JP2004303613A - Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode - Google Patents

Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode Download PDF

Info

Publication number
JP2004303613A
JP2004303613A JP2003096254A JP2003096254A JP2004303613A JP 2004303613 A JP2004303613 A JP 2004303613A JP 2003096254 A JP2003096254 A JP 2003096254A JP 2003096254 A JP2003096254 A JP 2003096254A JP 2004303613 A JP2004303613 A JP 2004303613A
Authority
JP
Japan
Prior art keywords
negative electrode
carbon
electrode material
fiber
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003096254A
Other languages
Japanese (ja)
Inventor
Yusuke Watarai
祐介 渡会
Akio Mizuguchi
暁夫 水口
Hiroyuki Imai
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003096254A priority Critical patent/JP2004303613A/en
Publication of JP2004303613A publication Critical patent/JP2004303613A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material suppressing the decomposition reaction of propylene carbonate (PC) included in an electrolyte, obtaining high capacity of graphite and capable of charging and discharging with high efficiency, and to provide a negative electrode using the negative electrode material, and a lithium ion secondary battery using the negative electrode. <P>SOLUTION: This negative electrode material is mainly composed of one or both of a carbon nano tube (CNT) having a tube body formed with a plurality of tubular graphite nets in a concentric manner, and carbon nano fiber (CNF) having a fiber body with a plurality of planar graphite nets laminated substantially perpendicularly to a longitudinal axis of the fiber. The lamination spacing d<SB>002</SB>of graphite net planes of the tube body or fiber body measured by the X-ray diffraction of the tube or fiber of the CNT or CNF is 0.3356 nm to 0.3450 nm, and the surface of the tube body or fiber body is coated with an amorphous carbon layer with a thickness of 0.1 nm to 5 nm. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、カーボンナノチューブ又はカーボンナノファイバいずれか一方又はその双方を主成分として含む負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池に関するものである。
【0002】
【従来の技術】
近年、リチウム二次電池のリチウムを担持させる負極材料として炭素材料の研究が盛んに行われている。例えば、黒鉛にリチウムを担持させた炭素材料を用いる場合には、電池の充電時にリチウムが黒鉛の層間に挿入され、放電時に黒鉛層間よりリチウムが放出される。しかしながら、黒鉛材料をリチウム二次電池の負極材料として用いる場合には、電解液として低温特性に優れたプロピレンカーボネート(以下、PCという。)が黒鉛表面で電気化学的に分解されてしまうため、このPCを含む電解液が使用できない問題があった。
【0003】
そのため、PCを含まない電解液、例えばエチレンカーボネート(以下、ECという。)やジエチルカーボネート(以下、DECという。)等のエチレンカーボネート系電解液を用いる方法も検討されているが、電池としての低温特性が低下するという新たな問題を生じる。
【0004】
この問題を解決する方策として、表面が熱分解アモルファス状炭素により被覆された黒鉛系炭素材料の製造方法において、熱分解炭素源となる原料を黒鉛系炭素材料に化学蒸着させて、熱分解炭素被覆層を生成させた後、蒸着温度よりも高い温度で熱処理することを特徴とする黒鉛系炭素材料の製造方法が開示されている(例えば、特許文献1参照。)。この製造方法では、出発原料として天然黒鉛、人造黒鉛、黒鉛化されたメソカーボンマイクロビーズ、黒鉛化されたピッチ系炭素繊維のような、平均粒径が0.1〜100μm程度の粒子状物を用い、この粒子状の出発原料表面に熱分解炭素被覆層を生成させた後、高温熱処理することにより黒鉛系炭素材料を得ている。このような黒鉛系炭素材料を負極材料として使用することでリチウム二次電池に低温特性の優れたPCを含む電解液を用いる場合においても、初期効率が良好でかつ放電容量が高い電池が得られる。
【0005】
【特許文献1】
特開2002−241117号公報
【0006】
【発明が解決しようとする課題】
しかしながら、上記特許文献1に示される炭素材料では、粒子状の出発原料に熱分解炭素被覆層を生成し、更に高温熱処理を施さなければならないため、製造効率が悪い問題があった。
【0007】
本発明の目的は、電解液に含まれるプロピレンカーボネート(PC)の分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能な負極材料及びこれを用いた負極並びに該負極を用いたリチウムイオン二次電池を提供することにある。
【0008】
【課題を解決するための手段】
請求項1に係る発明は、図1又は図3に示すように、カーボンナノチューブ(以下、単にCNTという。)10又はカーボンナノファイバ(以下、単にCNFという。)20のいずれか一方又はその双方を主成分とし、CNT10は、複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体11を有し、チューブ本体11が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、CNF20は、平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体21を有し、ファイバ本体21が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、CNT10又はCNF20がチューブ又はファイバのX線回折において測定されるチューブ本体11又はファイバ本体21のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであって、チューブ本体11又はファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されたことを特徴とする負極材料である。
請求項1に係る負極材料の主成分であるCNT10やCNF20は、チューブ本体11又はファイバ本体21がグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであるため、高い電気伝導性を有する一方、チューブ本体11又はファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されているため、表面活性度が低く化学的に安定である。また、無定形炭素層12,22が活性な黒鉛層を被覆しているため、電解液に含まれるPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。更に、CNTやCNFは従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
【0009】
請求項2に係る発明は、請求項1に係る発明であって、無定形炭素層12,22がチューブ本体11全表面又はファイバ本体21全表面のいずれか一方又はその双方の少なくとも80%の割合で被覆された負極材料である。
請求項2に係る発明では、チューブ本体11全表面又はファイバ本体21全表面のいずれか一方又はその双方の少なくとも80%を無定形炭素層12,22で被覆することで、化学安定性がより向上し、加工性にも優れる。
【0010】
請求項3に係る発明は、請求項1に係る発明であって、CNT10又はCNF20のいずれか一方又はその双方に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体を含み、CNT10又はCNF20のいずれか一方又はその双方が80重量%〜99.5重量%、粒子状凝集体が0.5重量%〜20重量%の割合である負極材料である。
請求項3に係る発明では、負極材料に粒子状凝集体を含むことによって主成分であるCNT同士やCNF同士、CNTとCNFとの接触が良好になり、高率充放電特性が更に向上する。
【0011】
請求項4に係る発明は、請求項1ないし3いずれか1項に係る発明であって、金属又は金属酸化物のいずれか一方又はその双方が、CNT10又はCNF20のいずれか一方又はその双方の長軸上にある負極材料である。
請求項5に係る発明は、請求項1ないし4いずれか1項に係る発明であって、平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を0.5重量%〜10重量%更に含む負極材料である。
請求項5に係る発明では、平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を更に含ませることで、金属又は金属酸化物が電子伝導の基点となるため、より高率の放電が可能となる。
【0012】
請求項6に係る発明は、請求項5に係る発明であって、金属又は金属酸化物中の金属のいずれか一方又はその双方がFe、Co、Ni、Mg及びAlからなる群より選ばれた少なくとも1種の元素である負極材料である。
請求項7に係る発明は、請求項1ないし6いずれか1項に記載の負極材料と、結着剤とを用いて形成された負極である。
請求項7に係る発明では、主成分であるCNT又はCNFのいずれか一方又はその双方によってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。
【0013】
請求項8に係る発明は、請求項7記載の負極を用いて形成されたリチウムイオン二次電池である。
請求項8に係るリチウムイオン二次電池では、負極材料の主成分であるCNT又はCNFのいずれか一方又はその双方によってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、負極材料のCNT、CNFには無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれる低温特性に優れたPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。更に負極材料に従来より用いられてきた炭素材料に比べて、サイズの小さいCNT又はCNFを用いているため、高密度での充電か可能となり、電池のエネルギー密度向上につながる。
【0014】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
図1又は図3に示すように、リチウムイオン二次電池の負極は、CNT10又はCNF20のいずれか一方又はその双方を主成分とした負極材料が用いられる。負極材料に含まれるCNT10は、複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体11を有し、チューブ本体11が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するように構成される。また、CNF20は、平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体21を有し、ファイバ本体21が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するように構成される。
【0015】
本発明の負極材料の特徴ある構成は、CNT10又はCNF20がチューブ又はファイバのX線回折において測定されるチューブ本体11又はファイバ本体21のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであり、チューブ本体11又はファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されたところにある。グラファイト網平面の積層間隔d002を0.3356nm〜0.3450nmの範囲内に規定することで高い電気伝導性を有する。0.3356nm未満のものは合成が難しく、0.3450nmを越えると十分な導電性が得られない上、グラファイトの結晶性が低下して容量も低下する。具体的には、CNTにおけるグラファイト網平面の積層間隔d002を0.3370nm〜0.3450nmの範囲内に、CNFにおけるグラファイト網平面の積層間隔d002を0.3356nm〜0.3370nmの範囲内に規定する。好ましい積層間隔d002は、0.3357nm〜0.3375nmである。チューブ本体11、ファイバ本体21の表面が厚さ0.1nm〜5nmの無定形炭素層12,22で被覆されているため、CNT表面及びCNF表面がそれぞれ化学的に安定になる。無定形炭素層12,22の厚さは上記製造条件により0.1nm〜5nmの範囲に形成される。0.1nm未満であると無定形炭素層12,22の存在価値が低く、本発明の効果が現れない。5nmを越えると充放電の効率が低下する不具合を生じる。無定形炭素層12,22の厚さはそれぞれ0.5nm〜2nmが好ましい。CNTとCNFをそれぞれ負極材料の主成分としたときの割合は、電池の放電容量を重視する場合は、CNTが0.5重量%〜10重量%、CNFが3重量%〜20重量%、好ましくはCNTが1重量%〜3重量%、CNFが5重量%〜10重量%であり、電池の放電容量維持率を重視する場合は、CNTが5重量%〜20重量%、CNFが10重量%〜30重量%、好ましくはCNTが5重量%〜10重量%、CNFが15重量%〜20重量%である。
【0016】
無定形炭素層12,22はチューブ本体11全表面、ファイバ本体21全表面の少なくとも80%の割合で被覆される。チューブ本体11全表面、ファイバ本体21全表面の少なくとも80%を無定形炭素層12,22で被覆することで、化学安定性がより向上し、加工性にも優れる。無定形炭素層12,22はチューブ本体11全表面、ファイバ本体21全表面の90%以上の割合で被覆することが好ましい。
【0017】
また本発明の負極材料は、CNT10又はCNF20のいずれか一方又はその双方に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体を含む。負極材料中のCNT10又はCNF20のいずれか一方又はその双方が80重量%〜99.5重量%、粒子状凝集体が0.5重量%〜20重量%の割合である。好ましくはCNT10又はCNF20のいずれか一方又はその双方が90重量%〜99重量%、粒子状凝集体が1重量%〜10重量%の割合である。CNT10又はCNF20のいずれか一方又はその双方を80重量%〜99.5重量%の範囲に規定したのは、80重量%未満では十分な電極密度が得られず、エネルギー密度の向上が少ないからであり、99.5重量%を越えると十分な高率放電特性が得難いからである。
【0018】
平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を0.5重量%〜10重量%更に含ませることにより、平均粒径10nm〜500nmの金属又は金属酸化物が電子伝導の基点となるため、より高率の放電が可能となる。金属又は金属酸化物のいずれか一方又はその双方は、CNT、CNFの長軸上に位置するように構成される。金属としてはFe、Co、Ni、Mg及びAlからなる群より選ばれた少なくとも1種の元素が選ばれ、単一金属や合金、金属酸化物の形態で使用される。
【0019】
次に、本発明の負極材料の製造方法を説明する。本実施の形態ではCNFの製造方法をその一例として説明する。
先ず、CNFを製造するために必要な触媒粒子をファイバの成長核として基板上に配置する。触媒粒子は、平均粒径が0.01μm〜100μm、好ましくは0.1μm〜10μmの範囲内の微粉末がカーボンナノファイバを製造する際に好適な大きさであり、Fe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物が触媒材料として挙げられる。所定の反応温度において、Feのα相を維持するような合金組成比で調製された金属触媒が好ましく、具体的にはFe−Ni合金やFe−Co合金、Fe−Cu合金がより好ましい。Fe−Ni合金に含まれるFeとNiのモル比(Fe/Ni)は20/80〜99/1、好ましくは40/60〜90/10である。Fe−Co合金に含まれるFeとCoのモル比(Fe/Co)は20/80〜99/1、好ましくは50/50〜95/5である。Fe−Cu合金に含まれるFeとCuのモル比(Fe/Cu)は20/80〜99/1、好ましくは80/20〜95/5である。
【0020】
触媒粒子の基板上への配置は、触媒粒子をそのまま均一に振りかけてよい。また触媒粒子をアルコール等の溶媒に懸濁させて懸濁液を調製し、この懸濁液を基板上に散布して乾燥することにより、所定の間隔で所望の量を基板上に配置してもよい。また、触媒粒子を構成する金属の硝酸塩溶液を調製し、この溶液を基板表面に塗布あるいは散布し、熱処理炉内に基板を挿入して炉内を200℃以上に昇温することによっても所定の間隔で所望の量を基板上に配置することができる。更に、基板を事前に熱処理炉内に収容して炉内を加熱し、触媒粒子を構成する金属の有機化合物等を熱処理炉内に任意の流量で供給して熱分解させ、触媒粒子を直接基板上に形成させることでも所定の間隔で所望の量を基板上に配置することができる。触媒粒子はCNFを製造する前に前処理を施し活性化させることが好ましい。活性化は、触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱することにより行われる。
【0021】
続いて、CNFの原料となる所定の混合ガスを基板上に配置された触媒粒子に0.01〜24時間供給してファイバ表面が無定形炭素で被覆されたCNFを触媒粒子から成長させる。
図5に本発明のCNFを製造する熱処理炉30を示す。なお、この熱処理炉30では、触媒の種類、温度等の製造条件を代えることによってCNTを製造することができる。この熱処理炉30は断熱性材質からなる装置本体31から構成され、装置本体31内部は所定の間隔をあけて2枚の仕切板36により水平に仕切られる。仕切板36,36により仕切られた装置本体31内部の頂部及び底部には発熱体32がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体32の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板36,36で仕切られた空間に原料となる混合ガスを供給するように装置本体31の一方の側部には、ガス供給口34が設けられる。
【0022】
カーボンナノファイバの原料となるガスとしては、CO及びHを含む混合ガス、COとHの混合ガスが挙げられる。混合ガスのCOに対するHの混合容積比(CO/H)は20/80〜90/10である。混合ガスのCOに対するHの混合容積比(CO/H)は40/60〜90/10が好ましい。なお、混合ガスのCOに対するHの混合容積比(CO/H)を示したが、混合ガスのCOに対するHの混合容積比(CO/H)も同様の混合容積比としてよい。
【0023】
仕切板36,36により仕切られた空間37は、粉末の触媒を散布した基板38が収容可能な大きさを有し、装置本体31の他方の側部には系外へ熱処理炉30内に供給した原料ガスを排出するガス排出口39が設けられる。空間37内に収容される基板38は取出し台41の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0024】
基板38に粉末の触媒42を載せた後、その基板38を取出し台41の上に載せて熱処理炉30まで搬送し、装置本体31の空間37内に収納する。その後、熱処理炉20内を0.08〜10MPaの範囲内に圧力を制御し、原料となる混合ガスをガス供給口34から供給し、発熱体32,32により加熱する。原料となる混合ガスの供給量は0.2L/min〜10L/min、加熱温度は400℃〜700℃、好ましくは500℃以上600℃未満に設定される。なお、混合ガスの供給量は触媒粒子の量や炉の大きさに依存する。従って、上記ガス供給量の数値範囲は一般的な製造方法における目安である。加熱温度を400℃〜700℃に規定したのは、下限値未満では反応速度が遅すぎてカーボンナノファイバを合成できず、上限値を越えるとファイバ状には合成されず、すすや黒鉛微粉が得られてしまうからである。原料となる混合ガスを供給しながら加熱し、0.01〜24時間保持しておくことにより、触媒粒子42を介してCNF43が成長する。得られたCNF43には触媒が含まれているので、必要に応じて熱処理炉30内より基板38を搬出して得られたCNF43を取出し、このCNF43を硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、CNF43に含まれる触媒粒子42を除去する。なお、触媒粒子42をそのままCNF中に含ませ、担持させた状態で使用してもよい。また、本実施の形態では、熱処理炉本体31の一方の側部より、原料となる混合ガスを供給する構成としたが、本体頂部又は底部より原料となる混合ガスを供給する構成としてもよい。このように上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有し、このファイバ本体が無定形炭素層で被覆されたCNFを得ることができる。
【0025】
このようにして得られた本発明の負極材料を用いて負極を作製する。
先ず得られた負極材料(負極活物質)と、導電助剤(炭素粉末、或いは銅やチタン等のリチウムと合金化し難い金属粉末)と、ポリフッ化ビニリデン(PVdF)等の結着剤とを所定の割合で混合することにより負極スラリーを調製する。ここで結着剤はアセトン等の溶剤に溶解させた状態で混合される。次に負極スラリーを負極集電体箔の上面に、スクリーン印刷法やドクターブレード法等により塗布して乾燥して負極を作製する。なお、負極スラリーをガラス基板上に塗布し乾燥した後に、ガラス基板から剥離して負極フィルムを作製し、更にこの負極フィルムを負極集電体に重ねて所定の圧力でプレス成形することにより、負極を作製してもよい。このように製造された負極では、CNTやCNFによってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。
【0026】
図6に示すように、負極集電体50上に負極活物質層51を形成して得られた本発明の負極52と、非水電解液を含む電解質層53と、正極集電体54上に結着剤、正極材料及び導電助剤からなる正極スラリーをドクターブレード法によって塗布し乾燥することにより正極活物質層56が形成された正極57とを積層することにより、リチウムイオン二次電池が得られる。非水電解液には、特に従来炭素材料を用いると電気化学的に分解されてしまっていた低温特性に優れたPCを使用することができる。また、ECやDEC、又はこれらの混合溶媒等を用いてもよい。このように製造されたリチウムイオン二次電池では、負極材料の主成分であるCNT又はCNFのいずれか一方又はその双方によってリチウムイオンの吸蔵及び放出がスムーズに進行するので、高率充放電特性が向上する。また、負極材料のCNT、CNFには無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれる低温特性に優れたPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。更に、負極材料に従来より用いられてきた炭素材料に比べて、サイズの小さいCNTやCNFを用いているため、高密度での充電が可能となり、電池のエネルギー密度向上につながる。
【0027】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
(1) 負極材料の製造
先ず、平均粒径1μm以下のFe−Ni合金1g(モル比:Fe/Ni=70/30)を触媒粒子として用意した。この触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱して活性化させた。次いで図5に示すように、活性化させた触媒粒子42を基板38上に載せ、基板38を熱処理炉30内に収容した。次に、熱処理炉内を600〜630℃の温度に加熱し、COとHを含む混合ガス(混合容積比:CO/H=80/20)を原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内の空間37に供給しながら約10時間保持してCNFを含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒粒子を除去して黒鉛化処理を行うことなくCNFを得た。このCNFをX線回折により測定したところ、CNFのグラファイト網平面の積層間隔d002は0.3357nmであった。このCNFを実施例1の負極材料とした。
【0028】
(2) 負極(作用極)の作製
上記負極材料をn−メチルピロリドン中に分散して分散溶液を作製した。次いで結着剤としてPVdFを用意し、この結着剤を溶媒中に溶解し、結着剤の溶液を調製した。次に、分散溶液と結着剤溶液を炭素材料の割合が90重量%、結着剤の割合が10重量%の割合になるようにロールミル等の混合器で混練し、縦×横×厚さがそれぞれ1cm×1cm×0.1cmの正方形金属網状の負極集電体の両面にコーダーにより塗布、乾燥して負極(作用極)を作製した。負極集電体にはメッシュ状に形成された銅箔を用いた。
【0029】
<実施例2>
加熱温度を570〜600℃に変えてCNFを得た以外は実施例1と同様にして負極を作製した。
<実施例3>
加熱温度を540〜570℃に変えてCNFを得た以外は実施例1と同様にして負極を作製した。
【0030】
<実施例4>
先ず、平均粒径1μm以下のCoとMgOの混合粉末1g(混合重量比:Co/MgO=60/40)を触媒粒子として用意した。この触媒粒子をHe及びHを含む混合ガス雰囲気下で加熱して活性化させた。次いで図5に示すように、活性化させた触媒粒子42を基板38上に載せ、基板38を熱処理炉30内に収容した。次に、熱処理炉内を600〜650℃の温度に加熱し、COとHを含む混合ガス(混合容積比:CO/H=80/20)を原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内の空間37に供給しながら約10時間保持してCNTを含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒粒子を除去して黒鉛化処理を行うことなくCNTを得た。このCNTをX線回折により測定したところ、CNTのグラファイト網平面の積層間隔d002は0.339nmであった。このCNTを実施例4の負極材料とした以外は実施例1と同様にして負極を作製した。
<実施例5>
加熱温度を700〜750℃に変えてCNTを得た以外は実施例4と同様にして負極を作製した。
【0031】
<比較例1>
負極材料に人造黒鉛を用いた以外は実施例1と同様にして負極を作製した。
<比較例2>
負極材料に2800℃の高温で熱処理して黒鉛化処理を施したピッチ系黒鉛を用いた以外は実施例1と同様にして負極を作製した。
<比較例3>
実施例4で得られたCNTを2800℃の高温で熱処理して黒鉛化処理を施したものを負極材料として用いた以外は実施例1と同様にして負極を作製した。
【0032】
<比較試験及び評価>
実施例1〜5及び比較例1〜3の負極(作用極)をそれぞれ3種類ずつ作製し、これらの負極を図7に示す充放電サイクル試験装置60に取付けた。この装置60は、容器61に電解液62(支持塩を有機溶媒に溶かしたもの)が貯留され、上記負極63が正極64及び参照極66とともに電解液62に浸され、更に負極63(作用極)、正極64(対極)及び参照極66がポテンシオスタット67(ポテンショメータ)にそれぞれ電気的に接続された構成となっている。支持塩であるリチウム塩には1MのLiPFを、有機溶媒にはECとDECを重量比(EC/DEC)が1:1の割合でそれぞれ含む溶液、ECとPCを重量比(EC/PC)が1:1の割合でそれぞれ含む溶液、及びPCを含む溶液の3種類をそれぞれ用いた。正極及び参照極には金属リチウムを用いた。この装置を用いて充放電サイクル試験を行い、各負極(作用極)の低率及び高率放電容量を測定した。なお、低率放電容量は70mA/gにて、高率放電容量は350mA/gにてそれぞれ測定を行い、測定電圧範囲を0V〜2.0Vとした。なお、容量は放電容量/(炭素材料重量)より算出した。実施例1〜5及び比較例1〜3の電極の測定結果を表1にそれぞれ示す。
【0033】
【表1】

Figure 2004303613
【0034】
表1より明らかなように、比較例1〜3に用いた負極材料は、PCを含む電解液中では分解反応が生じ、充放電反応が起こらない結果が得られた。これに対して実施例1〜5に用いた負極材料は、全ての電解液中で、特にPCが混入している電解液中でも十分な放電容量を示す結果となった。CNTやCNFを負極材料として用いた実施例1〜5及び比較例3と、それ以外の炭素材料を用いた比較例1及び2を比較すると、CNT、CNFは微細な構造を有しているため、人造黒鉛やピッチ系炭素よりも高率放電時の容量維持率が高い結果となった。また、CNTやCNFを負極材料として用いた実施例1〜5と黒鉛化処理を施した比較例3を比較すると、面間隔d002の測定結果から黒鉛化処理を施さなくても黒鉛構造が発達していることが確認された。
【0035】
【発明の効果】
以上述べたように、本発明の負極材料は、CNT又はCNFのいずれか一方又はその双方を主成分として構成される。CNTは複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体を有し、チューブ本体が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、CNFは平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体を有し、ファイバ本体が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、このチューブ本体又はファイバ本体の表面が厚さ0.1nm〜5nmの無定形炭素層で被覆され、CNT又はCNFがチューブ又はファイバのX線回折において測定されるチューブ本体又はファイバ本体のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであるため、第一に高い電気伝導性を有し、第二にチューブ表面及びファイバ表面が化学的に安定である。また無定形炭素層が活性なチューブ本体、ファイバ本体の黒鉛層を被覆しているため、電解液に含まれるPCの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。またCNTやCNFは従来より負極材料として用いられてきた炭素系材料に比べて、平均直径が小さい材料であるため、電池の電極を作製した場合、高密度での充電が可能となり、電池のエネルギー密度向上に繋がる。
更に無定形炭素層がチューブ全表面、ファイバ全表面の少なくとも80%の割合で被覆されることで、化学安定性がより向上し、加工性にも優れる。
【図面の簡単な説明】
【図1】本発明の負極材料の主成分であるカーボンナノチューブの模式図。
【図2】図1に対応するカーボンナノチューブの断面図。
【図3】本発明の負極材料の主成分であるカーボンナノファイバの模式図。
【図4】図3に対応するカーボンナノファイバの断面図。
【図5】カーボンナノチューブ及びカーボンナノファイバを作製する熱処理炉の断面構成図。
【図6】本発明のリチウムイオン二次電池の電極体を示す部分断面構成図。
【図7】実施例及び比較例のリチウム二次電池用負極活物質の充放電サイクル試験に用いられる装置。
【符号の説明】
10 カーボンナノチューブ
11 チューブ本体
12 無定形炭素層
20 カーボンナノファイバ
21 ファイバ本体
22 無定形炭素層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a negative electrode material containing one or both of a carbon nanotube and a carbon nanofiber as a main component, a negative electrode using the same, and a lithium ion secondary battery using the negative electrode.
[0002]
[Prior art]
In recent years, carbon materials have been actively studied as a negative electrode material for supporting lithium of a lithium secondary battery. For example, in the case of using a carbon material in which graphite is supported on lithium, lithium is inserted between graphite layers when the battery is charged, and lithium is released from the graphite layer when discharging. However, when a graphite material is used as a negative electrode material of a lithium secondary battery, propylene carbonate (hereinafter, referred to as PC) having excellent low-temperature characteristics as an electrolytic solution is electrochemically decomposed on the graphite surface. There was a problem that an electrolyte containing PC could not be used.
[0003]
Therefore, a method using an electrolyte containing no PC, for example, an ethylene carbonate-based electrolyte such as ethylene carbonate (hereinafter, referred to as EC) or diethyl carbonate (hereinafter, referred to as DEC) has been studied. There is a new problem that characteristics are deteriorated.
[0004]
As a measure to solve this problem, in a method for producing a graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, a raw material serving as a pyrolytic carbon source is chemically vapor-deposited on the graphite-based carbon material to form a pyrolytic carbon coating. A method for producing a graphite-based carbon material is disclosed in which, after a layer is formed, a heat treatment is performed at a temperature higher than a deposition temperature (for example, see Patent Document 1). In this production method, particles having an average particle size of about 0.1 to 100 μm, such as natural graphite, artificial graphite, graphitized mesocarbon microbeads, and graphitized pitch-based carbon fibers, are used as starting materials. After forming a pyrolytic carbon coating layer on the surface of the particulate starting material, a graphite-based carbon material is obtained by high-temperature heat treatment. By using such a graphite-based carbon material as a negative electrode material, a battery having good initial efficiency and high discharge capacity can be obtained even when an electrolyte containing PC having excellent low-temperature characteristics is used in a lithium secondary battery. .
[0005]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 2002-241117
[Problems to be solved by the invention]
However, the carbon material disclosed in Patent Document 1 has a problem in that the production efficiency is poor because a pyrolytic carbon coating layer must be formed on the particulate starting material and further subjected to high-temperature heat treatment.
[0007]
An object of the present invention is to suppress the decomposition reaction of propylene carbonate (PC) contained in an electrolytic solution, obtain a high capacity of graphite, and perform a high-rate charge / discharge negative electrode material, a negative electrode using the same, and a negative electrode using the same. It is to provide a lithium ion secondary battery using a negative electrode.
[0008]
[Means for Solving the Problems]
In the invention according to claim 1, as shown in FIG. 1 or FIG. 3, one or both of a carbon nanotube (hereinafter, simply referred to as CNT) 10 and a carbon nanofiber (hereinafter, simply referred to as CNF) 20 are used. As a main component, the CNT 10 has a tube body 11 in which a plurality of tubular graphite nets are formed concentrically. The tube body 11 has an average diameter of 10 nm to 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more. The CNF 20 has a fiber body 21 in which a plurality of planar graphite nets are laminated and the graphite net is substantially perpendicular to the longitudinal axis of the fiber, and the fiber main body 21 has an average diameter of 10 nm to 500 nm. , Having a length of 100 nm or more and an aspect ratio of 10 or more, and wherein CNT10 or CNF20 is a tube or Stacking spacing d 002 of the graphite-net plane of the tube body 11 or fiber body 21 is measured in the X-ray diffraction of Aiba is a 0.3356Nm~0.3450Nm, surface thickness of the tube body 11 or fiber body 21 0 A negative electrode material characterized by being coated with amorphous carbon layers 12 and 22 having a thickness of 1 to 5 nm.
The CNT 10 or CNF 20 which is a main component of the negative electrode material according to claim 1 has a high electrical conductivity because the tube body 11 or the fiber body 21 has a lamination interval d 002 of 0.3356 nm to 0.3450 nm between the graphite mesh planes. On the other hand, since the surface of the tube body 11 or the fiber body 21 is covered with the amorphous carbon layers 12 and 22 having a thickness of 0.1 nm to 5 nm, the surface activity is low and it is chemically stable. In addition, since the amorphous carbon layers 12 and 22 cover the active graphite layer, the decomposition reaction of PC contained in the electrolytic solution is suppressed, a high capacity of graphite is obtained, and further high-rate charge / discharge is possible. It becomes. Furthermore, since CNT and CNF are materials having a smaller average diameter than carbon-based materials that have been conventionally used as a negative electrode material, high-density charging is possible when battery electrodes are manufactured, It leads to energy density improvement.
[0009]
The invention according to claim 2 is the invention according to claim 1, wherein the amorphous carbon layers 12 and 22 are at least 80% of either the entire surface of the tube body 11 or the entire surface of the fiber body 21 or both. Is a negative electrode material coated with.
In the invention according to claim 2, by coating at least 80% of either the entire surface of the tube main body 11 or the entire surface of the fiber main body 21 or both with the amorphous carbon layers 12 and 22, the chemical stability is further improved. And excellent workability.
[0010]
The invention according to claim 3 is the invention according to claim 1, and further includes, in addition to one or both of CNT10 and CNF20, a particulate aggregate made of carbon fine powder having a graphite structure. One or both of CNF20 is a negative electrode material having a ratio of 80% by weight to 99.5% by weight and a particulate aggregate of 0.5% by weight to 20% by weight.
According to the third aspect of the invention, by including the particulate aggregate in the negative electrode material, the contact between the CNTs or the CNFs as the main components, and the contact between the CNTs and the CNFs is improved, and the high-rate charge / discharge characteristics are further improved.
[0011]
The invention according to claim 4 is the invention according to any one of claims 1 to 3, wherein one or both of the metal and the metal oxide is longer than one of the CNT 10 and the CNF 20 or both. This is the negative electrode material on the axis.
The invention according to claim 5 is the invention according to any one of claims 1 to 4, wherein one or both of a metal and a metal oxide having an average particle diameter of 10 nm to 500 nm is contained in an amount of 0.5% by weight or less. A negative electrode material further containing 10% by weight.
In the invention according to claim 5, by further including one or both of a metal and a metal oxide having an average particle diameter of 10 nm to 500 nm, the metal or the metal oxide serves as a base point of electron conduction. Rate discharge is possible.
[0012]
The invention according to claim 6 is the invention according to claim 5, wherein one or both of the metal and the metal in the metal oxide are selected from the group consisting of Fe, Co, Ni, Mg, and Al. The negative electrode material is at least one element.
The invention according to claim 7 is a negative electrode formed using the negative electrode material according to any one of claims 1 to 6 and a binder.
In the invention according to claim 7, since one of or both of CNT and CNF, which are the main components, smoothly absorbs and releases lithium ions, the high-rate charge and discharge characteristics are improved.
[0013]
The invention according to claim 8 is a lithium ion secondary battery formed using the negative electrode according to claim 7.
In the lithium ion secondary battery according to claim 8, since one or both of CNT and CNF, which are the main components of the negative electrode material, smoothly absorb and release lithium ions, the high-rate charge / discharge characteristics are improved. I do. In addition, since the amorphous carbon layer covers the active graphite layer on the CNT and CNF of the negative electrode material, the decomposition reaction of PC having excellent low-temperature characteristics contained in the electrolytic solution is suppressed, and the high capacity of graphite is reduced. And a higher rate of charge / discharge becomes possible. Furthermore, since CNT or CNF having a smaller size than the carbon material conventionally used as the negative electrode material is used, high-density charging is possible, which leads to an improvement in the energy density of the battery.
[0014]
BEST MODE FOR CARRYING OUT THE INVENTION
Next, an embodiment of the present invention will be described with reference to the drawings.
As shown in FIG. 1 or 3, the negative electrode of the lithium ion secondary battery is made of a negative electrode material mainly composed of one or both of CNT10 and CNF20. The CNT 10 contained in the negative electrode material has a tube body 11 in which a plurality of tubular graphite networks are formed concentrically, and the tube body 11 has an average diameter of 10 nm to 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more. It is configured to have a ratio. Also, the CNF 20 has a fiber body 21 in which a plurality of planar graphite nets are laminated and the graphite net is substantially perpendicular to the longitudinal axis of the fiber, and the fiber main body 21 has an average diameter of 10 nm to 500 nm and 100 nm. It is configured to have the above length and an aspect ratio of 10 or more.
[0015]
The characteristic configuration of the negative electrode material of the present invention is such that the lamination interval d 002 of the graphite net plane of the tube body 11 or the fiber body 21 is 0.3356 nm to 0.3450 nm when the CNT 10 or the CNF 20 is measured by X-ray diffraction of the tube or the fiber. The surface of the tube body 11 or the fiber body 21 is covered with the amorphous carbon layers 12 and 22 having a thickness of 0.1 nm to 5 nm. It has a high electrical conductivity by defining the laminated spacing d 002 of the graphite-net plane in the range of 0.3356Nm~0.3450Nm. If it is less than 0.3356 nm, it is difficult to synthesize it. If it exceeds 0.3450 nm, sufficient conductivity cannot be obtained, and further, the crystallinity of graphite decreases and the capacity also decreases. Specifically, the laminated spacing d 002 of the graphite-net plane in the CNT within the 0.3370Nm~0.3450Nm, the laminated spacing d 002 of the graphite-net plane in the CNF in the range of 0.3356nm~0.3370nm Stipulate. A preferred lamination interval d 002 is from 0.3357 nm to 0.3375 nm. Since the surfaces of the tube main body 11 and the fiber main body 21 are covered with the amorphous carbon layers 12 and 22 having a thickness of 0.1 nm to 5 nm, the CNT surface and the CNF surface become chemically stable, respectively. The thickness of the amorphous carbon layers 12 and 22 is formed in the range of 0.1 nm to 5 nm according to the above manufacturing conditions. When the thickness is less than 0.1 nm, the existence value of the amorphous carbon layers 12 and 22 is low, and the effect of the present invention does not appear. If it exceeds 5 nm, a problem occurs in that the charge / discharge efficiency is reduced. The thickness of each of the amorphous carbon layers 12 and 22 is preferably 0.5 nm to 2 nm. The proportions of CNT and CNF as main components of the negative electrode material are preferably 0.5% to 10% by weight of CNT and 3% to 20% by weight of CNF when the discharge capacity of the battery is important. Is 1 to 3% by weight of CNT and 5 to 10% by weight of CNF. When importance is placed on the discharge capacity retention rate of the battery, 5 to 20% by weight of CNT and 10% by weight of CNF. -30% by weight, preferably 5-10% by weight of CNT and 15-20% by weight of CNF.
[0016]
The amorphous carbon layers 12 and 22 cover at least 80% of the entire surface of the tube body 11 and the entire surface of the fiber body 21. By covering at least 80% of the entire surface of the tube main body 11 and the entire surface of the fiber main body 21 with the amorphous carbon layers 12 and 22, the chemical stability is further improved and the workability is excellent. It is preferable that the amorphous carbon layers 12 and 22 cover 90% or more of the entire surface of the tube body 11 and the entire surface of the fiber body 21.
[0017]
Further, the negative electrode material of the present invention further includes, in addition to one or both of CNT10 and CNF20, a particulate aggregate made of carbon fine powder having a graphite structure. Either or both of CNT10 and CNF20 in the negative electrode material are in a ratio of 80% by weight to 99.5% by weight, and particulate aggregates are in a ratio of 0.5% by weight to 20% by weight. Preferably, CNT10 and / or CNF20 account for 90% to 99% by weight, and particulate agglomerates account for 1% to 10% by weight. The reason why one or both of the CNT 10 and the CNF 20 are specified in the range of 80% by weight to 99.5% by weight is that if the amount is less than 80% by weight, a sufficient electrode density cannot be obtained and the improvement in energy density is small. If it exceeds 99.5% by weight, it is difficult to obtain sufficient high-rate discharge characteristics.
[0018]
By further containing 0.5% by weight to 10% by weight of one or both of a metal and a metal oxide having an average particle size of 10 nm to 500 nm, the metal or metal oxide having an average particle size of 10 nm to 500 nm can be converted to an electron conductive material. , It is possible to discharge at a higher rate. Either or both of the metal and the metal oxide are configured to be located on the major axis of the CNT or CNF. As the metal, at least one element selected from the group consisting of Fe, Co, Ni, Mg and Al is selected and used in the form of a single metal, an alloy or a metal oxide.
[0019]
Next, a method for producing the negative electrode material of the present invention will be described. In the present embodiment, a method for manufacturing CNF will be described as an example.
First, catalyst particles required for manufacturing CNF are arranged on a substrate as fiber growth nuclei. The catalyst particles have a mean particle size of 0.01 μm to 100 μm, preferably a fine powder having a size in the range of 0.1 μm to 10 μm, which is suitable for producing carbon nanofibers, and Fe, Ni, Co, Mn. , Cu, Mg, Al, and a metal selected from the group consisting of Al and Ca, an alloy of two or more metals, or a metal oxide containing at least one metal. A metal catalyst prepared with an alloy composition ratio that maintains the α phase of Fe at a predetermined reaction temperature is preferable, and specifically, an Fe—Ni alloy, an Fe—Co alloy, and an Fe—Cu alloy are more preferable. The molar ratio of Fe to Ni (Fe / Ni) contained in the Fe—Ni alloy is 20/80 to 99/1, preferably 40/60 to 90/10. The molar ratio of Fe to Co (Fe / Co) contained in the Fe—Co alloy is 20/80 to 99/1, preferably 50/50 to 95/5. The molar ratio of Fe to Cu (Fe / Cu) contained in the Fe-Cu alloy is 20/80 to 99/1, preferably 80/20 to 95/5.
[0020]
The catalyst particles may be arranged on the substrate by uniformly sprinkling the catalyst particles as they are. Also, a suspension is prepared by suspending the catalyst particles in a solvent such as alcohol, and the suspension is sprayed on a substrate and dried to arrange a desired amount on the substrate at predetermined intervals. Is also good. Also, a predetermined solution may be prepared by preparing a nitrate solution of a metal constituting the catalyst particles, applying or spraying the solution on the surface of the substrate, inserting the substrate into a heat treatment furnace and heating the furnace to 200 ° C. or more. A desired amount can be placed on the substrate at intervals. Furthermore, the substrate is housed in a heat treatment furnace in advance, the furnace is heated, and an organic compound such as a metal constituting the catalyst particles is supplied at an optional flow rate into the heat treatment furnace to be thermally decomposed. By forming them on the substrate, a desired amount can be arranged on the substrate at predetermined intervals. The catalyst particles are preferably pretreated and activated before producing CNF. Activation is carried out by heating the catalyst particles in a mixed gas atmosphere containing He and H 2.
[0021]
Subsequently, a predetermined mixed gas, which is a raw material of CNF, is supplied to the catalyst particles disposed on the substrate for 0.01 to 24 hours to grow CNF having a fiber surface coated with amorphous carbon from the catalyst particles.
FIG. 5 shows a heat treatment furnace 30 for producing the CNF of the present invention. In the heat treatment furnace 30, CNTs can be manufactured by changing manufacturing conditions such as the type and temperature of the catalyst. The heat treatment furnace 30 is composed of a device main body 31 made of a heat insulating material, and the inside of the device main body 31 is horizontally partitioned by two partition plates 36 at a predetermined interval. Heating elements 32 are installed at the top and bottom inside the apparatus main body 31 separated by the partition plates 36, 36, respectively. Examples of the heat source of the heating element 32 used for the heat treatment in the heat treatment furnace include an incandescent lamp, a halogen lamp, an arc lamp, a graphite heater and the like. A gas supply port 34 is provided on one side of the apparatus main body 31 so as to supply a mixed gas as a raw material to a space partitioned by the partition plates 36, 36.
[0022]
Examples of the gas serving as a raw material of the carbon nanofiber include a mixed gas containing CO and H 2 and a mixed gas of CO 2 and H 2 . Mixing volume ratio of H 2 to CO in the gas mixture (CO / H 2) is 20 / 80-90 / 10. Mixing volume ratio of H 2 to CO in the gas mixture (CO / H 2) is preferably 40 / 60-90 / 10. Although the mixed volume ratio of H 2 to CO of the mixed gas (CO / H 2 ) is shown, the mixed volume ratio of H 2 to CO 2 of the mixed gas (CO 2 / H 2 ) is also the same as the mixed volume ratio. Good.
[0023]
The space 37 divided by the partition plates 36, 36 has a size capable of accommodating the substrate 38 on which the powdered catalyst is dispersed, and is supplied to the other side of the apparatus main body 31 outside the system into the heat treatment furnace 30. A gas outlet 39 for discharging the source gas is provided. The substrate 38 accommodated in the space 37 is placed on an unloading table 41, and is provided so as to be accommodated and unloaded in a heat treatment furnace.
[0024]
After the powder catalyst 42 is placed on the substrate 38, the substrate 38 is placed on the take-out table 41, transported to the heat treatment furnace 30, and stored in the space 37 of the apparatus main body 31. Thereafter, the pressure inside the heat treatment furnace 20 is controlled within a range of 0.08 to 10 MPa, a mixed gas as a raw material is supplied from a gas supply port 34, and the mixture is heated by the heating elements 32, 32. The supply rate of the mixed gas as a raw material is set to 0.2 L / min to 10 L / min, and the heating temperature is set to 400 ° C. to 700 ° C., preferably 500 ° C. or more and less than 600 ° C. The supply amount of the mixed gas depends on the amount of the catalyst particles and the size of the furnace. Therefore, the above numerical range of the gas supply amount is a standard in a general manufacturing method. When the heating temperature is specified at 400 ° C. to 700 ° C., the reaction rate is too slow below the lower limit to synthesize carbon nanofibers, and if the heating temperature exceeds the upper limit, the carbon nanofibers are not synthesized, and soot and graphite fine powder are generated. It is because it is obtained. The CNF 43 is grown via the catalyst particles 42 by heating while supplying a mixed gas as a raw material and holding the mixture for 0.01 to 24 hours. Since the obtained CNF 43 contains a catalyst, the CNF 43 obtained by unloading the substrate 38 from the heat treatment furnace 30 is taken out as necessary, and the CNF 43 is converted into an acidic solution such as nitric acid, hydrochloric acid, hydrofluoric acid, or the like. The catalyst particles 42 contained in the CNF 43 are removed by immersion. Note that the catalyst particles 42 may be directly contained in CNF and used in a supported state. In the present embodiment, the mixed gas as the raw material is supplied from one side of the heat treatment furnace main body 31, but the mixed gas as the raw material may be supplied from the top or bottom of the main body. Thus, the above-mentioned manufacturing method enables lower-temperature manufacturing than before, without performing a graphitization treatment, the fiber body has a highly crystalline graphite structure, and the fiber body is coated with an amorphous carbon layer in CNF. Can be obtained.
[0025]
A negative electrode is manufactured using the negative electrode material of the present invention thus obtained.
First, the obtained negative electrode material (negative electrode active material), a conductive auxiliary (carbon powder or a metal powder such as copper or titanium which is difficult to alloy with lithium) and a binder such as polyvinylidene fluoride (PVdF) are prescribed. To prepare a negative electrode slurry. Here, the binder is mixed in a state of being dissolved in a solvent such as acetone. Next, the negative electrode slurry is applied on the upper surface of the negative electrode current collector foil by a screen printing method, a doctor blade method, or the like, and dried to produce a negative electrode. The negative electrode slurry was applied on a glass substrate, dried, and then separated from the glass substrate to produce a negative electrode film. The negative electrode film was further laminated on the negative electrode current collector and press-molded at a predetermined pressure to form the negative electrode film. May be produced. In the negative electrode manufactured as described above, the insertion and extraction of lithium ions proceed smoothly by CNT and CNF, and thus the high-rate charge / discharge characteristics are improved.
[0026]
As shown in FIG. 6, a negative electrode 52 of the present invention obtained by forming a negative electrode active material layer 51 on a negative electrode current collector 50, an electrolyte layer 53 containing a non-aqueous electrolyte, and a positive electrode current collector 54 A positive electrode slurry formed of a positive electrode active material layer 56 is formed by applying and drying a positive electrode slurry comprising a binder, a positive electrode material and a conductive auxiliary agent by a doctor blade method, so that a lithium ion secondary battery is formed. can get. As the non-aqueous electrolyte, a PC having excellent low-temperature characteristics, which has been electrochemically decomposed when a carbon material is conventionally used, can be used. Further, EC or DEC, or a mixed solvent thereof may be used. In the lithium-ion secondary battery manufactured in this way, CNT and / or CNF, which are the main components of the negative electrode material, smoothly absorb and release lithium ions, so that high-rate charge / discharge characteristics are improved. improves. In addition, since the amorphous carbon layer covers the active graphite layer on the CNT and CNF of the negative electrode material, the decomposition reaction of PC having excellent low-temperature characteristics contained in the electrolytic solution is suppressed, and the high capacity of graphite is reduced. And a higher rate of charge / discharge becomes possible. Furthermore, since CNT or CNF having a smaller size than the carbon material conventionally used as the negative electrode material is used, high-density charging is possible, which leads to an improvement in the energy density of the battery.
[0027]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
(1) Production of Negative Electrode Material First, 1 g (molar ratio: Fe / Ni = 70/30) of an Fe—Ni alloy having an average particle diameter of 1 μm or less was prepared as catalyst particles. The catalyst particles are activated by heating in a mixed gas atmosphere containing He and H 2. Next, as shown in FIG. 5, the activated catalyst particles 42 were placed on a substrate 38, and the substrate 38 was housed in a heat treatment furnace 30. Next, the inside of the heat treatment furnace is heated to a temperature of 600 to 630 ° C., and a mixed gas containing CO and H 2 (mixing volume ratio: CO / H 2 = 80/20) is used as a source gas, and the flow rate of the source gas is 10 L / The mixture was kept for about 10 hours while supplying the mixture to the space 37 in the heat treatment furnace in minutes, to synthesize a mixture containing CNF. The obtained mixture was immersed in a nitric acid solution to remove the catalyst particles contained in the mixture and obtain CNF without performing the graphitization treatment. When this CNF was measured by X-ray diffraction, the lamination distance d 002 of the graphite network plane of CNF was 0.3357 nm. This CNF was used as the negative electrode material of Example 1.
[0028]
(2) Preparation of Negative Electrode (Working Electrode) The negative electrode material was dispersed in n-methylpyrrolidone to prepare a dispersion solution. Next, PVdF was prepared as a binder, and the binder was dissolved in a solvent to prepare a solution of the binder. Next, the dispersion solution and the binder solution are kneaded in a mixer such as a roll mill so that the ratio of the carbon material is 90% by weight and the ratio of the binder is 10% by weight. Was applied to both sides of a 1 cm × 1 cm × 0.1 cm square metal net-like negative electrode current collector by a coder and dried to produce a negative electrode (working electrode). A copper foil formed in a mesh shape was used as the negative electrode current collector.
[0029]
<Example 2>
A negative electrode was produced in the same manner as in Example 1 except that CNF was obtained by changing the heating temperature to 570 to 600 ° C.
<Example 3>
A negative electrode was produced in the same manner as in Example 1 except that CNF was obtained by changing the heating temperature to 540 to 570 ° C.
[0030]
<Example 4>
First, 1 g of a mixed powder of Co 3 O 4 and MgO having an average particle diameter of 1 μm or less (mixing weight ratio: Co 3 O 4 / MgO = 60/40) was prepared as catalyst particles. The catalyst particles are activated by heating in a mixed gas atmosphere containing He and H 2. Next, as shown in FIG. 5, the activated catalyst particles 42 were placed on a substrate 38, and the substrate 38 was housed in a heat treatment furnace 30. Next, the inside of the heat treatment furnace is heated to a temperature of 600 to 650 ° C., and a mixed gas containing CO and H 2 (mixing volume ratio: CO / H 2 = 80/20) is used as a raw material gas, and the flow rate of the raw material gas is 10 L / The mixture was maintained for about 10 hours while being supplied to the space 37 in the heat treatment furnace in a time period to synthesize a mixture containing CNTs. The obtained mixture was immersed in a nitric acid solution to remove the catalyst particles contained in the mixture and obtain CNT without performing graphitization treatment. When this CNT was measured by X-ray diffraction, laminated spacing d 002 of the graphite-net plane of the CNT was 0.339 nm. A negative electrode was produced in the same manner as in Example 1 except that this CNT was used as the negative electrode material of Example 4.
<Example 5>
A negative electrode was produced in the same manner as in Example 4, except that CNT was obtained by changing the heating temperature to 700 to 750 ° C.
[0031]
<Comparative Example 1>
A negative electrode was produced in the same manner as in Example 1, except that artificial graphite was used as the negative electrode material.
<Comparative Example 2>
A negative electrode was produced in the same manner as in Example 1, except that a pitch-based graphite obtained by heat-treating the negative electrode material at a high temperature of 2800 ° C. and performing a graphitization treatment was used.
<Comparative Example 3>
A negative electrode was produced in the same manner as in Example 1 except that the CNT obtained in Example 4 was heat-treated at a high temperature of 2800 ° C. and subjected to a graphitization treatment as a negative electrode material.
[0032]
<Comparison test and evaluation>
Three types of negative electrodes (working electrodes) of Examples 1 to 5 and Comparative Examples 1 to 3 were produced, and these negative electrodes were attached to a charge / discharge cycle test device 60 shown in FIG. In this apparatus 60, an electrolytic solution 62 (a solution obtained by dissolving a supporting salt in an organic solvent) is stored in a container 61, and the negative electrode 63 is immersed in the electrolytic solution 62 together with a positive electrode 64 and a reference electrode 66. ), The positive electrode 64 (counter electrode) and the reference electrode 66 are electrically connected to a potentiostat 67 (potentiometer), respectively. A solution containing 1M LiPF 6 for the lithium salt as a supporting salt, a solution containing EC and DEC at a weight ratio (EC / DEC) of 1: 1 in the organic solvent, and a weight ratio of EC and PC (EC / PC). ), And a solution containing PC at a ratio of 1: 1 and a solution containing PC, respectively. Metallic lithium was used for the positive electrode and the reference electrode. A charge / discharge cycle test was performed using this apparatus, and the low-rate and high-rate discharge capacities of each negative electrode (working electrode) were measured. The low-rate discharge capacity was measured at 70 mA / g, and the high-rate discharge capacity was measured at 350 mA / g. The measured voltage range was 0 V to 2.0 V. The capacity was calculated from discharge capacity / (weight of carbon material). Table 1 shows the measurement results of the electrodes of Examples 1 to 5 and Comparative Examples 1 to 3, respectively.
[0033]
[Table 1]
Figure 2004303613
[0034]
As is clear from Table 1, the negative electrode materials used in Comparative Examples 1 to 3 were decomposed in the electrolytic solution containing PC, and no charge / discharge reaction was caused. On the other hand, the negative electrode materials used in Examples 1 to 5 showed a sufficient discharge capacity in all the electrolytes, especially in the electrolyte mixed with PC. Comparing Examples 1 to 5 and Comparative Example 3 using CNT or CNF as a negative electrode material with Comparative Examples 1 and 2 using other carbon materials, CNT and CNF have a fine structure. As a result, the capacity retention ratio at the time of high-rate discharge was higher than that of artificial graphite or pitch-based carbon. When Examples 1 to 5 using CNT or CNF as the negative electrode material and Comparative Example 3 subjected to the graphitization treatment are compared, it is found from the measurement result of the plane spacing d 002 that the graphite structure develops without the graphitization treatment. It was confirmed that.
[0035]
【The invention's effect】
As described above, the negative electrode material of the present invention is configured with one or both of CNT and CNF as a main component. The CNT has a tube body in which a plurality of tubular graphite networks are formed concentrically. The tube body has an average diameter of 10 nm to 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more. A plurality of graphite nets stacked on each other, wherein the graphite net has a fiber body substantially perpendicular to the longitudinal axis of the fiber, wherein the fiber body has an average diameter of 10 nm to 500 nm, a length of 100 nm or more, and a length of 10 or more. A tube body or fiber having an aspect ratio, wherein the surface of the tube body or fiber body is coated with an amorphous carbon layer having a thickness of 0.1 nm to 5 nm, and CNT or CNF is measured in X-ray diffraction of the tube or fiber. The lamination interval d 002 of the graphite net plane of the main body is 0.3356 nm to 0.3450 nm. Therefore, firstly, it has high electric conductivity, and secondly, the tube surface and the fiber surface are chemically stable. In addition, since the amorphous carbon layer covers the active tube body and the graphite layer of the fiber body, the decomposition reaction of PC contained in the electrolytic solution is suppressed, and a high capacity of graphite is obtained. Becomes possible. In addition, CNT and CNF have a smaller average diameter than carbon-based materials that have been conventionally used as a negative electrode material. Therefore, when a battery electrode is manufactured, high-density charging is possible, and the energy of the battery is reduced. It leads to density improvement.
Further, since the amorphous carbon layer is coated at a rate of at least 80% of the entire surface of the tube and the entire surface of the fiber, the chemical stability is further improved and the workability is excellent.
[Brief description of the drawings]
FIG. 1 is a schematic view of a carbon nanotube as a main component of a negative electrode material of the present invention.
FIG. 2 is a cross-sectional view of the carbon nanotube corresponding to FIG.
FIG. 3 is a schematic view of a carbon nanofiber that is a main component of the negative electrode material of the present invention.
FIG. 4 is a cross-sectional view of the carbon nanofiber corresponding to FIG.
FIG. 5 is a cross-sectional configuration diagram of a heat treatment furnace for producing carbon nanotubes and carbon nanofibers.
FIG. 6 is a partial cross-sectional configuration diagram showing an electrode body of the lithium ion secondary battery of the present invention.
FIG. 7 shows an apparatus used for a charge / discharge cycle test of the negative electrode active materials for lithium secondary batteries of Examples and Comparative Examples.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 10 Carbon nanotube 11 Tube main body 12 Amorphous carbon layer 20 Carbon nanofiber 21 Fiber main body 22 Amorphous carbon layer

Claims (8)

カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方を主成分とし、
前記カーボンナノチューブ(10)は、複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体(11)を有し、前記チューブ本体(11)が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、
前記カーボンナノファイバ(20)は、平面状のグラファイト網が複数積層され前記グラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体(21)を有し、前記ファイバ本体(21)が10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有し、
前記カーボンナノチューブ(10)又はカーボンナノファイバ(20)がチューブ又はファイバのX線回折において測定される前記チューブ本体(11)又はファイバ本体(21)のグラファイト網平面の積層間隔d002が0.3356nm〜0.3450nmであって、
前記チューブ本体(11)又はファイバ本体(21)の表面が厚さ0.1nm〜5nmの無定形炭素層(12,22)で被覆されたことを特徴とする負極材料。
One or both of a carbon nanotube (10) and a carbon nanofiber (20) as a main component,
The carbon nanotube (10) has a tube body (11) in which a plurality of tubular graphite networks are formed concentrically, and the tube body (11) has an average diameter of 10 nm to 500 nm, a length of 100 nm or more. Has an aspect ratio of 10 or more,
The carbon nanofiber (20) has a fiber body (21) in which a plurality of planar graphite nets are stacked and the graphite net is substantially perpendicular to the longitudinal axis of the fiber, and the fiber main body (21). Has an average diameter of 10 nm to 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more,
The carbon nanotubes (10) or carbon multilayer spacing d 002 of the graphite-net plane of nanofiber (20) said tube body is measured in the X-ray diffraction of the tube or fiber (11) or fiber body (21) is 0.3356nm ~ 0.3450 nm,
A negative electrode material, wherein the surface of the tube body (11) or the fiber body (21) is coated with an amorphous carbon layer (12, 22) having a thickness of 0.1 nm to 5 nm.
無定形炭素層(12,22)がチューブ本体(11)全表面又はファイバ本体(21)全表面のいずれか一方又はその双方の少なくとも80%の割合で被覆された請求項1記載の負極材料。The negative electrode material according to claim 1, wherein the amorphous carbon layer (12, 22) is coated on at least 80% of one or both of the entire surface of the tube body (11) and the entire surface of the fiber body (21). カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方に加えて、更に黒鉛構造を有する炭素微粉からなる粒子状凝集体を含み、
前記カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方が80重量%〜99.5重量%、前記粒子状凝集体が0.5重量%〜20重量%の割合である請求項1記載の負極材料。
In addition to one or both of the carbon nanotubes (10) and the carbon nanofibers (20), further includes a particulate aggregate made of carbon fine powder having a graphite structure,
Either or both of the carbon nanotubes (10) and the carbon nanofibers (20) are in a ratio of 80% by weight to 99.5% by weight, and the particulate aggregates are in a ratio of 0.5% by weight to 20% by weight. The negative electrode material according to claim 1.
金属又は金属酸化物のいずれか一方又はその双方が、カーボンナノチューブ(10)又はカーボンナノファイバ(20)のいずれか一方又はその双方の長軸上にある請求項1ないし3いずれか1項に記載の負極材料。4. The method according to claim 1, wherein one or both of the metal and the metal oxide is on the long axis of one or both of the carbon nanotube and the carbon nanofiber. 5. Negative electrode material. 平均粒径10nm〜500nmの金属又は金属酸化物のいずれか一方又はその双方を0.5重量%〜10重量%更に含む請求項1ないし4いずれか1項に記載の負極材料。The negative electrode material according to any one of claims 1 to 4, further comprising 0.5% by weight to 10% by weight of one or both of a metal and a metal oxide having an average particle size of 10 nm to 500 nm. 金属又は金属酸化物中の金属のいずれか一方又はその双方がFe、Co、Ni、Mg及びAlからなる群より選ばれた少なくとも1種の元素である請求項5記載の負極材料。The negative electrode material according to claim 5, wherein one or both of the metal and the metal in the metal oxide are at least one element selected from the group consisting of Fe, Co, Ni, Mg, and Al. 請求項1ないし6いずれか1項に記載の負極材料と、結着剤とを用いて形成された負極。A negative electrode formed using the negative electrode material according to any one of claims 1 to 6 and a binder. 請求項7記載の負極を用いて形成されたリチウムイオン二次電池。A lithium ion secondary battery formed using the negative electrode according to claim 7.
JP2003096254A 2003-03-31 2003-03-31 Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode Pending JP2004303613A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096254A JP2004303613A (en) 2003-03-31 2003-03-31 Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096254A JP2004303613A (en) 2003-03-31 2003-03-31 Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode

Publications (1)

Publication Number Publication Date
JP2004303613A true JP2004303613A (en) 2004-10-28

Family

ID=33408376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096254A Pending JP2004303613A (en) 2003-03-31 2003-03-31 Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode

Country Status (1)

Country Link
JP (1) JP2004303613A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309104C (en) * 2005-04-06 2007-04-04 清华大学 Method for increasing electrochemical lithium storage content of nano-carbon tube
KR100835883B1 (en) * 2006-07-14 2008-06-09 금호석유화학 주식회사 Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
JP2010525549A (en) * 2007-04-23 2010-07-22 アプライド・サイエンシズ・インコーポレーテッド Method of depositing silicon on carbon material to form anode for lithium ion battery
CN101718738B (en) * 2009-11-06 2013-01-02 北京化工大学 NiAl-laminated type bimetal hydroxide/carbon nano-tube compound electrode as well as preparation method and application thereof
CN103199254A (en) * 2013-04-03 2013-07-10 深圳市贝特瑞新能源材料股份有限公司 Graphite negative material of lithium-ion battery and preparation method of negative material
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
CN115246746A (en) * 2021-04-25 2022-10-28 中国科学院苏州纳米技术与纳米仿生研究所 Soft layered carbon film and preparation method and application thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1309104C (en) * 2005-04-06 2007-04-04 清华大学 Method for increasing electrochemical lithium storage content of nano-carbon tube
KR100835883B1 (en) * 2006-07-14 2008-06-09 금호석유화학 주식회사 Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
JP2010525549A (en) * 2007-04-23 2010-07-22 アプライド・サイエンシズ・インコーポレーテッド Method of depositing silicon on carbon material to form anode for lithium ion battery
US8834828B2 (en) 2008-03-06 2014-09-16 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
US9103052B2 (en) 2008-03-06 2015-08-11 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
US9234080B2 (en) 2009-04-02 2016-01-12 Ube Industries, Ltd. Conductive resin composition
US9206048B2 (en) 2009-08-07 2015-12-08 Ube Industries, Ltd. Electroconductive polyamide resin composition
US9236163B2 (en) 2009-08-07 2016-01-12 Ube Industries, Ltd. Electroconductive resin composition
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
CN101718738B (en) * 2009-11-06 2013-01-02 北京化工大学 NiAl-laminated type bimetal hydroxide/carbon nano-tube compound electrode as well as preparation method and application thereof
CN103199254A (en) * 2013-04-03 2013-07-10 深圳市贝特瑞新能源材料股份有限公司 Graphite negative material of lithium-ion battery and preparation method of negative material
CN115246746A (en) * 2021-04-25 2022-10-28 中国科学院苏州纳米技术与纳米仿生研究所 Soft layered carbon film and preparation method and application thereof

Similar Documents

Publication Publication Date Title
Ma et al. Na4Fe3 (PO4) 2 (P2O7)@ NaFePO4@ C core-double-shell architectures on carbon cloth: A high-rate, ultrastable, and flexible cathode for sodium ion batteries
US20200028150A1 (en) Cathode active material for lithium-ion secondary battery and preparation method thereof, cathode pole piece for lithium-ion secondary battery, and lithium-ion secondary battery
He et al. Folded-hand silicon/carbon three-dimensional networks as a binder-free advanced anode for high-performance lithium-ion batteries
JP3961440B2 (en) Method for producing carbon nanotube
Yi et al. Influence of silicon nanoscale building blocks size and carbon coating on the performance of micro‐sized Si–C composite Li‐ion anodes
JP4208034B2 (en) Method for producing conductive composite particles
JP5826405B2 (en) Nanosilicon carbon composite material and method for preparing the same
Park et al. Synthesis process of CoSeO3 microspheres for unordinary Li‐ion storage performances and mechanism of their conversion reaction with Li ions
JP5851756B2 (en) Carbon nanostructure, metal-supported carbon nanostructure, lithium ion secondary battery, method for producing carbon nanostructure, and method for producing metal-supported carbon nanostructure
Song et al. Porous nano-Si/carbon derived from zeolitic imidazolate frameworks@ nano-Si as anode materials for lithium-ion batteries
JP4157791B2 (en) Method for producing carbon nanofiber
Park et al. Iron diselenide combined with hollow graphitic carbon nanospheres as a high-performance anode material for sodium-ion batteries
JP2018504762A (en) Method for producing negative electrode for lithium battery
JP2016526262A5 (en)
JPWO2006067891A1 (en) Composite negative electrode active material, method for producing the same, and non-aqueous electrolyte secondary battery
WO2006068066A1 (en) Composite electrode active material for nonaqueous electrolyte secondary battery or nonaqueous electrolyte electrochemical capacitor, and method for producing same
JP6302878B2 (en) Method for producing carbon nanofiber electrode carrying metal oxide using electrodeposition method
Gaikwad et al. Enhanced catalytic graphitization of resorcinol formaldehyde derived carbon xerogel to improve its anodic performance for lithium ion battery
JP2004303613A (en) Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode
JP6497462B1 (en) Lithium ion battery electrode material and lithium ion battery
JP5997345B2 (en) Carbon nanostructure, metal-supported carbon nanostructure, and lithium secondary battery
Wang et al. Transition Metal Nitrides in Lithium‐and Sodium‐Ion Batteries: Recent Progress and Perspectives
Hsu et al. Carbon fibers as three-dimensional current collectors for silicon/reduced graphene oxide lithium ion battery anodes with improved rate performance and cycle life
Zhang et al. A carob-inspired nanoscale design of yolk–shell Si@ void@ TiO 2-CNF composite as anode material for high-performance lithium-ion batteries
KR20160016888A (en) Core-shell type anode active material for lithium secondary batteries, method for preparing the same and lithium secondary batteries containing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080725

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080812

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20090127