effect of helium gas pressure on the formation and yield of nanotubes in arc discharge
JP2010077313A (en) Carbon black composite body and method for producing the same
WO2007049591A1 (en) Molded fluororesin
Wang et al. Large-scale synthesis of β-SiC/SiOx coaxial nanocables by chemical vapor reaction approach
KR20190078485A (en) Entangled carbon nano tube and method for preparing the same
WO2015047050A1 (en) Catalyst for producing carbon nanotubes and carbon nanotubes produced using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20071031

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100526

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100630

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100721

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100722

R150 Certificate of patent or registration of utility model

Ref document number: 4565384

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130813

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250