JP4157791B2 - Method for producing carbon nanofiber - Google Patents

Method for producing carbon nanofiber Download PDF

Info

Publication number
JP4157791B2
JP4157791B2 JP2003096253A JP2003096253A JP4157791B2 JP 4157791 B2 JP4157791 B2 JP 4157791B2 JP 2003096253 A JP2003096253 A JP 2003096253A JP 2003096253 A JP2003096253 A JP 2003096253A JP 4157791 B2 JP4157791 B2 JP 4157791B2
Authority
JP
Japan
Prior art keywords
carbon
fiber
catalyst particles
graphite
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2003096253A
Other languages
Japanese (ja)
Other versions
JP2004300631A (en
Inventor
祐介 渡会
暁夫 水口
浩之 今井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP2003096253A priority Critical patent/JP4157791B2/en
Publication of JP2004300631A publication Critical patent/JP2004300631A/en
Application granted granted Critical
Publication of JP4157791B2 publication Critical patent/JP4157791B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、ファイバ本体表面が無定形炭素で被覆されたカーボンナノファイバの製造方法に関する。更に詳しくは、低温合成により得られ、黒鉛化処理を施すことなく高結晶の黒鉛構造を有するカーボンナノファイバの製造方法に関するものである。
【0002】
【従来の技術】
カーボンナノファイバは一般的に長さが数十nm〜数千nm、直径は2〜20nmの外径と、1〜3nmの内径を有し、平板上のグラファイト網が複数積層した構造になっており、繊維状の繊維長と外径の比を示す縦横比(アスペクト比)が100〜1000程度である。
【0003】
従来この種のカーボンナノファイバの合成には、電極放電法、気相成長法、レーザ法等が用いられている。このうち、触媒成長法とも呼ばれる気相成長法によるカーボンナノファイバの製造方法は、1000℃以上の高温でカーボンナノファイバを成長させるのが一般的である。具体的には、触媒粒子が基板上に配置された製造装置内を加熱し、装置内に原料ガスを供給すると、原料ガスが熱分解する。熱分解した物質が基板上に配置された触媒粒子を種として長さ方向にカーボンが成長する。一定の長さに成長すると、長さ方向への成長が鈍化し、続いて太さ方向に徐々に成長することにより所定の大きさ、所定のアスペクト比を有するカーボンナノファイバに成長する。
【0004】
成長したカーボンナノファイバは、高い黒鉛質のものはなかなか得られず、その表面層は結晶性の低い層が形成されている。そのため、カーボンナノファイバを2500〜2800℃の高温で熱処理して結晶性の低い層を結晶化させる黒鉛化処理を施していた。しかし、このような黒鉛化処理を施すことで、カーボンナノファイバの原料コストが上昇してしまう問題があった。
【0005】
このような問題を解決する方策として、直径0.01〜0.5μm及びアスペクト比2〜30000を有し、熱分解炭素層の厚みが直径の20%以下である創生微細炭素繊維が開示されている(例えば、特許文献1参照。)。この特許文献1によると、熱分解炭素層は乱層構造層であり、炭素繊維の芯部分と比較してかなり結晶性が悪い。そこで、直径の20%以下に熱分解炭素被覆層を制御することで、従来の炭素繊維に比べて著しく機械的強度を向上させている。このような特性を有する創生微細炭素繊維の製造方法は、従来の基板に鉄やニッケルなどの超微粒子触媒を形成させる手法に代えて、有機遷移金属化合物のガスを使用して約1070℃に保たれた電気炉空間に流動する超微粒子触媒を形成しながら、原料となる混合ガスを供給することで炭素繊維を成長させている。
【0006】
一方、両端が閉じたシリンダー形になっているカーボンナノチューブやカーボンナノファイバを含む炭素材料は、リチウム二次電池のリチウムを担持させる負極材料として研究が盛んに行われている。例えば、黒鉛にリチウムを担持させた炭素材料を用いる場合には、電池の充電時にリチウムが黒鉛の層間に挿入され、放電時に黒鉛層間よりリチウムが放出される。しかしながら、黒鉛材料をリチウム二次電池の負極材料として用いる場合には、電解液として低温特性に優れたプロピレンカーボネートが黒鉛表面で電気化学的に分解されてしまうため、このプロピレンカーボネートを含む電解液が使用できない問題があった。
【0007】
この問題を解決する方策として、表面が熱分解アモルファス状炭素により被覆された黒鉛系炭素材料の製造方法において、熱分解炭素源となる原料を黒鉛系炭素材料に化学蒸着させて、熱分解炭素被覆層を生成させた後、蒸着温度よりも高い温度で熱処理することを特徴とする黒鉛系炭素材料の製造方法が開示されている(例えば、特許文献2参照。)。この製造方法では、出発原料として天然黒鉛、人造黒鉛、黒鉛化されたメソカーボンマイクロビーズ、黒鉛化されたピッチ系炭素繊維のような、平均粒径が0.1〜100μm程度の粒子状物を用い、この粒子状の出発原料表面に熱分解炭素被覆層を生成させた後、高温熱処理することにより黒鉛系炭素材料を得ている。このような黒鉛系炭素材料を負極材料として使用することでリチウム二次電池に低温特性の優れたプロピレンカーボネートを含む電解液を用いる場合においても、初期効率が良好でかつ放電容量が高い電池が得られる。
【0008】
【特許文献1】
特開昭61−70014号公報
【特許文献2】
特開2002−241117号公報
【0009】
【発明が解決しようとする課題】
しかし、上記特許文献1に示された創生微細炭素繊維では、炭素繊維表面の結晶性が悪いものの炭素繊維表面は依然として結晶構造であるため、その表面の活性は比較的高く、化学的安定性に劣る。それ以前にこの特許文献1に示された製造方法では、1000℃以上の条件においてファイバを製造できないことが判明した。
また、上記特許文献2に示される炭素材料では、粒子状の出発原料に熱分解炭素被覆層を生成し、更に高温熱処理を施さなければならないため、製造効率が悪い問題があった。
【0010】
本発明の第1の目的は、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有するカーボンナノファイバを製造する方法を提供することにある。
本発明の第2の目的は、高い電気伝導性を有し、かつ表面が安定なカーボンナノファイバの製造方法を提供することにある。
本発明の第3の目的は、リチウム二次電池の負極材料として用いた場合、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能なカーボンナノファイバの製造方法を提供することにある。
本発明の第4の目的は、樹脂と混合して成形する場合に優れた加工性を有するカーボンナノファイバの製造方法を提供することにある。
【0011】
【課題を解決するための手段】
請求項1に係る発明は、気相成長法によりカーボンナノファイバを製造する方法の改良であり、その特徴ある構成は、平均粒径が0.01μm〜100μmであってファイバの成長核としてFeとCoのモル比(Fe/Co)が、所定の反応温度において、Feのα 相を維持する50/50〜95/5の合金組成比で調製されたFe−Co合金からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOに対するH 2 の混合容積比(CO/H 2 )が40/60〜90/10であるCOとH2の混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体とファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを触媒粒子から成長させるところにある。
【0012】
請求項1に係る発明では、上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有し、ファイバ本体表面が無定形炭素層で被覆されたカーボンナノファイバを得ることができる。
【0013】
請求項1に記載された条件で製造することにより、より確実に高結晶の黒鉛構造を有するファイバ本体表面を無定形炭素層で被覆することができる。
【0014】
【発明の実施の形態】
次に本発明の実施の形態を図面に基づいて説明する。
本発明は気相成長法によりカーボンナノファイバを製造する方法の改良である。その特徴ある構成は、平均粒径が0.01μm〜100μmであってファイバの成長核としてFe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOとH2の混合ガス又はCO2とH2の混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体とファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを触媒粒子から成長させるところにある。
【0015】
シーディング工程として、先ず触媒粒子をファイバの成長核として石英などの基板上に配置する。触媒粒子は、平均粒径が0.01μm〜100μm、好ましくは0.1μm〜10μmの範囲内の微粉末がカーボンナノファイバを製造する際に好適な大きさであり、Fe、Ni、Co、Mn、Cu、Mg、Al及びCaからなる群より選ばれた1種の金属若しくは2種以上の金属からなる合金又は少なくとも1種の金属を含む金属酸化物が触媒材料として挙げられる。所定の反応温度において、Feのα相を維持するような合金組成比で調製された金属触媒が好ましく、具体的にはFe−Ni合金やFe−Co合金、Fe−Cu合金がより好ましい。Fe−Ni合金に含まれるFeとNiのモル比(Fe/Ni)は20/80〜99/1、好ましくは40/60〜90/10である。Fe−Co合金に含まれるFeとCoのモル比(Fe/Co)は20/80〜99/1、好ましくは50/50〜95/5である。Fe−Cu合金に含まれるFeとCuのモル比(Fe/Cu)は20/80〜99/1、好ましくは80/20〜95/5である。
【0016】
触媒粒子の基板上への配置は、触媒粒子をそのまま均一に振りかけてよい。また触媒粒子をアルコール等の溶媒に懸濁させて懸濁液を調製し、この懸濁液を基板上に散布して乾燥することにより、所定の間隔で所望の量を基板上に配置してもよい。また、触媒粒子を構成する金属の硝酸塩溶液を調製し、この溶液を基板表面に塗布あるいは散布し、熱処理炉内に基板を挿入して炉内を200℃以上に昇温することによっても所定の間隔で所望の量を基板上に配置することができる。更に、基板を事前に熱処理炉内に収容して炉内を加熱し、触媒粒子を構成する金属の有機化合物等を熱処理炉内に任意の流量で供給して熱分解させ、触媒粒子を直接基板上に形成させることでも所定の間隔で所望の量を基板上に配置することができる。
【0017】
触媒粒子はカーボンナノファイバを製造する前に前処理を施し活性化させることが好ましい。活性化は、触媒粒子をHe及びH2を含む混合ガス雰囲気下で加熱することにより行われる。
【0018】
続いて、カーボンナノファイバの原料となる所定の混合ガスを基板上に配置された触媒粒子に0.01〜24時間供給してファイバ表面が無定形炭素で被覆されたカーボンナノファイバを触媒粒子から成長させる。
【0019】
図3に本発明のカーボンナノファイバを製造する熱処理炉20を示す。この熱処理炉20は断熱性材質からなる装置本体21から構成され、装置本体21内部は所定の間隔をあけて2枚の仕切板26により水平に仕切られる。仕切板26,26により仕切られた装置本体21内部の頂部及び底部には発熱体22がそれぞれ設置される。熱処理炉内で熱処理に用いられる発熱体22の加熱源としては白熱ランプ、ハロゲンランプ、アークランプ、グラファイトヒータ等が挙げられる。仕切板26,26で仕切られた空間に原料となる混合ガスを供給するように装置本体21の一方の側部には、ガス供給口24が設けられる。
【0020】
カーボンナノファイバの原料となるガスとしては、CO及びH2を含む混合ガス、CO2とH2の混合ガスが挙げられる。混合ガスのCOに対するH2の混合容積比(CO/H2)は20/80〜90/10である。混合ガスのCOに対するH2の混合容積比(CO/H2)は40/60〜90/10が好ましい。なお、混合ガスのCOに対するH2の混合容積比(CO/H2)を示したが、混合ガスのCO2に対するH2の混合容積比(CO2/H2)も同様の混合容積比としてよい。
【0021】
仕切板26,26により仕切られた空間27は、粉末の触媒を散布した基板28が収容可能な大きさを有し、装置本体21の他方の側部には系外へ熱処理炉20内に供給した原料ガスを排出するガス排出口29が設けられる。空間27内に収容される基板28は取出し台31の上に載置されて、熱処理炉内に収容、搬出可能に設けられる。
【0022】
基板28に粉末の触媒32を載せた後、その基板28を取出し台31の上に載せて熱処理炉20まで搬送し、装置本体21の空間27内に収納する。その後、熱処理炉20内を0.08〜10MPaの範囲内に圧力を制御し、原料となる混合ガスをガス供給口24から供給し、発熱体22,22により加熱する。原料となる混合ガスの供給量は0.2L/min〜10L/min、加熱温度は400℃〜700℃、好ましくは500℃以上600℃未満に設定される。なお、混合ガスの供給量は触媒粒子の量や炉の大きさに依存する。従って、上記ガス供給量の数値範囲は一般的な製造方法における目安である。加熱温度を400℃〜700℃に規定したのは、下限値未満では反応速度が遅すぎてカーボンナノファイバを合成できず、上限値を越えるとファイバ状には合成されず、すすや黒鉛微粉が得られてしまうからである。原料となる混合ガスを供給しながら加熱し、0.01〜24時間保持しておくことにより、触媒粒子32を介してカーボンナノファイバ33が成長する。得られたカーボンナノファイバ33には触媒が含まれているので、必要に応じて熱処理炉20内より基板28を搬出して得られたカーボンナノファイバ33を取出し、このカーボンナノファイバ33を硝酸、塩酸、フッ酸等の酸性溶液に浸漬させて、カーボンナノファイバ33に含まれる触媒粒子32を除去する。なお、触媒粒子32をそのままカーボンナノファイバ中に含ませ、担持させた状態で使用してもよい。また、本実施の形態では、熱処理炉本体21の一方の側部より、原料となる混合ガスを供給する構成としたが、本体頂部又は底部より原料となる混合ガスを供給する構成としてもよい。
【0023】
このように上記製造方法により、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有し、このファイバ本体が無定形炭素層で被覆されたカーボンナノファイバを得ることができる。
【0024】
本発明の製造方法により得られたカーボンナノファイバは、図1及び図2に示すように、平面状のグラファイト網がファイバの縦軸に対して実質的に垂直に複数積層され、10nm〜500nmの平均直径と、100nm以上の長さと、10以上のアスペクト比を有するファイバ本体11を主体とする。
【0025】
本発明の特徴ある構成は、カーボンナノファイバのX線回折において測定されるファイバ本体11のグラファイト網平面の積層間隔d002は0.3356nm〜0.3370nmの範囲内であり、ファイバ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されたところにある。グラファイト網平面の積層間隔d002を0.3356nm〜0.3370nmの範囲内に規定することで高い電気伝導性を有する。0.3356nm未満のものは合成が難しく、0.3370nmを越えると結晶性が無く、安定性に欠け、また十分な導電性が得られない。好ましい積層間隔d002は、0.3356nm〜0.3360nmである。ファイバ本体11の表面が厚さ0.1nm〜5nmの無定形炭素層12で被覆されているため、表面活性度が低くカーボンナノファイバ表面が化学的に安定であるとともに樹脂と混合して成形する場合にメルトフローインデックスの低下が非常に小さいため成形性に優れる。無定形炭素層12の厚さは上記製造条件により0.1nm〜5nmの範囲に形成される。0.1nm未満であると無定形炭素層12の存在価値が低く、本発明の効果が現れない。5nmを越えると表面の無定形炭素層が厚く、導電性が損なわれるとともにLiの侵入が困難となる。無定形炭素層12の厚さは0.5nm〜3.0nmが好ましい。
【0026】
無定形炭素層12はファイバ本体11全表面の少なくとも80%の割合で被覆される。ファイバ10全表面の少なくとも80%を無定形炭素層12で被覆することで、化学安定性がより向上し、加工性にも優れる。無定形炭素層12はファイバ本体全表面の90%以上の割合で被覆することが好ましい。
【0027】
また本発明のカーボンナノファイバは、比表面積が300m 2 /g以下であり、樹脂と混合した場合の吸油量が小さいので樹脂本来の物性の低下を抑制することができる。
本発明のカーボンナノファイバをリチウム二次電池の負極材料として用いた場合、無定形炭素層が活性な黒鉛層を被覆しているため、電解液に含まれるプロピレンカーボネートの分解反応を抑制し、かつ黒鉛の高容量が得られ、更に高率充放電が可能となる。
【0028】
【実施例】
次に本発明の実施例を参考例、比較例とともに詳しく説明する。
参考例1>
先ず、平均粒径1μm以下のFe−Ni合金1g(モル比:Fe/Ni=70/30)を触媒粒子として用意した。この触媒粒子をHe及びH2を含む混合ガス雰囲気下で加熱して活性化させた。次いで図3に示すように、活性化させた触媒を基板28上に載せ、基板28を熱処理炉20内に収容した。次に、熱処理炉内を600〜630℃の温度に加熱し、COとH2を含む混合ガス(混合容積比:CO/H2=80/20)を原料ガスとしてこの原料ガスを流量10L/分で熱処理炉内に供給しながら約10時間保持してカーボンナノファイバを含む混合物を合成した。得られた混合物を硝酸溶液に浸漬させて、混合物に含まれる触媒を除去して黒鉛化処理を行うことなくカーボンナノファイバを得た。
【0029】
参考例2>
加熱温度を570〜600℃に変えた以外は参考例1と同様にしてカーボンナノファイバを得た。
参考例3>
加熱温度を540〜570℃に変えた以外は参考例1と同様にしてカーボンナノファイバを得た。
【0030】
<実施例
平均粒径1μm以下のFe−Co合金1g(モル比:Fe/Co=90/10)を触媒粒子として用い、加熱温度を620〜660℃に変えた以外は参考例1と同様にしてカーボンナノファイバを得た。
参考例4
平均粒径1μm以下のFe−Cu合金1g(モル比:Fe/Cu=90/10)を触媒粒子として用い、加熱温度を600〜650℃に変えた以外は参考例1と同様にしてカーボンナノファイバを得た。
【0031】
<比較例1>
参考例1で得られたカーボンナノファイバを更に2800℃で2時間熱処理して黒鉛化処理を施した。
<比較例2>
参考例2で得られたカーボンナノファイバを更に2800℃で2時間熱処理して黒鉛化処理を施した。
【0032】
<比較例3>
参考例1における製造条件のうち、熱処理炉内の温度を1000℃に加熱した以外、参考例1と同様の製造条件でカーボンナノファイバを得ようとしたが、カーボンナノファイバを合成できなかった。これは反応温度が高すぎるため粉末が合成できなかったと考えられる。
【0033】
<比較試験及び評価>
実施例1、参考例1〜4及び比較例1〜2でそれぞれカーボンナノファイバを透過型電子顕微鏡にて観察したところ、実施例1、参考例1のカーボンナノファイバ表面に無定形炭素層による被覆を確認した。比較例1〜2のカーボンナノファイバ表面には無定形炭素層による被覆は確認できなかった。また実施例1、参考例1及び比較例1〜2でそれぞれ得られたカーボンナノファイバをX線回折により黒鉛層間隔d002を測定した。また実施例1、参考例1及び比較例1〜2でそれぞれ得られたカーボンナノファイバの抵抗率を測定した。抵抗率の測定は、得られたカーボンナノファイバを100kg/cm2の圧力でプレスし、四端子法で抵抗値を測定することにより求めた。実施例1、参考例1及び比較例1〜2でそれぞれ得られたカーボンナノファイバの黒鉛層間隔d002と粉末抵抗の結果を次の表1にそれぞれ示す。
【0034】
【表1】

Figure 0004157791
【0035】
表1より明らかなように、実施例1及び参考例1と比較例1〜2を比較すると、比較例1〜2のカーボンナノファイバは、黒鉛化処理を行ったため、ファイバ表面に被覆されていた無定形炭素層が結晶化したため、やや黒鉛質の成長がみられ、面間隔d002値も僅かに低い結果となった。比較例1〜2は実施例1及び参考例1の粉体抵抗値と同様の数値を示し、特に変化はみられなかった。この結果から、無定形炭素層を被覆しているカーボンナノファイバでも被覆していないカーボンナノファイバと同等の導電性能を有することが確認できた。また、本発明の製造方法により得られた実施例1及び参考例1のカーボンナノファイバは高電気伝導性を有する結果となった。これは低温での製造条件でも高い結晶性の黒鉛構造を有することの裏付けとなる。
【0036】
【発明の効果】
以上述べたように、本発明の気相成長法でカーボンナノファイバを製造する方法では、平均粒径が0.01μm〜100μmであってファイバの成長核としてFeとCoのモル比(Fe/Co)が、所定の反応温度において、Feのα相を維持する50/50〜95/5の合金組成比で調製されたFe−Co合金からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOに対するH 2 の混合容積比(CO/H 2 )が40/60〜90/10であるCOとH2の混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層されグラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体とファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを触媒粒子から成長させることにより、従来よりも低温製造が可能で、黒鉛化処理を行うことなく、ファイバ本体が高結晶の黒鉛構造を有するカーボンナノファイバを得ることができる。
【図面の簡単な説明】
【図1】 本発明の製造方法により得られたカーボンナノファイバの模式図。
【図2】 図1に対応するカーボンナノファイバの断面図。
【図3】 カーボンナノファイバを作製する熱処理炉の断面構成図。
【符号の説明】
10 カーボンナノファイバ
11 ファイバ本体
12 無定形炭素層[0001]
BACKGROUND OF THE INVENTION
The present invention is a fiber body surface process for producing carbon nano Fiber coated with amorphous carbon. More specifically, obtained by low-temperature synthesis, a method for manufacturing a carbon nano Fiber having a graphite structure without highly crystalline applying graphitization treatment.
[0002]
[Prior art]
Carbon nanofibers generally have a length of several tens to several thousand nm, an outer diameter of 2 to 20 nm, an inner diameter of 1 to 3 nm, and a structure in which a plurality of graphite nets on a flat plate are laminated. The aspect ratio (aspect ratio) indicating the ratio between the fibrous fiber length and the outer diameter is about 100 to 1,000.
[0003]
Conventionally, an electrode discharge method, a vapor phase growth method, a laser method, or the like is used for the synthesis of this type of carbon nanofiber. Among these, the carbon nanofiber manufacturing method by the vapor phase growth method, also called the catalyst growth method, generally grows the carbon nanofiber at a high temperature of 1000 ° C. or higher. Specifically, when the inside of the manufacturing apparatus in which the catalyst particles are arranged on the substrate is heated and the source gas is supplied into the apparatus, the source gas is thermally decomposed. Carbon grows in the length direction using the catalyst particles in which the pyrolyzed substance is arranged on the substrate as a seed. When grown to a certain length, the growth in the length direction slows down, and subsequently grows gradually in the thickness direction to grow into carbon nanofibers having a predetermined size and a predetermined aspect ratio.
[0004]
The grown carbon nanofibers are hardly obtained with high graphite, and the surface layer has a low crystallinity layer. Therefore, the graphitization process which crystallizes the layer with low crystallinity by heat-processing carbon nanofiber at 2500-2800 degreeC high temperature was performed. However, there is a problem that the raw material cost of the carbon nanofiber increases by performing such graphitization treatment.
[0005]
As a measure for solving such a problem, a created fine carbon fiber having a diameter of 0.01 to 0.5 μm and an aspect ratio of 2 to 30000 and having a pyrolytic carbon layer thickness of 20% or less of the diameter is disclosed. (For example, refer to Patent Document 1). According to this Patent Document 1, the pyrolytic carbon layer is a turbulent layer and has considerably poor crystallinity compared to the core portion of the carbon fiber. Therefore, by controlling the pyrolytic carbon coating layer to 20% or less of the diameter, the mechanical strength is remarkably improved as compared with the conventional carbon fiber. The production method of the creation fine carbon fiber having such a characteristic is about 1070 ° C. using an organic transition metal compound gas instead of the conventional method of forming an ultrafine particle catalyst such as iron or nickel on a substrate. Carbon fibers are grown by supplying a mixed gas as a raw material while forming an ultrafine particle catalyst that flows into a maintained electric furnace space.
[0006]
On the other hand, carbon materials including carbon nanotubes and carbon nanofibers having a cylindrical shape with both ends closed are actively studied as negative electrode materials for supporting lithium in lithium secondary batteries. For example, when using a carbon material in which lithium is supported on graphite, lithium is inserted between the graphite layers when the battery is charged, and lithium is released from the graphite layers during discharge. However, when a graphite material is used as a negative electrode material for a lithium secondary battery, propylene carbonate having excellent low-temperature characteristics as an electrolytic solution is electrochemically decomposed on the graphite surface. There was a problem that could not be used.
[0007]
As a measure to solve this problem, in a method for producing a graphite-based carbon material whose surface is coated with pyrolytic amorphous carbon, a raw material serving as a pyrolytic carbon source is chemically vapor-deposited on the graphite-based carbon material, and the pyrolytic carbon coating is performed. A method for producing a graphite-based carbon material is disclosed in which a layer is formed and then heat-treated at a temperature higher than the deposition temperature (see, for example, Patent Document 2). In this production method, a particulate material having an average particle size of about 0.1 to 100 μm, such as natural graphite, artificial graphite, graphitized mesocarbon microbeads, and graphitized pitch-based carbon fiber, is used as a starting material. The graphite-based carbon material is obtained by forming a pyrolytic carbon coating layer on the surface of the particulate starting material and then heat-treating it at a high temperature. By using such a graphite-based carbon material as a negative electrode material, a battery having good initial efficiency and high discharge capacity can be obtained even when an electrolyte containing propylene carbonate having excellent low-temperature characteristics is used for a lithium secondary battery. It is done.
[0008]
[Patent Document 1]
JP 61-70014 A [Patent Document 2]
JP 2002-241117 A [0009]
[Problems to be solved by the invention]
However, in the created fine carbon fiber disclosed in Patent Document 1, although the carbon fiber surface has poor crystallinity, the carbon fiber surface still has a crystalline structure, so that the surface activity is relatively high, and the chemical stability. Inferior to Prior to that, it was found that the fiber cannot be produced under the conditions of 1000 ° C. or higher by the production method disclosed in Patent Document 1.
Further, the carbon material disclosed in Patent Document 2 has a problem in that the production efficiency is poor because a pyrolytic carbon coating layer must be formed on the particulate starting material and further subjected to high-temperature heat treatment.
[0010]
A first object of the present invention is to provide a method for producing carbon nanofibers that can be produced at a lower temperature than before and that have a highly crystalline graphite structure in the fiber body without performing graphitization.
A second object of the present invention has a high electrical conductivity, and surface to provide a method for producing a stable carbon nano Fiber.
The third object of the present invention is to suppress the decomposition reaction of propylene carbonate contained in the electrolytic solution when used as a negative electrode material for a lithium secondary battery, to obtain a high capacity of graphite, and to achieve a high rate charge / discharge. It is to provide a method of manufacturing a possible carbon nano Fiber.
A fourth object of the present invention is to provide a method for producing a carbon nano Fiber with excellent workability when molding by mixing with the resin.
[0011]
[Means for Solving the Problems]
The invention according to claim 1 is an improvement of a method for producing carbon nanofibers by a vapor phase growth method, and its characteristic configuration is that the average particle diameter is 0.01 μm to 100 μm, and Fe and The catalyst particles made of an Fe—Co alloy prepared with an alloy composition ratio of 50/50 to 95/5 in which the molar ratio of Co (Fe / Co) maintains the α phase of Fe at a predetermined reaction temperature is 0.00 . under a pressure of 08~10MPa, 400 ℃ ~700 mixing volume ratio of H 2 to CO at a temperature of ° C. (CO / H 2) is 40 / 60-90 / 10 in which CO and mixed gas catalyst particles H 2 For a period of 0.01 to 24 hours, a plurality of planar graphite nets are laminated, the fiber body is substantially perpendicular to the longitudinal axis of the fiber, and an amorphous carbon layer covering the surface of the fiber body. Mosquitoes consisting of -Bon nanofibers are being grown from catalyst particles.
[0012]
In the invention according to claim 1, by the above manufacturing method, the fiber body can be manufactured at a lower temperature than before, the fiber body has a highly crystalline graphite structure without performing graphitization, and the surface of the fiber body is an amorphous carbon layer. Carbon nanofibers coated with can be obtained.
[0013]
By manufacturing under the conditions described in claim 1, the surface of the fiber body having a highly crystalline graphite structure can be more reliably coated with the amorphous carbon layer.
[0014]
DETAILED DESCRIPTION OF THE INVENTION
Next, embodiments of the present invention will be described with reference to the drawings.
The present invention is an improvement of a method for producing carbon nanofibers by vapor deposition. The characteristic structure is that the average particle diameter is 0.01 μm to 100 μm, and one kind of metal selected from the group consisting of Fe, Ni, Co, Mn, Cu, Mg, Al, and Ca as a fiber growth nucleus or An alloy composed of two or more metals or a catalyst particle composed of a metal oxide containing at least one metal at a temperature of 400 ° C. to 700 ° C. under a pressure of 0.08 to 10 MPa or a mixed gas of CO and H 2 or CO A fiber body and a fiber body in which a mixed gas of 2 and H 2 is supplied to the catalyst particles for 0.01 to 24 hours to laminate a plurality of planar graphite nets and the graphite nets are substantially perpendicular to the longitudinal axis of the fiber A carbon nanofiber comprising an amorphous carbon layer covering the surface of the catalyst is grown from catalyst particles.
[0015]
In the seeding process, first, catalyst particles are placed on a substrate such as quartz as a fiber growth nucleus. The catalyst particles have an average particle size of 0.01 μm to 100 μm, preferably a fine powder having a size within a range of 0.1 μm to 10 μm, which is a suitable size for producing carbon nanofibers. Fe, Ni, Co, Mn Examples of the catalyst material include one metal selected from the group consisting of Cu, Mg, Al, and Ca, an alloy composed of two or more metals, or a metal oxide containing at least one metal. A metal catalyst prepared with an alloy composition ratio that maintains the α phase of Fe at a predetermined reaction temperature is preferable, and specifically, an Fe—Ni alloy, an Fe—Co alloy, or an Fe—Cu alloy is more preferable. The molar ratio (Fe / Ni) of Fe and Ni contained in the Fe—Ni alloy is 20/80 to 99/1, preferably 40/60 to 90/10. The molar ratio (Fe / Co) of Fe and Co contained in the Fe—Co alloy is 20/80 to 99/1, preferably 50/50 to 95/5. The molar ratio (Fe / Cu) of Fe and Cu contained in the Fe—Cu alloy is 20/80 to 99/1, preferably 80/20 to 95/5.
[0016]
As for the arrangement of the catalyst particles on the substrate, the catalyst particles may be sprinkled uniformly. In addition, a suspension is prepared by suspending catalyst particles in a solvent such as alcohol, and the suspension is sprayed on the substrate and dried to place a desired amount on the substrate at predetermined intervals. Also good. Alternatively, by preparing a nitrate solution of the metal constituting the catalyst particles, applying or spraying this solution on the surface of the substrate, inserting the substrate into a heat treatment furnace, and raising the temperature of the furnace to 200 ° C. or higher A desired amount can be placed on the substrate at intervals. Furthermore, the substrate is accommodated in a heat treatment furnace in advance and the inside of the furnace is heated, and a metal organic compound or the like constituting the catalyst particles is supplied to the heat treatment furnace at an arbitrary flow rate to thermally decompose, and the catalyst particles are directly attached to the substrate. By forming it on the substrate, a desired amount can be arranged on the substrate at a predetermined interval.
[0017]
The catalyst particles are preferably activated by pretreatment before producing the carbon nanofibers. Activation is performed by heating the catalyst particles in a mixed gas atmosphere containing He and H 2 .
[0018]
Subsequently, a predetermined mixed gas, which is a raw material for carbon nanofibers, is supplied to the catalyst particles disposed on the substrate for 0.01 to 24 hours so that the carbon nanofibers whose fiber surfaces are coated with amorphous carbon are removed from the catalyst particles. Grow.
[0019]
FIG. 3 shows a heat treatment furnace 20 for producing the carbon nanofiber of the present invention. The heat treatment furnace 20 includes an apparatus main body 21 made of a heat insulating material, and the inside of the apparatus main body 21 is horizontally partitioned by two partition plates 26 at a predetermined interval. A heating element 22 is installed on the top and bottom of the apparatus main body 21 partitioned by the partition plates 26, 26, respectively. Examples of the heating source of the heating element 22 used for heat treatment in the heat treatment furnace include an incandescent lamp, a halogen lamp, an arc lamp, and a graphite heater. A gas supply port 24 is provided on one side of the apparatus main body 21 so as to supply a mixed gas as a raw material to the space partitioned by the partition plates 26 and 26.
[0020]
Examples of the gas used as the raw material for the carbon nanofiber include a mixed gas containing CO and H 2 and a mixed gas of CO 2 and H 2 . The mixing volume ratio (CO / H 2 ) of H 2 to CO in the mixed gas is 20/80 to 90/10. The mixing volume ratio (CO / H 2 ) of H 2 to CO in the mixed gas is preferably 40/60 to 90/10. As is shown mixing volume ratio of H 2 to CO in the mixed gas (CO / H 2), the mixing volume ratio of H 2 to CO 2 mixed gas (CO 2 / H 2) is also similar mixing volume ratio Good.
[0021]
A space 27 partitioned by the partition plates 26 and 26 has a size that can accommodate a substrate 28 on which a powdered catalyst is dispersed, and is supplied to the other side of the apparatus main body 21 outside the system into the heat treatment furnace 20. A gas discharge port 29 for discharging the raw material gas is provided. The substrate 28 accommodated in the space 27 is placed on the take-out stand 31 and provided so as to be accommodated and unloaded in the heat treatment furnace.
[0022]
After the powdered catalyst 32 is placed on the substrate 28, the substrate 28 is taken out, placed on the stand 31, transported to the heat treatment furnace 20, and stored in the space 27 of the apparatus main body 21. Thereafter, the pressure in the heat treatment furnace 20 is controlled within a range of 0.08 to 10 MPa, a mixed gas as a raw material is supplied from the gas supply port 24, and heated by the heating elements 22 and 22. The supply amount of the mixed gas as a raw material is set to 0.2 L / min to 10 L / min, and the heating temperature is set to 400 ° C. to 700 ° C., preferably 500 ° C. or more and less than 600 ° C. The supply amount of the mixed gas depends on the amount of catalyst particles and the size of the furnace. Therefore, the numerical range of the gas supply amount is a standard in a general manufacturing method. The heating temperature was set to 400 ° C. to 700 ° C., because the reaction rate was too slow when the temperature was less than the lower limit, so that carbon nanofibers could not be synthesized. It is because it will be obtained. The carbon nanofibers 33 grow through the catalyst particles 32 by heating while supplying the mixed gas as the raw material and holding the mixture for 0.01 to 24 hours. Since the obtained carbon nanofiber 33 contains a catalyst, if necessary, the carbon nanofiber 33 obtained by unloading the substrate 28 from the heat treatment furnace 20 is taken out, and the carbon nanofiber 33 is mixed with nitric acid, The catalyst particles 32 contained in the carbon nanofibers 33 are removed by dipping in an acidic solution such as hydrochloric acid or hydrofluoric acid. Note that the catalyst particles 32 may be included in the carbon nanofibers as they are and supported. Moreover, in this Embodiment, although it was set as the structure which supplies the mixed gas used as a raw material from one side part of the heat processing furnace main body 21, it is good also as a structure which supplies the mixed gas used as a raw material from a main body top part or bottom part.
[0023]
Thus, by the above manufacturing method, carbon can be manufactured at a lower temperature than in the past, and the fiber body has a highly crystalline graphite structure without being graphitized, and the fiber body is coated with an amorphous carbon layer. Nanofibers can be obtained.
[0024]
Mosquitoes over carbon nanofibers obtained by the production method of the present invention, as shown in FIGS. 1 and 2, it is substantially vertically stacked planar graphite network to the longitudinal axis of the fiber, 10 nm to The main body is a fiber body 11 having an average diameter of 500 nm, a length of 100 nm or more, and an aspect ratio of 10 or more.
[0025]
Characteristic configuration of the present invention, the laminated spacing d 002 of the graphite-net plane of the fiber body 11 as measured in the X-ray diffraction of the carbon nanofibers is in the range of 0.3356Nm~0.3370Nm, the surface of the fiber body 11 Is covered with an amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm. It has a high electrical conductivity by defining the laminated spacing d 002 of the graphite-net plane in the range of 0.3356Nm~0.3370Nm. If it is less than 0.3356 nm, it is difficult to synthesize, and if it exceeds 0.3370 nm, there is no crystallinity, it is not stable, and sufficient conductivity cannot be obtained. Preferred multilayer spacing d 002 is 0.3356Nm~0.3360Nm. Since the surface of the fiber body 11 is coated with an amorphous carbon layer 12 having a thickness of 0.1 nm to 5 nm, the surface activity is low , the surface of the carbon nanofiber is chemically stable , and the mixture is molded with a resin. In this case, the melt flow index is very low, and the moldability is excellent. The thickness of the amorphous carbon layer 12 is formed in the range of 0.1 nm to 5 nm depending on the manufacturing conditions. If the thickness is less than 0.1 nm, the existence value of the amorphous carbon layer 12 is low, and the effect of the present invention does not appear. If the thickness exceeds 5 nm, the amorphous carbon layer on the surface is thick, and the conductivity is impaired, and Li intrusion becomes difficult. The thickness of the amorphous carbon layer 12 is preferably 0.5 nm to 3.0 nm.
[0026]
The amorphous carbon layer 12 is coated at a rate of at least 80% of the entire surface of the fiber body 11. By covering at least 80% of the entire surface of the fiber 10 with the amorphous carbon layer 12, the chemical stability is further improved and the processability is also excellent. The amorphous carbon layer 12 is preferably coated at a ratio of 90% or more of the entire surface of the fiber body.
[0027]
Further, the carbon nanofiber of the present invention has a specific surface area of 300 m 2 / g or less, and since the amount of oil absorption when mixed with the resin is small, it is possible to suppress deterioration of the physical properties of the resin.
When the carbon nanofiber of the present invention is used as a negative electrode material for a lithium secondary battery, the amorphous carbon layer covers the active graphite layer, so that the decomposition reaction of propylene carbonate contained in the electrolyte is suppressed, and A high capacity of graphite is obtained, and further high rate charge / discharge is possible.
[0028]
【Example】
Next, examples of the present invention will be described in detail with reference examples and comparative examples.
< Reference Example 1>
First, 1 g (molar ratio: Fe / Ni = 70/30) of an Fe—Ni alloy having an average particle diameter of 1 μm or less was prepared as catalyst particles. The catalyst particles were activated by heating in a mixed gas atmosphere containing He and H 2 . Next, as shown in FIG. 3, the activated catalyst was placed on the substrate 28, and the substrate 28 was accommodated in the heat treatment furnace 20. Next, the interior of the heat treatment furnace is heated to a temperature of 600 to 630 ° C., and a mixed gas containing CO and H 2 (mixed volume ratio: CO / H 2 = 80/20) is used as a raw material gas, and the raw material gas is supplied at a flow rate of 10 L / The mixture containing carbon nanofibers was synthesized by holding for about 10 hours while being fed into the heat treatment furnace in minutes. The obtained mixture was immersed in a nitric acid solution to remove the catalyst contained in the mixture, and carbon nanofibers were obtained without performing graphitization.
[0029]
< Reference Example 2>
Carbon nanofibers were obtained in the same manner as in Reference Example 1 except that the heating temperature was changed to 570 to 600 ° C.
< Reference Example 3>
Carbon nanofibers were obtained in the same manner as in Reference Example 1 except that the heating temperature was changed to 540 to 570 ° C.
[0030]
<Example 1 >
Carbon nano-particles were prepared in the same manner as in Reference Example 1 except that 1 g of Fe—Co alloy having an average particle size of 1 μm or less (molar ratio: Fe / Co = 90/10) was used as catalyst particles and the heating temperature was changed to 620 to 660 ° C. A fiber was obtained.
< Reference Example 4 >
Carbon nano-particles were obtained in the same manner as in Reference Example 1 except that 1 g of Fe—Cu alloy having an average particle size of 1 μm or less (molar ratio: Fe / Cu = 90/10) was used as catalyst particles and the heating temperature was changed to 600 to 650 ° C. A fiber was obtained.
[0031]
<Comparative Example 1>
The carbon nanofibers obtained in Reference Example 1 were further heat treated at 2800 ° C. for 2 hours to perform graphitization.
<Comparative example 2>
The carbon nanofibers obtained in Reference Example 2 were further heat treated at 2800 ° C. for 2 hours to perform graphitization.
[0032]
<Comparative Example 3>
In the manufacturing conditions in the reference example 1, except that the heating temperature in the heat treatment furnace to 1000 ° C., tried to obtain carbon nanofibers in the same manufacturing conditions as in Reference Example 1, was not able to synthesize carbon nanofibers. This is probably because the reaction temperature was too high to synthesize the powder.
[0033]
<Comparison test and evaluation>
When carbon nanofibers were observed with a transmission electron microscope in Example 1 , Reference Examples 1 to 4 and Comparative Examples 1 and 2, respectively, an amorphous carbon layer was formed on the carbon nanofiber surfaces of Example 1 and Reference Examples 1 to 4. The coating by was confirmed. The carbon nanofiber surfaces of Comparative Examples 1 and 2 were not confirmed to be covered with the amorphous carbon layer. The Example 1, carbon nanofibers respectively obtained in Reference Examples 1-4 and Comparative Examples 1-2 were measured graphite layer spacing d 002 By X-ray diffraction. Moreover, the resistivity of the carbon nanofiber obtained in Example 1 , Reference Examples 1 to 4 and Comparative Examples 1 and 2 was measured. The resistivity was obtained by pressing the obtained carbon nanofibers at a pressure of 100 kg / cm 2 and measuring the resistance value by a four-terminal method. The results of the graphite layer spacing d 002 and the powder resistance of the carbon nanofibers obtained in Example 1 , Reference Examples 1 to 4 and Comparative Examples 1 and 2, respectively, are shown in Table 1 below.
[0034]
[Table 1]
Figure 0004157791
[0035]
As is clear from Table 1, when Example 1 and Reference Examples 1 to 4 and Comparative Examples 1 and 2 are compared, the carbon nanofibers of Comparative Examples 1 and 2 were graphitized and thus coated on the fiber surface. Since the amorphous carbon layer was crystallized, a slight growth of graphite was observed, and the interplanar spacing d 002 value was slightly low. Comparative Examples 1 and 2 showed the same numerical values as the powder resistance values of Example 1 and Reference Examples 1 to 4 , and no particular change was observed. From this result, it was confirmed that the carbon nanofibers coated with the amorphous carbon layer have the same conductive performance as the carbon nanofibers not coated. In addition, the carbon nanofibers of Example 1 and Reference Examples 1 to 4 obtained by the production method of the present invention had high electrical conductivity. This proves that it has a highly crystalline graphite structure even under low-temperature production conditions.
[0036]
【The invention's effect】
As described above, in the method for producing carbon nanofibers by the vapor phase growth method of the present invention, the average particle diameter is 0.01 μm to 100 μm, and the molar ratio of Fe and Co (Fe / Co) is used as the fiber growth nucleus. ) Is a catalyst particle comprising an Fe—Co alloy prepared at an alloy composition ratio of 50/50 to 95/5 that maintains the α phase of Fe at a predetermined reaction temperature under a pressure of 0.08 to 10 MPa. ° C. mixing volume ratio of H 2 to CO at a temperature of ~700 ℃ (CO / H 2) is from 0.01 to 24 hours supplying a mixed gas of CO and H 2 is 40 / 60-90 / 10 to the catalyst particles Then, a catalyst particle is formed of a carbon nanofiber comprising a plurality of planar graphite nets and a carbon fiber comprising a fiber body substantially perpendicular to the longitudinal axis of the fiber and an amorphous carbon layer covering the surface of the fiber body. The carbon nanofibers having a highly crystalline graphite structure in the fiber body can be obtained without performing graphitization treatment.
[Brief description of the drawings]
FIG. 1 is a schematic view of a carbon nanofiber obtained by the production method of the present invention.
FIG. 2 is a cross-sectional view of a carbon nanofiber corresponding to FIG.
FIG. 3 is a cross-sectional configuration diagram of a heat treatment furnace for producing carbon nanofibers.
[Explanation of symbols]
10 Carbon nanofiber 11 Fiber body 12 Amorphous carbon layer

Claims (1)

気相成長法によりカーボンナノファイバを製造する方法において、
平均粒径が0.01μm〜100μmであってファイバの成長核としてFeとCoのモル比(Fe/Co)が、所定の反応温度において、Feのα相を維持する50/50〜95/5の合金組成比で調製されたFe−Co合金からなる触媒粒子を0.08〜10MPaの圧力下、400℃〜700℃の温度でCOに対するH 2 の混合容積比(CO/H 2 )が40/60〜90/10であるCOとH2の混合ガスを触媒粒子に0.01〜24時間供給して平面状のグラファイト網が複数積層され前記グラファイト網がファイバの縦軸に対して実質的に垂直であるファイバ本体と前記ファイバ本体の表面を被覆する無定形炭素層とからなるカーボンナノファイバを前記触媒粒子から成長させることを特徴とするカーボンナノファイバの製造方法。
In a method for producing carbon nanofibers by vapor deposition,
The average particle diameter is 0.01 μm to 100 μm, and the molar ratio of Fe to Co (Fe / Co) as the growth nucleus of the fiber is 50/50 to 95/5 that maintains the α phase of Fe at a predetermined reaction temperature. under pressure of the catalyst particles made of Fe-Co alloy prepared by the alloy composition ratio of 0.08~10MPa, mixing volume ratio of H 2 to CO at a temperature of 400 ℃ ~700 ℃ (CO / H 2) is 40 / 60-90 / 10 mixed gas of CO and H 2 is supplied from 0.01 to 24 hours in the catalyst particles planar graphite network is stacked substantially to the longitudinal axis of the graphite network fiber A carbon nanofiber comprising a fiber body that is vertically vertical and an amorphous carbon layer that covers the surface of the fiber body is grown from the catalyst particles.
JP2003096253A 2003-03-31 2003-03-31 Method for producing carbon nanofiber Expired - Fee Related JP4157791B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003096253A JP4157791B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanofiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003096253A JP4157791B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanofiber

Publications (2)

Publication Number Publication Date
JP2004300631A JP2004300631A (en) 2004-10-28
JP4157791B2 true JP4157791B2 (en) 2008-10-01

Family

ID=33408375

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003096253A Expired - Fee Related JP4157791B2 (en) 2003-03-31 2003-03-31 Method for producing carbon nanofiber

Country Status (1)

Country Link
JP (1) JP4157791B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105817235A (en) * 2016-04-20 2016-08-03 北京中材人工晶体研究院有限公司 Iron-based low-nickel multicomponent alloy catalytic agent, and preparation method and application thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4565384B2 (en) * 2004-11-30 2010-10-20 三菱マテリアル株式会社 Method for producing carbon nanofibers with excellent dispersibility in resin
JP4968570B2 (en) * 2005-05-26 2012-07-04 三菱マテリアル株式会社 Carbon nanofiber dispersion and composition comprising the dispersion
WO2007018078A1 (en) * 2005-08-10 2007-02-15 Electric Power Development Co., Ltd. Method for selectively synthesizing platelet carbon nanofiber
EP2251465B1 (en) 2008-03-06 2017-04-19 Ube Industries, Ltd. Fine carbon fiber, fine short carbon fiber, and manufacturing method for said fibers
KR101015327B1 (en) * 2008-04-16 2011-02-15 닛토덴코 가부시키가이샤 Aggregate of fibrous columnar structures and pressure-sensitive adhesive member using the same
JP4936026B2 (en) 2009-04-02 2012-05-23 宇部興産株式会社 Method for producing conductive binder
WO2011016535A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive polyamide resin composition
WO2011016536A1 (en) 2009-08-07 2011-02-10 宇部興産株式会社 Conductive resin composition
JP2011057725A (en) * 2009-09-04 2011-03-24 Ube Industries Ltd Electrically conductive thermoplastic resin composition
US9410645B2 (en) 2009-09-07 2016-08-09 Ube Industries, Ltd. Multilayer tube for transportation
CN104746181A (en) * 2010-10-20 2015-07-01 电气化学工业株式会社 Method for producing carbon nanofibers, carbon composite and method for producing same
KR101327812B1 (en) 2012-02-13 2013-11-11 금호석유화학 주식회사 Highly conductive carbon nanotube having bundle moieties with ultra-low bulk density and highly conductive polymer nano-composite using the same
JP2014125418A (en) * 2012-12-27 2014-07-07 Mitsubishi Materials Corp Apparatus and method for producing carbon nanofiber
KR102291933B1 (en) 2014-02-05 2021-08-19 덴카 주식회사 Production method for carbon nanofibers, and carbon nanofibers
CN107148692B (en) 2014-08-11 2020-09-08 电化株式会社 Conductive composition for electrode, electrode using same, and lithium ion secondary battery
JP6600182B2 (en) * 2014-09-22 2019-10-30 デンカ株式会社 Carbon nanofiber manufacturing method and carbon nanofiber
JP6600180B2 (en) * 2015-06-22 2019-10-30 デンカ株式会社 Method for producing carbon nanofiber-carbon material composite and carbon nanofiber-carbon material composite
US10087557B2 (en) 2015-07-31 2018-10-02 Denka Company Limited Method for producing carbon nanofibers
EP3512012B1 (en) 2016-09-07 2021-09-01 Denka Company Limited Conductive composition for electrodes, and electrode and battery using same
CN114835111A (en) * 2022-05-30 2022-08-02 中北大学 Nano spiral graphite fiber material and preparation method and application thereof

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06119922A (en) * 1992-10-06 1994-04-28 Nikkiso Co Ltd Carbon electrode and secondary ion battery
JPH10140425A (en) * 1996-11-15 1998-05-26 Nikkiso Co Ltd Graphitized gas-phase grown carbon fiber, its production and non-aqueous electrolyte secondary battery using the same as negative electrode
US6045769A (en) * 1997-12-08 2000-04-04 Nanogram Corporation Process for carbon production
JP3953276B2 (en) * 2000-02-04 2007-08-08 株式会社アルバック Graphite nanofiber, electron emission source and manufacturing method thereof, display element having the electron emission source, and lithium ion secondary battery
JP2002241117A (en) * 2001-02-13 2002-08-28 Osaka Gas Co Ltd Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JP4197859B2 (en) * 2001-05-30 2008-12-17 株式会社Gsiクレオス Lithium secondary battery electrode material and lithium secondary battery using the same
EP1404907A4 (en) * 2001-07-10 2008-07-02 Catalytic Materials Ltd Crystalline graphite nanofibers and a process for producing same
JP2004131853A (en) * 2002-10-08 2004-04-30 Toyota Motor Corp Carbon nanofiber containing nitrogen atom and method for producing the same and hydrogen storage material

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105817235A (en) * 2016-04-20 2016-08-03 北京中材人工晶体研究院有限公司 Iron-based low-nickel multicomponent alloy catalytic agent, and preparation method and application thereof
CN105817235B (en) * 2016-04-20 2018-09-11 北京中材人工晶体研究院有限公司 Low nickel multicomponent alloy catalyst of a kind of iron-based and the preparation method and application thereof

Also Published As

Publication number Publication date
JP2004300631A (en) 2004-10-28

Similar Documents

Publication Publication Date Title
JP3961440B2 (en) Method for producing carbon nanotube
JP4157791B2 (en) Method for producing carbon nanofiber
Yoo et al. Scalable fabrication of silicon nanotubes and their application to energy storage
JP4266509B2 (en) Negative electrode active material for lithium secondary battery and method for producing the same
Guo et al. Polypyrrole‐assisted nitrogen doping strategy to boost vanadium dioxide performance for wearable nonpolarity supercapacitor and aqueous zinc‐ion battery
KR100584671B1 (en) Process for the preparation of carbon nanotube or carbon nanofiber electrodes by using sulfur or metal nanoparticle as a binder and electrode prepared thereby
US8278010B2 (en) Carbon nanotube electrode comprising sulfur or metal nanoparticles as a binder and process for preparing the same
TWI438785B (en) Mesoporous carbon material, fabrication method thereof and supercapacitor
KR100905691B1 (en) Anode active material hybridizing carbon nanofiber for lithium secondary battery
US20120264020A1 (en) Method of depositing silicon on carbon nanomaterials
JP7228141B2 (en) Nanostructured material and method of making same
JP2010525549A (en) Method of depositing silicon on carbon material to form anode for lithium ion battery
JP6302878B2 (en) Method for producing carbon nanofiber electrode carrying metal oxide using electrodeposition method
KR102396863B1 (en) Manufacturing method of sulfur deposited carbon nano tube electrode, sulfur deposited carbon nano tube electrode by the same and lithium-sulfur battery comprising the same
TW201204629A (en) Carbon coated lithium transition metal phosphate and process for its manufacture
KR20080006898A (en) Negative electrode material hybridizing carbon nanofiber for lithium ion secondary battery
CN106298274B (en) A kind of new graphene/carbon pipe/graphene composite material, with and its preparation method and application
JP2007265852A (en) Compound current collector and its manufacturing method
JP5099300B2 (en) Nanocarbon material composite and method for producing the same
JP2004303613A (en) Negative electrode material, negative electrode using the same, and lithium ion secondary battery using the negative electrode
WO2021018598A1 (en) Composite material and method for preparing same
Zhang et al. A carob-inspired nanoscale design of yolk–shell Si@ void@ TiO 2-CNF composite as anode material for high-performance lithium-ion batteries
Wang et al. Transition Metal Nitrides in Lithium‐and Sodium‐Ion Batteries: Recent Progress and Perspectives
Wang et al. One-pot spray pyrolysis for core–shell structured Sn@ SiOC anode nanocomposites that yield stable cycling in lithium-ion batteries
EP1288352B1 (en) Vapor grown carbon fiber and electrode material for battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051110

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080624

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080714

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4157791

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110718

Year of fee payment: 3

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120718

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130718

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees