JP2014125418A - Apparatus and method for producing carbon nanofiber - Google Patents

Apparatus and method for producing carbon nanofiber Download PDF

Info

Publication number
JP2014125418A
JP2014125418A JP2012285983A JP2012285983A JP2014125418A JP 2014125418 A JP2014125418 A JP 2014125418A JP 2012285983 A JP2012285983 A JP 2012285983A JP 2012285983 A JP2012285983 A JP 2012285983A JP 2014125418 A JP2014125418 A JP 2014125418A
Authority
JP
Japan
Prior art keywords
reaction tank
raw material
catalyst
heat conducting
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012285983A
Other languages
Japanese (ja)
Inventor
Norihisa Chitose
範壽 千歳
Naoya Murakami
直也 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2012285983A priority Critical patent/JP2014125418A/en
Publication of JP2014125418A publication Critical patent/JP2014125418A/en
Pending legal-status Critical Current

Links

Images

Abstract

PROBLEM TO BE SOLVED: To provide an apparatus and a method for producing carbon nanofiber, with which difference in physical properties of the carbon nanofiber is reduced by maintaining temperature of the inside of the reaction tank uniform.SOLUTION: In an apparatus with which carbon nanofiber is grown inside a reaction tank 1, according to a chemical vapor deposition method, by storing a catalyst 3 in the reaction tank 1 having a raw material gas inlet 7 and a gas outlet 8, supplying the raw material gas G including carbon, and bringing the raw material gas into contact with the catalyst 3, a cylindrical heat-conductive member 4 is installed inside the reaction tank 1 from the raw material gas inlet 7 toward the gas outlet 8.

Description

本発明はカーボンナノファイバーを効率よく製造するための製造装置に関し、詳
しくは触媒を用いる気相成長法によるカーボンナノファイバーの製造装置及び製造方法に関する。
The present invention relates to a production apparatus for efficiently producing carbon nanofibers, and more particularly to a production apparatus and production method for carbon nanofibers by a vapor phase growth method using a catalyst.

カーボンナノファイバーの製造法には電極放電法、気相成長法、レーザ法などがあるが、気相成長法は安価で量産に適した方法として期待されている。特に、Co、Mgなどの金属を含む触媒を用い、CO(一酸化炭素)、Hを含むガスを原料とする場合、800℃以下という低温で結晶性の高いカーボンナノファイバーを製造することができる。
この気相成長法を利用した製造装置として、容器に触媒を分散させて原料ガスを供給する固定床式(特許文献1)、触媒と原料ガスを同時に流通させる流動気相法、容器内を回転羽根で撹拌する撹拌流動床式などが知られている。
The carbon nanofiber manufacturing method includes an electrode discharge method, a vapor phase growth method, and a laser method, but the vapor phase growth method is expected to be inexpensive and suitable for mass production. In particular, when a catalyst containing a metal such as Co and Mg is used and a gas containing CO (carbon monoxide) and H 2 is used as a raw material, carbon nanofibers having high crystallinity can be produced at a low temperature of 800 ° C. or lower. it can.
As a manufacturing apparatus using this vapor phase growth method, a fixed bed type in which a catalyst is dispersed in a vessel and a source gas is supplied (Patent Document 1), a fluidized vapor phase method in which a catalyst and a source gas are circulated simultaneously, and the inside of the vessel is rotated. A stirring fluidized bed type stirring with a blade is known.

固定床式の反応槽に触媒を充填してカーボンナノファイバーを生産する場合、カーボンナノファイバーの生成によって触媒を含む粉体の体積は10〜1000倍に増加する。そのため、反応槽全体を満たすようにカーボンナノファイバーを製造するとしても、反応前に充填する触媒の体積を反応槽の容積に比べて小さくする必要があるため、横型の反応槽で水平方向に原料ガスを流すと触媒と原料ガスの接触効率が低くなる。そこで、カーボンナノファイバーの生成速度を上げるためには縦型容器で鉛直方向に原料ガスを流す方法が知られている。この場合、ダウンフロー型の場合には触媒を保持する目皿などの目詰まりやガス排出口からの触媒の飛散などが生じるため、その解消のためにアップフロー型が採用されている(特許文献2)。   When carbon nanofibers are produced by filling a catalyst in a fixed bed type reaction tank, the volume of the powder containing the catalyst is increased 10 to 1000 times due to the formation of carbon nanofibers. Therefore, even if the carbon nanofibers are manufactured so as to fill the entire reaction tank, it is necessary to make the volume of the catalyst filled before the reaction smaller than the volume of the reaction tank. When the gas is flowed, the contact efficiency between the catalyst and the raw material gas is lowered. In order to increase the production rate of carbon nanofibers, a method of flowing a raw material gas in a vertical direction in a vertical container is known. In this case, in the case of the down flow type, clogging of a plate holding the catalyst or the like occurs, and the catalyst is scattered from the gas discharge port. 2).

特許第3961440号公報Japanese Patent No. 3961440 特開2005−272242号公報JP 2005-272242 A 特開平10−211426号公報Japanese Patent Laid-Open No. 10-212426

固定床式で製造する場合、反応開始前に充填される触媒の占める領域は反応槽のごく一部であるが、カーボンナノファイバーが生成することによって触媒を含む粉体が反応槽全体に広がり、生成反応も反応槽全体で起こるようになる。その結果、反応槽内部で温度差が生じ、特に、大きな反応槽で製造速度を高くすると温度差が顕著となり、得られるカーボンナノファイバーの物性(比表面積、体積抵抗など)にも差異が生じるという問題があった。
例えば、COからカーボンナノファイバーを生成する主反応はBoudouard反応(2CO→C+CO)であり、反応に伴って発熱(例えば172kJ/mol)するため、加熱された原料ガスがガス排出口方向に流れることにより、ガス排出口側に向かって温度が上昇すると考えられる。
なお、固定床式反応槽の温度制御方法としては、一般に冷却媒体を用いた熱交換方式などがある(特許文献3)。しかし、鉄、クロム、ニッケルなどの一般的な金属材料の表面にはカーボンが析出しやすく、カーボンナノファイバーの製造装置に使用できる金属材質が限定されるため、カーボンナノファイバーの製造装置に冷却媒体を用いた熱交換方式を採用することは困難である。
When manufacturing in a fixed bed type, the area occupied by the catalyst filled before the start of the reaction is a small part of the reaction tank, but the powder containing the catalyst spreads throughout the reaction tank due to the formation of carbon nanofibers, The production reaction also takes place throughout the reaction vessel. As a result, a temperature difference occurs inside the reaction vessel, and in particular, when the production rate is increased in a large reaction vessel, the temperature difference becomes remarkable, and the physical properties (specific surface area, volume resistance, etc.) of the obtained carbon nanofiber also differ. There was a problem.
For example, the main reaction for generating carbon nanofibers from CO is the Boudouard reaction (2CO → C + CO 2 ), and heat is generated with the reaction (for example, 172 kJ / mol), so the heated source gas flows toward the gas outlet. Therefore, it is considered that the temperature rises toward the gas discharge port side.
In addition, as a temperature control method of the fixed bed type reaction tank, there is generally a heat exchange method using a cooling medium (Patent Document 3). However, carbon is likely to deposit on the surface of general metal materials such as iron, chromium, and nickel, and the metal materials that can be used in the carbon nanofiber production equipment are limited. It is difficult to adopt a heat exchange method using

本発明は、このような事情に鑑みてなされたもので、反応槽内部を均一温度にすることによりカーボンナノファイバーの物性の差異を少なくできるカーボンナノファイバーの製造装置及び製造方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and provides a carbon nanofiber manufacturing apparatus and a manufacturing method that can reduce the difference in physical properties of the carbon nanofiber by setting the inside of the reaction vessel to a uniform temperature. Objective.

本発明のカーボンナノファイバーの製造装置は、原料ガス入口及びガス排出口を有する反応槽に触媒を収容し、炭素を含む原料ガスを供給して前記触媒に接触させることにより、反応槽内部に気相成長法でカーボンナノファイバーを成長させる装置において、前記反応槽の内部に熱伝導部材を設けたことを特徴とする。   The carbon nanofiber production apparatus of the present invention accommodates a catalyst in a reaction tank having a raw material gas inlet and a gas outlet, and supplies a raw material gas containing carbon to contact the catalyst, thereby allowing gas to enter the reaction tank. An apparatus for growing carbon nanofibers by a phase growth method is characterized in that a heat conducting member is provided inside the reaction vessel.

反応槽の内部に熱伝導部材を設けていることで、反応槽内部の熱が熱伝導部材に伝わり、この熱伝導部材内を速やかに伝導して反応槽内の温度を均等化することができる。その際、原料ガスからカーボンナノファイバーを生成するときの主反応により発生する熱が熱伝導部材に効率的に伝達され、均一な物性のカーボンナノファイバーを生成できる。
なお、本発明においてカーボンナノファイバーとは、内部が中空構造のカーボンナノチューブや、内部が充填された構造のものを含み、炭素数が単層構造あるいは多層構造のいずれの場合をも含むカーボンナノファイバーである。
By providing the heat conduction member inside the reaction vessel, the heat inside the reaction vessel is transmitted to the heat conduction member, and the temperature inside the reaction vessel can be equalized by quickly conducting the heat conduction member. . At that time, the heat generated by the main reaction when producing the carbon nanofibers from the raw material gas is efficiently transmitted to the heat conducting member, and the carbon nanofibers having uniform physical properties can be produced.
In the present invention, the carbon nanofibers include carbon nanotubes having a hollow structure inside and carbon nanofibers having a structure in which the inside is filled and the number of carbons is either a single-layer structure or a multilayer structure. It is.

本発明の製造装置において、前記熱伝導部材は、前記原料ガス入口からガス排出口に向けて設けるとよい。
カーボンナノファイバーの製造開始時はカーボンナノファイバーはガス入口付近でのみ生成し、製造の進行とともにガス排出口に向けて反応槽を満たすように体積が増加し、最終的に反応槽全体を満たすようになる。原料ガス入口からガス排出口に向けて熱伝導部材を設けることにより、カーボンナノファイバーの体積増加を妨げることなく熱を伝達させることができる。さらには、カーボンナノファイバーの成長に伴って原料ガス入口からガス排出口方向に移る、主反応による高熱部分を確実に熱伝導部材に伝達させることができ、熱伝導部材内を伝導させ反応槽内の温度を均一化することができる。
In the manufacturing apparatus of the present invention, the heat conducting member may be provided from the source gas inlet toward the gas outlet.
At the start of the production of carbon nanofibers, carbon nanofibers are generated only near the gas inlet, and with the progress of production, the volume increases so as to fill the reaction tank toward the gas outlet, and finally the entire reaction tank is filled. become. By providing the heat conducting member from the source gas inlet to the gas outlet, heat can be transferred without hindering the increase in volume of the carbon nanofibers. Furthermore, as the carbon nanofiber grows, the hot part due to the main reaction that moves from the raw material gas inlet to the gas outlet can be reliably transmitted to the heat conducting member, and the inside of the reaction tank is conducted by conducting inside the heat conducting member. Can be made uniform.

本発明の製造装置において、前記反応槽の下方に前記原料ガス入口が設けられるとともに、反応槽の上部にガス排出口が設けられ、前記熱伝導部材は、前記反応槽の少なくとも中心部に上下方向に沿って設けられているとよい。
反応槽の中心部が最も高熱になり易く、この中心部に熱伝導部材を設けることにより、反応槽内をより均一な温度にすることができる。
In the production apparatus of the present invention, the raw material gas inlet is provided below the reaction tank, a gas discharge port is provided at the upper part of the reaction tank, and the heat conducting member is vertically arranged at least in the center of the reaction tank. It is good to be provided along.
The central part of the reaction vessel is most likely to become the hottest, and by providing a heat conduction member at this central part, the inside of the reaction vessel can be brought to a more uniform temperature.

また、本発明の製造装置において、前記熱伝導部材は前記反応槽内に複数設けられていてもよい。
反応槽内に発生する熱を複数の熱伝導部材に分散して伝達することで反応槽内の温度差を効率的に解消し、物性に差異の少ない安定したカーボンナノファイバーを製造することができる。
Moreover, the manufacturing apparatus of this invention WHEREIN: The said heat conductive member may be provided with two or more in the said reaction tank.
Dispersing and transmitting the heat generated in the reaction tank to a plurality of heat conducting members effectively eliminates the temperature difference in the reaction tank and can produce stable carbon nanofibers with little difference in physical properties. .

本発明の製造装置において、前記反応槽内に、触媒を載せる目皿が設けられ、この目皿の下方に前記原料ガス入口が設けられ、前記反応槽上部に前記ガス排出口が設けられ、前記目皿と前記ガス排出口との間に前記熱伝導部材が設けられているとよい。
原料ガス入口から導入された原料ガスは目皿を経由してガス排出口に向けて流通する。したがって、目皿とガス排出口との間に熱伝導部材を設けたことにより、反応槽内部の熱を確実に熱伝導部材に伝導させて反応槽内の温度を均等化することができる。
In the production apparatus of the present invention, an eye plate on which the catalyst is placed is provided in the reaction vessel, the raw material gas inlet is provided below the eye plate, the gas discharge port is provided at the upper part of the reaction vessel, The heat conducting member may be provided between the eye plate and the gas discharge port.
The raw material gas introduced from the raw material gas inlet circulates through the eye plate toward the gas discharge port. Therefore, by providing the heat conducting member between the eye plate and the gas outlet, the heat inside the reaction vessel can be reliably conducted to the heat conducting member and the temperature inside the reaction vessel can be equalized.

本発明のカーボンナノファイバーの製造方法は、反応槽下部の原料ガス入口から反応槽上部のガス排出口に向けて熱伝導部材を設けた反応槽に、触媒を目皿に載せて収容し、炭素を含むガス及び水素ガスよりなる原料ガスを反応槽の下方より供給して、前記触媒に接触させ上方のガス排出口よりガスを排出することにより、カーボンナノファイバーを成長させることを特徴とする。   In the method for producing carbon nanofibers of the present invention, a catalyst is placed on a pan and stored in a reaction tank provided with a heat conducting member from a raw material gas inlet at the lower part of the reaction tank to a gas outlet at the upper part of the reaction tank. Carbon nanofibers are grown by supplying a raw material gas composed of a gas containing hydrogen and hydrogen gas from below the reaction tank, contacting the catalyst, and discharging the gas from an upper gas discharge port.

本発明によれば、反応槽の内部に熱伝導部材を設けていることで、反応槽内部の熱伝導を向上させて、反応槽内部の温度を均一化することができ、カーボンナノファイバーの物性の差異を少なくして、安定した品質のカーボンナノファイバーを製造することができる。   According to the present invention, by providing a heat conduction member inside the reaction vessel, the heat conduction inside the reaction vessel can be improved, the temperature inside the reaction vessel can be made uniform, and the physical properties of the carbon nanofibers Thus, stable quality carbon nanofibers can be produced.

本発明の第1実施形態の製造装置を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing apparatus of 1st Embodiment of this invention. 図1の製造装置を示す断面の模式図である。It is a schematic diagram of the cross section which shows the manufacturing apparatus of FIG. 本発明の第2実施形態の製造装置を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing apparatus of 2nd Embodiment of this invention. 本発明の第3実施形態の製造装置を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing apparatus of 3rd Embodiment of this invention. 本発明の第4実施形態の製造装置を模式的に示した斜視図である。It is the perspective view which showed typically the manufacturing apparatus of 4th Embodiment of this invention. 比較例1の製造装置を示す断面の模式図である。6 is a schematic cross-sectional view showing a manufacturing apparatus of Comparative Example 1. FIG. 比較例2の製造装置を示す断面の模式図である。6 is a schematic cross-sectional view showing a manufacturing apparatus of Comparative Example 2. FIG.

以下、本発明のカーボンナノファイバーの製造装置の実施形態について、図面を参照しながら説明する。
第1実施形態のカーボンナノファイバーの製造装置は、図1及び図2に示すように、反応槽1、反応槽1内に設けられた目皿2、触媒3、熱伝導部材4を有している。
Hereinafter, an embodiment of a carbon nanofiber production apparatus of the present invention will be described with reference to the drawings.
As shown in FIGS. 1 and 2, the carbon nanofiber manufacturing apparatus of the first embodiment includes a reaction vessel 1, a pan 2 provided in the reaction vessel 1, a catalyst 3, and a heat conduction member 4. Yes.

反応槽1は、黒鉛、石英等により、底板5及び上蓋6を有する円筒状に形成されており、原料ガスGを底板5の原料ガス入口7から導入して、内部で反応させた後、反応後のガスを上蓋6に形成したガス排出口8から排出する構成である。この場合、原料ガス入口7は底板5の中央に設けられるが、ガス排出口8は、上蓋6の面方向に分散して形成された複数の小径の孔8aによって構成されている。   The reaction tank 1 is formed in a cylindrical shape having a bottom plate 5 and an upper lid 6 from graphite, quartz or the like. After introducing the raw material gas G from the raw material gas inlet 7 of the bottom plate 5 and reacting it inside, the reaction vessel 1 is reacted. In this configuration, the subsequent gas is discharged from a gas discharge port 8 formed in the upper lid 6. In this case, the source gas inlet 7 is provided at the center of the bottom plate 5, but the gas outlet 8 is constituted by a plurality of small-diameter holes 8 a formed in a distributed manner in the surface direction of the upper lid 6.

目皿2は、黒鉛、石英等により円盤状に形成され、反応槽1の下部に底板5との間に所定容積のガス導入室9となる空間をあけて設けられている。この目皿2には原料ガスGを通過させる複数の孔部2aが面方向に分散して形成されている。
なお、反応槽1は、図示しない発熱体によって外側から全体が加熱されるようになっており、この発熱体の加熱源としては、白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が用いられる。
The eye plate 2 is formed in a disc shape from graphite, quartz, or the like, and is provided in the lower part of the reaction tank 1 with a space serving as a gas introduction chamber 9 having a predetermined volume between the bottom plate 5. A plurality of holes 2a through which the raw material gas G passes are formed in the eye plate 2 so as to be dispersed in the surface direction.
The reaction tank 1 is entirely heated from the outside by a heating element (not shown), and an incandescent lamp, a halogen lamp, an arc lamp, a graphite heater, or the like is used as a heating source for the heating element.

反応槽1内の目皿2の上には触媒3が所定の厚さで敷かれた状態に設けられている。この触媒3は、Co、Mgや、Fe、Ni、Mn、Cu、Al、Caからなる群から選ばれた1種の金属もしくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物、複合酸化物あるいは被覆物からなっている。また、この触媒3の形態は、例えば、平均粒径が0.01〜100μm、好ましくは0.1〜10μmの範囲内の微粉末が好適である。
この触媒3としては、全て酸化物から構成されることが好ましく、Co酸化物とMg酸化物とをそれぞれ含む混合粉末、CoとMgとをそれぞれ含む複合酸化物、Co酸化物がMg酸化物に一部又は全部被覆された被覆粉末がより好ましい。
A catalyst 3 is provided on the eye plate 2 in the reaction tank 1 so as to be laid with a predetermined thickness. The catalyst 3 is one metal selected from the group consisting of Co, Mg, Fe, Ni, Mn, Cu, Al, and Ca, an alloy composed of two or more metals, or a metal containing at least one metal. It consists of an oxide, a complex oxide or a coating. In addition, the form of the catalyst 3 is, for example, a fine powder having an average particle diameter of 0.01 to 100 μm, preferably 0.1 to 10 μm.
The catalyst 3 is preferably composed of an oxide, and is a mixed powder containing Co oxide and Mg oxide, a composite oxide containing Co and Mg, and Co oxide as Mg oxide. A coating powder partially or wholly coated is more preferable.

触媒3の目皿2への配置は、触媒3をそのまま均一に振りかけてもよいが、触媒3をアルコール等の溶媒に懸濁させて懸濁液を調製し、この懸濁液を目皿2上に散布して乾燥させることにより、所定の間隔で所望の量を目皿2上に配置してもよく、その他、公知の方法によって目皿2上に触媒3を配置することができる。   Although the catalyst 3 may be sprinkled uniformly as it is on the eye plate 2, the catalyst 3 is suspended in a solvent such as alcohol to prepare a suspension. A desired amount may be arranged on the eye plate 2 at predetermined intervals by spraying on the top and drying, or the catalyst 3 can be arranged on the eye plate 2 by a known method.

そして、目皿2と上蓋6とにより仕切られた空間部位に、熱伝導部材4が目皿2と上蓋6との間を連結するように設けられている。この熱伝導部材4は、黒鉛により、図1及び図2に示す例では円柱状に形成され、反応槽1の中心部に、上下方向に沿って設けられている。
この熱伝導部材4は、円柱状以外の形状であってもよく、角柱状等の棒状、帯板状などの各種の形状に設けることもできる。この場合、反応槽1内に発生する熱を上下方向に沿って移動させるために、熱伝導部材4がある程度の長さを有していることが好ましい。具体的には、図2に示した反応槽1内におけるカーボンナノファイバーの成長領域Rから突出する長さに設けるとよい。また、図1及び図2に示すように、熱伝導部材4を原料ガス入口7とガス排出口8との間に支持させて設ける以外にも、目皿2の上に立設し、その上端を上蓋6から離すように設けてもよいし、上蓋6から吊るして、下端を目皿2から離すように設けてもよい。また、熱伝導部材4の上端部が上蓋6を貫通して、上蓋6の上方に突出するようにしてもよい。
The heat conducting member 4 is provided in a space portion partitioned by the eye plate 2 and the upper lid 6 so as to connect between the eye plate 2 and the upper lid 6. In the example shown in FIGS. 1 and 2, the heat conductive member 4 is formed in a columnar shape from graphite, and is provided in the center of the reaction tank 1 along the vertical direction.
The heat conducting member 4 may have a shape other than a cylindrical shape, and may be provided in various shapes such as a rod shape such as a prismatic shape, and a strip shape. In this case, in order to move the heat generated in the reaction vessel 1 along the vertical direction, it is preferable that the heat conducting member 4 has a certain length. Specifically, it may be provided in a length protruding from the carbon nanofiber growth region R in the reaction tank 1 shown in FIG. Further, as shown in FIGS. 1 and 2, in addition to supporting the heat conducting member 4 between the source gas inlet 7 and the gas outlet 8, it is erected on the eye plate 2 and its upper end May be provided so as to be separated from the upper lid 6, or may be provided so as to be hung from the upper lid 6 and to be separated from the eye plate 2. Alternatively, the upper end portion of the heat conducting member 4 may penetrate the upper lid 6 and protrude above the upper lid 6.

次に、このように構成した製造装置によりカーボンナノファイバーを製造する方法について説明する。
カーボンナノファイバーの原料となる原料ガスGとしては、CO及びHを含む混合ガス、COとHの混合ガスが挙げられる。CO又はCOとHとの混合容積比(CO/H或いはCO/H)は20/80〜99/1であり、40/60〜90/10が好ましい。原料ガスGの供給量は、触媒3の量や反応槽の大きさに依存するが、例えば、0.2L/min〜10m/min、反応槽の加熱温度は450℃〜800℃、好ましくは550℃〜650℃に設定される。
Next, a method for producing carbon nanofibers using the production apparatus configured as described above will be described.
Examples of the raw material gas G that is a raw material of the carbon nanofiber include a mixed gas containing CO and H 2 and a mixed gas of CO 2 and H 2 . The mixing volume ratio (CO / H 2 or CO 2 / H 2 ) of CO or CO 2 and H 2 is 20/80 to 99/1, preferably 40/60 to 90/10. The supply amount of the raw material gas G depends on the amount of the catalyst 3 and the size of the reaction tank. For example, 0.2 L / min to 10 m 3 / min, and the heating temperature of the reaction tank is 450 ° C. to 800 ° C., preferably It is set to 550 ° C to 650 ° C.

この原料ガスGを原料ガス入口7から供給すると、原料ガスGは、ガス導入室9において目皿2に分散した複数の孔部2aにより背圧が生じてガス導入室9内に充満した後、目皿2の孔部2aから目皿2の上に流出し、触媒3の表面に接触してカーボンナノファイバーを生成する。具体的には、反応槽1内に供給された原料ガスGが触媒3に接触して熱分解し、熱分解した物質が触媒3の粒子を種として長さ方向にカーボンナノファイバーが成長する。カーボンナノファイバーが一定の長さまで成長すると、長さ方向への成長が鈍化する。直径は触媒粒径や温度で決まるため、所定長さで所定のアスペクト比を有するカーボンナノファイバーが得られる。
ガス排出口8においても、複数の孔8aが分散しているので、ガスの通過時に背圧が生じ、これにより、原料ガスが反応槽1内に所定の圧力で充満して効果的にカーボンナノファイバーを成長させることができる。
このようにしてカーボンナノファイバーが反応槽1内部に成長し、図2のハッチングで示す成長領域R内を充満するように成長したら、原料ガスGの供給を停止する。
When the source gas G is supplied from the source gas inlet 7, the source gas G is filled in the gas introduction chamber 9 due to back pressure generated by the plurality of holes 2a dispersed in the eye plate 2 in the gas introduction chamber 9. It flows out from the hole 2a of the eye plate 2 onto the eye plate 2 and comes into contact with the surface of the catalyst 3 to generate carbon nanofibers. Specifically, the raw material gas G supplied into the reaction tank 1 contacts the catalyst 3 and thermally decomposes, and carbon nanofibers grow in the length direction using the thermally decomposed material as the seed of the catalyst 3 particles. When carbon nanofibers grow to a certain length, growth in the length direction slows down. Since the diameter is determined by the catalyst particle size and temperature, carbon nanofibers having a predetermined length and a predetermined aspect ratio can be obtained.
Also in the gas discharge port 8, since the plurality of holes 8 a are dispersed, a back pressure is generated when the gas passes, so that the raw material gas is filled in the reaction tank 1 at a predetermined pressure and is effectively carbon nano Fiber can be grown.
When the carbon nanofibers grow in the reaction tank 1 and fill the growth region R shown by hatching in FIG. 2, the supply of the raw material gas G is stopped.

このカーボンナノファイバーの製造装置においては、熱伝導部材4を反応槽1の内部に設けていることにより、カーボンナノファイバーの生成時に発生する熱がこの熱伝導部材4に伝達される。この熱伝導部材4は、反応槽1の上下方向に沿って配置されているから、熱を速やかに上下方向に伝導して、反応槽1内の上下方向に温度差が生じることを抑制し、内部の温度を均等化することができる。   In this carbon nanofiber manufacturing apparatus, the heat conduction member 4 is provided inside the reaction tank 1, whereby heat generated when the carbon nanofibers are generated is transmitted to the heat conduction member 4. Since this heat conducting member 4 is arranged along the vertical direction of the reaction tank 1, it conducts heat quickly in the vertical direction and suppresses the occurrence of a temperature difference in the vertical direction in the reaction tank 1, The internal temperature can be equalized.

ところで、この熱伝導部材4を設けた場合、この熱伝導部材4の占める体積により反応槽1の有効体積(熱伝導部材4の占有体積の残りの部分)は減少することになる。一方で、反応槽1内の温度差を低減させるためには、熱伝導部材4を設置することなくカーボンナノファイバーの生成速度を低下させる(原料ガスGの流速を遅くする)ことでも可能と考えられる。しかし、熱伝導部材4を設置したことによる有効体積の減少と温度差緩和との関係、熱伝導部材無しでの生成速度の低下と温度差緩和との関係を比較すると、熱伝導部材無しの場合が生成速度の低下と温度差緩和との関係が比例関係にあることに対し、熱伝導部材4を設置した場合には有効体積の減少(熱伝導部材4の体積の増加)に伴って温度差が二次曲線的に減少する関係になり、有効体積を若干小さくするだけで温度差を大きく減少させることが可能になる。このように、有効体積の若干の減少で大きな温度差の低減効果が得られるため、熱伝導部材4を設けることにより、カーボンナノファイバーの生成速度を低下させることなく温度差を確実に小さく抑えて、均質な物性のカーボンナノファイバーを安定して製造することができる。   By the way, when this heat conducting member 4 is provided, the effective volume of the reaction tank 1 (the remaining portion of the occupied volume of the heat conducting member 4) is reduced by the volume occupied by the heat conducting member 4. On the other hand, in order to reduce the temperature difference in the reaction vessel 1, it is considered possible to reduce the production rate of carbon nanofibers (lower the flow rate of the raw material gas G) without installing the heat conducting member 4. It is done. However, when comparing the relationship between the decrease in the effective volume due to the installation of the heat conducting member 4 and the relaxation of the temperature difference, the relationship between the decrease in the generation rate without the heat conducting member and the relaxation of the temperature difference, the case without the heat conducting member However, when the heat conduction member 4 is installed, the temperature difference is accompanied by a decrease in effective volume (increase in the volume of the heat conduction member 4). Is reduced in a quadratic curve, and the temperature difference can be greatly reduced by slightly reducing the effective volume. Thus, since the effect of reducing a large temperature difference can be obtained by slightly reducing the effective volume, by providing the heat conducting member 4, the temperature difference can be surely kept small without reducing the generation rate of the carbon nanofibers. It is possible to stably produce carbon nanofibers having uniform physical properties.

その際、図2における反応槽1の水平方向の断面積に対する熱伝導部材4の断面積の占有率を0.1%〜70%の範囲とするとよく、さらに望ましくは、4%〜42%の範囲とするとよい。
また、熱伝導部材4を黒鉛製としていることで、気相成長法に適した800℃程度の高温状態でも不純物等を生じることなく、上質のカーボンナノファイバーの製造が可能となる。
At that time, the occupation ratio of the cross-sectional area of the heat conduction member 4 with respect to the horizontal cross-sectional area of the reaction tank 1 in FIG. 2 is preferably in the range of 0.1% to 70%, and more preferably 4% to 42%. A range is good.
Further, since the heat conducting member 4 is made of graphite, it is possible to produce high-quality carbon nanofibers without generating impurities or the like even at a high temperature of about 800 ° C. suitable for the vapor phase growth method.

図3は、本発明のカーボンナノファイバーの製造装置の第2実施形態を示している。以下の各実施形態において、第1実施形態と共通要素には同一符号を付して説明を省略する。
この第2実施形態では、熱伝導部材4を反応槽1内に複数設けたものである。この場合、適宜数の熱伝導部材4を反応槽1内に設けることができ、例えば、図に示すように反応槽1内の中心部付近に上下方向に沿って配設すれば、反応槽1内の温度を効果的に均等化することができる。
FIG. 3 shows a second embodiment of the carbon nanofiber production apparatus of the present invention. In each of the following embodiments, common elements to those in the first embodiment are denoted by the same reference numerals and description thereof is omitted.
In the second embodiment, a plurality of heat conducting members 4 are provided in the reaction tank 1. In this case, an appropriate number of heat conducting members 4 can be provided in the reaction tank 1. For example, if the heat conducting member 4 is arranged in the vertical direction near the center of the reaction tank 1 as shown in the figure, the reaction tank 1 The temperature inside can be effectively equalized.

図4は、本発明のカーボンナノファイバーの製造装置の第3実施形態を示したものである。この実施形態では、反応槽12が断面四角形状になるように形成したものである。このように、反応槽12を円筒状以外の形状に設けてもよく、各種の断面形状に設けることができる。   FIG. 4 shows a third embodiment of the carbon nanofiber production apparatus of the present invention. In this embodiment, the reaction vessel 12 is formed to have a quadrangular cross section. Thus, the reaction tank 12 may be provided in a shape other than the cylindrical shape, and can be provided in various cross-sectional shapes.

図5は、本発明のカーボンナノファイバーの製造装置の第4実施形態を示したものである。この実施形態においては、反応槽13を横型になるように設け、反応槽13の一端部の下部に水平方向に原料ガスGを導入して、他方端の上部に形成したガス排出口14から排出することにより、この原料ガスGを内部で触媒3に接触させながら斜め下方から斜め上方へ流通させるようにしてアップフロー型の製造装置としたものである。この場合、熱伝導部材4は反応槽13の両側面13a、13bの間に水平に設けられている。
触媒3は、反応槽13の円筒状の内底面に設けてもよいが、原料ガス入口7より上方位置に横型の反応槽13を横断するように長方形状の目皿を水平に設け、その目皿の上に配置してもよい。熱伝導部材は、水平方向だけでなく、上下方向に設けてもよい。
FIG. 5 shows a fourth embodiment of the carbon nanofiber production apparatus of the present invention. In this embodiment, the reaction tank 13 is provided so as to be a horizontal type, the raw material gas G is introduced into the lower part of one end of the reaction tank 13 in the horizontal direction, and discharged from the gas outlet 14 formed at the upper part of the other end. By doing so, this raw material gas G is circulated from obliquely downward to obliquely upward while being in contact with the catalyst 3 in the interior, thereby forming an upflow type production apparatus. In this case, the heat conducting member 4 is provided horizontally between both side surfaces 13 a and 13 b of the reaction tank 13.
The catalyst 3 may be provided on the cylindrical inner bottom surface of the reaction tank 13, but a rectangular eye plate is horizontally provided so as to cross the horizontal reaction tank 13 above the source gas inlet 7. It may be placed on a plate. The heat conducting member may be provided not only in the horizontal direction but also in the vertical direction.

次に、本発明のカーボンナノファイバーの製造装置に係る実施例について説明する。本発明のカーボンナノファイバーの製造装置として、実施例1〜4の装置を設けた。
(実施例1)
図1及び図2に示す構造の製造装置として、内径1000mm、内部高さ1050mmの円筒縦型のカーボンナノファイバー(以下、CNFという)成長領域Rを持ち、下部中央に原料ガス入口7、上蓋6にガス排出口8が設けられ、底板5からの高さ200mmの位置に、厚さ50mmの目皿2が設置された反応槽1を用意し、反応槽1中央部に直径120mm、長さ1050mmの黒鉛製熱伝導部材4を上下方向に沿って配置して目皿2と上蓋6とを接続した。目皿2上に触媒3を分散させ、600℃の原料ガス(CO:80vol%、H:20vol%)1530Nl/minを供給し、反応槽1の外壁温度を600℃に制御した条件でCNFを生成した。
Next, the Example which concerns on the manufacturing apparatus of the carbon nanofiber of this invention is described. The apparatus of Examples 1-4 was provided as a manufacturing apparatus of the carbon nanofiber of this invention.
Example 1
1 and FIG. 2 has a cylindrical vertical carbon nanofiber (hereinafter referred to as CNF) growth region R having an inner diameter of 1000 mm and an inner height of 1050 mm, and has a source gas inlet 7 and an upper lid 6 in the lower center. Is provided with a gas discharge port 8, and a reaction tank 1 having a 50 mm-thick eye plate 2 is provided at a position 200 mm high from the bottom plate 5. A diameter of 120 mm and a length of 1050 mm are provided at the center of the reaction tank 1. The graphite heat conduction member 4 was arranged along the vertical direction, and the eye plate 2 and the upper lid 6 were connected. The catalyst 3 is dispersed on the pan 2 , the raw material gas (600: 80 vol%, H 2 : 20 vol%) at 600 ° C. is supplied at 1530 Nl / min, and the temperature of the outer wall of the reaction tank 1 is controlled at 600 ° C. Was generated.

(実施例2)
図1及び図2に示す構造の製造装置として、熱伝導部材4の直径を200mmとした以外は実施例1と同じ形状の反応槽1を用意し、実施例1と同じガス組成、流量、温度、反応槽外壁温度の条件でCNFを生成した。
(Example 2)
As a manufacturing apparatus having the structure shown in FIGS. 1 and 2, a reaction tank 1 having the same shape as in Example 1 is prepared except that the diameter of the heat conducting member 4 is 200 mm. The same gas composition, flow rate, and temperature as in Example 1 are prepared. CNF was produced under the conditions of the reaction vessel outer wall temperature.

(実施例3)
図1及び図2に示す構造の製造装置として、熱伝導部材4の直径を640mmとした以外は実施例1と同じ形状の反応槽1を用意し、実施例1と同じガス組成、流量、温度、反応槽外壁温度の条件でCNFを生成した。
(Example 3)
As a manufacturing apparatus having the structure shown in FIGS. 1 and 2, a reaction tank 1 having the same shape as in Example 1 is prepared except that the diameter of the heat conducting member 4 is 640 mm, and the same gas composition, flow rate, and temperature as in Example 1 are prepared. CNF was produced under the conditions of the reaction vessel outer wall temperature.

(実施例4)
熱伝導部材4の直径を140mmとした以外は実施例1と同じ形状の反応槽1に、さらに直径140mm、長さ1050mmの熱伝導部材4を4個追加することにより、図3に示す構造の製造装置とし、実施例1と同じガス組成、流量、温度、反応槽外壁温度の条件でCNFを生成した。
Example 4
3 is added to the reaction tank 1 having the same shape as that of Example 1 except that the diameter of the heat conducting member 4 is 140 mm, thereby adding the four heat conducting members 4 having a diameter of 140 mm and a length of 1050 mm. CNF was produced under the same gas composition, flow rate, temperature, and reaction vessel outer wall temperature as in Example 1 as a production apparatus.

(比較例1,2)
上記の実施例1〜4と比較するために、熱伝導部材が無いこと以外は実施例1と同じ形状の図6に示した反応槽21により、上記実施例と同じガス組成、流量、温度、反応槽外壁温度の条件でCNFを生成したものを比較例1とした。
また、図7に示す構造の製造装置として、比較例1の反応槽21に対して、原料ガス入口7付近に整流板22を設け、この整流板22により原料ガスをガス導入室9内で拡散させるようにした反応槽23を用意した。この整流板22を設けた以外は比較例1と同じ条件で、この反応槽23によりCNFを生成したものを比較例2とした。
(Comparative Examples 1 and 2)
In order to compare with said Examples 1-4, except the absence of a heat conducting member, the same gas composition, flow rate, temperature, The product in which CNF was produced under the conditions of the outer wall temperature of the reaction vessel was referred to as Comparative Example 1.
Further, as a manufacturing apparatus having the structure shown in FIG. 7, a rectifying plate 22 is provided in the vicinity of the raw material gas inlet 7 with respect to the reaction vessel 21 of Comparative Example 1, and the rectifying plate 22 diffuses the raw material gas in the gas introduction chamber 9. A reaction tank 23 was prepared. Comparative Example 2 was obtained by generating CNF in the reaction vessel 23 under the same conditions as in Comparative Example 1 except that the current plate 22 was provided.

これら各実施例及び比較例において、反応槽中央部の5箇所及び外壁付近の温度を測定した。反応槽中央部の測定箇所は上部、下部、及びこの2箇所を高さ方向に4等分する高さの位置とし、実施例1〜3については熱伝導部材の表面から100mmの位置、実施例4については中央の熱伝導部材の表面から100mmの位置、比較例1、2については中心軸上とした。また、反応槽中央部について上部、下部、最高温度が得られた場所の3箇所、及び外壁付近下部から生成したCNFを採取し、体積抵抗及び比表面積を測定した。反応槽下部中央温度、反応槽上部中央温度、中央部で得られた最高温度、反応槽内部に生じた温度差、及び、CNFの体積抵抗、比表面積を表1に示す。   In each of these examples and comparative examples, the temperature in the central part of the reaction vessel and the temperature near the outer wall were measured. The measurement location in the central part of the reaction tank is the upper and lower portions, and the height of the two locations divided into four equal parts in the height direction. For Examples 1 to 3, the position of 100 mm from the surface of the heat conducting member, Example 4 was set at a position 100 mm from the surface of the central heat conducting member, and Comparative Examples 1 and 2 were on the central axis. Moreover, CNF produced | generated from the upper part of the reaction tank center part, the lower part, the place where the maximum temperature was obtained, and the outer wall vicinity lower part was extract | collected, and the volume resistance and the specific surface area were measured. Table 1 shows the reaction tank lower center temperature, the reaction tank upper center temperature, the maximum temperature obtained in the center, the temperature difference generated inside the reaction tank, the volume resistance of CNF, and the specific surface area.

Figure 2014125418
Figure 2014125418

表1の結果より、実施例1〜4では比較例1および比較例2に比べて反応槽内の温度差が低減していることがわかる。また、体積抵抗、比表面積の最大値と最小値の差が小さいCNFを製造することができることが確認できた。実施例1〜3の結果に示されるように、熱伝導部材の直径の増大に伴い、反応槽内の温度差低減効果が大きくなり、CNFの物性も安定していることがわかる。   From the results in Table 1, it can be seen that in Examples 1 to 4, the temperature difference in the reaction vessel is reduced as compared with Comparative Example 1 and Comparative Example 2. It was also confirmed that CNF having a small difference between the maximum value and the minimum value of the volume resistance and specific surface area can be produced. As shown in the results of Examples 1 to 3, it can be seen that as the diameter of the heat conducting member increases, the temperature difference reducing effect in the reaction vessel increases and the physical properties of CNF are also stable.

(実施例5)
実施例5として、原料ガスGの温度を300℃とした以外は実施例2と同じ条件でCNFを生成した。
(比較例3,4)
また、比較例3として、原料ガスGの温度を300℃とした以外は比較例1と同じ条件でCNFを生成した。
比較例4として、原料ガスGの温度を300℃とした以外は比較例2と同じ条件でCNFを生成した。
(Example 5)
As Example 5, CNF was produced under the same conditions as in Example 2 except that the temperature of the source gas G was set to 300 ° C.
(Comparative Examples 3 and 4)
Further, as Comparative Example 3, CNF was generated under the same conditions as Comparative Example 1 except that the temperature of the source gas G was set to 300 ° C.
As Comparative Example 4, CNF was generated under the same conditions as Comparative Example 2 except that the temperature of the raw material gas G was set to 300 ° C.

これらの反応槽中央部の5箇所及び外壁付近の温度を、それぞれ、実施例2、比較例1と同様に測定した。また、反応槽中央部の3箇所及び外壁付近から生成したCNFを採取し、体積抵抗及び比表面積を測定した。反応槽下部中央温度、反応槽上部中央温度、中央部最高温度、反応槽内部に生じた温度差、及び、CNFの体積抵抗、比表面積を表2に示す。   The temperatures at these five locations in the center of the reaction tank and in the vicinity of the outer wall were measured in the same manner as in Example 2 and Comparative Example 1, respectively. Moreover, CNF produced | generated from three places and the outer wall vicinity of the reaction tank center part was extract | collected, and the volume resistance and the specific surface area were measured. Table 2 shows the reaction tank lower center temperature, the reaction tank upper center temperature, the center maximum temperature, the temperature difference generated inside the reaction tank, the volume resistance of CNF, and the specific surface area.

Figure 2014125418
Figure 2014125418

表2の結果より、実施例5において、反応槽内の温度差が低減した。また、CNFの体積抵抗、比表面積の最大値と最小値の差も減少した。   From the results of Table 2, in Example 5, the temperature difference in the reaction vessel was reduced. Moreover, the difference between the maximum value and the minimum value of the volume resistance and specific surface area of CNF also decreased.

(実施例6)
次に、図4に示す構造の製造装置に対する実施例6として、底面の一辺の長さ1000mm、内部高さ1050mmの直方体型の成長領域を持ち、下部中央に原料ガス入口7、上蓋6にガス排出口8が設けられた反応槽12において、底板5からの高さ200mmの位置に厚さ50mmの目皿2が設置された状態において、反応槽中央部に直径200mm、長さ1050mmの黒鉛製熱伝導部材4を配置して目皿2と上蓋6とを接続した。目皿2上に触媒3を分散させ、600℃の原料ガス(CO:80vol%、H:20vol%)1680Nl/minを供給し、容器外壁温度を600℃に制御した条件でCNFを生成した。
(Example 6)
Next, as a sixth embodiment of the manufacturing apparatus having the structure shown in FIG. 4, a rectangular parallelepiped growth region having a side length of 1000 mm and an internal height of 1050 mm is provided. In the reaction tank 12 provided with the discharge port 8, a graphite plate having a diameter of 200 mm and a length of 1050 mm is formed in the center of the reaction tank in a state where the 50 mm-thick eye plate 2 is installed at a position 200 mm high from the bottom plate 5. The heat conduction member 4 was arranged and the eye plate 2 and the upper lid 6 were connected. The catalyst 3 was dispersed on the top plate 2, 600 ° C. raw material gas (CO: 80 vol%, H 2 : 20 vol%) 1680 Nl / min was supplied, and CNF was generated under the condition that the container outer wall temperature was controlled at 600 ° C. .

(比較例5)
一方、比較例5として、熱伝導部材が無い以外は図4の実施例6と同じ形状の反応槽12において、実施例6と同じガス組成、流量、温度、反応槽外壁温度の条件でCNFを生成した。
(Comparative Example 5)
On the other hand, as Comparative Example 5, in the reaction vessel 12 having the same shape as that of Example 6 in FIG. 4 except that there is no heat conducting member, CNF is changed under the same gas composition, flow rate, temperature, and reaction vessel outer wall temperature as in Example 6. Generated.

これらの反応槽中央部の5箇所及び外壁付近の温度を測定した。反応槽中央部の測定箇所は上部、下部、及びこの2箇所を高さ方向に4等分する高さの位置とし、実施例6については熱伝導部材の表面から100mmの位置、比較例については反応槽底面の中心から鉛直な線上とした。また、反応槽中央部について上部、下部、最高温度が得られた場所の3箇所、及び外壁付近下部から生成したCNFを採取し、体積抵抗及び比表面積を測定した。反応槽下部中央温度、反応槽上部中央温度、中央部最高温度、反応槽内部に生じた温度差、及び、CNFの体積抵抗、比表面積を表3に示す。   The temperatures at the five locations in the center of the reaction tank and in the vicinity of the outer wall were measured. The measurement location in the center of the reaction vessel is the upper, lower, and the height of the two locations divided into four equal parts in the height direction. For Example 6, the position 100 mm from the surface of the heat conducting member, for the comparative example It was on a vertical line from the center of the bottom of the reaction tank. Moreover, CNF produced | generated from the upper part of the reaction tank center part, the lower part, the place where the maximum temperature was obtained, and the outer wall vicinity lower part was extract | collected, and the volume resistance and the specific surface area were measured. Table 3 shows the reaction tank lower center temperature, reaction tank upper center temperature, center maximum temperature, temperature difference generated in the reaction tank, CNF volume resistance, and specific surface area.

Figure 2014125418
Figure 2014125418

表3の結果より、実施例6において、反応槽内の温度差が低減した。また、CNFの体積抵抗、比表面積の最大値と最小値の差が減少した。   From the results of Table 3, in Example 6, the temperature difference in the reaction vessel was reduced. Moreover, the difference between the maximum value and the minimum value of the volume resistance and specific surface area of CNF decreased.

(実施例7)
図5に示す構造の製造装置に対する実施例7として、内径1000mm、長さ1050mmの円筒横型の反応槽13を用い、円筒の一方の側面13aの下部に原料ガス入口7、反対側の側面13bの上部にガス排出口14が設けられた状態において、反応槽13の軸と平行で槽内最下部からの高さ600mmの位置に、長さ1050mm、直径200mmの黒鉛製熱伝導部材4を設置し、反応槽13の2つの側面13a,13bを接続した。槽下部に触媒3を分散させ、600℃の原料ガス(CO:80vol%、H:20vol%)1530Nl/minを供給し、反応槽外壁温度を600℃に制御した条件でCNFを生成した。
(Example 7)
As Example 7 for the manufacturing apparatus having the structure shown in FIG. 5, a cylindrical horizontal reaction vessel 13 having an inner diameter of 1000 mm and a length of 1050 mm is used, and a raw material gas inlet 7 is formed at the lower portion of one side surface 13 a of the cylinder, and the side surface 13 b on the opposite side. In the state where the gas discharge port 14 is provided in the upper part, a graphite heat conduction member 4 having a length of 1050 mm and a diameter of 200 mm is installed at a position parallel to the axis of the reaction tank 13 and a height of 600 mm from the lowest part in the tank. The two side surfaces 13a and 13b of the reaction tank 13 were connected. Catalyst 3 was dispersed in the lower part of the tank, and a raw material gas (CO: 80 vol%, H 2 : 20 vol%) 1530 Nl / min at 600 ° C. was supplied to produce CNF under the condition that the outer wall temperature of the reaction tank was controlled at 600 ° C.

(比較例6)
一方、比較例6として、熱伝導部材が無い以外は図5の実施例7と同じ形状の反応槽13において、実施例7と同じガス組成、流量、温度、反応槽外壁温度の条件でCNFを生成した。
(Comparative Example 6)
On the other hand, as Comparative Example 6, in the reaction tank 13 having the same shape as that of Example 7 in FIG. 5 except that no heat conducting member was used, CNF was changed under the same gas composition, flow rate, temperature, and reaction tank outer wall temperature conditions as in Example 7. Generated.

これらの反応槽中央部の5箇所及び外壁付近の温度を測定した。反応槽中央部の測定箇所は原料ガス入口側側面付近、ガス排出口側側面付近、及びこの2箇所を水平方向に4等分する位置とし、反応槽最下部から750mmの高さとした。この高さとしたのは、横型容器においては反応槽の高さ方向の中央部と上部との中間付近で最高温度となるためである。また、反応槽中央部について原料ガス入口側側面付近、ガス排出口側側面付近、最高温度が得られた場所の3箇所及び原料ガス入口付近から生成したCNFを採取し、体積抵抗及び比表面積を測定した。反応槽内部に生じた温度差、及び、CNFの体積抵抗、比表面積を表5に示す。なお、本実施例1〜7と比較例1〜6の体積抵抗は、(株)ダイアインスツルメンツ製の粉体抵抗測定システムMCP−PD41及びロレスタHP MCP−T410を用い、9.8MPa(100kgf/cm)の圧力でプレスして測定した。また比表面積は、柴田科学器械工業(株)製の迅速表面積測定装置SA−1100型を用い、窒素ガス1点法で測定した。 The temperatures at the five locations in the center of the reaction vessel and the vicinity of the outer wall were measured. The measurement location in the central part of the reaction vessel was set at a position near the side surface on the raw material gas inlet side, near the side surface on the gas discharge port side, and a position where these two locations were horizontally divided into four equal parts, and a height of 750 mm from the bottom of the reaction vessel. The reason for this height is that in the case of a horizontal container, the maximum temperature is reached near the middle between the central portion and the upper portion of the reaction tank in the height direction. In addition, CNF generated from the vicinity of the source gas inlet side, near the gas outlet side, the place where the maximum temperature was obtained, and the vicinity of the source gas inlet were collected from the central part of the reaction vessel, and the volume resistance and specific surface area were determined. It was measured. Table 5 shows the temperature difference generated inside the reaction tank, the volume resistance of CNF, and the specific surface area. The volume resistances of Examples 1 to 7 and Comparative Examples 1 to 6 are 9.8 MPa (100 kgf / cm) using a powder resistance measurement system MCP-PD41 and Loresta HP MCP-T410 manufactured by Dia Instruments Co., Ltd. Measurement was performed by pressing at a pressure of 2 ). The specific surface area was measured by a one-point nitrogen gas method using a rapid surface area measuring device SA-1100 manufactured by Shibata Kagaku Kikai Kogyo Co., Ltd.

Figure 2014125418
Figure 2014125418

表4の結果より、実施例7において、反応槽内の温度差が低減した。また、CNFの体積抵抗、比表面積の最大値と最小値の差が減少した。   From the results of Table 4, in Example 7, the temperature difference in the reaction vessel was reduced. Moreover, the difference between the maximum value and the minimum value of the volume resistance and specific surface area of CNF decreased.

なお、本発明は上記実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。   In addition, this invention is not limited to the said embodiment, A various change can be added in the range which does not deviate from the meaning of this invention.

1 反応槽
2 目皿
2a 孔部
3 触媒
4 熱伝導部材
5 底板
6 上蓋
7 原料ガス入口
8 ガス排出口
8a 孔
9 ガス導入室
12 反応槽
13 反応槽
13a 側面
13b 側面
14 ガス排出口
21 反応槽
22 整流板
23 反応槽
G 原料ガス
R 成長領域
DESCRIPTION OF SYMBOLS 1 Reaction tank 2 Eye plate 2a Hole part 3 Catalyst 4 Heat conductive member 5 Bottom plate 6 Top cover 7 Raw material gas inlet 8 Gas discharge port 8a Hole 9 Gas introduction chamber 12 Reaction tank 13 Reaction tank 13a Side surface 13b Side surface 14 Gas discharge port 21 Reaction tank 22 Current plate 23 Reaction tank G Raw material gas R Growth area

Claims (6)

原料ガス入口及びガス排出口を有する反応槽に触媒を収容し、炭素を含む原料ガスを供給して前記触媒に接触させることにより、反応槽内部に気相成長法でカーボンナノファイバーを成長させる装置において、前記反応槽の内部に熱伝導部材を設けたことを特徴とするカーボンナノファイバーの製造装置。   An apparatus for growing carbon nanofibers in a reaction tank by a vapor phase growth method by storing the catalyst in a reaction tank having a raw material gas inlet and a gas outlet, supplying a raw material gas containing carbon, and contacting the catalyst The carbon nanofiber manufacturing apparatus according to claim 1, wherein a heat conducting member is provided inside the reaction vessel. 前記熱伝導部材は、前記原料ガス入口からガス排出口に向けて設けたことを特徴とする請求項1記載のカーボンナノファイバーの製造装置。   The carbon nanofiber manufacturing apparatus according to claim 1, wherein the heat conducting member is provided from the source gas inlet toward a gas outlet. 前記反応槽の下方に前記原料ガス入口が設けられるとともに、反応槽の上部にガス排出口が設けられ、前記熱伝導部材は、前記反応槽の少なくとも中心部に上下方向に沿って設けられていることを特徴とする請求項1又は2に記載のカーボンナノファイバーの製造装置。   The raw material gas inlet is provided below the reaction tank, a gas discharge port is provided at the top of the reaction tank, and the heat conducting member is provided along the vertical direction at least in the center of the reaction tank. The carbon nanofiber manufacturing apparatus according to claim 1 or 2, wherein 前記熱伝導部材は前記反応槽内に複数設けられていることを特徴とする請求項1〜3のいずれか一項記載のカーボンナノファイバーの製造装置。   The said heat conductive member is provided with two or more in the said reaction tank, The manufacturing apparatus of the carbon nanofiber as described in any one of Claims 1-3 characterized by the above-mentioned. 前記反応槽内に、触媒を載せる目皿が設けられ、この目皿の下方に前記原料ガス入口が設けられ、前記反応槽上部に前記ガス排出口が設けられ、前記目皿と前記ガス排出口との間に前記熱伝導部材が設けられていることを特徴とする請求項1〜4のいずれか一項記載のカーボンナノファイバーの製造装置。   In the reaction vessel, a pan for placing the catalyst is provided, the raw material gas inlet is provided below the pan, the gas outlet is provided in the upper part of the reactor, the pan and the gas outlet The apparatus for producing carbon nanofiber according to any one of claims 1 to 4, wherein the heat conducting member is provided between the two. 反応槽下部の原料ガス入口から反応槽上部のガス排出口に向けて熱伝導部材を設けた反応槽に、触媒を目皿に載せて収容し、炭素を含むガス及び水素ガスよりなる原料ガスを反応槽の下方より供給して、前記触媒に接触させ上方のガス排出口よりガスを排出することにより、カーボンナノファイバーを成長させるカーボンナノファイバーの製造方法。   A catalyst is placed on a pan and stored in a reaction tank provided with a heat conducting member from a raw material gas inlet at the lower part of the reaction tank to a gas outlet at the upper part of the reaction tank, and a raw material gas composed of carbon and hydrogen gas is contained. A method for producing carbon nanofibers, in which carbon nanofibers are grown by supplying from the lower side of the reaction tank, contacting the catalyst and discharging gas from an upper gas discharge port.
JP2012285983A 2012-12-27 2012-12-27 Apparatus and method for producing carbon nanofiber Pending JP2014125418A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012285983A JP2014125418A (en) 2012-12-27 2012-12-27 Apparatus and method for producing carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012285983A JP2014125418A (en) 2012-12-27 2012-12-27 Apparatus and method for producing carbon nanofiber

Publications (1)

Publication Number Publication Date
JP2014125418A true JP2014125418A (en) 2014-07-07

Family

ID=51405198

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012285983A Pending JP2014125418A (en) 2012-12-27 2012-12-27 Apparatus and method for producing carbon nanofiber

Country Status (1)

Country Link
JP (1) JP2014125418A (en)

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842794B1 (en) * 1969-03-10 1973-12-14
JPS52107271A (en) * 1976-03-08 1977-09-08 Nippon Jiyunsuiso Kk Apparatus for ammonia combustion reaction
JP2004526660A (en) * 2001-05-25 2004-09-02 チンフアダーシェイ Continuous production method of carbon nanotubes using nano-aggregate fluidized bed and reaction apparatus thereof
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2004299986A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanotube, and its production method
JP2005068000A (en) * 2003-08-05 2005-03-17 Toray Ind Inc Method and apparatus for gas phase reaction
JP2006511437A (en) * 2002-07-31 2006-04-06 カーボン ナノテクノロジーズ インコーポレーテッド Method for producing single-walled carbon nanotubes using supported catalyst
JP2007530403A (en) * 2004-03-25 2007-11-01 ビーエーエスエフ アクチェンゲゼルシャフト Fluidized bed method for performing exothermic chemical equilibrium reaction and reactor used therefor
JP2010012422A (en) * 2008-07-04 2010-01-21 Showa Denko Kk Fluidized bed reactor and manufacturing method of vapor grown carbon fiber
JP2010248062A (en) * 2009-03-26 2010-11-04 Mitsui Chemicals Inc Method of manufacturing chlorine from hydrogen chloride using fluidized bed reactor
JP2011121845A (en) * 2009-12-14 2011-06-23 Sumitomo Chemical Co Ltd Method for production of chlorine
WO2012081600A1 (en) * 2010-12-15 2012-06-21 独立行政法人産業技術総合研究所 Device and process for production of carbon nanotubes

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4842794B1 (en) * 1969-03-10 1973-12-14
JPS52107271A (en) * 1976-03-08 1977-09-08 Nippon Jiyunsuiso Kk Apparatus for ammonia combustion reaction
JP2004526660A (en) * 2001-05-25 2004-09-02 チンフアダーシェイ Continuous production method of carbon nanotubes using nano-aggregate fluidized bed and reaction apparatus thereof
JP2006511437A (en) * 2002-07-31 2006-04-06 カーボン ナノテクノロジーズ インコーポレーテッド Method for producing single-walled carbon nanotubes using supported catalyst
JP2004300631A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanofiber and method for producing the same
JP2004299986A (en) * 2003-03-31 2004-10-28 Mitsubishi Materials Corp Carbon nanotube, and its production method
JP2005068000A (en) * 2003-08-05 2005-03-17 Toray Ind Inc Method and apparatus for gas phase reaction
JP2007530403A (en) * 2004-03-25 2007-11-01 ビーエーエスエフ アクチェンゲゼルシャフト Fluidized bed method for performing exothermic chemical equilibrium reaction and reactor used therefor
JP2010012422A (en) * 2008-07-04 2010-01-21 Showa Denko Kk Fluidized bed reactor and manufacturing method of vapor grown carbon fiber
JP2010248062A (en) * 2009-03-26 2010-11-04 Mitsui Chemicals Inc Method of manufacturing chlorine from hydrogen chloride using fluidized bed reactor
JP2011121845A (en) * 2009-12-14 2011-06-23 Sumitomo Chemical Co Ltd Method for production of chlorine
WO2012081600A1 (en) * 2010-12-15 2012-06-21 独立行政法人産業技術総合研究所 Device and process for production of carbon nanotubes

Similar Documents

Publication Publication Date Title
Yilmaz et al. Functional defective metal‐organic coordinated network of mesostructured nanoframes for enhanced electrocatalysis
US7473873B2 (en) Apparatus and methods for synthesis of large size batches of carbon nanostructures
JP5552284B2 (en) Polycrystalline silicon manufacturing system, polycrystalline silicon manufacturing apparatus, and polycrystalline silicon manufacturing method
JP2004299986A (en) Carbon nanotube, and its production method
KR20130041152A (en) Vapor grown carbon fiber aggregate
JP2008137831A (en) Device and method for manufacturing carbon nanotubes
JP2011057526A (en) Reaction furnace for producing polycrystalline silicon, system for producing polycrystalline silicon, and method for producing polycrystalline silicon
JP6230071B2 (en) Heat exchange type reaction tube
JP6181620B2 (en) Polycrystalline silicon production reactor, polycrystalline silicon production apparatus, polycrystalline silicon production method, and polycrystalline silicon rod or polycrystalline silicon lump
JP6335561B2 (en) Method for growing vertically aligned carbon nanotubes on a diamond substrate
CN103343331A (en) Chemical vapor deposition reaction device
JP2014125418A (en) Apparatus and method for producing carbon nanofiber
CN101734643A (en) Apparatus for synthesizing carbon nanotubes
JP6418690B2 (en) Carbon nanotube production equipment
Mao et al. Stepwise Reduction and In Situ Loading of Core‐Shelled Pt@ Cu Nanocrystals on TiO2–NTs for Highly Active Hydrogen Evolution
JP5521680B2 (en) Organometallic compound feeder
CN113845183B (en) Water treatment three-dimensional electrode based on doped diamond particles and preparation method thereof
JP5854314B2 (en) Marimo carbon and method for producing the same
JP4782504B2 (en) Fine carbon fiber production apparatus and production method thereof
WO2013132871A1 (en) Method for manufacturing carbon fiber, and carbon fiber
JP6455988B2 (en) Carbon nanotube manufacturing apparatus and manufacturing method
JP5262083B2 (en) Solid organometallic compound feeder
Liu et al. Synthesis of vertically aligned carbon nanotube arrays on polyhedral Fe/Al 2 O 3 catalysts
US20080121182A1 (en) Apparatus of supplying organometallic compound
JP2015151281A (en) Reaction tube, and catalyst supporting method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20151202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160815

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160823

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20170418