JP3961440B2 - Method for producing carbon nanotube - Google Patents

Method for producing carbon nanotube Download PDF

Info

Publication number
JP3961440B2
JP3961440B2 JP2003096252A JP2003096252A JP3961440B2 JP 3961440 B2 JP3961440 B2 JP 3961440B2 JP 2003096252 A JP2003096252 A JP 2003096252A JP 2003096252 A JP2003096252 A JP 2003096252A JP 3961440 B2 JP3961440 B2 JP 3961440B2
Authority
JP
Japan
Prior art keywords
oxide
carbon
catalyst particles
carbon nanotubes
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096252A
Other languages
Japanese (ja)
Other versions
JP2004299986A (en
Inventor
祐介 渡会
暁夫 水口
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003096252A priority Critical patent/JP3961440B2/en
Publication of JP2004299986A publication Critical patent/JP2004299986A/en
Application granted granted Critical
Publication of JP3961440B2 publication Critical patent/JP3961440B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/16Preparation
    • C01B32/162Preparation characterised by catalysts

Description

【0001】
【発明の属する技術分野】
本発明は、チューブ表面が無定形炭素で被覆されたカーボンナノチューブの製造方法に関する。更に詳しくは、低温合成により得られ、黒鉛化処理を施すことなく高結晶の黒鉛構造を有するカーボンナノチューブの製造方法に関するものである。
【0002】
【従来の技術】
カーボンナノチューブは一般的に長さが数十nm〜数千nm、直径は2〜20nmの外径と、1〜3nmの内径を有する両端が閉じたシリンダー形になっており、繊維状の繊維長と外径の比を示す縦横比(アスペクト比)が100〜1000程度である。
【0003】
従来この種のカーボンナノチューブの合成には、電極放電法、気相成長法、レーザ法等が用いられている。このうち、触媒成長法とも呼ばれる気相成長法によるカーボンナノチューブの製造方法は、1000℃以上の高温でカーボンナノチューブを成長させるのが一般的である。具体的には、触媒粒子が基板上に配置された製造装置内を加熱し、装置内に原料ガスを供給すると、原料ガスが熱分解する。熱分解した物質が基板上に配置された触媒粒子を種として長さ方向にカーボンが成長する。一定の長さに成長すると、長さ方向への成長が鈍化し、続いて太さ方向に徐々に成長することにより所定の大きさ、所定のアスペクト比を有するカーボンナノチューブに成長する。
【0004】
成長したカーボンナノチューブは、高い黒鉛質のものはなかなか得られず、その表面層は結晶性の低い層が形成されている。そのため、カーボンナノチューブを2500〜2800℃の高温で熱処理して結晶性の低い層を結晶化させる黒鉛化処理を施していた。しかし、このような黒鉛化処理を施すことで、カーボンナノチューブの原料コストが上昇してしまう問題があった。
【0005】
このような問題を解決する方策として、直径0.01〜0.5μm及びアスペクト比2〜30000を有し、熱分解炭素層の厚みが直径の20%以下である創生微細炭素繊維が開示されている(例えば、特許文献1参照。)。この特許文献1によると、熱分解炭素層は乱層構造層であり、炭素繊維の芯部分と比較してかなり結晶性が悪い。そこで、直径の20%以下に熱分解炭素被覆層を制御することで、従来の炭素繊維に比べて著しく機械的強度を向上させている。このような特性を有する創生微細炭素繊維の製造方法は、従来の基板に鉄やニッケルなどの超微粒子触媒を形成させる手法に代えて、有機遷移金属化合物のガスを使用して約1070℃に保たれた電気炉空間に流動する超微粒子触媒を形成しながら、原料となる混合ガスを供給することで炭素繊維を成長させている。
【0006】
一方、カーボンナノチューブを含む炭素材料は、リチウム二次電池のリチウムを担持させる負極材料として研究が盛んに行われている。例えば、黒鉛にリチウムを担持させた炭素材料を用いる場合には、電池の充電時にリチウムが黒鉛の層間に挿入され、放電時に黒鉛層間よりリチウムが放出される。しかしながら、黒鉛材料をリチウム二次電池の負極材料として用いる場合には、電解液として低温特性に優れたプロピレンカーボネートが黒鉛表面で電気化学的に分解されてしまうため、このプロピレンカーボネートを含む電解液が使用できない問題があった。
【0007】
この問題を解決する方策として、表面が熱分解アモルファス状炭素により被覆された黒鉛系炭素材料の製造方法において、熱分解炭素源となる原料を黒鉛系炭素材料に化学蒸着させて、熱分解炭素被覆層を生成させた後、蒸着温度よりも高い温度で熱処理することを特徴とする黒鉛系炭素材料の製造方法が開示されている(例えば、特許文献2参照。)。この製造方法では、出発原料として天然黒鉛、人造黒鉛、黒鉛化されたメソカーボンマイクロビーズ、黒鉛化されたピッチ系炭素繊維のような、平均粒径が0.1〜100μm程度の粒子状物を用い、この粒子状の出発原料表面に熱分解炭素被覆層を生成させた後、高温熱処理することにより黒鉛系炭素材料を得ている。このような黒鉛系炭素材料を負極材料として使用することでリチウム二次電池に低温特性の優れたプロピレンカーボネートを含む電解液を用いる場合においても、初期効率が良好でかつ放電容量が高い電池が得られる。
【0008】
【特許文献1】
特開昭61−70014号公報
【特許文献2】
特開2002−241117号公報
【0009】
【発明が解決しようとする課題】
しかし、上記特許文献1に示された創生微細炭素繊維では、炭素繊維表面の結晶性が悪いものの炭素繊維表面は依然として結晶構造であるため、その表面の活性は比較的高く、化学的安定性に劣る。それ以前にこの特許文献1に示された製造方法では、1000℃以上の条件においてチューブを製造できないことが判明した。
また、上記特許文献2に示される炭素材料では、粒子状の出発原料に熱分解炭素被覆層を生成し、更に高温熱処理を施さなければならないため、製造効率が悪い問題があった。
【0010】
本発明の第1の目的は、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、チューブ本体が高結晶の黒鉛構造を有するカーボンナノチューブを製造する方法を提供することにある。
本発明の第2の目的は、高い電気伝導性を有し、かつ表面が安定なカーボンナノチューブの製造方法を提供することにある。
本発明の第3の目的は、リチウム二次電池の負極材料として用いた場合、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能なカーボンナノチューブの製造方法を提供することにある。
本発明の第4の目的は、樹脂と混合して成形する場合に優れた加工性を有するカーボンナノチューブの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、気相成長法によりカーボンナノチューブを製造する方法の改良であり、その特徴ある構成は、平均粒径が0.01μm〜1μmであってチューブの成長核としてCo酸化物とMg酸化物混合粉末である触媒粒子を0.08〜10MPaの圧力下、450℃〜800℃の温度でCOとH2の混合ガス又はCO2とH2の混合ガスを触媒粒子に0.01〜24時間供給して図1に示すような複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体11とこのチューブ本体11の表面を被覆する無定形炭素層12とからなるカーボンナノチューブ10を上記触媒粒子から成長させるところにある。
請求項1に係る発明では、上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、チューブ本体が高結晶の黒鉛構造を有し、チューブ本体表面が無定形炭素層で被覆されたカーボンナノチューブを得ることができる。
【0013】
請求項2に係る発明は、請求項1に係る発明であって、Co酸化物とMg酸化物の混合物の混合重量比(Co酸化物/Mg酸化物)が90/10〜10/90である製造方法である。
請求項3に係る発明は、請求項1に係る発明であって、混合ガスのCOに対するH2の混合容積比(CO/H2)が20/80〜99/1である製造方法である。
請求項4に係る発明は、請求項3に係る発明であって、混合ガスのCOに対するH2の混合容積比(CO/H2)が40/60〜90/10である製造方法である
【0016】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明は気相成長法によりカーボンナノチューブを製造する方法の改良である。その特徴ある構成は、平均粒径が0.01μm〜100μmであってチューブの成長核としてFe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物、複合酸化物あるいは被覆物からなる触媒粒子を0.08〜10MPaの圧力下、450℃〜800℃の温度でCOとH2の混合ガス又はCO2とH2の混合ガスを触媒粒子に0.01〜24時間供給して複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体とこのチューブ本体の表面を被覆する無定形炭素層とからなるカーボンナノチューブを触媒粒子から成長させるところにある。
【0017】
シーディング工程として、先ず触媒粒子をチューブの成長核として石英などの基板上に配置する。触媒粒子は、平均粒径が0.01μm〜100μm、好ましくは0.1μm〜10μmの範囲内の微粉末がカーボンナノチューブを製造する際に好適な大きさであり、Fe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物、複合酸化物あるいは被覆物が触媒材料として挙げられる。触媒は全て酸化物から構成されることが好ましく、Co酸化物とMg酸化物をそれぞれ含む混合粉末、CoとMgをそれぞれ含む複合酸化物、Co酸化物がMg酸化物に一部又は全部被覆された被覆粉末がより好ましい。このときのCo酸化物とMg酸化物の混合粉末の混合重量比(Co酸化物/Mg酸化物)は90/10〜10/90、好ましくは80/20〜50/50が好ましい。
【0018】
触媒粒子の基板上への配置は、触媒粒子をそのまま均一に振りかけてよい。また触媒粒子をアルコール等の溶媒に懸濁させて懸濁液を調製し、この懸濁液を基板上に散布して乾燥することにより、所定の間隔で所望の量を基板上に配置してもよい。また、触媒粒子を構成する金属の硝酸塩溶液を調製し、この溶液を基板表面に塗布あるいは散布し、熱処理炉内に基板を挿入して炉内を200℃以上に昇温することによっても所定の間隔で所望の量を基板上に配置することができる。更に、基板を事前に熱処理炉内に収容して炉内を加熱し、触媒粒子を構成する金属の有機化合物等を熱処理炉内に任意の流量で供給して熱分解させ、触媒粒子を直接基板上に形成させることでも所定の間隔で所望の量を基板上に配置することができる。
【0019】
触媒粒子はカーボンナノチューブを製造する前に前処理を施し活性化させることの好ましい。活性化は、触媒粒子をHe及びH2を含む混合ガス雰囲気下で加熱することにより行われる。
【0020】
続いて、カーボンナノチューブの原料となる所定の混合ガスを基板上に配置された触媒粒子に0.01〜24時間供給してチューブ表面が無定形炭素で被覆されたカーボンナノチューブを触媒粒子から成長させる。
【0021】
図3に本発明のカーボンナノチューブを製造する熱処理炉20を示す。この熱処理炉20は断熱性材質からなる装置本体21から構成され、装置本体21内部は所定の間隔をあけて2枚の仕切板26により水平に仕切られる。仕切板26,26により仕切られた装置本体21内部の頂部及び底部には発熱体22がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体22の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板26,26で仕切られた空間に原料となる混合ガスを供給するように装置本体21の一方の側部には、ガス供給口24が設けられる。
【0022】
カーボンナノチューブの原料となるガスとしては、CO及びH2を含む混合ガス、CO2とH2の混合ガスが挙げられる。混合ガスのCOに対するH2の混合容積比(CO/H2)は20/80〜99/1である。混合ガスのCOに対するH2の混合容積比(CO/H2)は40/60〜90/10が好ましい。なお、混合ガスのCOに対するH2の混合容積比(CO/H2)を示したが、混合ガスのCO2に対するH2の混合容積比(CO2/H2)も同様の混合容積比としてよい。
【0023】
仕切板26,26により仕切られた空間27は、粉末の触媒を散布した基板28が収容可能な大きさを有し、装置本体21の他方の側部には系外へ熱処理炉20内に供給した原料ガスを排出するガス排出口29が設けられる。空間27内に収容される基板28は取出し台31の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0024】
基板28に粉末の触媒32を載せた後、その基板28を取出し台31の上に載せて熱処理炉20まで搬送し、装置本体21の空間27内に収納する。その後、熱処理炉20内を0.08〜10MPaの範囲内に圧力を制御し、原料となる混合ガスをガス供給口24から供給し、発熱体22,22により加熱する。原料となる混合ガスの供給量は0.2L/min〜10L/min、加熱温度は450℃〜800℃、好ましくは550℃〜650℃に設定される。なお、混合ガスの供給量は触媒粒子の量や炉の大きさに依存する。従って、上記ガス供給量の数値範囲は一般的な製造方法における目安である。加熱温度を450℃〜800℃に規定したのは、下限値未満では反応速度が遅すぎてカーボンナノチューブを合成できず、上限値を越えるとチューブ状には合成されず、すすや黒鉛微粉が得られてしまうからである。原料となる混合ガスを供給しながら加熱し、0.01〜24時間保持しておくことにより、触媒粒子32を介してカーボンナノチューブ33が成長する。得られたカーボンナノチューブ33には触媒が含まれているので、必要に応じて熱処理炉20内より基板28を搬出して得られたカーボンナノチューブ33を取出し、このカーボンナノチューブ33を硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、カーボンナノチューブ33に含まれる触媒粒子32を除去する。なお、触媒粒子32をそのままカーボンナノチューブ中に含ませ、担持させた状態で使用してもよい。また、本実施の形態では、熱処理炉本体21の一方の側部より、原料となる混合ガスを供給する構成としたが、本体頂部又は底部より原料となる混合ガスを供給する構成としてもよい。
【0025】
このように上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、チューブ本体が高結晶の黒鉛構造を有し、このチューブ本体が無定形炭素層で被覆されたカーボンナノチューブを得ることができる。
【0026】
本発明の製造方法により得られた本発明のカーボンナノチューブは、図1及び図2に示すように、複数のチューブ状グラファイト網を同心円状にかつ各軸がチューブ軸平行に配置して形成され、10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するチューブ本体11を主体とする。
【0027】
本発明の特徴ある構成は、カーボンナノチューブのX線回折において測定されるチューブ本体11のグラファイト網平面の積層間隔d002は0.337nm〜0.345nmの範囲内であり、チューブ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されたところにある。グラファイト網平面の積層間隔d002を0.337nm〜0.345nmの範囲内に規定することで高い電気伝導性を有する。0.337nm未満のものは合成が難しく、0.345nmを越えると低い結晶性を有し、導電性が低くなるため、各用途への使用に適さない。好ましい積層間隔d002は、0.337nm〜0.340nmである。チューブ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されているため、カーボンナノチューブ表面が化学的に安定になる。無定形炭素層12の厚さは上記製造条件により0.1nm〜5nmの範囲に形成される。0.1nm未満であると無定形炭素層12の存在価値が低く、本発明の効果が現れない。5nmを越えると表面の無定形炭素層により本来の導電性が損なわれてしまう。無定形炭素層12の厚さは0.5nm〜3.0nmが好ましい。
【0028】
無定形炭素層12はチューブ本体11全表面の少なくとも80%の割合で被覆される。チューブ10全表面の少なくとも80%を無定形炭素層12で被覆されることで、化学安定性がより向上し、加工性にも優れる。無定形炭素層12はチューブ本体全表面の90%以上の割合で被覆することが好ましい。
【0029】
本発明のカーボンナノチューブをリチウム二次電池の負極材料として用いた場合、無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。
【0030】
【実施例】
次に本発明の実施例を比較例とともに詳しく説明する。
<実施例1>
先ず、平均粒径1μm以下のCo34とMgOの混合粉末1g(混合重量比:Co34/MgO=60/40)を触媒粒子として用意した。この触媒粒子をHe及びH2を含む混合ガス雰囲気下で加熱して活性化させた。次いで図3に示すように、活性化させた触媒を基板28上に載せ、基板28を熱処理炉20内に収容した。次に、He雰囲気中で熱処理炉内を650℃の温度に加熱し、COとH2を含む混合ガス(混合容積比:CO/H2=80/20)を原料ガスとしてこの原料ガスを流量1L/分で熱処理炉内に供給しながら約10時間保持してカーボンナノチューブを含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒を除去して黒鉛化処理を行うことなくカーボンナノチューブを得た。
【0031】
<実施例2>
加熱温度を750℃に変えた以外は実施例1と同様にしてカーボンナノチューブを得た。
<実施例3>
加熱温度を500℃に変えた以外は実施例1と同様にしてカーボンナノチューブを得た。
【0032】
<比較例1>
実施例1で得られたカーボンナノチューブを更に2800℃で2時間熱処理して黒鉛化処理を施した。
<比較例2>
実施例2で得られたカーボンナノチューブを更に2800℃で2時間熱処理して黒鉛化処理を施した。
【0033】
<比較例3>
実施例1における製造条件のうち、熱処理炉内の温度を1000℃に加熱した以外、実施例1と同様の製造条件でカーボンナノチューブを得ようとしたが、カーボンナノチューブを合成できなかった。これは反応温度が高すぎるため粉末が合成できなかったと考えられる。
【0034】
<比較試験及び評価>
実施例1〜3及び比較例1〜2でそれぞれカーボンナノチューブを透過型電子顕微鏡にて観察したところ、実施例1〜3のカーボンナノチューブ表面に無定形炭素層による被覆を確認した。比較例1及び2のカーボンナノチューブ表面には無定形炭素層による被覆は確認できなかった。また実施例1〜3及び比較例1〜2でそれぞれ得られたカーボンナノチューブをX線回折により黒鉛層間隔d002を測定した。また実施例1〜3及び比較例1〜2でそれぞれ得られたカーボンナノチューブの抵抗率を測定した。抵抗率の測定は、得られたカーボンナノチューブを100kg/cm2の圧力でプレスし、四端子法で抵抗値を測定することにより求めた。実施例1〜3及び比較例1〜2でそれぞれ得られたカーボンナノチューブの黒鉛層間隔d002と粉末抵抗の結果を次の表1にそれぞれ示す。
【0035】
【表1】

Figure 0003961440
【0036】
表1より明らかなように、実施例1〜3と比較例1〜2を比較すると、比較例1及び2のカーボンナノチューブは、黒鉛化処理を行ったため、チューブ表面に被覆されていた無定形炭素層が結晶化したため、やや黒鉛質の成長がみられ、面間隔d002値も僅かに低い結果となった。比較例1及び2は実施例1〜3の粉体抵抗値と同様の数値を示し、特に変化はみられなかった。この結果から、無定形炭素層を被覆しているカーボンナノチューブでも被覆していないカーボンナノチューブと同等の導電性能を有することが確認できた。また、本発明の製造方法により得られた実施例1〜3のカーボンナノチューブは高電気伝導性を有する結果となった。これは低温での製造条件でも高い結晶性の黒鉛構造を有することの裏付けとなる。
【0037】
【発明の効果】
以上述べたように、本発明の気相成長法でカーボンナノチューブを製造する方法では、平均粒径が0.01μm〜1μmであってチューブの成長核としてCo酸化物とMg酸化物混合粉末である触媒粒子を0.08〜10MPaの圧力下、450℃〜800℃の温度でCOとH2の混合ガス又はCO2とH2の混合ガスを触媒粒子に0.01〜24時間供給してチューブ本体表面が無定形炭素で被覆されたカーボンナノチューブを触媒粒子から成長させることにより、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、チューブ本体が高結晶の黒鉛構造を有するカーボンナノチューブを得ることができる。
【図面の簡単な説明】
【図1】本発明のカーボンナノチューブの模式図。
【図2】図1に対応するカーボンナノチューブの断面図。
【図3】カーボンナノチューブを作製する熱処理炉の断面構成図。
【符号の説明】
10 カーボンナノチューブ
11 チューブ本体
12 無定形炭素層 [0001]
BACKGROUND OF THE INVENTION
The present invention relates to a method for producing carbon nanotubes that tube surface covered with amorphous carbon. More specifically, obtained by low-temperature synthesis, a method of manufacturing a carbon nanotube having a graphite structure without highly crystalline applying graphitization treatment.
[0002]
[Prior art]
Carbon nanotubes generally have a length of several tens to several thousand nm, a diameter of 2 to 20 nm, a cylindrical shape with both ends having an inner diameter of 1 to 3 nm, and a fibrous fiber length. And the aspect ratio (aspect ratio) indicating the ratio of the outer diameter is about 100 to 1000.
[0003]
Conventionally, an electrode discharge method, a vapor phase growth method, a laser method, or the like is used to synthesize this type of carbon nanotube. Among these, the carbon nanotube production method by the vapor phase growth method, also called the catalyst growth method, generally grows the carbon nanotube at a high temperature of 1000 ° C. or higher. Specifically, when the inside of the manufacturing apparatus in which the catalyst particles are arranged on the substrate is heated and the source gas is supplied into the apparatus, the source gas is thermally decomposed. Carbon grows in the length direction using the catalyst particles in which the pyrolyzed substance is arranged on the substrate as a seed. When grown to a certain length, the growth in the length direction slows down, and then gradually grows in the thickness direction to grow into carbon nanotubes having a predetermined size and a predetermined aspect ratio.
[0004]
The grown carbon nanotubes are hardly obtained with high graphite, and the surface layer has a low crystallinity layer. Therefore, a graphitization treatment is performed in which the carbon nanotube is heat-treated at a high temperature of 2500 to 2800 ° C. to crystallize a layer having low crystallinity. However, there is a problem that the raw material cost of the carbon nanotubes is increased by performing such graphitization treatment.
[0005]
As a measure for solving such a problem, a created fine carbon fiber having a diameter of 0.01 to 0.5 μm and an aspect ratio of 2 to 30000 and having a pyrolytic carbon layer thickness of 20% or less of the diameter is disclosed. (For example, refer to Patent Document 1). According to this Patent Document 1, the pyrolytic carbon layer is a turbulent layer and has considerably poor crystallinity compared to the core portion of the carbon fiber. Therefore, by controlling the pyrolytic carbon coating layer to 20% or less of the diameter, the mechanical strength is remarkably improved as compared with the conventional carbon fiber. The production method of the creation fine carbon fiber having such a characteristic is about 1070 ° C. using an organic transition metal compound gas instead of the conventional method of forming an ultrafine particle catalyst such as iron or nickel on a substrate. Carbon fibers are grown by supplying a mixed gas as a raw material while forming an ultrafine particle catalyst that flows into a maintained electric furnace space.
[0006]
On the other hand, carbon materials including carbon nanotubes have been actively studied as negative electrode materials for supporting lithium in lithium secondary batteries. For example, when using a carbon material in which lithium is supported on graphite, lithium is inserted between the graphite layers when the battery is charged, and lithium is released from the graphite layers during discharge. However, when a graphite material is used as a negative electrode material for a lithium secondary battery, propylene carbonate having excellent low-temperature characteristics as an electrolytic solution is electrochemically decomposed on the graphite surface. There was a problem that could not be used.
[0007]
As a measure to solve this problem, in a method for producing a graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, a raw material serving as a pyrolytic carbon source is chemically vapor-deposited on the graphite-based carbon material, and the pyrolytic carbon coating is performed. A method for producing a graphite-based carbon material is disclosed in which a layer is formed and then heat-treated at a temperature higher than the deposition temperature (see, for example, Patent Document 2). In this production method, a particulate material having an average particle size of about 0.1 to 100 μm, such as natural graphite, artificial graphite, graphitized mesocarbon microbeads, and graphitized pitch-based carbon fiber, is used as a starting material. The graphite-based carbon material is obtained by forming a pyrolytic carbon coating layer on the surface of the particulate starting material and then heat-treating it at a high temperature. By using such a graphite-based carbon material as a negative electrode material, a battery having good initial efficiency and high discharge capacity can be obtained even when an electrolyte containing propylene carbonate having excellent low-temperature characteristics is used for a lithium secondary battery. It is done.
[0008]
[Patent Document 1]
JP 61-70014 A [Patent Document 2]
JP 2002-241117 A [0009]
[Problems to be solved by the invention]
However, in the created fine carbon fiber disclosed in Patent Document 1, although the carbon fiber surface has poor crystallinity, the carbon fiber surface still has a crystalline structure, so that the surface activity is relatively high, and the chemical stability. Inferior to Prior to that, it was found that the manufacturing method disclosed in Patent Document 1 cannot manufacture a tube under conditions of 1000 ° C. or higher.
Further, the carbon material disclosed in Patent Document 2 has a problem in that the production efficiency is poor because a pyrolytic carbon coating layer must be formed on the particulate starting material and further subjected to high-temperature heat treatment.
[0010]
A first object of the present invention is to provide a method for producing carbon nanotubes that can be produced at a lower temperature than before and that have a highly crystalline graphite structure in the tube body without performing graphitization.
A second object of the present invention has a high electrical conductivity, and surface to provide a method for producing a stable carbon nanotubes.
The third object of the present invention is to suppress the decomposition reaction of propylene carbonate contained in the electrolytic solution when used as a negative electrode material for a lithium secondary battery, to obtain a high capacity of graphite, and to achieve a high rate charge / discharge. It is to provide a method of manufacturing a possible carbon nanotubes.
A fourth object of the present invention is to provide a method for producing a carbon nanotube having excellent processability when molding by mixing with the resin.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is an improvement of a method for producing carbon nanotubes by a vapor phase growth method, the characteristic configuration is an average particle diameter of 0.01μm~1μm as growth nuclei of tubes C o oxide and pressure of 0.08~10MPa catalyst particles is mixed powder powder of Mg oxide, the catalyst 450 ° C. to 800 ° C. in the mixed gas in the mixed gas or CO 2 and H 2 in CO and H 2 at a temperature A tube main body 11 in which a plurality of tubular graphite nets as shown in FIG. 1 are formed concentrically by supplying particles for 0.01 to 24 hours, and an amorphous carbon layer 12 covering the surface of the tube main body 11. The carbon nanotube 10 is grown from the catalyst particles.
In the invention according to claim 1, the manufacturing method can be manufactured at a lower temperature than before, the tube body has a highly crystalline graphite structure without performing graphitization, and the surface of the tube body is an amorphous carbon layer. Carbon nanotubes coated with can be obtained.
[0013]
The invention according to claim 2 is the invention according to claim 1, wherein the mixture weight ratio of the mixture of Co oxide and Mg oxide (Co oxide / Mg oxide) is 90/10 to 10/90. It is a manufacturing method.
The invention according to claim 3 is the invention according to claim 1, the mixing volume ratio of H 2 to CO in the gas mixture (CO / H 2) is a production method is 20 / 80-99 / 1.
The invention according to claim 4 is the manufacturing method according to claim 3, wherein a mixed volume ratio of H 2 to CO of the mixed gas (CO / H 2 ) is 40/60 to 90/10 .
[0016]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
The present invention is an improvement of a method for producing carbon nanotubes by vapor deposition. The characteristic configuration is that the average particle diameter is 0.01 μm to 100 μm, and one kind of metal selected from the group consisting of Fe, Ni, Co, Mn, Cu, Mg, Al and Ca as a growth nucleus of the tube or An alloy composed of two or more metals or a catalyst particle composed of a metal oxide containing at least one metal, a composite oxide or a coating, and CO at a temperature of 450 ° C. to 800 ° C. under a pressure of 0.08 to 10 MPa. coating a mixed gas or CO 2 and a mixed gas of H 2 is supplied from 0.01 to 24 hours to the catalyst particles and a plurality of tube body which the tube-shaped graphite-net is formed concentrically surface of the tube body of the H 2 A carbon nanotube composed of an amorphous carbon layer is grown from catalyst particles.
[0017]
As a seeding step, first, catalyst particles are placed on a substrate such as quartz as a tube growth nucleus. The catalyst particles have an average particle size of 0.01 μm to 100 μm, preferably a fine powder having a size within a range of 0.1 μm to 10 μm is suitable for producing carbon nanotubes. Fe, Ni, Co, Mn, Examples of the catalyst material include one metal selected from the group consisting of Cu, Mg, Al, and Ca, an alloy composed of two or more metals, or a metal oxide, composite oxide, or coating containing at least one metal. It is done. It is preferable that the catalyst is composed entirely of oxide, mixed powder containing Co oxide and Mg oxide respectively, composite oxide containing Co and Mg respectively, and Co oxide partially or entirely coated with Mg oxide. More preferred is a coated powder. The mixing weight ratio (Co oxide / Mg oxide) of the mixed powder of Co oxide and Mg oxide at this time is preferably 90/10 to 10/90, and more preferably 80/20 to 50/50.
[0018]
As for the arrangement of the catalyst particles on the substrate, the catalyst particles may be sprinkled uniformly. In addition, a suspension is prepared by suspending catalyst particles in a solvent such as alcohol, and the suspension is sprayed on the substrate and dried to place a desired amount on the substrate at predetermined intervals. Also good. Alternatively, by preparing a nitrate solution of the metal constituting the catalyst particles, applying or spraying this solution on the surface of the substrate, inserting the substrate into a heat treatment furnace, and raising the temperature of the furnace to 200 ° C. or higher A desired amount can be placed on the substrate at intervals. Furthermore, the substrate is accommodated in a heat treatment furnace in advance and the inside of the furnace is heated, and a metal organic compound or the like constituting the catalyst particles is supplied to the heat treatment furnace at an arbitrary flow rate to thermally decompose, and the catalyst particles are directly attached to the substrate. By forming it on the substrate, a desired amount can be arranged on the substrate at a predetermined interval.
[0019]
The catalyst particles are preferably pretreated and activated before producing carbon nanotubes. Activation is carried out by heating the catalyst particles in a mixed gas atmosphere containing He and H 2.
[0020]
Subsequently, a predetermined mixed gas serving as a carbon nanotube raw material is supplied to the catalyst particles disposed on the substrate for 0.01 to 24 hours to grow carbon nanotubes whose surface is coated with amorphous carbon from the catalyst particles. .
[0021]
FIG. 3 shows a heat treatment furnace 20 for producing the carbon nanotube of the present invention. The heat treatment furnace 20 includes an apparatus main body 21 made of a heat insulating material, and the inside of the apparatus main body 21 is horizontally partitioned by two partition plates 26 at a predetermined interval. A heating element 22 is installed on the top and bottom of the apparatus main body 21 partitioned by the partition plates 26, 26, respectively. Examples of the heating source of the heating element 22 used for heat treatment in the heat treatment furnace include an incandescent lamp, a halogen lamp, an arc lamp, and a graphite heater. A gas supply port 24 is provided on one side of the apparatus main body 21 so as to supply a mixed gas as a raw material to the space partitioned by the partition plates 26 and 26.
[0022]
Examples of the gas used as the raw material for the carbon nanotube include a mixed gas containing CO and H 2 and a mixed gas of CO 2 and H 2 . The mixing volume ratio (CO / H 2 ) of H 2 to CO in the mixed gas is 20/80 to 99/1. The mixing volume ratio (CO / H 2 ) of H 2 to CO in the mixed gas is preferably 40/60 to 90/10. As it is shown mixing volume ratio of H 2 to CO in the mixed gas (CO / H 2), the mixing volume ratio of H 2 to CO 2 mixed gas (CO 2 / H 2) is also similar mixing volume ratio Good.
[0023]
A space 27 partitioned by the partition plates 26 and 26 has a size that can accommodate a substrate 28 on which a powdered catalyst is dispersed, and is supplied to the other side of the apparatus main body 21 outside the system into the heat treatment furnace 20. A gas discharge port 29 for discharging the raw material gas is provided. The substrate 28 accommodated in the space 27 is placed on the take-out stand 31 and provided so as to be accommodated and unloaded in the heat treatment furnace.
[0024]
After the powdered catalyst 32 is placed on the substrate 28, the substrate 28 is taken out, placed on the stand 31, transported to the heat treatment furnace 20, and stored in the space 27 of the apparatus main body 21. Thereafter, the pressure in the heat treatment furnace 20 is controlled within a range of 0.08 to 10 MPa, a mixed gas as a raw material is supplied from the gas supply port 24, and heated by the heating elements 22 and 22. The supply amount of the mixed gas as the raw material is set to 0.2 L / min to 10 L / min, and the heating temperature is set to 450 ° C. to 800 ° C., preferably 550 ° C. to 650 ° C. The supply amount of the mixed gas depends on the amount of catalyst particles and the size of the furnace. Therefore, the numerical range of the gas supply amount is a standard in a general manufacturing method. The reason why the heating temperature is set to 450 ° C. to 800 ° C. is that if the reaction temperature is less than the lower limit, the reaction rate is too slow to synthesize carbon nanotubes, and if the upper limit is exceeded, the tube is not synthesized and soot and graphite fine powder are obtained. Because it will be. The carbon nanotubes 33 grow through the catalyst particles 32 by heating while supplying the mixed gas as the raw material and holding the mixture for 0.01 to 24 hours. Since the obtained carbon nanotubes 33 contain a catalyst, the carbon nanotubes 33 obtained by unloading the substrate 28 from the heat treatment furnace 20 are taken out from the heat treatment furnace 20 as necessary, and the carbon nanotubes 33 are removed from the nitric acid, hydrochloric acid, and fluorine. The catalyst particles 32 contained in the carbon nanotubes 33 are removed by dipping in an acidic solution such as an acid. The catalyst particles 32 may be included in the carbon nanotubes as they are and used in a supported state. Moreover, in this Embodiment, although it was set as the structure which supplies the mixed gas used as a raw material from one side part of the heat processing furnace main body 21, it is good also as a structure which supplies the mixed gas used as a raw material from a main body top part or bottom part.
[0025]
As described above, the above manufacturing method enables low-temperature manufacturing as compared with the conventional method, and the tube body has a highly crystalline graphite structure without performing graphitization, and the tube body is coated with an amorphous carbon layer. Nanotubes can be obtained.
[0026]
The carbon nanotube of the present invention obtained by the production method of the present invention, as shown in FIGS. 1 and 2, is formed by concentrically arranging a plurality of tube-like graphite nets and the respective axes being arranged in parallel with the tube axis, The tube main body 11 having an average diameter of 10 nm to 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more is mainly used.
[0027]
Characteristic configuration of the present invention, the laminated spacing d 002 of the graphite-net plane of the tube body 11 as measured in the X-ray diffraction of the carbon nanotubes is in the range of 0.337Nm~0.345Nm, the surface of the tube body 11 The film is covered with an amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm. It has a high electrical conductivity by defining the laminated spacing d 002 of the graphite-net plane in the range of 0.337Nm~0.345Nm. If it is less than 0.337 nm, it is difficult to synthesize, and if it exceeds 0.345 nm, it has low crystallinity and low conductivity, so it is not suitable for use in each application. Preferred multilayer spacing d 002 is 0.337Nm~0.340Nm. Since the surface of the tube body 11 is covered with the amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm, the surface of the carbon nanotube is chemically stabilized. The thickness of the amorphous carbon layer 12 is formed in the range of 0.1 nm to 5 nm depending on the manufacturing conditions. If the thickness is less than 0.1 nm, the existence value of the amorphous carbon layer 12 is low, and the effect of the present invention does not appear. If the thickness exceeds 5 nm, the original conductivity is impaired by the amorphous carbon layer on the surface. The thickness of the amorphous carbon layer 12 is preferably 0.5 nm to 3.0 nm.
[0028]
The amorphous carbon layer 12 is coated at a rate of at least 80% of the entire surface of the tube body 11. By covering at least 80% of the entire surface of the tube 10 with the amorphous carbon layer 12, the chemical stability is further improved and the processability is also excellent. The amorphous carbon layer 12 is preferably coated at a ratio of 90% or more of the entire surface of the tube body.
[0029]
When the carbon nanotube of the present invention is used as a negative electrode material for a lithium secondary battery, the amorphous carbon layer covers the active graphite layer, so that the decomposition reaction of propylene carbonate contained in the electrolyte is suppressed, and the graphite High capacity, and high rate charge / discharge is possible.
[0030]
【Example】
Next, examples of the present invention will be described in detail together with comparative examples.
<Example 1>
First, 1 g of a mixed powder of Co 3 O 4 and MgO having an average particle size of 1 μm or less (mixing weight ratio: Co 3 O 4 / MgO = 60/40) was prepared as catalyst particles. The catalyst particles were activated by heating in a mixed gas atmosphere containing He and H 2 . Next, as shown in FIG. 3, the activated catalyst was placed on the substrate 28, and the substrate 28 was accommodated in the heat treatment furnace 20. Then heated in the heat treatment furnace to a temperature of 650 ° C. in a He atmosphere, a mixed gas containing CO and H 2: flow rate the source gas (mixing volume ratio CO / H 2 = 80/20 ) as a raw material gas While being supplied into the heat treatment furnace at 1 L / min, the mixture was held for about 10 hours to synthesize a mixture containing carbon nanotubes. The obtained mixture was immersed in a nitric acid solution to remove the catalyst contained in the mixture, and carbon nanotubes were obtained without performing graphitization.
[0031]
<Example 2>
Carbon nanotubes were obtained in the same manner as in Example 1 except that the heating temperature was changed to 750 ° C.
<Example 3>
Carbon nanotubes were obtained in the same manner as in Example 1 except that the heating temperature was changed to 500 ° C.
[0032]
<Comparative Example 1>
The carbon nanotubes obtained in Example 1 were further heat-treated at 2800 ° C. for 2 hours for graphitization.
<Comparative example 2>
The carbon nanotubes obtained in Example 2 were further heat treated at 2800 ° C. for 2 hours to perform graphitization.
[0033]
<Comparative Example 3>
Of the production conditions in Example 1, carbon nanotubes could not be synthesized although carbon nanotubes were obtained under the same production conditions as in Example 1 except that the temperature in the heat treatment furnace was heated to 1000 ° C. This is probably because the reaction temperature was too high to synthesize the powder.
[0034]
<Comparison test and evaluation>
When carbon nanotubes were observed with a transmission electron microscope in Examples 1 to 3 and Comparative Examples 1 and 2, respectively, the surface of the carbon nanotubes of Examples 1 to 3 was confirmed to be covered with an amorphous carbon layer. The carbon nanotube surface of Comparative Examples 1 and 2 could not be confirmed to be covered with the amorphous carbon layer. The carbon nanotubes obtained in Examples 1 to 3 and Comparative Examples 1 and 2 were measured for the graphite layer interval d002 by X-ray diffraction. Moreover, the resistivity of the carbon nanotube obtained in Examples 1-3 and Comparative Examples 1-2 was measured. The resistivity was obtained by pressing the obtained carbon nanotubes at a pressure of 100 kg / cm 2 and measuring the resistance value by a four-terminal method. The results of the graphite layer interval d 002 and the powder resistance of the carbon nanotubes obtained in Examples 1 to 3 and Comparative Examples 1 and 2, respectively, are shown in Table 1 below.
[0035]
[Table 1]
Figure 0003961440
[0036]
As is clear from Table 1, when Examples 1 to 3 and Comparative Examples 1 and 2 are compared, the carbon nanotubes of Comparative Examples 1 and 2 have been subjected to graphitization treatment, and thus the amorphous carbon coated on the tube surface Since the layer crystallized, a slight growth of graphite was observed and the interplanar spacing d 002 value was slightly low. Comparative Examples 1 and 2 showed the same numerical values as the powder resistance values of Examples 1 to 3, and no particular change was observed. From this result, it was confirmed that the carbon nanotubes covering the amorphous carbon layer have the same conductive performance as the carbon nanotubes not covered. In addition, the carbon nanotubes of Examples 1 to 3 obtained by the production method of the present invention resulted in high electrical conductivity. This proves that it has a highly crystalline graphite structure even under low-temperature production conditions.
[0037]
【The invention's effect】
As described above, the mixing of the gas phase in the method of manufacturing the carbon nanotube growth process, C o oxide as a growing nucleus of the tube an average particle size of a 0.01μm~1μm and Mg oxides of the present invention 0.01 to 24 hours the catalyst particles are powdered powder under a pressure of 0.08~10MPa, a 450 ° C. to 800 ° C. in the mixed gas or a gas mixture of CO 2 and H 2 in CO and H 2 at a temperature in the catalyst particles By supplying and growing carbon nanotubes coated with amorphous carbon on the tube body surface from the catalyst particles, it is possible to manufacture at a lower temperature than before, and the tube body has a highly crystalline graphite structure without performing graphitization treatment. Can be obtained.
[Brief description of the drawings]
FIG. 1 is a schematic view of a carbon nanotube of the present invention.
FIG. 2 is a cross-sectional view of a carbon nanotube corresponding to FIG.
FIG. 3 is a cross-sectional configuration diagram of a heat treatment furnace for producing carbon nanotubes.
[Explanation of symbols]
10 Carbon nanotube 11 Tube body 12 Amorphous carbon layer

Claims (4)

気相成長法によりカーボンナノチューブを製造する方法において、
平均粒径が0.01μm〜1μmであってチューブの成長核としてCo酸化物とMg酸化物混合粉末である触媒粒子を0.08〜10MPaの圧力下、450℃〜800℃の温度でCOとH2の混合ガス又はCO2とH2の混合ガスを触媒粒子に0.01〜24時間供給して複数のチューブ状グラファイト網が同心円状に形成されたチューブ本体と前記チューブ本体の表面を被覆する無定形炭素層とからなるカーボンナノチューブを前記触媒粒子から成長させることを特徴とするカーボンナノチューブの製造方法。
In a method for producing carbon nanotubes by vapor deposition,
Average particle diameter C o oxide and pressure of 0.08~10MPa catalyst particles is mixed powder powder of Mg oxide as a growing nucleus of the tube a 0.01Myuemu~1myuemu, of 450 ° C. to 800 ° C. A tube main body in which a mixed gas of CO and H 2 or a mixed gas of CO 2 and H 2 is supplied to the catalyst particles at a temperature for 0.01 to 24 hours to form a plurality of tubular graphite nets concentrically, and the tube main body A carbon nanotube comprising an amorphous carbon layer covering the surface of the catalyst is grown from the catalyst particles.
Co酸化物とMg酸化物の混合粉末の混合重量比(Co酸化物/Mg酸化物)が90/10〜10/90である請求項1記載の製造方法。  The production method according to claim 1, wherein the mixed weight ratio (Co oxide / Mg oxide) of the mixed powder of Co oxide and Mg oxide is 90/10 to 10/90. 混合ガスのCOに対するH2の混合容積比(CO/H2)が20/80〜99/1である請求項1記載の製造方法。The process according to claim 1, wherein the mixing volume ratio of H 2 (CO / H 2) is 20 / 80-99 / 1 for CO gas mixture. 混合ガスのCOに対するH2の混合容積比(CO/H2)が40/60〜90/10である請求項3記載の製造方法 The method according to claim 3, wherein the mixing volume ratio of H 2 (CO / H 2) is 40 / 60-90 / 10 for CO gas mixture.
JP2003096252A 2003-03-31 2003-03-31 Method for producing carbon nanotube Expired - Fee Related JP3961440B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096252A JP3961440B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanotube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096252A JP3961440B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanotube

Publications (2)

Publication Number Publication Date
JP2004299986A JP2004299986A (en) 2004-10-28
JP3961440B2 true JP3961440B2 (en) 2007-08-22

Family

ID=33408374

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096252A Expired - Fee Related JP3961440B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanotube

Country Status (1)

Country Link
JP (1) JP3961440B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106921A (en) * 2010-11-16 2012-06-07 Waseda Univ Method for producing carbon nanotube

Families Citing this family (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565384B2 (en) * 2004-11-30 2010-10-20 三菱マテリアル株式会社 Method for producing carbon nanofibers with excellent dispersibility in resin
WO2007092021A2 (en) * 2005-02-07 2007-08-16 Hyperion Catalysis International, Inc. Single-walled carbon nanotube catalyst
JP5194455B2 (en) * 2007-01-22 2013-05-08 三菱化学株式会社 Catalyst for producing vapor grown carbon fiber and vapor grown carbon fiber
EP2251465B1 (en) 2008-03-06 2017-04-19 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
JP5245499B2 (en) * 2008-04-01 2013-07-24 ミツミ電機株式会社 Method for producing carbon nanotube
JP4936026B2 (en) 2009-04-02 2012-05-23 宇部興産株式会社 Method for producing conductive binder
WO2011016536A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
WO2011016535A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
JP2011057725A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Electrically conductive thermoplastic resin composition
JP5621230B2 (en) * 2009-09-07 2014-11-12 宇部興産株式会社 Fine carbon fiber and method for producing the same
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
JP5567309B2 (en) * 2009-09-30 2014-08-06 ニッタ株式会社 CNT conductive material
JP6028189B2 (en) * 2011-09-30 2016-11-16 三菱マテリアル株式会社 A method for producing carbon nanofibers containing metallic cobalt.
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber
CN103137341B (en) * 2013-02-06 2016-08-24 燕山大学 Nano composite electrode material and preparation method thereof
KR102291933B1 (en) 2014-02-05 2021-08-19 덴카 주식회사 Production method for carbon nanofibers, and carbon nanofibers
CN107148692B (en) 2014-08-11 2020-09-08 电化株式会社 Conductive composition for electrode, electrode using same, and lithium ion secondary battery
JP2017006888A (en) * 2015-06-26 2017-01-12 デンカ株式会社 Catalyst for producing carbon nanofiber, method for producing carbon nanofiber, and carbon nanofiber
US10087557B2 (en) 2015-07-31 2018-10-02 Denka Company Limited Method for producing carbon nanofibers
CN105514397A (en) * 2016-03-02 2016-04-20 桂林理工大学 Method for preparing nitrogen-doped carbon nanotube
CN106058038B (en) * 2016-08-10 2019-06-04 东华大学 A kind of electric actuation thin-film material and its preparation and application
EP3512012B1 (en) 2016-09-07 2021-09-01 Denka Company Limited Conductive composition for electrodes, and electrode and battery using same
WO2020050140A1 (en) * 2018-09-03 2020-03-12 住友電気工業株式会社 Carbon nanotube composite, method for producing same, and method for producing refined carbon nanotubes
US11673806B2 (en) 2018-09-03 2023-06-13 Sumitomo Electric Industries, Ltd. Carbon nanotube composite assembled wire, heat-treated body of carbon nanotube composite assembled wire, method for manufacturing carbon nanotube composite assembled wire, and method for manufacturing heat-treated body of carbon nanotube composite assembled wire
CN113851614A (en) * 2020-06-28 2021-12-28 上海昱瓴新能源科技有限公司 Low-temperature quick-charging artificial graphite cathode material, preparation method thereof and low-temperature quick-charging battery
CN113562694B (en) * 2021-08-13 2023-01-10 江苏乾景新能源产业技术研究院有限公司 Hydrolysis hydrogen production method based on magnesium-based composite material
WO2023085197A1 (en) * 2021-11-15 2023-05-19 株式会社村田製作所 Carbon material, electrode provided with carbon material, secondary battery, and method for producing carbon material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012106921A (en) * 2010-11-16 2012-06-07 Waseda Univ Method for producing carbon nanotube
JP2012106922A (en) * 2010-11-16 2012-06-07 Waseda Univ Method for producing carbon nanotube

Also Published As

Publication number Publication date
JP2004299986A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP3961440B2 (en) Method for producing carbon nanotube
JP4157791B2 (en) Method for producing carbon nanofiber
JP4266509B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
Guo et al. Polypyrrole‐assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous zinc‐ion battery
JP6169260B2 (en) Negative electrode active material for lithium ion secondary battery and preparation method thereof, negative electrode piece for lithium ion secondary battery, and lithium ion secondary battery
Yoo et al. Scalable fabrication of silicon nanotubes and their application to energy storage
Li et al. Effect of temperature on growth and structure of carbon nanotubes by chemical vapor deposition
TWI438785B (en) Mesoporous carbon material, fabrication method thereof and supercapacitor
JPH05125619A (en) Graphite fiber having cylindrical structure
US20120264020A1 (en) Method of depositing silicon on carbon nanomaterials
JP2016526262A5 (en)
KR102396863B1 (en) Manufacturing method of sulfur deposited carbon nano tube electrode, sulfur deposited carbon nano tube electrode by the same and lithium-sulfur battery comprising the same
WO2006067891A1 (en) Composite negative-electrode active material, process for producing the same and nonaqueous-electrolyte secondary battery
JP7228141B2 (en) Nanostructured material and method of making same
JP6302878B2 (en) Method for producing carbon nanofiber electrode carrying metal oxide using electrodeposition method
JP2007265852A (en) Compound current collector and its manufacturing method
CN106298274B (en) A kind of new graphene/carbon pipe/graphene composite material, with and its preparation method and application
JP5099300B2 (en) Nanocarbon material composite and method for producing the same
JP2004303613A (en) Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode
Wang et al. One-pot spray pyrolysis for core–shell structured Sn@ SiOC anode nanocomposites that yield stable cycling in lithium-ion batteries
Zhang et al. A carob-inspired nanoscale design of yolk–shell Si@ void@ TiO 2-CNF composite as anode material for high-performance lithium-ion batteries
WO2019035663A1 (en) Method for producing graphene nanospheres
KR101608052B1 (en) Synthesis method of CNFs grown on Ni and Mo Catalysts, and manufacturing method of secondary cell using of it
CN117480119A (en) Graphene nanoribbons as electrode materials in energy storage devices
CN110350192B (en) Graphite carbon nanotube three-dimensional porous electrode material and preparation method and application thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061206

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070515

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070516

R150 Certificate of patent or registration of utility model

Ref document number: 3961440

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100525

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110525

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120525

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130525

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees