JP2016064972A - Carbon nanofiber production process and carbon nanofiber - Google Patents

Carbon nanofiber production process and carbon nanofiber Download PDF

Info

Publication number
JP2016064972A
JP2016064972A JP2015128444A JP2015128444A JP2016064972A JP 2016064972 A JP2016064972 A JP 2016064972A JP 2015128444 A JP2015128444 A JP 2015128444A JP 2015128444 A JP2015128444 A JP 2015128444A JP 2016064972 A JP2016064972 A JP 2016064972A
Authority
JP
Japan
Prior art keywords
cnf
catalyst
carbon
cobalt
oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2015128444A
Other languages
Japanese (ja)
Other versions
JP6600182B2 (en
Inventor
雅也 梅山
Masaya Umeyama
雅也 梅山
荒井 亨
Toru Arai
亨 荒井
金子 仁
Hitoshi Kaneko
仁 金子
歩 塚本
Ayumi Tsukamoto
歩 塚本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denka Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denka Co Ltd filed Critical Denka Co Ltd
Publication of JP2016064972A publication Critical patent/JP2016064972A/en
Application granted granted Critical
Publication of JP6600182B2 publication Critical patent/JP6600182B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide a production process that can produce carbon nanofiber with high synthetic activity, and furthermore to provide a carbon nanofiber produced by the production process, that has excellent crystallinity, conductivity and dispersibility.SOLUTION: Provided is: a carbon nanofiber production process using a catalyst having, as an active species, a metal containing cobalt as a main component, supported on a carrier composed of a titanium-containing oxide, or complex oxide, having a specific surface area of 20 to 140 m/g, and the process having carbon monoxide as carbon source; and a carbon nanofiber having excellent synthetic activity, crystallinity, conductivity and dispersibility can be produced.SELECTED DRAWING: Figure 1

Description

本発明は、活性種としてコバルトを主成分とする金属を、チタンを含有する比表面積が20〜140m/gの酸化物または複合酸化物からなる担体に担持した触媒を用いた、一酸化炭素を炭素源とするカーボンナノファイバーの製造方法、並びにこの製造方法により得られるカーボンナノファイバーに関する。 The present invention relates to carbon monoxide using a catalyst in which a metal having cobalt as a main component as an active species is supported on a support containing an oxide or composite oxide containing titanium and having a specific surface area of 20 to 140 m 2 / g. The present invention relates to a method for producing carbon nanofibers using as a carbon source, and carbon nanofibers obtained by this production method.

樹脂に導電性付与するためのフィラーとして、あるいは各種電池、特にリチウムイオン電池の電極の導電性付与材として、導電性炭素材であるアセチレンブラックやカーボンナノファイバー(以下CNFと記載)、およびこれらの混合物が用いられる。特にCNFを用いるあるいは添加する場合、比較的低い導電性炭素材含量で高い導電率が得られる特徴があり、期待が集まっている。ここでCNFは一般的に5〜100nmの外径、ファイバー長の外径に対する比を示すアスペクト比は10以上という繊維状の形状を有する。   As a filler for imparting conductivity to a resin, or as a conductivity imparting material for electrodes of various batteries, particularly lithium ion batteries, acetylene black or carbon nanofiber (hereinafter referred to as CNF), which is a conductive carbon material, and these A mixture is used. In particular, when CNF is used or added, there is a feature that high conductivity can be obtained with a relatively low content of conductive carbon material, and expectations are gathered. Here, CNF generally has a fibrous shape having an outer diameter of 5 to 100 nm and an aspect ratio indicating a ratio of the fiber length to the outer diameter of 10 or more.

従来、CNFの製造には、電極放電法、触媒気相成長法、レーザ法等が用いられている。このうち、触媒気相成長法では、工業的にCNFを成長させる遷移金属粒子を触媒とし、炭素源である原料ガス、たとえばアセチレンやベンゼンと接触させることにより、一般的には900℃以上の高温で触媒粒子よりCNFを成長させる。なかでも、コバルト等の遷移金属成分を触媒とし、原料として一酸化炭素を主体とするガスからCNFを製造する方法が、高純度、高品位のCNFを、比較的低温で得る方法として着目されている(特許文献1〜5)。   Conventionally, an electrode discharge method, a catalytic vapor phase growth method, a laser method, or the like is used for manufacturing CNF. Among them, in the catalytic vapor phase growth method, transition metal particles for industrially growing CNF are used as a catalyst, and are generally brought into contact with a source gas that is a carbon source, for example, acetylene or benzene. Then, CNF is grown from the catalyst particles. Among them, a method of producing CNF from a gas mainly composed of carbon monoxide as a raw material using a transition metal component such as cobalt as a catalyst has attracted attention as a method for obtaining high purity and high quality CNF at a relatively low temperature. (Patent Documents 1 to 5).

しかし、これらの方法により得られたCNFを樹脂の導電材または導電助剤として使用する場合、導電性は十分ではなく、さらなる高導電性(低体積抵抗率)のCNFが求められている。また、これらの方法により得られたCNFを樹脂に添加した場合、CNFの合成過程で生じたCNFの絡まり合いにより樹脂中に十分に分散できず、さらなる高分散性のCNFが求められている。   However, when CNF obtained by these methods is used as a resin conductive material or a conductive additive, the conductivity is not sufficient, and CNF having higher conductivity (low volume resistivity) is required. In addition, when CNF obtained by these methods is added to a resin, it cannot be sufficiently dispersed in the resin due to entanglement of CNF generated in the synthesis process of CNF, and further highly dispersible CNF is demanded.

特開2004−299986号公報JP 2004-299986 A 特開2004−300631号公報Japanese Patent Laid-Open No. 2004-300631 特開2006−152490号公報JP 2006-152490 A 再公表WO2009/110570号公報Republished WO2009 / 110570 再公表WO2012/053334号公報Republished WO2012 / 053334

本発明は、上記問題と実情に鑑み、活性種としてコバルトを主成分とする金属を、チタンを含有する比表面積20〜140m/gの酸化物または複合酸化物に担持させた触媒を用いた、一酸化炭素を炭素源とするCNFの製造方法、およびこの製造方法により得られる高い結晶性、高い導電性、高い分散性を有するCNFを提供することを目的とする。 In view of the above problems and circumstances, the present invention uses a catalyst in which a metal mainly composed of cobalt as an active species is supported on an oxide or composite oxide containing titanium and having a specific surface area of 20 to 140 m 2 / g. An object of the present invention is to provide a method for producing CNF using carbon monoxide as a carbon source, and CNF having high crystallinity, high conductivity, and high dispersibility obtained by this production method.

すなわち、上記課題を解決する本発明は、下記より構成される。   That is, this invention which solves the said subject is comprised from the following.

(1)コバルトを主成分とする活性種を、チタンを含有する比表面積が20〜140m/gの酸化物または複合酸化物からなる担体に担持した触媒を用いた、一酸化炭素を炭素源とするカーボンナノファイバーの製造方法。
(2)前記コバルトを主成分とする活性種が、前記チタンを含有する酸化物または複合酸化物からなる担体に0.1〜50質量%担持した、(1)に記載のカーボンナノファイバーの製造方法。
(3)前記チタンの結晶構造がルチル構造からなる酸化物、またはルチル構造とアナタース構造の両方を含む酸化物から選択される、(1)または(2)に記載のカーボンナノファイバーの製造方法。
(4)反応温度が600〜800℃であり、全圧が0.05〜0.98MPaであり、一酸化炭素分圧が全圧に対し30〜95%であり、水素分圧が一酸化炭素分圧に対し1〜50%の原料ガスを用いた条件下にて製造する、(1)〜(3)のいずれか一つに記載のカーボンナノファーバーの製造方法。
(5)反応温度が650〜800℃である、(4)に記載のカーボンナノファーバーの製造方法。
(6)(5)に記載の製造方法で得られる、9.8MPaの荷重下で測定した体積抵抗率が0.03Ω・cm以下、ラマン分光測定で得られるD/G値が1.0以下、トルエン中の10μm以下の分散粒子が90体積%以上、の条件を全て満たすカーボンナノファイバー。
(7)9.8MPaの荷重下で測定した体積抵抗率が0.03Ω・cm以下、ラマン分光測定で得られるD/G値が1.0以下、トルエン中の10μm以下の分散粒子が90体積%以上、の条件を全て満たすカーボンナノファイバー。
(1) Carbon monoxide as a carbon source using a catalyst in which an active species containing cobalt as a main component is supported on a support made of an oxide or composite oxide containing titanium and having a specific surface area of 20 to 140 m 2 / g A method for producing carbon nanofibers.
(2) The production of carbon nanofibers according to (1), wherein the active species containing cobalt as a main component is supported in an amount of 0.1 to 50% by mass on a support made of an oxide or composite oxide containing titanium. Method.
(3) The method for producing carbon nanofibers according to (1) or (2), wherein the titanium crystal structure is selected from an oxide having a rutile structure or an oxide containing both a rutile structure and an anatase structure.
(4) The reaction temperature is 600 to 800 ° C., the total pressure is 0.05 to 0.98 MPa, the carbon monoxide partial pressure is 30 to 95% of the total pressure, and the hydrogen partial pressure is carbon monoxide. The method for producing a carbon nanofiber according to any one of (1) to (3), wherein the production is performed under a condition using 1 to 50% of a source gas with respect to a partial pressure.
(5) The method for producing a carbon nanofiber according to (4), wherein the reaction temperature is 650 to 800 ° C.
(6) The volume resistivity obtained by the production method described in (5), measured under a load of 9.8 MPa, is 0.03 Ω · cm or less, and the D / G value obtained by Raman spectroscopy is 1.0 or less. Carbon nanofibers that satisfy all the conditions that dispersed particles of 10 μm or less in toluene are 90% by volume or more.
(7) The volume resistivity measured under a load of 9.8 MPa is 0.03 Ω · cm or less, the D / G value obtained by Raman spectroscopic measurement is 1.0 or less, and the dispersed particles of 10 μm or less in toluene are 90 volumes. % Of carbon nanofibers that satisfy all of the above conditions.

一酸化炭素を炭素源としCNFを製造する際、特定組成のコバルト/チタン系担持触媒を用いることで、高い結晶性、高い導電性、高い分散性のCNFを製造することが出来ることを見出した。また、本発明によるCNFは、分散性の改善により導電性ネットワークが向上するため、樹脂等に導電フィラーとして用いた場合、導電性が良好となる。   When producing CNF using carbon monoxide as a carbon source, it was found that CNF having high crystallinity, high conductivity, and high dispersibility can be produced by using a cobalt / titanium-based supported catalyst having a specific composition. . In addition, since the conductive network of the CNF according to the present invention improves the dispersibility, the conductivity becomes good when used as a conductive filler in a resin or the like.

実施例6で得られたCNFを用いて測定した、粒度分布曲線である。It is a particle size distribution curve measured using CNF obtained in Example 6. 実施例3で得られたCNFを用いて撮影した、TEM画像である。It is a TEM image image | photographed using CNF obtained in Example 3. FIG.

本明細書におけるカーボンナノファイバー(CNF)の定義は、平均外径5〜100nm、ファイバー長の外径に対する比を示すアスペクト比が10以上であり、多層カーボンナノチューブ(MWCNT)をも包含する概念であり、より好ましくは、多層カーボンナノチューブを主成分とするものである。本明細書におけるカーボンナノファイバー(CNF)の定義には単層カーボンナノチューブ(SWCNT)は含まれない。単層カーボンナノチューブは高導電性を示す特徴が有るが、カイラリティによる異性体が存在し、またバンドル構造をとる等、実用上の課題が有り、本願の目的とするものではない。本明細書のカーボンナノファイバー(CNF)としては、多層カーボンナノチューブが最も好ましい。   The definition of the carbon nanofiber (CNF) in the present specification is a concept including an average outer diameter of 5 to 100 nm, an aspect ratio indicating a ratio of the fiber length to the outer diameter of 10 or more, and also includes a multi-walled carbon nanotube (MWCNT). More preferably, the main component is a multi-walled carbon nanotube. The definition of carbon nanofiber (CNF) in this specification does not include single-walled carbon nanotubes (SWCNT). Single-walled carbon nanotubes have the characteristics of high conductivity, but there are practical problems such as the presence of isomers due to chirality and the formation of a bundle structure, and this is not the purpose of this application. As the carbon nanofiber (CNF) in the present specification, a multi-walled carbon nanotube is most preferable.

本明細書における合成活性とは、単位活性種質量あたり、単位時間あたり得られたCNFの質量である。また本明細書における収量とは単位活性種質量あたり得られたCNFの質量である。ここでいう活性種とはコバルトを主成分とする金属である。   The synthetic activity in this specification is the mass of CNF obtained per unit time per unit active species mass. Moreover, the yield in this specification is the mass of CNF obtained per unit active species mass. The active species here is a metal containing cobalt as a main component.

さらに担体とは、該活性種を担持するための、酸化物または複合酸化物を意味する。   Further, the carrier means an oxide or a composite oxide for supporting the active species.

<活性種>
本発明は、コバルトを主成分とする活性種を、チタンを含有する酸化物または複合酸化物に担持させたCNF製造用の固体触媒(以下コバルト/チタン系担持触媒と記載)を用いた、一酸化炭素を炭素源とするCNFの製造である。本発明のコバルト/チタン系担持触媒はCNF製造の実質的な活性種としてコバルト成分を有する。コバルトとは、金属コバルトのみならず、酸化物、水酸化物、含水酸化物、硝酸塩、酢酸塩、シュウ酸塩および炭酸塩等の化合物を含むこともできる。
<Active species>
The present invention uses a solid catalyst for CNF production (hereinafter referred to as a cobalt / titanium-based supported catalyst) in which an active species containing cobalt as a main component is supported on an oxide or composite oxide containing titanium. This is the production of CNF using carbon oxide as a carbon source. The cobalt / titanium-based supported catalyst of the present invention has a cobalt component as a substantially active species for producing CNF. Cobalt can include not only metallic cobalt but also compounds such as oxides, hydroxides, hydrated oxides, nitrates, acetates, oxalates and carbonates.

触媒の活性種として含まれる第4〜12族元素の成分中、少なくとも60モル%以上、好ましくは80モル%以上、最も好ましくは90モル%以上がコバルト成分である。   Among the components of Group 4 to 12 elements contained as the active species of the catalyst, at least 60 mol% or more, preferably 80 mol% or more, and most preferably 90 mol% or more is the cobalt component.

他に含まれても良い第4〜12族元素成分としては鉄、ニッケルの鉄族やマンガン、モリブデンが例示でき、これ以外に第1〜3族、または14族の成分が含まれてもよい。コバルトとは、金属コバルトのみならず、酸化物、水酸化物、含水酸化物、硝酸塩、酢酸塩、シュウ酸塩および炭酸塩等の化合物を含む概念であり、これに限定されない。   Examples of other Group 4-12 element components that may be included include iron, nickel iron group, manganese, and molybdenum. In addition, Group 1 to Group 3 or Group 14 components may be included. . Cobalt is a concept including not only metallic cobalt but also compounds such as oxides, hydroxides, hydrated oxides, nitrates, acetates, oxalates and carbonates, but is not limited thereto.

<担体>
担体としては、チタンを含有する比表面積が20〜140m/gの酸化物または複合酸化物が使用される。比表面積は25〜100m/gであることが好ましく、40〜70m/gであることがより好ましい。比表面積を20m/g以上とすることで、合成活性が向上する。
<Carrier>
As the support, an oxide or composite oxide containing titanium and having a specific surface area of 20 to 140 m 2 / g is used. Preferably the specific surface area is 25~100m 2 / g, more preferably 40~70m 2 / g. By making the specific surface area 20 m 2 / g or more, the synthetic activity is improved.

担体がチタンを含有する酸化物の場合、酸化チタン単独、または他の酸化物との混合物でもよい。酸化チタンは高い合成活性が得られる点で、結晶構造がルチル構造、またはルチル構造とアナタース構造の混合物が好ましい。   When the support is an oxide containing titanium, titanium oxide alone or a mixture with other oxides may be used. Titanium oxide is preferably a rutile structure or a mixture of a rutile structure and an anatase structure in that high synthetic activity is obtained.

チタンを含有する複合酸化物としては、チタン酸カリウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸鉛、チタン酸アルミニウムおよびチタン酸リチウム等が挙げられる。これらの中では、高い合成活性が得られる点でチタン酸バリウムが好ましい。チタンを含有する複合酸化物は、単独でも、または他の酸化物との混合物でもよい。   Examples of the composite oxide containing titanium include potassium titanate, barium titanate, strontium titanate, calcium titanate, magnesium titanate, lead titanate, aluminum titanate and lithium titanate. Among these, barium titanate is preferable in that high synthetic activity can be obtained. The composite oxide containing titanium may be used alone or as a mixture with other oxides.

担体中のチタンを含有する酸化物または複合酸化物は、少なくとも50質量%以上が好ましく、より好ましくは90質量%以上であり、最も好ましくは98質量%以上である。チタンを含有する酸化物または複合酸化物を50質量%以上とすることで、導電性、結晶性等を向上することができる。   The oxide or composite oxide containing titanium in the carrier is preferably at least 50% by mass or more, more preferably 90% by mass or more, and most preferably 98% by mass or more. By setting the oxide or composite oxide containing titanium to 50% by mass or more, conductivity, crystallinity, and the like can be improved.

コバルト担持率は多いほどCNFの収量が上がるが、多すぎるとコバルトの粒子径が大きくなり、生成するCNFが太くなるため、活性種あたりの合成活性が低下する。一方、コバルト担持率が少ないと、担持されるコバルトの粒子径が小さくなり、細いカーボンナノチューブが得られるが、触媒あたりの合成活性が低くなる傾向がある。最適なコバルト担持率は、担体の細孔容量や外表面積、担持方法によって異なるが、0.1〜50質量%が好ましく、1〜40質量%がより好ましく、5〜30質量%が最も好ましい。担持率を0.1〜50質量%とすることで、触媒あたりの合成活性が向上し、コストが有利となる。   The higher the cobalt loading, the higher the yield of CNF. However, if the cobalt loading is too large, the particle size of cobalt increases and the generated CNF becomes thicker, so the synthetic activity per active species decreases. On the other hand, when the cobalt loading ratio is small, the particle diameter of the supported cobalt becomes small and thin carbon nanotubes are obtained, but the synthetic activity per catalyst tends to be low. The optimum cobalt loading varies depending on the pore volume, outer surface area, and loading method of the carrier, but is preferably 0.1 to 50% by mass, more preferably 1 to 40% by mass, and most preferably 5 to 30% by mass. By setting the loading ratio to 0.1 to 50% by mass, the synthesis activity per catalyst is improved and the cost is advantageous.

なお、担持率は以下の式に基づいて計算した。
担持率=活性種(金属分として)の質量/担体の質量×100(%)
The loading rate was calculated based on the following formula.
Loading rate = mass of active species (as metal component) / mass of support × 100 (%)

活性種を担体に担持する場合、担持方法は特に限定されない。例えば、コバルトの塩を溶解させた非水溶液中(例えばエタノール溶液)又は水溶液中に、チタンを含有する酸化物または複合酸化物を含浸し、充分に分散混合した後、水分を除去し、空気中で焼成することにより、活性種を担体へ担持させることができる。また、単純にコバルトの塩を溶解させた非水(例えばエタノール)又は水溶液中に、チタンを含有する酸化物または複合酸化物を含浸し、充分に分散混合した後、水分除去乾燥させただけでも良い。あるいはコバルトの塩を溶解させた非水中又は水溶液中に、チタンを含有する酸化物または複合酸化物を含浸し、充分に分散混合した後、アルカリにて中和した後に水分を除去し、乾燥させ、焼成してもよい。   When the active species is supported on the carrier, the supporting method is not particularly limited. For example, impregnating a titanium-containing oxide or composite oxide in a non-aqueous solution (for example, ethanol solution) or an aqueous solution in which a cobalt salt is dissolved, thoroughly dispersing and mixing, removing moisture, and in the air The active species can be supported on the carrier by baking with s. Also, simply impregnating a titanium-containing oxide or composite oxide in a non-aqueous solution (for example, ethanol) or an aqueous solution in which a cobalt salt is dissolved, thoroughly dispersing and mixing, and then removing and drying the water. good. Or after impregnating titanium-containing oxide or composite oxide in non-water or aqueous solution in which cobalt salt is dissolved, thoroughly disperse and mix, neutralize with alkali, remove moisture, and dry. You may bake.

<CNF製造条件>
本発明では、一酸化炭素をCNFの炭素源とするが、原料ガスとして使用する一酸化炭素は、二酸化炭素や水素との混合ガスとして使用してもよく、窒素ガス等の不活性ガスを含んでいてもよい。一酸化炭素の分圧は全圧に対し30〜95%であることが好ましい。一酸化炭素分圧が30%未満であると、活性が低下してしまうし、また得られるCNFの結晶性や導電性が低下してしまう。また一酸化炭素分圧が95%より高いと、触媒の失活が激しくなり活性、収量が低下してしまう場合がある。
<CNF production conditions>
In the present invention, carbon monoxide is used as a carbon source for CNF, but carbon monoxide used as a raw material gas may be used as a mixed gas with carbon dioxide or hydrogen, and contains an inert gas such as nitrogen gas. You may go out. The partial pressure of carbon monoxide is preferably 30 to 95% with respect to the total pressure. If the carbon monoxide partial pressure is less than 30%, the activity is lowered, and the crystallinity and conductivity of the obtained CNF are also lowered. On the other hand, if the carbon monoxide partial pressure is higher than 95%, the deactivation of the catalyst becomes severe and the activity and yield may be reduced.

水素分圧は一酸化炭素分圧に対し1〜50%であることが好ましく、5〜45%がより好ましい。水素分圧が50%を超えると、触媒活性が低下し、得られるCNFの結晶性や導電性が低下する場合がある。水素分圧が5%未満の場合、早期に触媒の失活が起こり活性や収量が低下する場合がある。   The hydrogen partial pressure is preferably 1 to 50%, more preferably 5 to 45%, relative to the carbon monoxide partial pressure. If the hydrogen partial pressure exceeds 50%, the catalytic activity may decrease, and the crystallinity and conductivity of the resulting CNF may decrease. If the hydrogen partial pressure is less than 5%, the catalyst may be deactivated early and the activity and yield may be reduced.

全圧は絶対圧で0.05〜0.98MPaが好ましく、0.1(大気圧)〜0.5MPaがより好ましい。全圧が0.98MPaを超えると、製造に当たり高圧対応設備費用やユーティリティコストが嵩んでしまう可能性があり、0.05MPa未満では活性が低下する場合がある。また0.1MPa(大気圧)と比較し大きく減圧である場合には、高温の反応器に対し大気(酸素)の混入を防ぐためのシールが難しく、好ましくない場合がある。   The total pressure is preferably 0.05 to 0.98 MPa in absolute pressure, more preferably 0.1 (atmospheric pressure) to 0.5 MPa. If the total pressure exceeds 0.98 MPa, the equipment costs and utility costs for high pressure may increase during production, and if it is less than 0.05 MPa, the activity may decrease. Further, when the pressure is greatly reduced as compared with 0.1 MPa (atmospheric pressure), it is difficult to seal the high-temperature reactor to prevent air (oxygen) from being mixed, which may not be preferable.

本発明においては上記の条件を満たした上で、全ガス流速が1NL/g−活性種・分以上であることが好ましく、20〜200NL/g−活性種・分以上の条件を満たすことがより好ましい。全ガス流速をこの範囲に設定することで、CNFを高い合成活性で製造することができる。ここでいう高い合成活性とは、具体的には15g−CNF/g−活性種・h(時間)以上であることを意味する。全ガス流速の上限は特にないが、200NL/g−活性種・分を超えると、ガスの流量が多すぎて、余熱のためのユーティティコストが嵩み、好ましくない。   In the present invention, after satisfying the above conditions, the total gas flow rate is preferably 1 NL / g-active species / minute or more, more preferably 20-200 NL / g-active species / minute or more. preferable. By setting the total gas flow rate within this range, CNF can be produced with high synthetic activity. The high synthetic activity here means specifically 15 g-CNF / g-active species · h (hour) or more. The upper limit of the total gas flow rate is not particularly limited, but if it exceeds 200 NL / g-active species / minute, the gas flow rate is too high, and the utility cost for residual heat increases, which is not preferable.

尚、「NL」とは標準状態(0℃、1気圧)に換算したガス量L(リットル)を示し、「NL/g−活性種・分」とは、単位触媒存在下(触媒1gあたり)での1分間のガス流量を示す。   “NL” indicates a gas amount L (liter) converted to a standard state (0 ° C., 1 atm), and “NL / g-active species / minute” indicates the presence of a unit catalyst (per 1 g of catalyst). 1 shows the gas flow rate for 1 minute.

本発明の反応温度は、600〜800℃が好ましく、650〜800℃であることが最も好ましい。反応温度をこの範囲に設定することで、9.8MPaで測定した体積抵抗率が0.03Ω・cm以下である導電性に優れたCNFを高活性で製造することが出来る。また本製造条件を満たすことで、ラマン分光測定で得られるD/G値が1.0以下である結晶性に優れたCNFを高活性で製造することが出来る。   600-800 degreeC is preferable and, as for the reaction temperature of this invention, it is most preferable that it is 650-800 degreeC. By setting the reaction temperature within this range, a highly conductive CNF having a volume resistivity of 0.03 Ω · cm or less measured at 9.8 MPa can be produced with high activity. Moreover, by satisfying this production condition, CNF excellent in crystallinity having a D / G value of 1.0 or less obtained by Raman spectroscopic measurement can be produced with high activity.

本発明により製造されたCNFは、純度を高めるために活性種および担体を除去してもよい。活性種および担体の除去は公知の方法が用いられるが、たとえば特開2006−298713号公報等に記載された、CNFを塩酸、硝酸、硫酸等の酸に分散させた後、ろ過や遠心分離、水溶液と2相分離できる溶媒を激しく撹拌する等の手段によってCNFを回収する方法により行うことができる。   The CNF produced according to the present invention may be free of active species and carriers to increase purity. A known method is used to remove the active species and the carrier. For example, as described in JP 2006-298713 A, CNF is dispersed in an acid such as hydrochloric acid, nitric acid, sulfuric acid, and then filtered, centrifuged, It can be performed by a method of recovering CNF by means such as vigorously stirring a solvent capable of two-phase separation from an aqueous solution.

本発明の実施に当たり、本発明の製造条件を満たす限り、公知の製造方法や公知の製造装置を用いることが出来る。例えば固定床反応装置や流動床反応装置、バッチ式あるいは回分式反応装置や連続式反応装置を用いることが出来る。   In carrying out the present invention, a known production method or a known production apparatus can be used as long as the production conditions of the present invention are satisfied. For example, a fixed bed reactor, a fluidized bed reactor, a batch type or batch type reactor, or a continuous reactor can be used.

<CNF>
本発明では、上記最も好ましい製造条件を満たすことで、9.8MPaの荷重下で測定した体積抵抗率が0.03Ω・cm以下であり、ラマン分光測定で得られるD/G値が1.0以下であり、トルエン中の10μm以下の分散粒子が90体積%以上の全ての条件を満たすカーボンナノファイバーを製造することができる。
<CNF>
In the present invention, by satisfying the most preferable production conditions, the volume resistivity measured under a load of 9.8 MPa is 0.03 Ω · cm or less, and the D / G value obtained by Raman spectroscopy is 1.0. The carbon nanofibers satisfying all the conditions below, in which dispersed particles of 10 μm or less in toluene are 90% by volume or more, can be produced.

CNFのD/G値は、1.0以下が好ましい。ここでD/G値とは、CNF粉体のラマン分光測定を行った際の、Dバンドピークに由来する面積の総和と、Gバンドピークに由来する面積の総和の比より求めることができる。D/G値が低いほどCNFの結晶性が高いことを示し、CNFの導電性が高くなることを意味する。   The D / G value of CNF is preferably 1.0 or less. Here, the D / G value can be obtained from the ratio of the total area derived from the D band peak and the total area derived from the G band peak when the Raman spectroscopic measurement of the CNF powder is performed. It shows that the crystallinity of CNF is so high that D / G value is low, and the electroconductivity of CNF becomes high.

本発明の触媒を用い、反応温度を600〜800℃でCNFを製造することで、分散処理を行わない状態で、CNFのトルエン中の10μm以下の分散粒子は70体積%以上である、分散性が良好なCNFを得ることができる。反応温度を650〜800℃でCNFを製造することで、分散処理を行わない状態で、CNFのトルエン中の10μm以下の分散粒子は90体積%以上、好ましくは95体積%以上である、分散性が極めて良好なCNFを得ることができる。10μm以上であると媒体中でも絡み合っていると考えられ、樹脂等に導電剤として混ぜる際には分散性が乏しいと考えられる。
ここで分散処理とは、粒度分布計での分散性測定前の機械的な分散、粉砕処理、例えば機械式ホモジナイザーやビーズミル、乳化分散機での処理を意味する。また超音波ホモジナイザーのような強力な超音波照射もこの範疇に入る。しかし、本願でも光散乱法による分散性測定の前処理として行っている、10分間以下程度の市販のバス式の超音波洗浄機による測定液の懸濁化、均一化処理や、粒度分布計付属の超音波照射装置による、測定時の均一分散に使用する目的の超音波処理はこの範疇には入らない。
By using the catalyst of the present invention and producing CNF at a reaction temperature of 600 to 800 ° C., the dispersion particles having a particle size of 10 μm or less in toluene of CNF are 70% by volume or more in a state where dispersion treatment is not performed. Can obtain a good CNF. By producing CNF at a reaction temperature of 650 to 800 ° C., the dispersion particles having a particle size of 10 μm or less in toluene of CNF are not less than 90% by volume, preferably not less than 95% by volume. However, very good CNF can be obtained. If it is 10 μm or more, it is considered that the medium is entangled even in the medium, and it is considered that the dispersibility is poor when mixed as a conductive agent in a resin or the like.
Here, the dispersion treatment means mechanical dispersion and pulverization treatment before measurement of dispersibility with a particle size distribution meter, for example, treatment with a mechanical homogenizer, a bead mill, or an emulsifying disperser. In addition, powerful ultrasonic irradiation such as an ultrasonic homogenizer also falls into this category. However, in this application, as a pretreatment for the dispersibility measurement by the light scattering method, the measurement liquid is suspended and homogenized by a commercially available bath type ultrasonic cleaner for about 10 minutes or less, and a particle size distribution meter is attached. The ultrasonic treatment for the purpose of uniform dispersion at the time of measurement by the ultrasonic irradiator does not fall into this category.

以下、実施例により、本発明を説明するが、これらの実施例は本発明を限定するものではない。   EXAMPLES Hereinafter, although an Example demonstrates this invention, these Examples do not limit this invention.

<比表面積測定>
CNF粉体や触媒担体の比表面積は、Mountech社製Macsorb HM model−1201を用い、JIS K6217−2に従いBET一点法で求めた。
<Specific surface area measurement>
The specific surface areas of the CNF powder and the catalyst support were determined by the BET single point method according to JIS K6217-2 using a Macsorb HM model-1201 manufactured by Mounttech.

<体積抵抗率測定>
CNF粉体の体積抵抗率は、三菱化学アナリティック社製ロレスタGPを用い、23℃、相対湿度50%の雰囲気にて、荷重9.8MPaの条件下、四探針法にて求めた。
<Volume resistivity measurement>
The volume resistivity of the CNF powder was obtained by a four-probe method using a Loresta GP manufactured by Mitsubishi Chemical Analytical Co., Ltd. in an atmosphere of 23 ° C. and a relative humidity of 50% under a load of 9.8 MPa.

<ラマン分光測定>
CNF粉体のラマン分光測定は、顕微レーザーラマン分光分析装置(Niolet Almega-XR型、サーモフィッシャーサイエンティフィック社製、レーザー532nm)を用い行った。Dバンド(D1:ピーク位置1330cm−1、D3:1500cm−1、D4:1150cm−1)とGバンド(G+:1600cm−1、G−:1570cm−1)の波形分離を行った後、Dバンドピークに由来する面積の総和とDバンドピークに由来する面積の総和の比(D/G値)を求めた。本D/G値が低いほどCNFの結晶性が高いことを示している。
(参考)
D1:グラファイト結晶構造内の点欠陥、結晶端由来の欠陥に由来
D3:アモルファスカーボンに由来
D4:ポリエンやイオン性不純物に由来
G+:グラファイトの結晶性ピーク:縦光学モード
G−:グラファイトの結晶性ピーク:横光学モード
<Raman spectroscopy measurement>
The Raman spectroscopic measurement of CNF powder was performed using a microscopic laser Raman spectroscopic analyzer (Niolet Almega-XR type, manufactured by Thermo Fisher Scientific, laser 532 nm). After performing waveform separation of D band (D1: peak position 1330 cm-1, D3: 1500 cm-1, D4: 1150 cm-1) and G band (G +: 1600 cm-1, G-: 1570 cm-1), D band The ratio (D / G value) of the total area derived from the peak and the total area derived from the D band peak was determined. The lower the D / G value, the higher the crystallinity of CNF.
(reference)
D1: Derived from point defects in the crystal crystal structure and defects derived from crystal edges D3: Derived from amorphous carbon D4: Derived from polyene or ionic impurities G +: Crystalline peak of graphite: Longitudinal optical mode G-: Crystallinity of graphite Peak: Transverse optical mode

<光散乱法による粒度分布測定>
(分散前処理)
粒度分布測定に先立ち、合成したCNF300mgを蒸留水100mL、トルエン100mLの2層溶液に加え、超音波ホモジナイザー(小型デジタル超音波ホモジナイザー BRANSON社製)を用い、2分間100Wで超音波照射を実施した。分液ロートに移し、水層を捨て、蒸留水を100mL加え、撹拌した。その後、蒸留水の除去、添加を8回繰り返し、トルエン層を回収して乾燥した。乾燥したCNFを再度トルエンに分散させ、粒度分布測定用の0.1質量%のトルエン分散液を調製した。さらに、調製したトルエン分散液を、超音波洗浄器(US 2A アズワン社製、超音波出力80W)で5分間超音波分散した。
<Measurement of particle size distribution by light scattering method>
(Distributed pre-processing)
Prior to the particle size distribution measurement, 300 mg of synthesized CNF was added to a two-layer solution of 100 mL of distilled water and 100 mL of toluene, and ultrasonic irradiation was performed at 100 W for 2 minutes using an ultrasonic homogenizer (compact digital ultrasonic homogenizer manufactured by BRANSON). It moved to the separating funnel, the water layer was thrown away, 100 mL of distilled water was added, and it stirred. Thereafter, removal and addition of distilled water were repeated 8 times, and the toluene layer was recovered and dried. The dried CNF was again dispersed in toluene to prepare a 0.1% by mass toluene dispersion for particle size distribution measurement. Furthermore, the prepared toluene dispersion was subjected to ultrasonic dispersion for 5 minutes with an ultrasonic cleaner (US 2A, manufactured by ASONE Corporation, ultrasonic output 80 W).

(粒度分布測定)
調製したトルエン分散液を用い、粒度分布を測定した。粒度分布の測定はレーザ回折・散乱法(ISO 13320:2009)に準拠して実施した。すなわち粒度分布計(「LS 13 320 ユニバーサルリキッドモジュール」 BECKMAN COULTER社製)を用いた。まず、同装置の光学モデルをトルエンの屈折率に設定し、トルエンを充填し、ポンプスピード100%の条件でオフセット測定、光軸調整、バックグラウンド測定を行った。次に、粒度分布計に調製したトルエン分散液を適正濃度8〜12%、もしくはPIDS40%〜55%になるように加え、73W、2分間超音波照射を行い、30秒循環し気泡を除いた後に粒度分布測定を行った。粒度に対する体積%表示のグラフを得、粒度分布を解析した。
(Particle size distribution measurement)
The particle size distribution was measured using the prepared toluene dispersion. The particle size distribution was measured according to the laser diffraction / scattering method (ISO 13320: 2009). That is, a particle size distribution meter (“LS 13 320 Universal Liquid Module” manufactured by BECKMAN COULTER) was used. First, the optical model of the apparatus was set to the refractive index of toluene, filled with toluene, and offset measurement, optical axis adjustment, and background measurement were performed under conditions of a pump speed of 100%. Next, the toluene dispersion prepared in the particle size distribution meter was added so as to have an appropriate concentration of 8 to 12% or PIDS of 40% to 55%, and 73 W was irradiated with ultrasonic waves for 2 minutes and circulated for 30 seconds to remove bubbles. Later, the particle size distribution was measured. The graph of volume% display with respect to the particle size was obtained, and the particle size distribution was analyzed.

<担持触媒の調製>
(触媒合成例1)
アナタース構造とルチル構造の比が80対20である酸化チタン(AEROXIDE(登録商標) 「TiO P25」、日本アエロジル社製 比表面積52m/g)2.5gと、硝酸コバルト・6水和物(3N5、関東化学社製)0.6gを蒸留水30mLに溶解した。ロータリーエバポレータ(N1000、東京理化器械社製)にセットし、ウォーターバスで50℃に加温し1時間撹拌した。水を除去後、さらに真空下60℃で12時間乾燥し、固体成分を得た。
<Preparation of supported catalyst>
(Catalyst synthesis example 1)
Titanium oxide having a ratio of anatase structure to rutile structure of 80:20 (AEROXIDE (registered trademark) “TiO 2 P25”, specific surface area 52 m 2 / g manufactured by Nippon Aerosil Co., Ltd.) and cobalt nitrate hexahydrate 0.6 g (3N5, manufactured by Kanto Chemical Co., Inc.) was dissolved in 30 mL of distilled water. This was set on a rotary evaporator (N1000, manufactured by Tokyo Rika Kikai Co., Ltd.), heated to 50 ° C. with a water bath, and stirred for 1 hour. After removing water, it was further dried under vacuum at 60 ° C. for 12 hours to obtain a solid component.

得られた固体成分をセラミック製の坩堝に移し、マッフル炉(FO200ヤマト科学株式会社製)で空気中400℃の条件下5時間焼成し、コバルト担持率5%のコバルト/チタン系触媒を得た。   The obtained solid component was transferred to a ceramic crucible and baked in a muffle furnace (FO200 Yamato Scientific Co., Ltd.) in air at 400 ° C. for 5 hours to obtain a cobalt / titanium catalyst with a cobalt loading rate of 5%. .

(触媒合成例2)
硝酸コバルト・6水和物の量を1.2gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率10%のコバルト/チタン系触媒を調製した。
(Catalyst synthesis example 2)
A cobalt / titanium catalyst having a cobalt loading rate of 10% was prepared in the same manner as in Catalyst Synthesis Example 1, except that the amount of cobalt nitrate hexahydrate was changed to 1.2 g.

(触媒合成例3)
硝酸コバルト・6水和物の量を2.4gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率20%のコバルト/チタン系触媒を調製した。
(Catalyst synthesis example 3)
A cobalt / titanium catalyst having a cobalt loading rate of 20% was prepared in the same manner as in Catalyst Synthesis Example 1, except that the amount of cobalt nitrate hexahydrate was changed to 2.4 g.

(触媒合成例4)
硝酸コバルト・6水和物の量を3.6gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率50%のコバルト/チタン系触媒を調製した。
(Catalyst synthesis example 4)
A cobalt / titanium catalyst having a cobalt loading of 50% was prepared in the same manner as in Catalyst Synthesis Example 1 except that the amount of cobalt nitrate hexahydrate was changed to 3.6 g.

(触媒合成例5)
酸化チタン2.5gを、チタン酸バリウム(YKT−05、堺化学工業社製 比表面積25m/g)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/チタン系担持触媒を調製した。
(Catalyst synthesis example 5)
Except for changing 2.5 g of titanium oxide to 2.5 g of barium titanate (YKT-05, Sakai Chemical Industry Co., Ltd., specific surface area 25 m 2 / g), the cobalt loading rate is 5% in the same manner as in Catalyst Synthesis Example 1. A cobalt / titanium-based supported catalyst was prepared.

(触媒合成例6)
酸化チタン2.5gを、結晶構造がルチル構造のみからなる酸化チタン(STR−100N、堺化学工業社製 比表面積97m/g)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/チタン系担持触媒を調製した。
(Catalyst synthesis example 6)
Except for changing 2.5 g of titanium oxide to 2.5 g of titanium oxide (STR-100N, Sakai Chemical Industry Co., Ltd., specific surface area 97 m 2 / g) whose crystal structure is composed only of the rutile structure, the same as in Catalyst Synthesis Example 1 A cobalt / titanium-based supported catalyst having a cobalt loading rate of 5% was prepared by this method.

(触媒合成例7)
酸化チタン2.5gを、結晶構造がアナタース構造のみからなる酸化チタン(SSP―M、堺化学工業社製 比表面積93m/g)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/チタン系担持触媒を調製した。
(Catalyst synthesis example 7)
Except for changing 2.5 g of titanium oxide to 2.5 g of titanium oxide (SSP-M, specific surface area 93 m 2 / g manufactured by Sakai Chemical Industry Co., Ltd.) whose crystal structure is only an anatase structure, the same as in Catalyst Synthesis Example 1 A cobalt / titanium-based supported catalyst having a cobalt loading rate of 5% was prepared by this method.

(触媒合成例8)
酸化チタン2.5gを、結晶構造がルチル構造のみからなる酸化チタン(R−310、堺化学工業社製 比表面積9m/g)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/チタン系担持触媒を調製した。
(Catalyst synthesis example 8)
Except for changing 2.5 g of titanium oxide to 2.5 g of titanium oxide (R-310, specific surface area 9 m 2 / g manufactured by Sakai Chemical Industry Co., Ltd.) whose crystal structure is only a rutile structure, the same as in Catalyst Synthesis Example 1 A cobalt / titanium-based supported catalyst having a cobalt loading rate of 5% was prepared by this method.

(触媒合成例9)
酸化チタン2.5gを、結晶構造がアナタース構造のみからなる酸化チタン(A−110、堺化学工業社製 比表面積11m/g)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/酸化チタン担持触媒を調製した。
(Catalyst synthesis example 9)
Except for changing 2.5 g of titanium oxide to 2.5 g of titanium oxide (A-110, specific surface area 11 m 2 / g, manufactured by Sakai Chemical Industry Co., Ltd.) whose crystal structure consists only of anatase structure, the same as in Catalyst Synthesis Example 1 A cobalt / titanium oxide supported catalyst having a cobalt loading rate of 5% was prepared by this method.

(触媒合成例10)
酸化チタン2.5gを、アナタース構造とルチル構造の比が85対15である酸化チタン(堺化学工業社製 比表面積4m/g)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/酸化チタン担持触媒を調製した。
(Catalyst synthesis example 10)
Except for changing 2.5 g of titanium oxide to 2.5 g of titanium oxide (having a specific surface area of 4 m 2 / g manufactured by Sakai Chemical Industry Co., Ltd.) having an anatase / rutile structure ratio of 85:15, the same as in Catalyst Synthesis Example 1 In this manner, a cobalt / titanium oxide supported catalyst having a cobalt loading rate of 5% was prepared.

(触媒合成例11)
酸化チタン2.5gを、アナタース構造とルチル構造の比が37対63である酸化チタン(堺化学工業社製 比表面積2m/g)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/酸化チタン担持触媒を調製した。
(Catalyst synthesis example 11)
Except for changing 2.5 g of titanium oxide to 2.5 g of titanium oxide having a ratio of anatase structure to rutile structure of 37:63 (specific surface area 2 m 2 / g manufactured by Sakai Chemical Industry Co., Ltd.), the same as in Catalyst Synthesis Example 1 In this manner, a cobalt / titanium oxide supported catalyst having a cobalt loading rate of 5% was prepared.

(触媒合成例12)
酸化チタン2.5gを、シリカ(AEROSIL 200、日本アエロジル社製)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/シリカ担持触媒を調製した。
(Catalyst synthesis example 12)
A cobalt / silica supported catalyst having a cobalt loading rate of 5% was prepared in the same manner as in Catalyst Synthesis Example 1, except that 2.5 g of titanium oxide was changed to 2.5 g of silica (AEROSIL 200, manufactured by Nippon Aerosil Co., Ltd.).

(触媒合成例13)
酸化チタン2.5gを、アルミナ(DAW70、電気化学工業社製)2.5gに変更した以外は、触媒合成例1と同様な方法でコバルト担持率5%のコバルト/アルミナ担持触媒を調製した。
(Catalyst synthesis example 13)
A cobalt / alumina supported catalyst having a cobalt loading rate of 5% was prepared in the same manner as in Catalyst Synthesis Example 1 except that 2.5 g of titanium oxide was changed to 2.5 g of alumina (DAW70, manufactured by Denki Kagaku Kogyo).

(触媒合成例14)
硝酸コバルト・6水和物0.6gを、硝酸鉄・9水和物(関東化学社製)0.9gに変更した以外は、触媒合成例1と同様な方法で鉄担持率5%の鉄/チタン系担持触媒を調製した。
(Catalyst synthesis example 14)
Iron with 5% iron loading is the same as in Catalyst Synthesis Example 1 except that 0.6 g of cobalt nitrate hexahydrate is changed to 0.9 g of iron nitrate nonahydrate (manufactured by Kanto Chemical Co., Inc.). / Titanium-based supported catalyst was prepared.

(触媒合成例15)
硝酸コバルト・6水和物0.6gを、硝酸ニッケル・6水和物(関東化学社製)0.6gに変更した以外は、触媒合成例1と同様な方法でニッケル担持率5%のニッケル/チタン系担持触媒を調製した。
(Catalyst synthesis example 15)
Nickel with 5% nickel loading in the same manner as in Catalyst Synthesis Example 1 except that 0.6 g of cobalt nitrate hexahydrate was changed to 0.6 g of nickel nitrate hexahydrate (manufactured by Kanto Chemical Co., Inc.) / Titanium-based supported catalyst was prepared.

(触媒合成例16)
コバルトナノ粒子(cobalt nano powder APS 5−15nm Alfa Aesar社製)5mgと、酸化チタン(AEROXIDE(登録商標) 「TiO P25」、日本アエロジル社製 比表面積52m/g)100mgを乳鉢で混合することで、混合触媒を調製した。
(Catalyst synthesis example 16)
Cobalt nano particles (cobalt nano powder APS 5-15 nm, manufactured by Alfa Aesar) 5 mg, titanium oxide (AEROXIDE (registered trademark) “TiO 2 P25”, Nippon Aerosil Co., Ltd., specific surface area 52 m 2 / g) are mixed in a mortar. Thus, a mixed catalyst was prepared.

(触媒合成例17)
特許5003923号に準じ、以下のようにして触媒を調製した。イオン交換水25mLに硝酸コバルト〔Co(NO・6HO:分子量291.03〕5.75g(0.02モル)、硝酸マグネシウム〔Mg(NO・6HO:分子量256.41〕5.10g(0.02モル)を溶解させ、原料溶液(1)を調製した。また、重炭酸アンモニウム〔(NH)HCO:分子量79.06〕粉末11g(0.139モル)をイオン交換水55mLに溶解させ、原料溶液(2)を調製した。次に、反応温度40℃で原料溶液(1)と(2)を混合し、その後4時間攪拌した。生成した沈殿物のろ過、洗浄を行い、乾燥した。これを600℃で4時間焼成した後、乳鉢で粉砕し、触媒を取得した。
(Catalyst synthesis example 17)
According to Japanese Patent No. 5003923, a catalyst was prepared as follows. In 25 mL of ion-exchanged water, 5.75 g (0.02 mol) of cobalt nitrate [Co (NO 3 ) 2 .6H 2 O: molecular weight 291.03], magnesium nitrate [Mg (NO 3 ) 2 .6H 2 O: molecular weight 256 .41] 5.10 g (0.02 mol) was dissolved to prepare a raw material solution (1). Also, 11 g (0.139 mol) of ammonium bicarbonate [(NH 4 ) HCO 3 : molecular weight 79.06] powder was dissolved in 55 mL of ion-exchanged water to prepare a raw material solution (2). Next, the raw material solutions (1) and (2) were mixed at a reaction temperature of 40 ° C., and then stirred for 4 hours. The produced precipitate was filtered, washed and dried. This was calcined at 600 ° C. for 4 hours and then pulverized in a mortar to obtain a catalyst.

<CNF合成>
(実施例1)
原料の一酸化炭素は、(株)鈴木商館から購入した,G1グレード(純度99.95%)を使用した。
石英製の反応管内に、触媒合成例1で得られた担持触媒100mgを仕込んだ触媒ホルダーを設置し、窒素を十分流して窒素置換した。さらに、窒素80%、水素20%の還元ガスを大気圧(101kPa)下、表1に示す反応温度に昇温し、反応温度に達してから30分間保持して触媒の還元を行った。引き続き原料ガスを、表1に示す原料ガス組成、全原料ガス流速にて触媒層に通過させ、CNFの製造を1時間行った。所定の時間反応を行った後に、原料ガスを窒素ガスに切り替え、直ちに冷却した。得られたCNF質量と用いた触媒質量、反応時間から、単位触媒、単位時間あたりのCNF合成活性を計算し、さらに得られたCNFの体積抵抗率、D/G値および粒度分布を測定した。結果を表1に示す。
<CNF synthesis>
Example 1
The raw material carbon monoxide used was G1 grade (purity 99.95%) purchased from Suzuki Shokan Co., Ltd.
A catalyst holder charged with 100 mg of the supported catalyst obtained in Catalyst Synthesis Example 1 was placed in a quartz reaction tube, and the nitrogen was purged sufficiently by flowing nitrogen. Further, a reducing gas of 80% nitrogen and 20% hydrogen was heated to the reaction temperature shown in Table 1 under atmospheric pressure (101 kPa), and the catalyst was reduced by holding for 30 minutes after reaching the reaction temperature. Subsequently, the source gas was passed through the catalyst layer at the source gas composition and the total source gas flow rate shown in Table 1, and CNF was produced for 1 hour. After performing the reaction for a predetermined time, the raw material gas was switched to nitrogen gas and immediately cooled. From the obtained CNF mass, the used catalyst mass, and the reaction time, the CNF synthesis activity per unit catalyst and unit time was calculated, and the volume resistivity, D / G value and particle size distribution of the obtained CNF were measured. The results are shown in Table 1.


(実施例2)
触媒合成例2で作製した担持触媒50mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
(Example 2)
CNF was synthesized in the same manner as in Example 1 except that 50 mg of the supported catalyst prepared in Catalyst Synthesis Example 2 was used. The results are shown in Table 1.

(実施例3)
触媒合成例3で作製した担持触媒25mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に、透過型電子顕微鏡写真を図2に示す。
(Example 3)
CNF was synthesized in the same manner as in Example 1 except that 25 mg of the supported catalyst prepared in Catalyst Synthesis Example 3 was used. The results are shown in Table 1, and a transmission electron micrograph is shown in FIG.

(実施例4)
触媒合成例4で作製した担持触媒10mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
Example 4
CNF was synthesized in the same manner as in Example 1 except that 10 mg of the supported catalyst prepared in Catalyst Synthesis Example 4 was used. The results are shown in Table 1.

(実施例5)
反応温度を550℃に変更した以外は、実施例1と同様な方法でCNFを合成した。結果を表1に示す。
(Example 5)
CNF was synthesized in the same manner as in Example 1 except that the reaction temperature was changed to 550 ° C. The results are shown in Table 1.

(実施例6)
反応温度を700℃に変更し、ガス組成をCO/H/N=70/30/0に変更した以外は、実施例1と同様な方法でCNFを合成した。結果を表1に示す。なお、図1に得られたCNFの粒度分布曲線を示す。10μm以下の分散粒子は、98体積%であることが示され、良好な分散状態にあるCNFが得られたことを確認した。
(Example 6)
CNF was synthesized in the same manner as in Example 1 except that the reaction temperature was changed to 700 ° C. and the gas composition was changed to CO / H 2 / N 2 = 70/30/0. The results are shown in Table 1. In addition, the particle size distribution curve of CNF obtained in FIG. 1 is shown. The dispersed particles of 10 μm or less were shown to be 98% by volume, and it was confirmed that CNF in an excellent dispersed state was obtained.

(実施例7)
反応温度を750℃に変更し、ガス組成をCO/H/N=70/30/0に変更した以外は、実施例1と同様な方法でCNFを合成した。結果を表1に示す。
(Example 7)
CNF was synthesized in the same manner as in Example 1 except that the reaction temperature was changed to 750 ° C. and the gas composition was changed to CO / H 2 / N 2 = 70/30/0. The results are shown in Table 1.

(実施例8)
反応温度を800℃に変更し、ガス組成をCO/H/N=70/30/0に変更した以外は、実施例1と同様な方法でCNFを合成した。結果を表1に示す。
(Example 8)
CNF was synthesized in the same manner as in Example 1 except that the reaction temperature was changed to 800 ° C. and the gas composition was changed to CO / H 2 / N 2 = 70/30/0. The results are shown in Table 1.

(実施例9)
ガス流速を21[NL/g−活性種・分]に変更し、触媒合成例3で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
Example 9
CNF was synthesized in the same manner as in Example 1 except that the gas flow rate was changed to 21 [NL / g-active species / min] and 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 3 was used. The results are shown in Table 1.

(実施例10)
ガス流速を7[NL/g−活性種・分]に変更し、触媒合成例3で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
(Example 10)
CNF was synthesized in the same manner as in Example 1 except that the gas flow rate was changed to 7 [NL / g-active species / min] and 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 3 was used. The results are shown in Table 1.

(実施例11)
ガス組成をCO/H/N=90/10/0に変更し、触媒合成例3で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
(Example 11)
CNF was synthesized in the same manner as in Example 1 except that the gas composition was changed to CO / H 2 / N 2 = 90/10/0 and 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 3 was used. . The results are shown in Table 1.

(実施例12)
ガス組成をCO/H/N=30/20/50に変更し、触媒合成例3で製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
(Example 12)
CNF was synthesized in the same manner as in Example 1 except that the gas composition was changed to CO / H 2 / N 2 = 30/20/50 and 100 mg of the supported catalyst produced in Catalyst Synthesis Example 3 was used. . The results are shown in Table 1.

(実施例13)
触媒合成例5で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
(Example 13)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 5 was used. The results are shown in Table 1.

(実施例14)
触媒合成例6で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
(Example 14)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 6 was used. The results are shown in Table 1.

(実施例15)
触媒合成例7で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。結果を表1に示す。
各実施例で得られたCNFのTEM(透過型電子顕微鏡)観察を行ったところ、いずれも平均径約10nm〜40nmの範囲の、平均アスペクト比が10以上の多層カーボンナノチューブであることが確認できた。
(Example 15)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 7 was used. The results are shown in Table 1.
When TEM (transmission electron microscope) observation of CNF obtained in each example was performed, it was confirmed that all were multi-walled carbon nanotubes having an average diameter of about 10 nm to 40 nm and an average aspect ratio of 10 or more. It was.

(比較例1)
触媒合成例8で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例1では、本願の条件を満たさない、比表面積が9m/gである酸化チタンを担体とした触媒用いてCNFの合成を試みたが、CNF合成活性が出ず、各種評価に必要なCNFを得ることはできなかった。
(Comparative Example 1)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 8 was used. In Comparative Example 1, synthesis of CNF was attempted using a catalyst using titanium oxide having a specific surface area of 9 m 2 / g, which does not satisfy the conditions of the present application, but CNF synthesis activity did not appear, and various evaluations were made. The necessary CNF could not be obtained.


(比較例2)
触媒合成例9で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例2では、本願の条件を満たさない、比表面積が11m/gである酸化チタンを担体とした触媒用いてCNFの合成を試みたが、CNF合成活性は低い値にとどまり、反応時間1時間では体積抵抗率測定に十分な収量のCNFは得られなかった。
(Comparative Example 2)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 9 was used. In Comparative Example 2, synthesis of CNF was attempted using a catalyst that supported titanium oxide having a specific surface area of 11 m 2 / g, which did not satisfy the conditions of the present application. However, the CNF synthesis activity remained at a low value. In 1 hour, CNF with a yield sufficient for volume resistivity measurement could not be obtained.

(比較例3)
触媒合成例10で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例3では、本願の条件を満たさない、比表面積が4m/gである酸化チタンを担体とした触媒用いてCNFの合成を試みたが、CNF合成活性は低い値にとどまり、反応時間1時間では体積抵抗率測定に十分な収量のCNFは得られなかった。
(Comparative Example 3)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 10 was used. In Comparative Example 3, synthesis of CNF was attempted using a catalyst that supported titanium oxide having a specific surface area of 4 m 2 / g, which did not satisfy the conditions of the present application, but the CNF synthesis activity remained at a low value. In 1 hour, CNF with a yield sufficient for volume resistivity measurement could not be obtained.

(比較例4)
触媒合成例11で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例4では、本願の条件を満たさない、比表面積が2m/gである酸化チタンを担体とした触媒用いてCNFの合成を試みたが、CNF合成活性は低い値にとどまり、反応時間1時間では体積抵抗率測定に十分な収量のCNFは得られなかった。
(Comparative Example 4)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 11 was used. In Comparative Example 4, synthesis of CNF was attempted using a catalyst using a titanium oxide support with a specific surface area of 2 m 2 / g, which did not satisfy the conditions of the present application, but the CNF synthesis activity remained at a low value. In 1 hour, CNF with a yield sufficient for volume resistivity measurement could not be obtained.

(比較例5)
触媒合成例12で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例5では、本願の条件を満たさない、コバルト担持率5%のコバルト−シリカ担持触媒でCNFの合成を行ったが、CNF合成活性は低い値にとどまり、反応時間1時間では体積抵抗率測定に十分な収量のCNFは得られなかった。
(Comparative Example 5)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 12 was used. In Comparative Example 5, CNF was synthesized with a cobalt-silica-supported catalyst having a cobalt loading rate of 5%, which did not satisfy the conditions of the present application. However, the CNF synthesis activity remained at a low value, and the volume resistance was 1 hour in the reaction time. A yield of CNF sufficient for rate measurement could not be obtained.

(比較例6)
触媒合成例13で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例6では、本願の条件を満たさない、コバルト担持率5%のコバルト−アルミナ担持触媒でCNFの合成を行ったが、CNF合成活性は低い値にとどまり、反応時間1時間では体積抵抗率測定に十分な収量のCNFは得られなかった。
(Comparative Example 6)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 13 was used. In Comparative Example 6, CNF was synthesized with a cobalt-alumina supported catalyst having a cobalt loading rate of 5%, which did not satisfy the conditions of the present application. However, the CNF synthesis activity remained at a low value, and the volume resistance was 1 hour in the reaction time. A yield of CNF sufficient for rate measurement could not be obtained.

(比較例7)
触媒合成例14で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例7では、本願の条件を満たさない、鉄担持率5%の鉄−酸化チタン担持触媒でCNFの合成を行ったが、CNF合成活性は低い値にとどまり、反応時間1時間では体積抵抗率測定に十分な収量のCNFは得られなかった。
(Comparative Example 7)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 14 was used. In Comparative Example 7, CNF was synthesized with an iron-titanium oxide supported catalyst having an iron loading rate of 5%, which did not satisfy the conditions of the present application. However, the CNF synthesis activity remained low, and the reaction time was 1 hour. A yield of CNF sufficient for resistivity measurement could not be obtained.

(比較例8)
触媒合成例15で作製した担持触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例8では、本願の条件を満たさない、ニッケル担持率5%のニッケル−酸化チタン担持触媒でCNFの合成を行ったが、高いCNF合成活性は得られたものの、高い体積抵抗値を示し、導電性に劣る結果となった。
(Comparative Example 8)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the supported catalyst prepared in Catalyst Synthesis Example 15 was used. In Comparative Example 8, CNF was synthesized with a nickel-titanium oxide supported catalyst having a nickel loading rate of 5%, which did not satisfy the conditions of the present application. However, although a high CNF synthesis activity was obtained, a high volume resistance value was obtained. As a result, the conductivity was inferior.

(比較例9)
触媒合成例16で作製した混合触媒100mgを用いた以外は、実施例1と同様な方法でCNFの合成を行なった。尚、比較例9では、本願の条件を満たさない、担持触媒ではなく、混合触媒でCNFの合成を行ったが、CNF合成活性は低い値にとどまり、物性を得ることはできなかった。
(Comparative Example 9)
CNF was synthesized in the same manner as in Example 1 except that 100 mg of the mixed catalyst prepared in Catalyst Synthesis Example 16 was used. In Comparative Example 9, CNF was synthesized with a mixed catalyst instead of a supported catalyst, which did not satisfy the conditions of the present application, but the CNF synthesis activity remained at a low value, and physical properties could not be obtained.

(比較例10)
石英製の反応管内に、触媒合成例17で得られた沈殿法触媒5mgを仕込んだ触媒ホルダーを設置し、窒素を十分流して窒素置換した後に、窒素80%、水素20%の還元ガスを大気圧(101kPa)下、30NL/g−触媒・分で流しながら600℃まで昇温し、反応温度に達してから30分間保持して触媒の還元を行った。その後に表1に示す原料ガス組成、流速で触媒層を通過させ1時間反応を行った。結果を表1に示す。
(Comparative Example 10)
A catalyst holder charged with 5 mg of the precipitation catalyst obtained in Catalyst Synthesis Example 17 was placed in a quartz reaction tube, and after sufficiently flowing nitrogen to replace the nitrogen, a large amount of reducing gas of 80% nitrogen and 20% hydrogen was added. While flowing at 30 NL / g-catalyst · minute under atmospheric pressure (101 kPa), the temperature was raised to 600 ° C., and after reaching the reaction temperature, the catalyst was reduced for 30 minutes. Thereafter, the reaction was carried out for 1 hour through the catalyst layer at the raw material gas composition and flow rate shown in Table 1. The results are shown in Table 1.

コバルト/チタン系担持触媒を用いた場合、高い活性でCNFが得られた。体積抵抗値も低く、D/G値も低く、高結晶性を示すCNFが得られ得られた。
本願における最も好ましい反応条件下である実施例6、7ではさらに高い電気伝導率(低い体積抵抗率)、かつ低いD/G値(高結晶性)を示すCNFが得られ得られた。
When a cobalt / titanium-based supported catalyst was used, CNF was obtained with high activity. CNFs having a low volume resistance value, a low D / G value, and high crystallinity were obtained.
In Examples 6 and 7, which are the most preferable reaction conditions in the present application, CNFs having higher electric conductivity (low volume resistivity) and low D / G value (high crystallinity) were obtained.

一酸化炭素を炭素源としCNFを合成する際、コバルトを主成分とする金属を、チタンを含有する酸化物もしくは複合酸化物を触媒として用いることで、より高い活性で、高い結晶性、高い導電性、さらには高い分散性のCNFを製造することが出来る。得られたCNFは、導電性樹脂および導電性ゴムの導電性フィラーとして好適に使用することができる。   When synthesizing CNF using carbon monoxide as a carbon source, a metal having cobalt as a main component is used as an oxide or composite oxide containing titanium as a catalyst, so that it has higher activity, high crystallinity, and high conductivity. In addition, it is possible to produce a highly dispersible CNF. The obtained CNF can be suitably used as a conductive filler for conductive resins and conductive rubbers.

Claims (7)

コバルトを主成分とする活性種を、チタンを含有する比表面積が20〜140m/gの酸化物または複合酸化物からなる担体に担持した触媒を用いた、一酸化炭素を炭素源とするカーボンナノファイバーの製造方法。 Carbon using carbon monoxide as a carbon source using a catalyst in which an active species containing cobalt as a main component is supported on a carrier comprising titanium or an oxide or composite oxide having a specific surface area of 20 to 140 m 2 / g. Manufacturing method of nanofiber. 前記コバルトを主成分とする活性種が、前記チタンを含有する酸化物または複合酸化物からなる担体に0.1〜50質量%担持した、請求項1に記載のカーボンナノファイバーの製造方法。 2. The method for producing carbon nanofibers according to claim 1, wherein the active species containing cobalt as a main component is supported by 0.1 to 50 mass% on a support made of an oxide or composite oxide containing titanium. 前記チタンの結晶構造がルチル構造からなる酸化物、またはルチル構造とアナタース構造の両方を含む酸化物から選択される、請求項1または2に記載のカーボンナノファイバーの製造方法。   The method for producing carbon nanofibers according to claim 1 or 2, wherein the titanium crystal structure is selected from an oxide having a rutile structure or an oxide containing both a rutile structure and an anatase structure. 反応温度が600〜800℃であり、全圧が0.05〜0.98MPaであり、一酸化炭素分圧が全圧に対し30〜95%であり、水素分圧が一酸化炭素分圧に対し1〜50%の原料ガスを用いた条件下にて製造する、請求項1〜3のいずれか一項に記載のカーボンナノファーバーの製造方法。 The reaction temperature is 600 to 800 ° C., the total pressure is 0.05 to 0.98 MPa, the carbon monoxide partial pressure is 30 to 95% of the total pressure, and the hydrogen partial pressure is changed to the carbon monoxide partial pressure. The manufacturing method of the carbon nanofiber according to any one of claims 1 to 3, wherein the carbon nanofiber is manufactured under a condition using 1 to 50% of a source gas. 反応温度が650〜800℃である、請求項4に記載のカーボンナノファーバーの製造方法。 The manufacturing method of the carbon nanofiber of Claim 4 whose reaction temperature is 650-800 degreeC. 請求項5に記載の製造方法で得られる、9.8MPaの荷重下で測定した体積抵抗率が0.03Ω・cm以下、ラマン分光測定で得られるD/G値が1.0以下、トルエン中の10μm以下の分散粒子が90体積%以上、の条件を全て満たすカーボンナノファイバー。 The volume resistivity measured under a load of 9.8 MPa obtained by the production method according to claim 5 is 0.03 Ω · cm or less, the D / G value obtained by Raman spectroscopy is 1.0 or less, in toluene The carbon nanofibers satisfying all the conditions that the dispersed particles of 10 μm or less are 90 volume% or more. 9.8MPaの荷重下で測定した体積抵抗率が0.03Ω・cm以下であり、ラマン分光測定で得られるD/G値が1.0以下であり、トルエン中の10μm以下の分散粒子が90体積%以上、の条件を全て満たすカーボンナノファイバー。 The volume resistivity measured under a load of 9.8 MPa is 0.03 Ω · cm or less, the D / G value obtained by Raman spectroscopy is 1.0 or less, and the dispersed particles of 10 μm or less in toluene are 90 Carbon nanofiber that satisfies all the requirements of volume% or more.
JP2015128444A 2014-09-22 2015-06-26 Carbon nanofiber manufacturing method and carbon nanofiber Active JP6600182B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014192628 2014-09-22
JP2014192628 2014-09-22

Publications (2)

Publication Number Publication Date
JP2016064972A true JP2016064972A (en) 2016-04-28
JP6600182B2 JP6600182B2 (en) 2019-10-30

Family

ID=55803932

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015128444A Active JP6600182B2 (en) 2014-09-22 2015-06-26 Carbon nanofiber manufacturing method and carbon nanofiber

Country Status (1)

Country Link
JP (1) JP6600182B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2005314204A (en) * 2003-09-02 2005-11-10 Toray Ind Inc Method of manufacturing carbon nanotube, and composition containing carbon nanotube
JP2009249206A (en) * 2008-04-02 2009-10-29 Daicel Chem Ind Ltd Titanium oxide particle surface-modified by carbon nanotube whose tip is carried with metallic element
JP2010024131A (en) * 2008-06-18 2010-02-04 Showa Denko Kk Method for producing carbon fiber
WO2013099256A1 (en) * 2011-12-27 2013-07-04 昭和電工株式会社 Method for producing carbon fiber

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2005314204A (en) * 2003-09-02 2005-11-10 Toray Ind Inc Method of manufacturing carbon nanotube, and composition containing carbon nanotube
JP2009249206A (en) * 2008-04-02 2009-10-29 Daicel Chem Ind Ltd Titanium oxide particle surface-modified by carbon nanotube whose tip is carried with metallic element
JP2010024131A (en) * 2008-06-18 2010-02-04 Showa Denko Kk Method for producing carbon fiber
WO2013099256A1 (en) * 2011-12-27 2013-07-04 昭和電工株式会社 Method for producing carbon fiber

Also Published As

Publication number Publication date
JP6600182B2 (en) 2019-10-30

Similar Documents

Publication Publication Date Title
JP6604854B2 (en) Carbon nanofiber manufacturing method and carbon nanofiber
JP5573815B2 (en) Fine carbon fiber, fine short carbon fiber and method for producing them
KR101446116B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
CN106661333B (en) Conductive polymer material and molded article thereof
US20220048772A1 (en) Carbon-Carbon Nanotube Hybrid Materials and Methods of Producing Same
JP7028393B2 (en) An co-catalyst for an oxygen-generating photocatalyst, an oxygen-generating photocatalyst carrying the co-catalyst, and a complex and a method for producing the complex.
JP6600182B2 (en) Carbon nanofiber manufacturing method and carbon nanofiber
JP5845515B2 (en) Method for producing catalyst for carbon nanotube synthesis, method for producing aggregate of carbon nanotubes using the same, and aggregate of carbon nanotubes
JP5909777B2 (en) Dispersion
JP5909778B2 (en) Dispersion
JP2017006888A (en) Catalyst for producing carbon nanofiber, method for producing carbon nanofiber, and carbon nanofiber
CN111465579A (en) Method for preparing carbon nano tube from natural rubber
US10087557B2 (en) Method for producing carbon nanofibers
KR101608477B1 (en) Metal catalyst for producing carbon nanotubes and method for preparing carbon nanotubes using thereof
KR20230134126A (en) Carbon nanotube hybrid material and hybrid material manufacturing method
JP4962545B2 (en) Fine hollow carbon fiber
JP6600180B2 (en) Method for producing carbon nanofiber-carbon material composite and carbon nanofiber-carbon material composite

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190226

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190423

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20191001

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20191004

R150 Certificate of patent or registration of utility model

Ref document number: 6600182

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250