JP2004047404A - Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery - Google Patents

Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004047404A
JP2004047404A JP2002259040A JP2002259040A JP2004047404A JP 2004047404 A JP2004047404 A JP 2004047404A JP 2002259040 A JP2002259040 A JP 2002259040A JP 2002259040 A JP2002259040 A JP 2002259040A JP 2004047404 A JP2004047404 A JP 2004047404A
Authority
JP
Japan
Prior art keywords
silicon
conductive
silicon composite
conductive silicon
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002259040A
Other languages
Japanese (ja)
Other versions
JP3952180B2 (en
Inventor
Mikio Aramata
荒又 幹夫
Satoru Miyawaki
宮脇 悟
Susumu Ueno
上野 進
Hirofumi Fukuoka
福岡 宏文
Kazuma Momii
籾井 一磨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2002259040A priority Critical patent/JP3952180B2/en
Publication of JP2004047404A publication Critical patent/JP2004047404A/en
Application granted granted Critical
Publication of JP3952180B2 publication Critical patent/JP3952180B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive silicon composite used as a negative electrode material for a nonaqueous electrolyte secondary battery having a good cycle property. <P>SOLUTION: The negative electrode material for the nonaqueous electrolyte secondary battery is a mixture of a conductive material and a conductive silicon composite formed by coating carbon on the surface of grains having a structure of dispersing minute silicon crystals in a silicon group compound, of which, an average grain size is 0.01 to 30 μm, a BET specific surface area is 0.5 to 20 m<SP>2</SP>/g, and an amount of covering carbon is 3 to 70 wt.%. The amount of the conductive material in the mixture is 1 to 60 wt.%, and total amount of carbon in the mixture is 25 to 90 wt.%. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池用負極活物質として有用とされる導電性を付与した導電性珪素複合体粉末、その製造方法及び該粉末を用いた非水電解質二次電池用負極材に関する。
【0002】
【従来の技術】
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。
従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(特開平5−174818号、特開平6−60867号公報他)、溶融急冷した金属酸化物を負極材として適用する方法(特開平10−294112号公報)、負極材料に酸化珪素を用いる方法(特許第2997741号公報)、負極材料にSiO及びGeOを用いる方法(特開平11−102705号公報)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(特開2000−243396号公報)、Si粒子表面に化学蒸着法により炭素層を被覆する方法(特開2000−215887号公報)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特開2002−42806号公報)がある。
【0003】
【特許文献1】
特開平5−174818号公報
【特許文献2】
特開平6−60867号公報
【特許文献3】
特開平10−294112号公報
【特許文献4】
特許第2997741号公報
【特許文献5】
特開平11−102705号公報
【特許文献6】
特開2000−243396号公報
【特許文献7】
特開2000−215887号公報
【特許文献8】
特開2002−42806号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。
【0005】
特に、特許第2997741号公報では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らがみる限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達していなかったりし、改良する余地がある。また、負極材に導電性を付与した技術についても、特開2000−243396号公報では、固体と固体の融着であるため、均一な炭素皮膜が形成されず、導電性が不十分であるといった問題があるし、特開2000−215887号公報の方法においては、均一な炭素皮膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2002−42806号公報の方法においては、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、サイクル性の向上は確認されるも、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。
【0006】
本発明は、上記事情に鑑みなされたもので、よりサイクル性の高いリチウムイオン二次電池の負極の製造を可能とする導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、よりサイクル性の高い非水電解質二次電池負極用の活剤として有効な導電性珪素複合体を見出した。
【0008】
即ち、充放電容量の大きな電極材料の開発は極めて重要であり、各所で研究開発が行われている。このような中で、リチウムイオン二次電池用負極活物質として珪素及び無定形である酸化珪素(SiO)はその容量が大きいということで大きな関心を持たれているが、繰り返し充放電をしたときの劣化が大きい、即ちサイクル性に劣ること、また、特に初期効率が低いことから、ごく一部のものを除き実用化には至っていないのが現状であった。このような観点より、このサイクル性及び初期効率の改善を目標に検討した結果、酸化珪素粉末にCVD(即ち、化学蒸着)処理を施すことによって、従来のものと比較して格段にその性能が向上することを見出したが、長期安定性、初期効率に更なる改良が求められた。
【0009】
このため、CVD処理酸化珪素をリチウムイオン二次電池負極の活物質として使用した時に、多回数の充放電後の急激な充放電容量低下の原因について、構造そのものからの検討を行い、解析した結果、リチウムを大量に吸蔵・放出することによって大きな体積変化が起こり、これに伴い粒子の破壊が起こること、更にリチウムの吸蔵によってもともと導電性が小さい珪素及び珪素化合物が体積膨張することによって電極自体の導電率が低下し、結果として集電性の低下によりリチウムイオンの電極内の移動が妨げられ、サイクル性及び効率低下が惹起されたことが原因であることがわかった。
【0010】
そこで、このようなことに基づいて、表面の導電性はもちろん、リチウムの吸蔵・放出に伴う体積変化に対して安定な構造について鋭意検討を行った結果、珪素微結晶又は微粒子を不活性で強固な物質、例えば二酸化珪素に分散し、更にこの表面の少なくとも一部に導電性を賦与するための炭素を融着させることによって、リチウムイオン二次電池負極活物質としての上記問題を解決し、安定して大容量の充放電容量を有し、かつ充放電のサイクル性及び効率を大幅に向上させることが出来得ることを見出した。従って、珪素の微結晶及び/又は微粒子を珪素化合物、例えば二酸化珪素の中に細かく分散し、またこの場合、特にこの複合物の表面の少なくとも一部が融着するように炭素コートすることが有効であることを知見し、本発明をなすに至った。
【0011】
従って、本発明は、下記の導電性珪素複合体及びその製造方法並びに非水電解質二次電池用負極材を提供する。
(1)珪素の微結晶が珪素系化合物に分散した構造を有する粒子の表面を炭素でコーティングしてなることを特徴とする導電性珪素複合体。
(2)平均粒子径0.01〜30μm、BET比表面積0.5〜20m/g、被覆炭素量3〜70重量%である(1)記載の導電性珪素複合体。
(3)珪素微結晶の大きさが1〜500nmであり、珪素系化合物が二酸化珪素であり、かつその表面の少なくとも一部が炭素と融着していることを特徴とする(1)又は(2)記載の導電性珪素複合体。
(4)X線回折において、Si(111)に帰属される回折ピークが観察され、その回折線の半価幅をもとにシェーラー法により求めた珪素の結晶の大きさが1〜500nmであり、被覆炭素量が5〜70重量%であることを特徴とする(1)、(2)又は(3)記載の導電性珪素複合体。
(5)水酸化アルカリ溶液と作用させることによって水素ガスを発生しうるゼロ価の珪素を1〜35重量%含有することを特徴とする(1)乃至(4)のいずれか1項記載の導電性珪素複合体。
(6)ラマン分光スペクトルより、ラマンシフトが1580cm−1付近にグラファイト構造特有のスペクトルを有することを特徴とする(1)乃至(5)のいずれか1項記載の導電性珪素複合体。
(7)酸化珪素を900〜1400℃の温度で有機物ガス及び/又は蒸気で不均化すると共に化学蒸着処理することを特徴とする(1)記載の導電性珪素複合体の製造方法。
(8)酸化珪素が平均粒子径0.01〜30μm、BET比表面積0.1〜30m/gの一般式SiO(1.0≦x<1.6)で表される酸化珪素粉末であることを特徴とする(7)記載の導電性珪素複合体の製造方法。
(9)酸化珪素をあらかじめ不活性ガス雰囲気下900〜1400℃で熱処理を施して不均化してなる珪素複合物、シリコン微粒子をゾルゲル法により二酸化珪素でコーティングした複合物、シリコン微粉末を微粉状シリカと水を介して凝固させたものを焼結して得られる複合物、又は珪素及びこの部分酸化物もしくは窒化物を不活性ガス気流下800〜1400℃で加熱したものを、800〜1400℃の温度で有機物ガス及び/又は蒸気で化学蒸着処理することを特徴とする(1)記載の導電性珪素複合体の製造方法。
(10)酸化珪素をあらかじめ500〜1200℃の温度で有機物ガス及び/又は蒸気で化学蒸着処理したものを、不活性ガス雰囲気下900〜1400℃で熱処理を施して不均化することを特徴とする(1)記載の導電性珪素複合体の製造方法。
(11)化学蒸着処理及び/又は不均化処理を流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉又はロータリーキルンのいずれかの反応装置を用いて行うことを特徴とする(7)乃至(10)のいずれか1項記載の導電性珪素複合体の製造方法。
(12)(1)乃至(6)のいずれか1項記載の導電性珪素複合体を用いた非水電解質二次電池用負極材。
(13)(1)乃至(6)のいずれか1項記載の導電性珪素複合体と導電剤の混合物であって、混合物中の導電剤が1〜60重量%であり、かつ混合物中の全炭素量が25〜90重量%である混合物を用いた非水電解質二次電池用負極材。
【0012】
以下、本発明につき更に詳しく説明する。
本発明は、リチウムイオン二次電池用負極活物質として使用した場合、充放電容量が現在主流であるグラファイト系のものと比較してその数倍の容量であることから期待されている反面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系物質のサイクル性及び効率を改善した導電性珪素複合体に関するもので、この導電性珪素複合体は、珪素の微結晶が珪素系化合物、好ましくは二酸化珪素に分散した構造を有する粒子表面を好ましくはその少なくとも一部が炭素と融合した状態で炭素でコーティング(融着)してなるものである。
【0013】
本発明において、融着とは、層状に整列した炭素層と、内部の珪素複合体との間に炭素と珪素が共存し、かつ、双方が界面部において融合している状態を示し、透過電子顕微鏡で観察することができる(図3参照)。
【0014】
この場合、本発明の導電性珪素複合体は、下記性状を有していることが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径が好ましくは1〜500nm、より好ましくは2〜200nm、更に好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。
ii.固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiO:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
iii.リチウムイオン二次電池負極において、リチウムイオンを吸蔵・放出しうるゼロ価の珪素が、炭化珪素微粉末中遊離珪素を測定する方法であるISO DIS 9286に準じた方法である、水酸化アルカリを作用させる時に水素が生成することによって水素発生量として測定ができ、水素発生量から換算して1重量%以上、好ましくは5重量%以上、より好ましくは10重量%以上、更に好ましくは20重量%以上で、上限として35重量%以下、特に30重量%以下であることが好ましい。ゼロ価の珪素が1重量%未満では、Li吸蔵・放出の活物質量が少ないため、リチウムイオン二次電池とした場合の充放電容量が小さくなるし、逆に35重量%より多くなると、リチウムイオン二次電池とした場合の充放電容量は大きくなるものの、充放電時の電極の膨張・収縮が大きくなりすぎて、結果としてサイクル性が低下するおそれがある。
iv.粒子の表面部分を透過電子顕微鏡で観察すると、カーボンが層状に整列し、これによって導電性が高まり、更に、その内側は二酸化珪素との融合状態にあることによって、カーボン層の脱落防止ができ、安定した導電性が確保される。
v.ラマン分光スペクトルより、1580cm−1付近にグラファイトに帰属されるスペクトルを有することより、炭素の一部又はすべてがグラファイト構造である。
【0015】
本発明の導電性珪素複合体粉末の平均粒子径は、0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上、特に好ましくは0.3μm以上で、上限として30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下が好ましい。平均粒子径が小さすぎると、嵩密度が小さくなりすぎて、単位体積当たりの充放電容量が低下するし、逆に平均粒子径が大きすぎると、電極膜作製が困難になり、集電体から剥離するおそれがある。なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均値D50(即ち、累積重量が50%となる時の粒子径又はメジアン径)として測定した値である。
【0016】
本発明の導電性珪素複合体粉末のBET比表面積は、0.5〜20m/g、特に1〜10m/gが好ましい。BET比表面積が0.5m/gより小さいと、表面活性が小さくなり、電極作製時の結着剤の結着力が小さくなり、結果として充放電を繰り返した時のサイクル性が低下するし、逆にBET比表面積が20m/gより大きいと、電極作製時に溶媒の吸収量が大きくなり、結着性を維持するために結着剤を大量に添加する場合が生じ、結果として導電性が低下し、サイクル性が低下するおそれがある。なお、BET比表面積はNガス吸着量によって測定するBET1点法にて測定した値である。
【0017】
また、本発明における導電性珪素複合体粉末の被覆(蒸着)炭素量は、上記導電性珪素複合体粉末(即ち、化学蒸着処理により表面が導電性皮膜で覆われた珪素複合物粉末)中、3重量%以上、より好ましくは5重量%以上、更に好ましくは10重量%以上で、上限として70重量%以下、より好ましくは50重量%以下、更に好ましくは40重量%以下、特に好ましくは30重量%以下が好ましい。被覆(蒸着)炭素量が少なすぎると、珪素複合物の導電性は改善されるものの、リチウムイオン二次電池とした場合のサイクル特性が十分でない場合があり、多すぎると、炭素の割合が多くなりすぎ、負極量が減少してしまう場合がある。
また、嵩密度が小さくなり、単位体積当たりの充放電容量が低下してしまう場合がある。
【0018】
導電性珪素複合体粉末の電気伝導率は1×10−6S/m以上、特に1×10−4S/m以上が望ましい。電気伝導率が1×10−6S/mより小さいと電極の導電性が小さく、リチウムイオン二次電池用負極材として用いた場合にサイクル性が低下するおそれがある。なお、ここでいう、電気伝導率とは4端子を持つ円筒状のセル内に被測定粉末を充填し、この被測定粉末に電流を流した時の電圧降下を測定することで求めた値である。
【0019】
次に、本発明における導電性珪素複合体の製造方法について説明する。
本発明の導電性珪素複合体粉末は、珪素の微結晶が珪素系化合物に分散した構造を有する粒子の表面を炭素でコーティングしてなる、好ましくは0.01〜30μm程度の平均粒子径を有するものであれば、その製造方法は特に限定されるものではないが、例えば下記I〜IIIの方法を好適に採用することができる。
I:一般式SiO(1.0≦x<1.6)で表わされる酸化珪素粉末を原料として、少なくとも有機物ガス及び/又は蒸気を含む雰囲気下900〜1400℃、好ましくは1000〜1400℃、より好ましくは1050〜1300℃、更に好ましくは1100〜1200℃の温度域で熱処理することにより、原料の酸化珪素粉末を珪素と二酸化珪素の複合体に不均化すると共に、その表面を化学蒸着する方法、
II:一般式SiO(1.0≦x<1.6)で表わされる酸化珪素粉末をあらかじめ不活性ガス雰囲気下900〜1400℃、好ましくは1000〜1400℃、より好ましくは1100〜1300℃で熱処理を施して不均化してなる珪素複合物、シリコン微粒子をゾルゲル法により二酸化珪素でコーティングした複合物、シリコン微粉末を煙霧状シリカ、沈降シリカのような微粉状シリカと水を介して凝固させたものを焼結して得られる複合物、又は珪素及びこの部分酸化物もしくは窒化物等の好ましくは0.1〜50μmの粒度まで粉砕したものをあらかじめ不活性ガス気流下で800〜1400℃で加熱したものを原料に、少なくとも有機物ガス及び/又は蒸気を含む雰囲気下、800〜1400℃、好ましくは900〜1300℃、より好ましくは1000〜1200℃の温度域で熱処理して表面を化学蒸着する方法、
III:一般式SiO(1.0≦x<1.6)で表わされる酸化珪素粉末をあらかじめ500〜1200℃、好ましくは500〜1000℃、より好ましくは500〜900℃の温度域で有機物ガス及び/又は蒸気で化学蒸着処理したものを原料として、不活性ガス雰囲気下900〜1400℃、好ましくは1000〜1400℃、より好ましくは1100〜1300℃の温度域で熱処理を施して不均化する方法。
【0020】
なお、本発明において酸化珪素とは、通常、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明で用いられる酸化珪素粉末は一般式SiOで表され、平均粒子径は0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上で、上限として30μm以下、より好ましくは20μm以下が好ましい。BET比表面積0.1m/g以上、より好ましくは0.2m/g以上で、上限として30m/g以下、より好ましくは20m/g以下が好ましい。xの範囲は1.0≦x<1.6、より好ましくは1.0≦x≦1.3、更に好ましくは1.0≦x≦1.2であることが望ましい。酸化珪素粉末の平均粒子径及びBET比表面積が上記範囲外では所望の平均粒子径及びBET比表面積を有する導電性珪素複合体粉末が得られないし、xの値が1.0より小さいSiO粉末の製造は困難であるし、xの値が1.6以上のものは、化学蒸着処理を行い、導電性珪素複合体粉末とした時に、不活性なSiOの割合が大きく、リチウムイオン二次電池として使用した場合、充放電容量が低下するおそれがある。
【0021】
上記I又はIIの方法に関し、800〜1400℃(好ましくは900〜1400℃、特に1000〜1400℃)の温度域での化学蒸着処理(即ち、熱CVD処理)において、熱処理温度が800℃より低いと、導電性炭素皮膜と珪素複合物との融合、炭素原子の整列(結晶化)が不十分であり、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。
【0022】
一方、上記I又はIIIの方法に関し、酸化珪素の不均化において、熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でなく、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。
【0023】
なお、上記IIIの方法においては、CVD処理した後に酸化珪素の不均化を900〜1400℃、特に1000〜1400℃で行うために、化学蒸着(CVD)の処理温度としては800℃より低い温度域での処理でも最終的には炭素原子が整列(結晶化)した導電性炭素皮膜と珪素複合物とが表面で融合したものが得られるものである。
【0024】
このように、好ましくは熱CVD(800℃以上での化学蒸着処理)を施すことにより炭素膜を作製するが、熱CVDの時間は、炭素量との関係で、適宜設定される。この処理において粒子が凝集する場合があるが、この凝集物をボールミル等で解砕する。また、場合によっては、再度同様に熱CVDを繰り返し行う。
【0025】
なお、上記Iの方法において、原料として一般式SiO(1.0≦x<1.6)で表される酸化珪素を用いた場合には、化学蒸着処理と同時に不均化反応を行わせ、二酸化珪素中に結晶構造を有するシリコンを微細に分散させることが重要であり、この場合、化学蒸着及び不均化を進行させるための処理温度、処理時間、有機物ガスを発生する原料の種類及び有機物ガス濃度を適宜選定する必要がある。熱処理時間((CVD/不均化)時間)は、通常0.5〜12時間、好ましくは1〜8時間、特に2〜6時間の範囲から選ばれるが、この熱処理時間は熱処理温度((CVD/不均化)温度)とも関係し、例えば、処理温度を1000℃にて行う場合には少なくとも5時間以上の処理を行うことが好ましい。
【0026】
また、上記IIの方法において、有機物ガス及び/又は蒸気を含む雰囲気下に熱処理する場合の熱処理時間(CVD処理時間)は、通常0.5〜12時間、特に1〜6時間の範囲とすることができる。なお、SiOの酸化珪素をあらかじめ不均化する場合の熱処理時間(不均化時間)は、通常0.5〜6時間、特に0.5〜3時間とすることができる。
【0027】
更に、上記IIIの方法において、SiOをあらかじめ化学蒸着処理する場合の処理時間(CVD処理時間)は、通常0.5〜12時間、特に1〜6時間とすることができ、不活性ガス雰囲気下での熱処理時間(不均化時間)は、通常0.5〜6時間、特に0.5〜3時間とすることができる。
【0028】
本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸化性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の脂肪族又は脂環式炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができる。
【0029】
なお、上記熱CVD(熱化学蒸着処理)及び/又は不均化処理は、非酸化性雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、上記有機物ガス単独あるいは有機物ガスとAr、He、H、N等の非酸化性ガスの混合ガスを用いることができる。
【0030】
この場合、回転炉、ロータリーキルン等の炉芯管が水平方向に配設され、炉芯管が回転する構造の反応装置が好ましく、これにより酸化珪素粒子を転動させながら化学蒸着処理を施すことで、酸化珪素粒子同士に凝集を生じさせることなく、安定した製造が可能となる。炉芯管の回転速度は0.5〜30rpm、特に1〜10rpmとすることが好ましい。なお、この反応装置は、雰囲気を保持できる炉芯管と、炉芯管を回転させる回転機溝と、昇温・保持できる加熱機構を有しているものであれば特に限定せず、目的によって原料供給機構(例えばフィーダー)、製品回収機構(例えばホッパー)を設けることや、原料の滞留時間を制御するために、炉芯管を傾斜したり、炉芯管内に邪魔板を設けることもできる。また、炉芯管の材質についても特に限定はされず、炭化珪素、アルミナ、ムライト、窒化珪素等のセラミックスや、モリブデン、タングステンといった高融点金属、SUS、石英等を処理条件、処理目的によって適宜選定して使用することができる。
【0031】
また、流動ガス線速u(m/sec)は、流動化開始速度umfとの比u/umfが1.5≦u/umf≦5となる範囲とすることで、より効率的に導電性皮膜を形成することができる。u/umfが1.5より小さいと流動化が不十分となり、導電性皮膜にバラツキを生じる場合があり、逆にu/umfが5を超えると、粒子同士の二次凝集が発生し、均一な導電性皮膜を形成することができない場合がある。なお、ここで流動化開始速度は、粒子の大きさ、処理温度、処理雰囲気等により異なり、流動化ガス(線速)を徐々に増加させ、その時の粉体圧損がW(粉体重量)/A(流動層断面積)となった時の流動化ガス線速の値と定義することができる。なお、umfは、通常0.1〜30cm/sec、好ましくは0.5〜10cm/sec程度の範囲で行うことができ、このumfを与える粒子径としては一般的に0.5〜100μm、好ましくは5〜50μmとすることができる。粒子径が0.5μmより小さいと二次凝集が起こり、個々の粒子の表面を有効に処理することができない場合がある。
【0032】
本発明で得られた導電性珪素複合体の粉末は、これを負極材(負極活物質)として、高容量でかつサイクル特性の優れた非水電解質二次電池、特に、リチウムイオン二次電池を製造することができる。
【0033】
この場合、得られたリチウムイオン二次電池は、上記負極活物質を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータなどの材料及び電池形状などは限定されない。例えば、正極活物質としてはLiCoO、LiNiO、LiMn、V、MnO、TiS、MoSなどの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどが単体で又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
【0034】
なお、上記導電性珪素複合体粉末を用いて負極を作製する場合、導電性珪素複合体粉末に黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl、Ti、Fe、Ni、Cu、Zn、Ag、Sn、Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
【0035】
ここで、導電剤の添加量は、導電性珪素複合体粉末と導電剤の混合物中1〜60重量%が好ましく、特に10〜50重量%、とりわけ20〜50重量%が好ましい。1重量%未満だと充放電に伴う膨張・収縮に耐えられなくなる場合があり、60重量%を超えると充放電容量が小さくなる場合がある。また、混合物中の全炭素量(即ち、導電性珪素複合体粉末表面の被覆(蒸着)炭素量と、導電剤中の炭素量との合計量)は25〜90重量%が好ましく、特に30〜50重量%が好ましい。全炭素量が25重量%未満だと充放電に伴う膨張・収縮に耐えられなくなる場合があり、90重量%を超えると充放電容量が小さくなる場合がある。
【0036】
【実施例】
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、下記例で%は重量%を示し、grはグラムを示す。
【0037】
[実施例1]
本発明で得られた導電性珪素複合体の構造について、一例として、酸化珪素(SiO)を原料として用いて得られた導電性珪素複合体について説明する。
【0038】
酸化珪素(SiO:x=1.02)を、ヘキサンを分散媒としてボールミルで粉砕し、得られた酸化珪素粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン混合ガス通気下で1150℃、平均滞留時間約2時間の条件で酸化珪素の不均化と同時に熱CVDを行った。こうして得られたものの固体NMR、X線回折測定結果、透過電子顕微鏡写真及びラマンスペクトル(励起光:532nm)をそれぞれ図1〜4に示した。まず、原料である酸化珪素と導電性珪素複合体の固体29Si−NMR測定結果より、リチウムイオン二次電池負極活物質として、その性能の優れる導電性珪素複合体では、珪素の集合体である−84ppm付近のピークが出現しており、原料の酸化珪素の構造である二酸化珪素と珪素との全くのランダムな構造とは異なっていることを示している。また、Cu−Kα線によるX線回折パターンより、得られた導電性珪素複合体では、これも酸化珪素とは異なり、2θ=28.4°付近のSi(111)に帰属される回折線が存在し、この回折線の半価幅よりシェーラー法により求めた二酸化珪素中に分散した珪素の結晶の大きさは11nmであり、このことからも微細な珪素(Si)の結晶が、二酸化珪素(SiO)の中に分散しているものが好ましいことが分かる。更に、この粒子の表面付近の透過電子顕微鏡写真より、炭素原子が粒子表面に沿って層状に整列しており、図4のラマン分光スペクトルにおいてもグラファイト構造が確認され、このことによって粉末としての導電率が高くなるものである。更に、炭素層の下部では基材との融着が観察され、これによってリチウムイオンの吸蔵・放出に伴う粒子の破壊や導電率の低下が抑えられ、特にサイクル性の向上に結びついているものである。
【0039】
更に詳述すると、図1は、固体29Si−NMRによる酸化珪素粉末を原料にして、熱CVD(メタンガス)をして得られた導電性珪素複合体と原料酸化珪素粉末の比較であり、酸化珪素ではゼロ価の珪素に帰属される−72ppm付近を中心としたブロードなピークと、4価の珪素(二酸化珪素)に帰属される−114ppm付近を中心にしたブロードなピークが観察されるのに対して、本発明による導電性珪素複合体では−84ppm付近にゼロ価の珪素が集合して珪素−珪素結合を形成していることを示しているピークが観察される。
【0040】
また、図2は、X線回折(Cu−Kα)による酸化珪素粉末を原料にして、熱CVD(メタンガス)をして得られた導電性珪素複合体と原料酸化珪素粉末の比較で、酸化珪素は2θ=24°付近に均質でかつ無定形であることを示す極めてブロードなピークが観察されるのみであるのに対して、本発明による導電性珪素複合体では2θ=28.4°付近に結晶性の珪素(ダイヤモンド構造)のSi(111)と帰属されるピークが観察される。この半価幅よりシェーラー法を用いて求めた二酸化珪素中に分散した珪素の結晶の大きさは、約11nmである。
【0041】
図3の導電性珪素複合体粉末及びその表面部の透過電子顕微鏡写真から、最外殻部では炭素原子が層状に配列していることが分かる。また、図4の導電性珪素複合体のラマンスペクトルは、1580cm−1付近のスペクトルより炭素の一部あるいは全部がグラファイト構造であることを示している。結晶性がよいと1330cm−1付近のスペクトルが減少する。
【0042】
更に、塊状の酸化珪素(SiO:x=1.02)を、縦型の反応器に入れて、アルゴン気流下で1200℃まで加熱し、ここにメタン(50vol.%)−アルゴン混合ガスを通気しながら2時間加熱し、熱CVDを行った。このようにして得られた導電性珪素複合体をFIB加工により薄片化したものの透過電子顕微鏡写真を図5に示したが、この写真も珪素は明らかに微細な結晶として分散していることを示している。なお、写真の中の黒っぽく見えたり、又は白っぽく見える規則的な形状の粒子が珪素の結晶である。結晶の向きにより電子の透過性が異なるために、白く見えたり黒く見えたりする。黒く見えるものの中には双晶となっているのも見られる。
【0043】
[実施例2]
酸化珪素(SiO:x=1.02)を、ヘキサンを分散媒としてボールミルで粉砕し、得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、平均粒子径が約0.8μmの粉末を得た。この酸化珪素粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン混合ガス通気下で1150℃、平均滞留時間約2時間の条件で酸化珪素の不均化と同時に熱CVDを行った。こうして得られたものは、蒸着炭素量が16.5%であり、水酸化カリウム水溶液との反応による水素量より求めたゼロ価の珪素である活性珪素は26.7%であった。また、X線回折(Cu−Kα)を行い、2θ=28.4°のSi(111)に帰属される回折線の半価幅からシェーラー法により求めた二酸化珪素中に分散した珪素の結晶の大きさは約11nmであった。熱CVD後、導電性珪素複合体をらいかい器で解砕し、平均粒子径が約2.8μmの粉末を得た。これを用いて下記方法で電池評価を行った。結果を表1に示す。
【0044】
[電池評価]
リチウムイオン二次電池負極活物質としての評価はすべての実施例、比較例ともに同一で、以下の方法・手順にて行った。
まず、得られた導電性珪素複合体に人造黒鉛(平均粒子径D50=5μm)を加え、人造黒鉛の炭素と蒸着した導電性珪素複合体中の炭素が合計40%となるように加え、混合物を製造した。この混合物にポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には2cmに打ち抜き、負極とした。
【0045】
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
【0046】
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで3mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が100μAを下回った時点で充電を終了した。放電は3mAの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
【0047】
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の充放電試験を30サイクル、50サイクル行った。結果を表1に示す。
【0048】
[実施例3]
ブロック状又はフレーク状の酸化珪素を不活性ガス(アルゴン)雰囲気下で1300℃、1時間加熱し、珪素と二酸化珪素への不均化を行った。こうして得られたものについてX線回折(Cu−Kα)を行い、2θ=28.4°のSi(111)に帰属される回折線の半価幅からシェーラー法により求めた結晶の大きさは約55nmであった。このようにして熱処理を行った珪素−二酸化珪素複合物をヘキサンを分散媒としてボールミルで粉砕し、得られた懸濁物をろ過し、窒素雰囲気下で脱溶剤後、平均粒子径が約8μmの粉末を得た。この珪素複合物粉末を縦型管状炉(内径約50mmφ)を用いて、メタン−アルゴン混合ガス通気下で1100℃、3時間の熱CVDを行った。こうして、得られた導電性珪素複合体をらいかい器で解砕した。得られた導電性珪素複合体粉末の蒸着炭素量は11.3%、活性珪素量は28.1%、平均粒子径は8.6μmであり、シェーラー法により求めた二酸化珪素中に分散した珪素の結晶の大きさは約60nmであった。
【0049】
こうして得られた導電性珪素複合体の粉末のリチウムイオン二次電池負極活物質としての評価を、実施例2と全く同じ条件で行った。その結果を表1に示す。
【0050】
[実施例4]
実施例2で使用した酸化珪素粉末を原料にして、縦型管状炉(内径約50mmφ)を用いて、アセチレン−アルゴン混合ガス通気下、800℃、1時間の熱CVDを行った。その後、約1200℃に設定したロータリーキルンにより、不活性気流下で平均滞留時間約1時間熱処理を施して不均化を行った。こうして得られた導電性珪素複合体の粉末の分析結果は、炭素量:17.5%、活性珪素量:25.4%、平均粒子径:3.1μmであり、X線回折(シェーラー法)により求めた二酸化珪素中に分散した珪素の結晶の大きさは約20nmであった。このような物性の珪素複合体についてのリチウムイオン二次電池負極活物質としての評価を実施例2と全く同じ条件で行った。その結果を表1に示す。
【0051】
[実施例5]
工業グレードの金属珪素粉末(Elkem社製 Sirgrain Powder 10μm品)をWilly A Bachofen AG社製粉砕装置DYNO−MILL Type KDL−Pilot A(0.1mmのジルコニアビーズ使用)を用いて、ヘキサンを分散媒として粉砕し、得られた珪素微粉末(平均粒子径約90nm)100grとヒュームドシリカ(日本アエロジル製 アエロジル200)を200grの割合で混合し、ここに水を加えて固く練ったものを150℃で乾燥して固形化した。その後、このものを窒素雰囲気下で1000℃、3時間焼結した。冷却後、ボールミルでヘキサンを分散媒として平均粒子径8μmまで粉砕した。この珪素−二酸化珪素複合物粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン混合ガス通気下で1150℃、平均滞留時間約2時間の条件で熱CVDを行った。こうして得られたものは、蒸着炭素量が18.5%であり、水酸化カリウム水溶液との反応による水素量より求めたゼロ価の珪素である活性珪素は29.7%であった。熱CVD後、導電性珪素複合体をらいかい器で解砕し、平均粒子径が約9.2μmの粉末を得た。
【0052】
解砕した珪素複合物を実施例2と同様の条件でリチウムイオン負極活物質としての評価を行った。結果を表1に示す。
【0053】
[比較例1]
実施例3で得られた酸化珪素の珪素と二酸化珪素への不均化反応物(珪素−二酸化珪素複合物)の粉末について熱CVD処理を行わずに、実施例2と全く同じ条件でリチウムイオン二次電池負極活物質としての評価を行った。その結果を表1に示す。
【0054】
[比較例2]
実施例2によって得られた酸化珪素粉末を原料にして、縦型管状炉(内径約50mmφ)を用いて、アセチレン−アルゴン混合ガス通気下、800℃、1時間熱CVDをした。こうして得られた酸化珪素のカーボンCVD処理粉末の分析結果は、蒸着炭素量:18.5%、活性珪素量:25.4%、平均粒子径:2.1μmであった。また、X線回折測定においては、原料である酸化珪素のパターンと同一であり、不均化は起こっていなかった。このような物性の珪素複合体についてのリチウムイオン二次電池負極活物質としての評価を実施例2と全く同じ条件で行った。その結果を表1に示す。このものは、X線回折より無定形の酸化珪素(SiO)粉末のカーボンコートしたものと同定されるものであるが、サイクル性、初期効率ともに低いものである。
【0055】
[比較例3]
平均粒子径約90nmの金属珪素粉末の代わりに平均粒子径1μmの金属珪素粉末を使用した以外は、実施例5と同様な方法で導電性珪素複合体を製造した。
こうして得られた珪素−二酸化珪素複合物のカーボンCVD処理粉末の分析結果は、蒸着炭素量:17.8%、活性珪素量:28.5%、平均粒子径:9.5μmであった。このような組成のカーボン被覆珪素−二酸化珪素複合物についてのリチウムイオン二次電池負極活物質としての評価を実施例2と全く同じ条件で行った。その結果を表1に示す。
【0056】
[比較例4]
実施例5で得られた珪素微粉末(平均粒子径90nm)と平均粒子径8.0μmの球状シリカとを重量比約1:2で単純に混合した混合物を、実施例2に記載したCVD条件にてCVD処理を行い、蒸着炭素量:14.0%、活性珪素量:34.0%の複合物を得た。このものについてのリチウムイオン二次電池負極活物質としての評価を実施例2と全く同じ条件で行った。この結果、サイクル性が極めて低いものであった。
【0057】
【表1】

Figure 2004047404
【0058】
[比較例5]
実施例5で用いたヒュームドシリカ(日本アエロジル製、アエロジル200)200gをロータリーキルン型の反応器を用いて、メタン−アルゴン混合ガス雰囲気下で1150℃、平均滞留時間2時間の条件で熱CVDを行った。得られたCVD処理粉末は、炭素含有量:12%、活性珪素量:0%、平均粒子径:3.6μmの黒色粉末であった。
次に、このCVD処理粉末につき、実施例2と同様な方法でリチウムイオン二次電池負極活物質としての電池評価を行った。その結果を表2に示す。
【0059】
【表2】
Figure 2004047404
【0060】
ここで、得られた充放電容量は、添加した黒鉛導電材及び蒸着した炭素が寄与した値のみであり、SiOはほとんど不活性な物質であった。
この場合、本発明者の検討によると、黒鉛のみを負極活物質として用いた以外は、実施例2と同様の電池の初回充電容量は400mAh/g、初回放電容量は340mAh/gであり、上記試験における負極材混合物中の全体の炭素含有量は40重量%であり、比較例5の初回充放電容量は、黒鉛のみの初回充放電容量の40%に相当するものであることから、比較例5においては、CVDによる被覆(蒸着)炭素及び添加した黒鉛のみが充放電に作用していることがわかる。
【0061】
[実施例6]
図6に示す回分式流動層反応装置を用いて、導電性珪素複合体粉末を製造した。ここで、図6において、1は流動層反応室で、その内部に酸化珪素の流動層2が形成される。3は流動層反応室1の外側に流動層2を囲むように配設されたヒーターである。また、4はガス分散板であり、流量計6を介装した有機物ガス又は蒸気の導入管7及び不活性ガス導入管8を通って有機物ガス又は蒸気と不活性ガスがそれぞれガスブレンダー9に導入、混合され、この混合ガスがガス供給管10を通って上記反応室1の底部から上記反応室1内に供給され、更に上記ガス分散板4の多数の小孔から噴出することにより、酸化珪素の流動層2が形成されるものである。なお、11はガス排出管、12は差圧計である。
平均粒子径1.0μm、BET比表面積6m/gの酸化珪素粉末SiO(x=1.05)50gを流動層反応室1の内径がφ80mmの流動層反応炉に仕込んだ。次に流量計6を介してArガスを2.0NL/min流入させながら、ヒーター3に通電して300℃/時間の昇温速度にて1100℃の温度まで昇温・保持した。1100℃に到達後、CHガスを1.0NL/min追加流入し、3時間の化学蒸着処理を行った。運転終了後、降温し、黒色粉末を回収した。この黒色粉末をらいかい器にて1時間粗粉砕し、導電性珪素複合体粉末を得た。得られた導電性珪素複合体粉末は、平均粒子径2.5μm、BET比表面積9m/g、黒鉛被覆量25%、シェーラー法により求めた珪素の微粒子の大きさが30nm、水酸化カリウム水溶液との反応による水素量より求めたゼロ価の活性珪素量が28.0%の粉末であった。
【0062】
電池評価
実施例2と同様にして評価用リチウムイオン二次電池を作製した。
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで1mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が20μAを下回った時点で充電を終了した。放電は1mAの定電流で行い、セル電圧が1.8Vを上回った時点で放電を終了し、放電容量を求めた。
【0063】
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回放電容量;1493mAh/cm、50サイクル目の放電容量;1470mAh/cm、50サイクル後のサイクル保持率;98.5%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
【0064】
[実施例7〜9]
原料酸化珪素粉末の平均粒子径、BET比表面積及び処理条件を表3に示す値にした他は実施例6と同様な方法で導電性珪素複合体粉末を製造した。得られた珪素複合体粉末の平均粒子径、BET比表面積、黒鉛被覆量、珪素微粒子の大きさ、ゼロ価の珪素含有量を表3に併記する。また、得られた導電性珪素複合体粉末を用いて実施例2と同様な方法で評価用リチウムイオン二次電池を作製し、実施例6と同様な方法で充放電試験を行った。試験結果を表4に記す。
【表3】
Figure 2004047404
【0065】
【表4】
Figure 2004047404
【0066】
[実施例10]
図7に示す回転炉を用いて、導電性珪素複合体粉末を製造した。
図7は、本発明の実施に好適な回転炉の一例を示す。図7において、21は原料の酸化珪素粉末Pが収容される炉芯管であり、この炉芯管21は円筒体の軸方向を水平方向に沿って又は水平方向に対し0〜10°、特に0.1〜5°傾斜させて配置した形態を有する。この場合、炉芯管21の入口側にはフィーダー22が連設されていると共に、出口側には回収ホッパー23が連設されており、炉芯管21を水平方向に対し傾斜させる場合、入口側から出口側に向けて下降傾斜するように配設する。24はモーター25の作動により上記炉芯管21を回転させる機構(ここでは、モーター25の回転軸26に取り付けられたプーリー27と炉芯管21に取り付けられたプーリー28との間にベルト29を巻回した機構であるが、これに制限されるものではない)である。また、上記炉芯管21はローラー30、30上に回転可能に配設されており、上記炉芯管回転機構24の作動により所定速度で回転し得るようになっている。
33は有機物ガス又は蒸気導入管、34は不活性ガス導入管であり、それぞれ流量計31、32が介装されていると共に、これら導入管33、34はガスブレンダー35と連結されており、ここで混合された混合ガスがガス供給管36により、炉芯管21の入口から炉芯管21内に導入されるものである。また、上記炉芯管21の外側には、ヒーター37が配設されているものである。
【0067】
平均粒子径2.5μm、BET比表面積10m/gの酸化珪素粉末SiO(x=1.05)をフィーダー22内に仕込んだ。次に流量計(Arガス)32を介してArガスを3.0NL/min流入させながら、ヒーター37に通電して300℃/時間の昇温速度にて1200℃の温度まで昇温・保持した。1200℃に到達後、内径φ80mmの炭化珪素製炉芯管1を2°に傾斜し、同時にモーター25を作動させ、炉芯管21を2rpmの速度で回転させた。次にCHガスを流量計31(CHガス)を介して2.0NL/min追加流入し、300g/時間の割合で酸化珪素粉末を炉芯管21内に供給し、化学蒸着処理を行った。この化学蒸着処理を10時間連続運転で行った結果、特に問題なく安定して製造でき、約4kgの黒色粉末が製造できた。
【0068】
次に、この黒色粉末をらいかい器にて1時間粗粉砕し、導電性珪素複合体粉末を得た。得られた導電性珪素複合体粉末は、平均粒子径3.2μm、BET比表面積9.8m/g、黒鉛被覆量18重量%、X線回折において結晶性Siのピークが見られる粉末であった。
これを用いて、評価用リチウムイオン二次電池を作製し、実施例6と同様な方法で充放電試験を行った。その結果、初回放電容量;1420mAh/cm、50サイクル目の放電容量;1400mAh/cm、50サイクル後のサイクル保持率;98.6%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。
【0069】
【発明の効果】
本発明の導電性珪素複合体は、非水電解質二次電池用負極材として用いられて、良好なサイクル性を与える。
【図面の簡単な説明】
【図1】固体29Si−NMRによる酸化珪素粉末を原料にして、熱CVD(メタンガス)をして得られた導電性珪素複合体と原料酸化珪素粉末の比較を示すチャートである。
【図2】X線回折(Cu−Kα)による酸化珪素粉末を原料にして、熱CVD(メタンガス)をして得られた導電性珪素複合体と原料酸化珪素粉末の比較を示すチャートで、(A)は導電性珪素複合体、(B)は酸化珪素のチャートである。
【図3】導電性珪素複合体粉末及びその表面部の透過電子顕微鏡写真で、(A)は粒子の外観、(B)は粒子表面部を示す。
【図4】導電性珪素複合体のラマンスペクトルである。
【図5】(A)は、導電性珪素複合体内部の透過電子顕微鏡写真、(B)はその部分拡大図である。
【図6】実施例6で用いた回分式流動層反応装置の概略図である。
【図7】実施例10で用いた回転炉の概略図である。
【符号の説明】
1 流動層反応室
2 流動層
3 ヒーター
4 ガス分散板
6 流量計
7 ガス導入管(有機ガス又は蒸気)
8 ガス導入管(不活性ガス)
9 ガスブレンダー
10 ガス供給管
11 ガス排出管
12 差圧計
21 炉芯管
22 フィーダー
23 回収ホッパー
25 モーター
30 ローラー
31 流量計(CHガス)
32 流量計(Arガス)
35 ガスブレンダー
37 ヒーター
P 粉体層[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive silicon composite powder provided with conductivity which is considered useful as a negative electrode active material for a lithium ion secondary battery, a method for producing the same, and a negative electrode material for a non-aqueous electrolyte secondary battery using the powder.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a secondary battery having a high energy density has been strongly demanded from the viewpoints of economy and reduction in size and weight of the devices.
Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method using an oxide such as V, Si, B, Zr, Sn or a composite oxide thereof as a negative electrode material (JP-A-5-174818, JP-A-6-60867 and others), a method in which a metal oxide melt-quenched and quenched is used as a negative electrode material (JP-A-10-294112), a method in which silicon oxide is used as a negative electrode material (Japanese Patent No. 2997741), a negative electrode Material is Si2N2O and Ge2N2A method using O (JP-A-11-102705) and the like are known. For the purpose of imparting conductivity to the negative electrode material, a method of subjecting SiO to mechanical alloying with graphite and then carbonizing (JP-A-2000-243396), and a method of coating a carbon layer on the surface of Si particles by a chemical vapor deposition method (Japanese Patent Application Laid-Open No. 2000-215887) and a method of coating the surface of silicon oxide particles with a carbon layer by a chemical vapor deposition method (Japanese Patent Application Laid-Open No. 2002-42806).
[0003]
[Patent Document 1]
JP-A-5-174818
[Patent Document 2]
JP-A-6-60867
[Patent Document 3]
JP-A-10-294112
[Patent Document 4]
Japanese Patent No. 2997741
[Patent Document 5]
JP-A-11-102705
[Patent Document 6]
JP 2000-243396 A
[Patent Document 7]
JP 2000-21587 A
[Patent Document 8]
JP-A-2002-42806
[0004]
[Problems to be solved by the invention]
However, in the above-mentioned conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cyclability is insufficient, or the characteristics required in the market are still insufficient, and cannot always be satisfied. Therefore, further improvement in energy density was desired.
[0005]
In particular, in Japanese Patent No. 2997741, silicon oxide is used as a negative electrode material of a lithium ion secondary battery to obtain a high-capacity electrode. However, as far as the present inventors can see, the irreversible capacity at the time of the first charge / discharge has not yet been reached. Or the cycleability has not reached a practical level, and there is room for improvement. Also, with respect to the technique of imparting conductivity to the negative electrode material, Japanese Patent Application Laid-Open No. 2000-243396 discloses that since a solid is fused to a solid, a uniform carbon film is not formed and the conductivity is insufficient. There is a problem, and in the method of Japanese Patent Application Laid-Open No. 2000-215887, although a uniform carbon film can be formed, since Si is used as the negative electrode material, expansion and contraction during adsorption and desorption of lithium ions are reduced. It is too large, as a result, it cannot be put to practical use, and the cyclability is reduced.Therefore, the amount of charge must be limited to prevent this. In the method disclosed in JP-A-2002-42806, Although the precipitation of fine silicon crystals, the structure of the carbon coating, and the lack of fusion with the base material were insufficient, the improvement in cycleability was confirmed, but as the number of charge / discharge cycles increased, the capacity gradually increased. Reduced, there is a phenomenon that decreases rapidly after a certain number of times, there is a problem as the secondary battery is still insufficient.
[0006]
The present invention has been made in view of the above circumstances, and has a conductive silicon composite, a method for producing the same, and a negative electrode material for a non-aqueous electrolyte secondary battery, which enable the production of a negative electrode for a lithium ion secondary battery having higher cycle characteristics. The purpose is to provide.
[0007]
Means for Solving the Problems and Embodiments of the Invention
The present inventors have conducted intensive studies to achieve the above object, and as a result, have found a conductive silicon composite that is effective as an active agent for a negative electrode of a nonaqueous electrolyte secondary battery having higher cyclability.
[0008]
That is, the development of an electrode material having a large charge / discharge capacity is extremely important, and research and development are being conducted in various places. Under such circumstances, silicon and amorphous silicon oxide (SiO 2) are used as a negative electrode active material for a lithium ion secondary battery.x) Is of great interest because of its large capacity. However, due to the large deterioration when repeatedly charged and discharged, that is, poor cyclability, and especially low initial efficiency, only a small part of At present, it has not been put to practical use except for those mentioned above. From such a viewpoint, as a result of studying with the aim of improving the cyclability and the initial efficiency, the performance of the silicon oxide powder is significantly improved by performing the CVD (ie, chemical vapor deposition) process as compared with the conventional one. Although it was found that it was improved, further improvements in long-term stability and initial efficiency were required.
[0009]
For this reason, when CVD-treated silicon oxide was used as the active material of a negative electrode of a lithium ion secondary battery, the cause of the rapid decrease in charge / discharge capacity after multiple charge / discharge was examined from the structure itself and analyzed. In addition, a large volume change occurs due to occlusion and release of a large amount of lithium, which leads to destruction of particles, and furthermore, the volume of silicon and silicon compounds, which originally have low conductivity due to occlusion of lithium, expands the volume of the electrode itself. It has been found that the conductivity is lowered, and as a result, the movement of lithium ions in the electrode is hindered due to the lowering of the current collecting property, and the cyclability and the efficiency are lowered.
[0010]
Therefore, based on such a fact, as a result of earnestly studying a structure that is stable not only to the surface conductivity but also to the volume change accompanying the occlusion and release of lithium, the silicon microcrystals or fine particles were made inert and strong. The above problem as a negative electrode active material for a lithium ion secondary battery can be solved by dispersing carbon in a material such as silicon dioxide and further fusing carbon for imparting conductivity to at least a part of this surface, and It has been found that the battery has a large charge / discharge capacity and can greatly improve the charge / discharge cycle performance and efficiency. Therefore, it is effective to finely disperse silicon microcrystals and / or fine particles in a silicon compound, for example, silicon dioxide, and in this case, it is particularly effective to coat carbon so that at least a part of the surface of the composite is fused. Thus, the present invention has been accomplished.
[0011]
Accordingly, the present invention provides the following conductive silicon composite, a method for producing the same, and a negative electrode material for a non-aqueous electrolyte secondary battery.
(1) A conductive silicon composite, wherein the surfaces of particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound are coated with carbon.
(2) Average particle size 0.01 to 30 μm, BET specific surface area 0.5 to 20 m2/ G, and the coated carbon amount is 3 to 70% by weight.
(3) (1) or (1) wherein the size of the silicon microcrystal is 1 to 500 nm, the silicon compound is silicon dioxide, and at least a part of the surface thereof is fused with carbon. 2) The conductive silicon composite according to the above.
(4) In X-ray diffraction, a diffraction peak attributed to Si (111) is observed, and the silicon crystal size determined by the Scherrer method based on the half width of the diffraction line is 1 to 500 nm. The conductive silicon composite according to (1), (2) or (3), wherein the coating carbon amount is 5 to 70% by weight.
(5) The conductive material according to any one of (1) to (4), which contains 1 to 35% by weight of zero-valent silicon capable of generating hydrogen gas by acting with an alkali hydroxide solution. Silicon composite.
(6) Raman shift is 1580 cm from Raman spectrum-1The conductive silicon composite according to any one of (1) to (5), which has a spectrum specific to a graphite structure in the vicinity.
(7) The method for producing a conductive silicon composite according to (1), wherein the silicon oxide is disproportionated with an organic gas and / or vapor at a temperature of 900 to 1400 ° C and is subjected to chemical vapor deposition.
(8) Silicon oxide has an average particle diameter of 0.01 to 30 μm and a BET specific surface area of 0.1 to 30 m2/ G of the general formula SiOxThe method for producing a conductive silicon composite according to (7), wherein the method is a silicon oxide powder represented by (1.0 ≦ x <1.6).
(9) Silicon composites in which silicon oxide is previously heat-treated at 900 to 1400 ° C. in an inert gas atmosphere to disproportionate, silicon fine particles coated with silicon dioxide by a sol-gel method, and silicon fine powder as fine powder A composite obtained by sintering a product solidified through silica and water, or a product obtained by heating silicon and its partial oxide or nitride at 800 to 1400 ° C. in an inert gas stream at 800 to 1400 ° C. The method for producing a conductive silicon composite according to (1), wherein the conductive silicon composite is subjected to a chemical vapor deposition treatment with an organic gas and / or vapor at the temperature described above.
(10) Disproportionation is performed by subjecting silicon oxide to a chemical vapor deposition treatment with an organic gas and / or steam at a temperature of 500 to 1200 ° C. in advance and then performing a heat treatment at 900 to 1400 ° C. in an inert gas atmosphere. (1) The method for producing a conductive silicon composite according to (1).
(11) The chemical vapor deposition process and / or the disproportionation process are performed by using any one of a reactor of a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, and a rotary kiln. The method for producing a conductive silicon composite according to any one of (7) to (10).
(12) A negative electrode material for a non-aqueous electrolyte secondary battery using the conductive silicon composite according to any one of (1) to (6).
(13) A mixture of the conductive silicon composite according to any one of (1) to (6) and a conductive agent, wherein the conductive agent in the mixture is 1 to 60% by weight, and A negative electrode material for a non-aqueous electrolyte secondary battery using a mixture having a carbon content of 25 to 90% by weight.
[0012]
Hereinafter, the present invention will be described in more detail.
When the present invention is used as a negative electrode active material for a lithium ion secondary battery, the charge / discharge capacity is expected to be several times that of a graphite-based battery which is currently the mainstream, but on the other hand, repetition is expected. The present invention relates to a conductive silicon composite in which the cycle performance and efficiency of a silicon-based material, which is a major bottleneck in performance degradation due to charge / discharge, are improved. Preferably, the particle surface having a structure dispersed in silicon dioxide is coated (fused) with carbon in a state where at least a part thereof is fused with carbon.
[0013]
In the present invention, fusion refers to a state in which carbon and silicon coexist between a layered carbon layer and an internal silicon composite, and both are fused at an interface portion. It can be observed with a microscope (see FIG. 3).
[0014]
In this case, the conductive silicon composite of the present invention preferably has the following properties.
i. In X-ray diffraction (Cu-Kα) using copper as a cathode, a diffraction peak attributed to Si (111) was observed around 2θ = 28.4 °, and based on the spread of the diffraction line, The particle diameter of the silicon crystal determined by the Scherrer equation is preferably 1 to 500 nm, more preferably 2 to 200 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. On the other hand, if the size is larger than 500 nm, the expansion / contraction at the time of charge / discharge may increase, and the cyclability may decrease. The size of the silicon fine particles can be measured by a transmission electron micrograph.
ii. Solid-state NMR (29In the Si-DDMAS measurement, the spectrum has a broad silicon dioxide peak centered around -110 ppm and a peak characteristic of Si diamond crystal at around -84 ppm. Note that this spectrum is similar to that of ordinary silicon oxide (SiO 2).x: X = 1.0 + α), and the structure itself is clearly different. In addition, transmission electron microscopy confirms that silicon crystals are dispersed in amorphous silicon dioxide.
iii. In the negative electrode of a lithium ion secondary battery, zero-valent silicon capable of inserting and extracting lithium ions is treated with alkali hydroxide, a method according to ISO {DIS} 9286, which is a method for measuring free silicon in fine silicon carbide powder. The amount of hydrogen generated can be measured by the generation of hydrogen at the time of the hydrogenation, and can be measured as 1% by weight or more, preferably 5% by weight or more, more preferably 10% by weight or more, further preferably 20% by weight or more in terms of the amount of hydrogen generated. The upper limit is preferably 35% by weight or less, particularly preferably 30% by weight or less. When the amount of zero-valent silicon is less than 1% by weight, the amount of active material for occluding and releasing Li is small, so that the charge / discharge capacity of a lithium ion secondary battery is reduced. Although the charge / discharge capacity of an ion secondary battery is increased, the expansion and contraction of the electrode during charging / discharging becomes too large, and as a result, the cyclability may be reduced.
iv. Observation of the surface portion of the particles with a transmission electron microscope shows that the carbon is arranged in a layered manner, thereby increasing conductivity, and furthermore, since the inside is in a state of fusion with silicon dioxide, the carbon layer can be prevented from falling off. Stable conductivity is secured.
v. From Raman spectrum, 1580cm-1By having a spectrum attributable to graphite in the vicinity, part or all of carbon has a graphite structure.
[0015]
The average particle diameter of the conductive silicon composite powder of the present invention is 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, particularly preferably 0.3 μm or more, and 30 μm or less as an upper limit, More preferably, it is 20 μm or less, further preferably 10 μm or less. If the average particle size is too small, the bulk density becomes too small, and the charge / discharge capacity per unit volume decreases.On the other hand, if the average particle size is too large, it becomes difficult to prepare an electrode film, and from the current collector. There is a risk of peeling. Incidentally, the average particle diameter is a weight average value D in a particle size distribution measurement by a laser light diffraction method.50(Ie, the particle diameter or median diameter at which the cumulative weight becomes 50%).
[0016]
The BET specific surface area of the conductive silicon composite powder of the present invention is 0.5 to 20 m.2/ G, especially 1 to 10 m2/ G is preferred. 0.5m BET specific surface area2/ G, the surface activity is reduced, the binding force of the binder during electrode preparation is reduced, and as a result, the cycleability upon repeated charge and discharge is reduced, and conversely, the BET specific surface area is 20 m2If it is larger than / g, the amount of solvent absorbed during electrode preparation increases, and a large amount of a binder may be added in order to maintain the binding property. As a result, the conductivity decreases, and the cyclability decreases. There is a risk. The BET specific surface area is N2This is a value measured by the BET one-point method, which is measured by the gas adsorption amount.
[0017]
In the present invention, the coated (deposited) carbon amount of the conductive silicon composite powder in the conductive silicon composite powder (that is, the silicon composite powder whose surface is covered with a conductive film by a chemical vapor deposition process) is as follows. 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, and as an upper limit 70% by weight or less, more preferably 50% by weight or less, further preferably 40% by weight or less, particularly preferably 30% by weight or less. % Or less is preferable. If the amount of coated (deposited) carbon is too small, the conductivity of the silicon composite is improved, but the cycle characteristics in the case of a lithium ion secondary battery may not be sufficient. It becomes too much, and the amount of the negative electrode may decrease.
Further, the bulk density may be reduced, and the charge / discharge capacity per unit volume may be reduced.
[0018]
The electric conductivity of the conductive silicon composite powder is 1 × 10-6S / m or more, especially 1 × 10-4S / m or more is desirable. Electric conductivity is 1 × 10-6When it is smaller than S / m, the conductivity of the electrode is small, and when used as a negative electrode material for a lithium ion secondary battery, the cycleability may be reduced. Here, the electric conductivity is a value obtained by filling a powder to be measured in a cylindrical cell having four terminals and measuring a voltage drop when an electric current is applied to the powder to be measured. is there.
[0019]
Next, a method for producing a conductive silicon composite according to the present invention will be described.
The conductive silicon composite powder of the present invention is formed by coating the surfaces of particles having a structure in which silicon microcrystals are dispersed in a silicon compound with carbon, and preferably has an average particle diameter of about 0.01 to 30 μm. The production method is not particularly limited as long as it is a product, but for example, the following methods I to III can be suitably adopted.
I: General formula SiOx(1.0 ≦ x <1.6) The raw material is a silicon oxide powder represented by the following formula: 900 to 1400 ° C., preferably 1000 to 1400 ° C., more preferably 1050 to 1300 in an atmosphere containing at least an organic gas and / or steam. C., more preferably a heat treatment in a temperature range of 1100 to 1200 ° C. to disproportionate the raw material silicon oxide powder to a composite of silicon and silicon dioxide, and to chemically vapor-deposit the surface thereof.
II: General formula SiOxThe silicon oxide powder represented by (1.0 ≦ x <1.6) is subjected to a heat treatment at 900 to 1400 ° C., preferably 1000 to 1400 ° C., more preferably 1100 to 1300 ° C. in advance in an inert gas atmosphere to obtain unevenness. Sintering of a silicon compound, a compound obtained by coating silicon fine particles with silicon dioxide by a sol-gel method, a silicon fine powder solidified via fine water silica such as fumed silica and precipitated silica and water The composite obtained as described above, or a material obtained by pulverizing silicon and its partial oxide or nitride, preferably to a particle size of 0.1 to 50 μm, is heated in advance at 800 to 1400 ° C. in an inert gas stream as a raw material. 800-1400 ° C., preferably 900-1300 ° C., more preferably 10-1 ° C. in an atmosphere containing at least an organic gas and / or steam. How to chemical vapor deposition of the surface was heat-treated at a temperature range of 0 to 1,200 ° C.,
III: General formula SiOx(1.0 ≦ x <1.6) The silicon oxide powder represented by (1.0 ≦ x <1.6) is previously chemically treated with an organic gas and / or vapor in a temperature range of 500 to 1200 ° C., preferably 500 to 1000 ° C., and more preferably 500 to 900 ° C. A method of disproportionating by subjecting a material subjected to a vapor deposition treatment to a heat treatment in an inert gas atmosphere at a temperature of 900 to 1400 ° C, preferably 1000 to 1400 ° C, more preferably 1100 to 1300 ° C.
[0020]
In the present invention, silicon oxide is a general term for an amorphous silicon oxide obtained by cooling and depositing silicon monoxide gas generated by heating a mixture of silicon dioxide and metallic silicon. The silicon oxide powder used in the present invention has the general formula SiOxThe average particle size is 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.5 μm or more, and preferably 30 μm or less, more preferably 20 μm or less as an upper limit. BET specific surface area 0.1m2/ G or more, more preferably 0.2 m2/ G or more, 30m as the upper limit2/ G or less, more preferably 20 m2/ G or less is preferred. The range of x is preferably 1.0 ≦ x <1.6, more preferably 1.0 ≦ x ≦ 1.3, and still more preferably 1.0 ≦ x ≦ 1.2. If the average particle size and BET specific surface area of the silicon oxide powder are out of the above ranges, a conductive silicon composite powder having a desired average particle size and BET specific surface area cannot be obtained, and SiO having a value of x smaller than 1.0 is not obtained.xPowders are difficult to manufacture, and those with an x value of 1.6 or more are subjected to chemical vapor deposition to form an inert SiO 22Is large, and when used as a lithium ion secondary battery, the charge / discharge capacity may be reduced.
[0021]
Regarding the method I or II, in a chemical vapor deposition process (that is, a thermal CVD process) in a temperature range of 800 to 1400C (preferably 900 to 1400C, particularly 1000 to 1400C), a heat treatment temperature is lower than 800C. In addition, the fusion of the conductive carbon film and the silicon composite and the alignment (crystallization) of carbon atoms are insufficient. Conversely, if the temperature is higher than 1400 ° C., the structuring of the silicon dioxide portion progresses, and the traffic of lithium ions increases. As a result, the function as a lithium ion secondary battery may be reduced.
[0022]
On the other hand, in the above method I or III, in the disproportionation of silicon oxide, if the heat treatment temperature is lower than 900 ° C., the disproportionation does not progress at all or the formation of fine silicon cells (microcrystals of silicon) is extremely difficult. If it takes a long time and is not efficient, and if the temperature is higher than 1400 ° C., on the contrary, the structuring of the silicon dioxide part progresses and the traffic of lithium ions is hindered, so that the function as a lithium ion secondary battery may be reduced. There is.
[0023]
In the method III, since the disproportionation of silicon oxide is performed at 900 to 1400 ° C., particularly 1000 to 1400 ° C. after the CVD process, the temperature of the chemical vapor deposition (CVD) is lower than 800 ° C. Even in the treatment in the region, a conductive carbon film in which carbon atoms are arranged (crystallized) and a silicon composite are finally fused on the surface.
[0024]
As described above, the carbon film is preferably formed by performing thermal CVD (chemical vapor deposition at 800 ° C. or higher). The time of thermal CVD is appropriately set in relation to the amount of carbon. Particles may be aggregated in this treatment, and the aggregates are crushed by a ball mill or the like. In some cases, thermal CVD is repeated again.
[0025]
In the above method I, the material represented by the general formula SiOxWhen silicon oxide represented by (1.0 ≦ x <1.6) is used, a disproportionation reaction is performed simultaneously with the chemical vapor deposition treatment, and silicon having a crystal structure is finely dispersed in silicon dioxide. In this case, it is necessary to appropriately select a processing temperature, a processing time, a type of raw material for generating an organic substance gas, and an organic substance gas concentration for promoting chemical vapor deposition and disproportionation. The heat treatment time ((CVD / disproportionation) time) is generally selected from the range of 0.5 to 12 hours, preferably 1 to 8 hours, particularly 2 to 6 hours. For example, when the treatment temperature is 1000 ° C., it is preferable to perform the treatment for at least 5 hours or more.
[0026]
In the above method II, the heat treatment time (CVD treatment time) when heat treatment is performed in an atmosphere containing an organic gas and / or vapor is usually in the range of 0.5 to 12 hours, particularly 1 to 6 hours. Can be. Note that SiOxThe heat treatment time (disproportionation time) when silicon oxide is disproportionated in advance can be usually 0.5 to 6 hours, particularly 0.5 to 3 hours.
[0027]
Further, in the method of the above III, SiO 2xCan be usually 0.5 to 12 hours, particularly 1 to 6 hours, in the case of preliminarily performing chemical vapor deposition, and the heat treatment time in an inert gas atmosphere (disproportionation time) ) Can usually be for 0.5 to 6 hours, especially 0.5 to 3 hours.
[0028]
As an organic substance used as a raw material for generating an organic substance gas in the present invention, a substance capable of being thermally decomposed at the heat treatment temperature to produce carbon (graphite), particularly in a non-oxidizing atmosphere, is selected. For example, methane, ethane, Aliphatic or alicyclic hydrocarbons such as ethylene, acetylene, propane, butane, butene, pentane, isobutane, and hexane, alone or in mixture, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, Examples thereof include monocyclic to tricyclic aromatic hydrocarbons such as chlorobenzene, indene, coumarone, pyridine, anthracene, and phenanthrene, and mixtures thereof. Gas gas oil, creosote oil, anthracene oil and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.
[0029]
The thermal CVD (thermal chemical vapor deposition) and / or the disproportionation treatment may be performed using a reaction device having a heating mechanism in a non-oxidizing atmosphere, and is not particularly limited, and may be a continuous method or a batch method. Specifically, a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln and the like can be appropriately selected according to the purpose. In this case, as the (processing) gas, the organic substance gas alone or the organic substance gas and Ar, He, H2, N2A mixed gas of a non-oxidizing gas such as the above can be used.
[0030]
In this case, a reactor in which a furnace core tube such as a rotary furnace or a rotary kiln is disposed in the horizontal direction and the furnace core tube rotates is preferable, and by performing a chemical vapor deposition process while rolling silicon oxide particles by this. In addition, stable production can be achieved without causing aggregation between silicon oxide particles. The rotation speed of the furnace core tube is preferably 0.5 to 30 rpm, particularly preferably 1 to 10 rpm. The reactor is not particularly limited as long as it has a furnace core tube capable of holding an atmosphere, a rotating machine groove for rotating the furnace core tube, and a heating mechanism capable of raising and holding the temperature. A raw material supply mechanism (for example, a feeder) and a product recovery mechanism (for example, a hopper) may be provided, and a furnace core tube may be inclined or a baffle plate may be provided in the furnace core tube in order to control the residence time of the raw material. Also, the material of the furnace core tube is not particularly limited, and ceramics such as silicon carbide, alumina, mullite, and silicon nitride, refractory metals such as molybdenum and tungsten, SUS, and quartz are appropriately selected according to processing conditions and processing purposes. Can be used.
[0031]
The fluidized gas linear velocity u (m / sec) is the fluidization start velocity umfRatio u / umfIs 1.5 ≦ u / umfBy setting the range to be ≦ 5, the conductive film can be formed more efficiently. u / umfIs less than 1.5, fluidization becomes insufficient, and the conductive film may vary, and conversely, u / umfExceeds 5, secondary agglomeration of particles occurs, and a uniform conductive film may not be formed. Here, the fluidization start speed varies depending on the particle size, the processing temperature, the processing atmosphere, and the like. The fluidizing gas (linear velocity) is gradually increased, and the powder pressure loss at that time is W (powder weight) / It can be defined as the value of the fluidized gas linear velocity when A (fluidized bed cross-sectional area) is reached. Note that umfCan be performed usually in the range of about 0.1 to 30 cm / sec, preferably about 0.5 to 10 cm / sec.mfCan be generally 0.5 to 100 μm, preferably 5 to 50 μm. When the particle diameter is smaller than 0.5 μm, secondary aggregation occurs, and the surface of each particle may not be effectively treated.
[0032]
The conductive silicon composite powder obtained in the present invention is used as a negative electrode material (negative electrode active material) to produce a nonaqueous electrolyte secondary battery having high capacity and excellent cycle characteristics, in particular, a lithium ion secondary battery. Can be manufactured.
[0033]
In this case, the obtained lithium ion secondary battery is characterized in that the above-described negative electrode active material is used, and other materials such as a positive electrode, a negative electrode, an electrolyte, a separator, and a battery shape are not limited. For example, as the positive electrode active material, LiCoO2, LiNiO2, LiMn2O4, V2O5, MnO2, TiS2, MoS2For example, an oxide of a transition metal such as, and a chalcogen compound are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used. As the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran or the like alone or 2 A combination of more than one type is used. Further, various other non-aqueous electrolytes and solid electrolytes can also be used.
[0034]
When a negative electrode is manufactured using the conductive silicon composite powder, a conductive agent such as graphite can be added to the conductive silicon composite powder. Also in this case, the type of the conductive agent is not particularly limited, and may be an electronically conductive material that does not cause decomposition or deterioration in the configured battery. Specifically, Al, Ti, Fe, Ni, Cu, Metal powders and metal fibers such as Zn, Ag, Sn, and Si, or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, and various resin firings Graphite such as a body can be used.
[0035]
Here, the addition amount of the conductive agent is preferably 1 to 60% by weight, more preferably 10 to 50% by weight, particularly preferably 20 to 50% by weight in the mixture of the conductive silicon composite powder and the conductive agent. If it is less than 1% by weight, it may not be able to withstand expansion and contraction due to charge and discharge, and if it exceeds 60% by weight, the charge and discharge capacity may be small. Further, the total amount of carbon in the mixture (that is, the total amount of the amount of carbon coated (deposited) on the surface of the conductive silicon composite powder and the amount of carbon in the conductive agent) is preferably 25 to 90% by weight, and particularly preferably 30 to 90% by weight. 50% by weight is preferred. If the total carbon content is less than 25% by weight, it may not be able to withstand expansion and contraction accompanying charge / discharge, and if it exceeds 90% by weight, the charge / discharge capacity may be reduced.
[0036]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following examples,% indicates% by weight, and gr indicates grams.
[0037]
[Example 1]
As an example of the structure of the conductive silicon composite obtained in the present invention, silicon oxide (SiO 2)xThe conductive silicon composite obtained using ()) as a raw material will be described.
[0038]
Silicon oxide (SiOx: X = 1.02) was pulverized with a ball mill using hexane as a dispersion medium, and the obtained silicon oxide powder was passed through a rotary kiln-type reactor at 1150 ° C under aeration of a methane-argon mixed gas at an average residence time of about 1150 ° C. Thermal CVD was performed simultaneously with disproportionation of silicon oxide under the condition of 2 hours. The solid NMR and X-ray diffraction measurement results, transmission electron micrograph, and Raman spectrum (excitation light: 532 nm) of the thus obtained are shown in FIGS. First, the solid material of silicon oxide and conductive silicon composite29From the Si-NMR measurement results, as the negative electrode active material of the lithium ion secondary battery, in the conductive silicon composite having excellent performance, a peak around −84 ppm, which is an aggregate of silicon, appears, This shows that the structure is completely different from the completely random structure of silicon dioxide and silicon. Further, from the X-ray diffraction pattern by Cu-Kα ray, in the obtained conductive silicon composite, also unlike silicon oxide, the diffraction line attributed to Si (111) near 2θ = 28.4 ° is different. The size of the silicon crystal dispersed in silicon dioxide determined by the Scherrer method from the half width of the diffraction line is 11 nm, which indicates that fine silicon (Si) crystal is SiO2It is understood that those dispersed in ()) are preferable. Further, from a transmission electron micrograph near the surface of the particle, carbon atoms are arranged in a layered manner along the particle surface, and the graphite structure is confirmed in the Raman spectrum of FIG. The rate will be higher. Furthermore, fusion with the substrate is observed below the carbon layer, which suppresses the destruction of the particles and the decrease in conductivity due to occlusion and release of lithium ions, which is particularly linked to an improvement in cyclability. is there.
[0039]
More specifically, FIG.29It is a comparison between a conductive silicon composite obtained by thermal CVD (methane gas) using a silicon oxide powder as a raw material and a raw silicon oxide powder by Si-NMR, in which silicon oxide belongs to zero-valent silicon. A broad peak around 72 ppm and a broad peak around -114 ppm belonging to tetravalent silicon (silicon dioxide) are observed, whereas the conductive silicon composite according to the present invention. A peak indicating that zero-valent silicon aggregates to form a silicon-silicon bond is observed at around -84 ppm.
[0040]
FIG. 2 shows a comparison between the conductive silicon composite powder obtained by thermal CVD (methane gas) using the silicon oxide powder as a raw material by X-ray diffraction (Cu-Kα) and the raw silicon oxide powder. In the conductive silicon composite according to the present invention, only a very broad peak indicating homogeneity and amorphousness was observed at around 2θ = 24 °, whereas around 2θ = 28.4 °. A peak attributed to Si (111) of crystalline silicon (diamond structure) is observed. The size of the crystal of silicon dispersed in silicon dioxide determined from the half width by the Scherrer method is about 11 nm.
[0041]
From the transmission electron micrographs of the conductive silicon composite powder and the surface of FIG. 3, it can be seen that carbon atoms are arranged in a layer at the outermost shell. The Raman spectrum of the conductive silicon composite of FIG.-1The spectrum in the vicinity indicates that part or all of carbon has a graphite structure. 1330cm with good crystallinity-1Near spectrum decreases.
[0042]
Furthermore, massive silicon oxide (SiO 2)x: X = 1.02) was placed in a vertical reactor and heated to 1200 ° C. under an argon stream, and heated for 2 hours while passing a methane (50 vol.%)-Argon mixed gas therethrough. CVD was performed. FIG. 5 shows a transmission electron micrograph of the conductive silicon composite thus obtained, which was sliced by FIB processing. The photograph also shows that silicon is clearly dispersed as fine crystals. ing. The regularly shaped particles that appear dark or whitish in the photograph are silicon crystals. Depending on the direction of the crystal, the electron transmission differs, so that it looks white or black. Some of the things that look black are twinned.
[0043]
[Example 2]
Silicon oxide (SiOx: X = 1.02) was pulverized with a ball mill using hexane as a dispersion medium, the obtained suspension was filtered, and the solvent was removed under a nitrogen atmosphere to obtain a powder having an average particle diameter of about 0.8 µm. . This silicon oxide powder was subjected to thermal CVD simultaneously with disproportionation of the silicon oxide using a rotary kiln type reactor under the conditions of 1150 ° C. and an average residence time of about 2 hours while passing a mixed gas of methane and argon. The thus obtained product had a deposited carbon amount of 16.5%, and active silicon as zero-valent silicon determined from the amount of hydrogen by reaction with an aqueous potassium hydroxide solution was 26.7%. In addition, X-ray diffraction (Cu-Kα) was performed, and the crystal of silicon dispersed in silicon dioxide was determined by the Scherrer method from the half width of the diffraction line attributed to Si (111) at 2θ = 28.4 °. The size was about 11 nm. After the thermal CVD, the conductive silicon composite was crushed with a grinder to obtain a powder having an average particle diameter of about 2.8 μm. Using this, battery evaluation was performed by the following method. Table 1 shows the results.
[0044]
[Battery evaluation]
The evaluation as a negative electrode active material for a lithium ion secondary battery was the same in all Examples and Comparative Examples, and was performed by the following method and procedure.
First, artificial graphite (average particle diameter D) was added to the obtained conductive silicon composite.50= 5 μm), and carbon was added so that the carbon in the artificial graphite and the carbon in the deposited conductive silicon composite became 40% in total. 10% of polyvinylidene fluoride was added to this mixture, and N-methylpyrrolidone was further added to form a slurry. The slurry was applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then the electrode was pressed by a roller press. Molded and finally 2cm2Into a negative electrode.
[0045]
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride as a non-aqueous electrolyte was 1/1 (volume) of ethylene carbonate and 1,2-dimethoxyethane. Ratio) Using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in the mixed solution, a lithium ion secondary battery for evaluation using a 30 μm thick polyethylene microporous film as a separator was produced.
[0046]
The manufactured lithium ion secondary battery was left overnight at room temperature, and then charged with a constant current of 3 mA using a secondary battery charge / discharge tester (manufactured by Nagano Corporation) until the test cell voltage reached 0 V. After reaching 0 V, charging was performed by reducing the current so as to maintain the cell voltage at 0 V. Then, the charging was terminated when the current value became lower than 100 μA. The discharge was performed at a constant current of 3 mA, and the discharge was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.
[0047]
The above charge / discharge test was repeated, and the charge / discharge test of the lithium ion secondary battery for evaluation was performed for 30 cycles and 50 cycles. Table 1 shows the results.
[0048]
[Example 3]
The block-shaped or flake-shaped silicon oxide was heated at 1300 ° C. for 1 hour in an inert gas (argon) atmosphere to disproportionate to silicon and silicon dioxide. X-ray diffraction (Cu-Kα) was performed on the obtained material, and the crystal size determined by the Scherrer method from the half-value width of the diffraction line attributed to Si (111) at 2θ = 28.4 ° was about 55 nm. The heat-treated silicon-silicon dioxide composite was pulverized by a ball mill using hexane as a dispersion medium, and the obtained suspension was filtered and, after removing the solvent under a nitrogen atmosphere, having an average particle diameter of about 8 μm. A powder was obtained. This silicon composite powder was subjected to thermal CVD at 1100 ° C. for 3 hours in a vertical tubular furnace (inner diameter: about 50 mmφ) under a gaseous mixture of methane and argon. Thus, the obtained conductive silicon composite was crushed with a grinder. The obtained conductive silicon composite powder had a deposited carbon content of 11.3%, an active silicon content of 28.1%, and an average particle size of 8.6 μm. Silicon dispersed in silicon dioxide determined by the Scherrer method The crystal size was about 60 nm.
[0049]
Evaluation of the conductive silicon composite powder thus obtained as a negative electrode active material for a lithium ion secondary battery was performed under exactly the same conditions as in Example 2. Table 1 shows the results.
[0050]
[Example 4]
Using the silicon oxide powder used in Example 2 as a raw material, thermal CVD was performed at 800 ° C. for 1 hour in a vertical tubular furnace (inner diameter: about 50 mmφ) under aeration of an acetylene-argon mixed gas. Thereafter, heat treatment was performed by a rotary kiln set at about 1200 ° C. under an inert gas stream for an average residence time of about 1 hour to perform disproportionation. The analysis result of the conductive silicon composite powder obtained in this manner shows that the amount of carbon is 17.5%, the amount of active silicon is 25.4%, the average particle diameter is 3.1 μm, and X-ray diffraction (Scherrer method) The crystal size of the silicon dispersed in the silicon dioxide determined by the above was about 20 nm. Evaluation of the silicon composite having such physical properties as a negative electrode active material for a lithium ion secondary battery was performed under exactly the same conditions as in Example 2. Table 1 shows the results.
[0051]
[Example 5]
Hexane is used as a dispersion medium by using an industrial grade metallic silicon powder (Sirgrain Powder 10 μm manufactured by Elkem) using a grinding machine DYNO-MILL Type KDL-Pilot A (manufactured by 0.1 mm zirconia beads) manufactured by Willy A Bachofen AG. 100 gr of the obtained silicon fine powder (average particle diameter of about 90 nm) and fumed silica (Aerosil 200 manufactured by Nippon Aerosil Co., Ltd.) were mixed at a ratio of 200 gr, water was added thereto, and the mixture was kneaded tightly at 150 ° C. Dried and solidified. Thereafter, this was sintered under a nitrogen atmosphere at 1000 ° C. for 3 hours. After cooling, the mixture was pulverized with a ball mill using hexane as a dispersion medium to an average particle diameter of 8 μm. This silicon-silicon dioxide composite powder was subjected to thermal CVD using a rotary kiln-type reactor under the conditions of 1150 ° C. and an average residence time of about 2 hours while passing a mixed gas of methane and argon. The thus obtained product had a deposited carbon amount of 18.5%, and the active silicon which was zero-valent silicon determined from the amount of hydrogen by the reaction with the aqueous potassium hydroxide solution was 29.7%. After the thermal CVD, the conductive silicon composite was crushed with a grinder to obtain a powder having an average particle diameter of about 9.2 μm.
[0052]
The crushed silicon composite was evaluated as a lithium ion negative electrode active material under the same conditions as in Example 2. Table 1 shows the results.
[0053]
[Comparative Example 1]
The powder of the disproportionation reaction product of silicon oxide and silicon dioxide (silicon-silicon dioxide composite) obtained in Example 3 was not subjected to the thermal CVD treatment, and lithium ion was obtained under the same conditions as in Example 2. Evaluation as a secondary battery negative electrode active material was performed. Table 1 shows the results.
[0054]
[Comparative Example 2]
Using the silicon oxide powder obtained in Example 2 as a raw material, thermal CVD was performed for 1 hour at 800 ° C. under a acetylene-argon mixed gas flow using a vertical tubular furnace (inner diameter: about 50 mmφ). The analysis results of the thus obtained silicon oxide carbon CVD powder showed that the amount of carbon deposited was 18.5%, the amount of active silicon was 25.4%, and the average particle diameter was 2.1 μm. In the X-ray diffraction measurement, the pattern was the same as the pattern of silicon oxide as the raw material, and no disproportionation occurred. Evaluation of the silicon composite having such physical properties as a negative electrode active material for a lithium ion secondary battery was performed under the same conditions as in Example 2. Table 1 shows the results. This is an amorphous silicon oxide (SiO 2) from X-ray diffraction.x) Identified as powder-coated with carbon, but low in both cycleability and initial efficiency.
[0055]
[Comparative Example 3]
A conductive silicon composite was produced in the same manner as in Example 5, except that a metal silicon powder having an average particle diameter of 1 μm was used instead of the metal silicon powder having an average particle diameter of about 90 nm.
The analysis result of the carbon CVD-processed powder of the silicon-silicon dioxide composite thus obtained showed that the amount of deposited carbon was 17.8%, the amount of active silicon was 28.5%, and the average particle diameter was 9.5 μm. The carbon-coated silicon-silicon dioxide composite having such a composition was evaluated as a negative electrode active material for a lithium ion secondary battery under exactly the same conditions as in Example 2. Table 1 shows the results.
[0056]
[Comparative Example 4]
The mixture obtained by simply mixing the silicon fine powder (average particle diameter 90 nm) obtained in Example 5 and spherical silica having an average particle diameter of 8.0 μm at a weight ratio of about 1: 2 was subjected to the CVD conditions described in Example 2. To obtain a composite having a deposited carbon amount of 14.0% and an active silicon amount of 34.0%. This was evaluated as a negative electrode active material for a lithium ion secondary battery under exactly the same conditions as in Example 2. As a result, the cyclability was extremely low.
[0057]
[Table 1]
Figure 2004047404
[0058]
[Comparative Example 5]
Using a rotary kiln-type reactor, 200 g of the fumed silica (Aerosil 200 manufactured by Nippon Aerosil) used in Example 5 was subjected to thermal CVD at 1150 ° C. and an average residence time of 2 hours under a methane-argon mixed gas atmosphere. went. The obtained CVD-processed powder was a black powder having a carbon content of 12%, an active silicon content of 0%, and an average particle diameter of 3.6 μm.
Next, a battery evaluation of this CVD-processed powder as a negative electrode active material for a lithium ion secondary battery was performed in the same manner as in Example 2. Table 2 shows the results.
[0059]
[Table 2]
Figure 2004047404
[0060]
Here, the obtained charge / discharge capacity is only the value contributed by the added graphite conductive material and the deposited carbon,2Was an almost inert substance.
In this case, according to the study of the present inventor, the initial charge capacity and initial discharge capacity of the same battery as in Example 2 were 400 mAh / g and 340 mAh / g, respectively, except that only graphite was used as the negative electrode active material. The total carbon content in the negative electrode material mixture in the test was 40% by weight, and the initial charge / discharge capacity of Comparative Example 5 was equivalent to 40% of the initial charge / discharge capacity of graphite alone. In No. 5, it can be seen that only the carbon coated (deposited) by CVD and the added graphite act on the charge and discharge.
[0061]
[Example 6]
The conductive silicon composite powder was produced using the batch type fluidized bed reactor shown in FIG. In FIG. 6, reference numeral 1 denotes a fluidized bed reaction chamber in which a fluidized bed 2 of silicon oxide is formed. Reference numeral 3 denotes a heater disposed outside the fluidized bed reaction chamber 1 so as to surround the fluidized bed 2. Reference numeral 4 denotes a gas dispersion plate through which an organic gas or vapor and an inert gas are introduced into the gas blender 9 through an organic gas or vapor introduction pipe 7 and an inert gas introduction pipe 8 provided with a flow meter 6 interposed therebetween. The mixed gas is supplied from the bottom of the reaction chamber 1 into the reaction chamber 1 through the gas supply pipe 10 and is spouted from a large number of small holes of the gas dispersion plate 4 to produce silicon oxide. Is formed. In addition, 11 is a gas discharge pipe, and 12 is a differential pressure gauge.
Average particle size 1.0 μm, BET specific surface area 6 m2/ G of silicon oxide powder SiOx(X = 1.05) 50 g was charged into a fluidized bed reactor having an inner diameter of the fluidized bed reactor 1 of φ80 mm. Next, the heater 3 was energized while flowing Ar gas at 2.0 NL / min through the flow meter 6, and the temperature was raised to and maintained at 1100 ° C. at a rate of 300 ° C./hour. After reaching 1100 ° C., CH4Gas was additionally introduced at 1.0 NL / min, and a chemical vapor deposition treatment was performed for 3 hours. After the operation was completed, the temperature was lowered and a black powder was recovered. This black powder was roughly pulverized for 1 hour with a grinder to obtain a conductive silicon composite powder. The obtained conductive silicon composite powder had an average particle size of 2.5 μm and a BET specific surface area of 9 m.2/ G, a graphite coating amount of 25%, a fine silicon particle size of 30 nm determined by the Scherrer method, and a zero-valent active silicon content of 28.0% determined from the hydrogen content by reaction with an aqueous potassium hydroxide solution. there were.
[0062]
Battery evaluation
A lithium ion secondary battery for evaluation was produced in the same manner as in Example 2.
The fabricated lithium ion secondary battery was left overnight at room temperature, and then charged with a constant current of 1 mA using a secondary battery charge / discharge tester (manufactured by Nagano Corporation) until the test cell voltage reached 0 V. After reaching 0 V, charging was performed by reducing the current so as to keep the cell voltage at 0 V. Then, the charging was terminated when the current value was lower than 20 μA. The discharge was performed at a constant current of 1 mA, and the discharge was terminated when the cell voltage exceeded 1.8 V, and the discharge capacity was determined.
[0063]
The charge / discharge test described above was repeated, and the charge / discharge test of the lithium ion secondary battery for evaluation after 50 cycles was performed. As a result, initial discharge capacity: 1493 mAh / cm3, Discharge capacity at 50th cycle; 1470 mAh / cm3, A cycle retention rate after 50 cycles; a high capacity of 98.5%, and it was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.
[0064]
[Examples 7 to 9]
A conductive silicon composite powder was produced in the same manner as in Example 6, except that the average particle diameter, BET specific surface area, and processing conditions of the raw silicon oxide powder were set to the values shown in Table 3. Table 3 also shows the average particle size, BET specific surface area, graphite coating amount, size of silicon fine particles, and zero-valent silicon content of the obtained silicon composite powder. Using the obtained conductive silicon composite powder, a lithium ion secondary battery for evaluation was produced in the same manner as in Example 2, and a charge / discharge test was conducted in the same manner as in Example 6. Table 4 shows the test results.
[Table 3]
Figure 2004047404
[0065]
[Table 4]
Figure 2004047404
[0066]
[Example 10]
The conductive silicon composite powder was manufactured using the rotary furnace shown in FIG.
FIG. 7 shows an example of a rotary furnace suitable for carrying out the present invention. In FIG. 7, reference numeral 21 denotes a furnace core tube for accommodating a raw material silicon oxide powder P. The furnace core tube 21 extends the axial direction of the cylindrical body along the horizontal direction or 0 to 10 ° with respect to the horizontal direction, particularly It has a form in which it is arranged to be inclined by 0.1 to 5 °. In this case, a feeder 22 is connected to the inlet side of the furnace core tube 21 and a recovery hopper 23 is connected to the outlet side. From the side to the exit side. Reference numeral 24 denotes a mechanism for rotating the furnace core tube 21 by the operation of the motor 25 (here, a belt 29 is provided between a pulley 27 attached to a rotating shaft 26 of the motor 25 and a pulley 28 attached to the furnace core tube 21). It is a wound mechanism, but is not limited to this). The furnace core tube 21 is rotatably disposed on the rollers 30, 30, and can be rotated at a predetermined speed by the operation of the furnace core tube rotating mechanism 24.
Reference numeral 33 denotes an organic gas or vapor introduction pipe, and reference numeral 34 denotes an inert gas introduction pipe. Flow meters 31 and 32 are interposed therebetween, and these introduction pipes 33 and 34 are connected to a gas blender 35. The mixed gas is introduced into the furnace core tube 21 from the inlet of the furnace core tube 21 by the gas supply pipe 36. Further, a heater 37 is provided outside the furnace core tube 21.
[0067]
Average particle size 2.5 μm, BET specific surface area 10 m2/ G of silicon oxide powder SiOx(X = 1.05) was charged into the feeder 22. Next, while flowing Ar gas through the flow meter (Ar gas) 32 at a flow rate of 3.0 NL / min, the heater 37 was energized and the temperature was raised to and maintained at 1200 ° C. at a rate of 300 ° C./hour. . After the temperature reached 1200 ° C., the furnace core tube 1 made of silicon carbide having an inner diameter of φ80 mm was inclined at 2 °, and at the same time, the motor 25 was operated to rotate the furnace core tube 21 at a speed of 2 rpm. Then CH4Gas is flow meter 31 (CH42.0 NL / min through the gas), and silicon oxide powder was supplied into the furnace core tube 21 at a rate of 300 g / hour to perform a chemical vapor deposition process. As a result of performing this chemical vapor deposition treatment in a continuous operation for 10 hours, it was possible to produce the powder stably without any problem, and to produce about 4 kg of black powder.
[0068]
Next, this black powder was roughly pulverized for 1 hour with a grinder to obtain a conductive silicon composite powder. The obtained conductive silicon composite powder had an average particle size of 3.2 μm and a BET specific surface area of 9.8 m.2/ G, a graphite coating amount of 18% by weight, and a powder having a peak of crystalline Si in X-ray diffraction.
Using this, a lithium ion secondary battery for evaluation was produced, and a charge / discharge test was performed in the same manner as in Example 6. As a result, initial discharge capacity: 1420 mAh / cm3, Discharge capacity at 50th cycle; 1400 mAh / cm3, A cycle retention rate after 50 cycles; a high capacity of 98.6%, and it was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.
[0069]
【The invention's effect】
The conductive silicon composite of the present invention is used as a negative electrode material for a non-aqueous electrolyte secondary battery and gives good cycleability.
[Brief description of the drawings]
FIG. 1 Solid294 is a chart showing a comparison between a conductive silicon composite obtained by thermal CVD (methane gas) using silicon oxide powder as a raw material and raw silicon oxide powder by Si-NMR.
FIG. 2 is a chart showing a comparison between a conductive silicon composite obtained by thermal CVD (methane gas) using a silicon oxide powder as a raw material by X-ray diffraction (Cu-Kα) and the raw silicon oxide powder, A) is a chart of a conductive silicon composite, and (B) is a chart of silicon oxide.
FIGS. 3A and 3B are transmission electron micrographs of the conductive silicon composite powder and its surface, wherein (A) shows the appearance of the particles and (B) shows the surface of the particles.
FIG. 4 is a Raman spectrum of a conductive silicon composite.
5A is a transmission electron micrograph of the inside of a conductive silicon composite, and FIG. 5B is a partially enlarged view thereof.
FIG. 6 is a schematic view of a batch type fluidized bed reactor used in Example 6.
FIG. 7 is a schematic view of a rotary furnace used in Example 10.
[Explanation of symbols]
1) Fluidized bed reaction chamber
2 Fluidized bed
3 heater
4 Gas dispersion plate
6 flow meter
7 Gas inlet pipe (organic gas or steam)
8 Gas inlet pipe (inert gas)
9 gas blender
10 gas supply pipe
11 Gas exhaust pipe
12 differential pressure gauge
21 furnace core tube
22 feeder
23 collection hopper
25 motor
30mm roller
31 ° flow meter (CH4gas)
32 ° flow meter (Ar gas)
35 gas blender
37 heater
P powder layer

Claims (13)

珪素の微結晶が珪素系化合物に分散した構造を有する粒子の表面を炭素でコーティングしてなることを特徴とする導電性珪素複合体。A conductive silicon composite, wherein particles having a structure in which silicon microcrystals are dispersed in a silicon compound are coated with carbon. 平均粒子径0.01〜30μm、BET比表面積0.5〜20m/g、被覆炭素量3〜70重量%である請求項1記載の導電性珪素複合体。 2. The conductive silicon composite according to claim 1, having an average particle size of 0.01 to 30 μm, a BET specific surface area of 0.5 to 20 m 2 / g, and a coating carbon amount of 3 to 70% by weight. 珪素微結晶の大きさが1〜500nmであり、珪素系化合物が二酸化珪素であり、かつその表面の少なくとも一部が炭素と融着していることを特徴とする請求項1又は2記載の導電性珪素複合体。3. The conductive material according to claim 1, wherein the silicon microcrystals have a size of 1 to 500 nm, the silicon compound is silicon dioxide, and at least a part of the surface is fused with carbon. Silicon composite. X線回折において、Si(111)に帰属される回折ピークが観察され、その回折線の半価幅をもとにシェーラー法により求めた珪素の結晶の大きさが1〜500nmであり、被覆炭素量が5〜70重量%であることを特徴とする請求項1、2又は3記載の導電性珪素複合体。In X-ray diffraction, a diffraction peak attributed to Si (111) is observed, and the silicon crystal size determined by the Scherrer method based on the half width of the diffraction line is 1 to 500 nm. 4. The conductive silicon composite according to claim 1, wherein the amount is 5 to 70% by weight. 水酸化アルカリ溶液と作用させることによって水素ガスを発生しうるゼロ価の珪素を1〜35重量%含有することを特徴とする請求項1乃至4のいずれか1項記載の導電性珪素複合体。The conductive silicon composite according to any one of claims 1 to 4, further comprising 1 to 35% by weight of zero-valent silicon capable of generating hydrogen gas by acting with an alkali hydroxide solution. ラマン分光スペクトルより、ラマンシフトが1580cm−1付近にグラファイト構造特有のスペクトルを有することを特徴とする請求項1乃至5のいずれか1項記載の導電性珪素複合体。The conductive silicon composite according to any one of claims 1 to 5, wherein the Raman shift has a spectrum peculiar to a graphite structure near 1580 cm- 1 from a Raman spectrum. 酸化珪素を900〜1400℃の温度で有機物ガス及び/又は蒸気で不均化すると共に化学蒸着処理することを特徴とする請求項1記載の導電性珪素複合体の製造方法。The method for producing a conductive silicon composite according to claim 1, wherein the silicon oxide is disproportionated with an organic gas and / or vapor at a temperature of 900 to 1400 ° C. and is subjected to chemical vapor deposition. 酸化珪素が平均粒子径0.01〜30μm、BET比表面積0.1〜30m/gの一般式SiO(1.0≦x<1.6)で表される酸化珪素粉末であることを特徴とする請求項7記載の導電性珪素複合体の製造方法。The silicon oxide is a silicon oxide powder represented by the general formula SiO x (1.0 ≦ x <1.6) having an average particle diameter of 0.01 to 30 μm and a BET specific surface area of 0.1 to 30 m 2 / g. The method for producing a conductive silicon composite according to claim 7, wherein: 酸化珪素をあらかじめ不活性ガス雰囲気下900〜1400℃で熱処理を施して不均化してなる珪素複合物、シリコン微粒子をゾルゲル法により二酸化珪素でコーティングした複合物、シリコン微粉末を微粉状シリカと水を介して凝固させたものを焼結して得られる複合物、又は珪素及びこの部分酸化物もしくは窒化物を不活性ガス気流下800〜1400℃で加熱したものを、800〜1400℃の温度で有機物ガス及び/又は蒸気で化学蒸着処理することを特徴とする請求項1記載の導電性珪素複合体の製造方法。A silicon composite obtained by dissolving silicon oxide in advance by heat treatment at 900 to 1400 ° C. in an inert gas atmosphere, a composite in which silicon fine particles are coated with silicon dioxide by a sol-gel method, a fine silicon powder is fine silica powder and water. A composite obtained by sintering a product solidified through the above, or a product obtained by heating silicon and its partial oxide or nitride at 800 to 1400 ° C. under an inert gas stream at a temperature of 800 to 1400 ° C. The method for producing a conductive silicon composite according to claim 1, wherein the conductive silicon composite is subjected to chemical vapor deposition with an organic gas and / or vapor. 酸化珪素をあらかじめ500〜1200℃の温度で有機物ガス及び/又は蒸気で化学蒸着処理したものを、不活性ガス雰囲気下900〜1400℃で熱処理を施して不均化することを特徴とする請求項1記載の導電性珪素複合体の製造方法。The silicon oxide which has been previously subjected to a chemical vapor deposition treatment with an organic gas and / or vapor at a temperature of 500 to 1200C and subjected to a heat treatment at 900 to 1400C in an inert gas atmosphere to be disproportionated. 2. The method for producing a conductive silicon composite according to item 1. 化学蒸着処理及び/又は不均化処理を流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉又はロータリーキルンのいずれかの反応装置を用いて行うことを特徴とする請求項7乃至10のいずれか1項記載の導電性珪素複合体の製造方法。The chemical vapor deposition process and / or the disproportionation process are performed by using any one of a reactor of a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, and a rotary kiln. 11. The method for producing a conductive silicon composite according to any one of 7 to 10. 請求項1乃至6のいずれか1項記載の導電性珪素複合体を用いた非水電解質二次電池用負極材。A negative electrode material for a non-aqueous electrolyte secondary battery using the conductive silicon composite according to any one of claims 1 to 6. 請求項1乃至6のいずれか1項記載の導電性珪素複合体と導電剤の混合物であって、混合物中の導電剤が1〜60重量%であり、かつ混合物中の全炭素量が25〜90重量%である混合物を用いた非水電解質二次電池用負極材。A mixture of the conductive silicon composite according to any one of claims 1 to 6 and a conductive agent, wherein the conductive agent in the mixture is 1 to 60% by weight, and the total carbon content in the mixture is 25 to 50%. A negative electrode material for a non-aqueous electrolyte secondary battery using a mixture of 90% by weight.
JP2002259040A 2002-05-17 2002-09-04 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery Expired - Lifetime JP3952180B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002259040A JP3952180B2 (en) 2002-05-17 2002-09-04 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002142777 2002-05-17
JP2002259040A JP3952180B2 (en) 2002-05-17 2002-09-04 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004047404A true JP2004047404A (en) 2004-02-12
JP3952180B2 JP3952180B2 (en) 2007-08-01

Family

ID=31719465

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002259040A Expired - Lifetime JP3952180B2 (en) 2002-05-17 2002-09-04 Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3952180B2 (en)

Cited By (158)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004319170A (en) * 2003-04-14 2004-11-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP2005235589A (en) * 2004-02-19 2005-09-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005243640A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery comprising the negative active material
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
WO2006022254A1 (en) * 2004-08-26 2006-03-02 Matsushita Electric Industrial Co., Ltd. Composite particle for electrode, method for producing same and secondary battery
JP2006062949A (en) * 2004-07-30 2006-03-09 Shin Etsu Chem Co Ltd Si-c-o-based composite and its manufacturing method as well as negative electrode material for non-aqueous electrolyte secondary battery
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
JP2006164689A (en) * 2004-12-06 2006-06-22 Enerstruct Kk Electrode structure, secondary battery, and capacitor
WO2006067891A1 (en) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite negative-electrode active material, process for producing the same and nonaqueous-electrolyte secondary battery
JP2007500421A (en) * 2003-07-29 2007-01-11 エルジー・ケム・リミテッド Negative active material for lithium secondary battery and method for producing the same
JP2007042393A (en) * 2005-08-02 2007-02-15 Toshiba Corp Nonaqueous electrolyte battery and anode active material
JP2007141504A (en) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
JP2007242590A (en) * 2006-02-13 2007-09-20 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2008153006A (en) * 2006-12-15 2008-07-03 Shin Etsu Chem Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JP2008153117A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP2009009727A (en) * 2007-06-26 2009-01-15 Nec Tokin Corp Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
KR100898293B1 (en) 2007-11-27 2009-05-18 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
JP2009205950A (en) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2009212074A (en) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor
JP2009224168A (en) * 2008-03-17 2009-10-01 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2009238663A (en) * 2008-03-28 2009-10-15 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2009259723A (en) * 2008-04-21 2009-11-05 Shin Etsu Chem Co Ltd Negative electrode material for non-aqueous electrolyte secondary battery, manufacturing method therefor, negative electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
JP2009301935A (en) * 2008-06-16 2009-12-24 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor
JP2010033830A (en) * 2008-07-28 2010-02-12 Nec Tokin Corp Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
JP2010140885A (en) * 2008-11-14 2010-06-24 Sony Corp Secondary battery and anode
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
US7824801B2 (en) 2004-12-16 2010-11-02 Panasonic Corporation Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
US7833662B2 (en) 2007-01-05 2010-11-16 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2010267588A (en) * 2009-05-18 2010-11-25 Shin-Etsu Chemical Co Ltd Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
EP2104175A3 (en) * 2008-03-17 2010-12-01 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
WO2011030486A1 (en) * 2009-09-10 2011-03-17 株式会社大阪チタニウムテクノロジーズ Silicon oxide and anode material for lithium ion secondary cell
US7919205B2 (en) 2004-11-11 2011-04-05 Panasonic Corporation Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
WO2011040443A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
WO2011040447A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2011096455A (en) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd Negative electrode material for non-aqueous electrolyte secondary battery, method of manufacturing the same, and lithium-ion secondary battery
JP2011113863A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2011142021A (en) * 2010-01-07 2011-07-21 Shin-Etsu Chemical Co Ltd Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor
WO2011118387A1 (en) 2010-03-26 2011-09-29 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
KR101073017B1 (en) 2010-01-05 2011-10-12 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
JP2012009457A (en) * 2011-10-07 2012-01-12 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
JP2012014939A (en) * 2010-06-30 2012-01-19 Sumitomo Bakelite Co Ltd Carbon material for lithium secondary cell negative electrode, negative-electrode mixture for lithium secondary cell, lithium secondary cell negative electrode, and lithium secondary cell
JP2012033317A (en) * 2010-07-29 2012-02-16 Shin Etsu Chem Co Ltd Cathode material for nonaqueous electrolytic secondary battery and method of manufacturing the same, and lithium ion secondary battery
WO2012029551A1 (en) 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery and secondary battery electrolyte used therein
JP2012059721A (en) * 2011-12-26 2012-03-22 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
WO2012036127A1 (en) 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 Nonaqueous secondary cell
WO2012049889A1 (en) * 2010-10-14 2012-04-19 日本電気株式会社 Secondary battery and electrolyte solution for secondary battery to be used in same
WO2012056765A1 (en) * 2010-10-29 2012-05-03 日本電気株式会社 Secondary battery and method for manufacturing same
JP2012099341A (en) * 2010-11-02 2012-05-24 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same, lithium ion secondary battery, and electrochemical capacitor
WO2012077712A1 (en) 2010-12-07 2012-06-14 日本電気株式会社 Lithium secondary battery
US8216719B2 (en) 2006-02-13 2012-07-10 Hitachi Maxell Energy, Ltd. Non-aqueous secondary battery and method for producing the same
WO2012111472A1 (en) 2011-02-15 2012-08-23 Jsr株式会社 Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
WO2012115093A1 (en) 2011-02-24 2012-08-30 日本電気株式会社 Separator for accumulators, and accumulator
WO2012115092A1 (en) 2011-02-24 2012-08-30 日本電気株式会社 Separator for accumulators, and accumulator
JP2012178344A (en) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012204195A (en) * 2011-03-25 2012-10-22 Waseda Univ Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
JP2012232870A (en) * 2011-04-28 2012-11-29 Tohoku Univ Method for producing silica material with carbon-coated surface, carbon-coated silica material produced by the method and use thereof
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
KR20130018498A (en) * 2011-08-15 2013-02-25 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, rechargeable lithium battery including the same, and method of preparing negative electrode for rechargeable lithium battery including the same
US20130052533A1 (en) * 2011-08-31 2013-02-28 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery including the same
WO2013047024A1 (en) * 2011-09-26 2013-04-04 日本電気株式会社 Lithium secondary battery and vehicle using same
TWI396320B (en) * 2004-07-30 2013-05-11 Shinetsu Chemical Co Si-C-O composite material and its manufacturing method and nonaqueous electrolyte battery
JP2013143376A (en) * 2012-01-06 2013-07-22 Samsung Sdi Co Ltd Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same
KR101296447B1 (en) * 2004-09-03 2013-08-13 신에쓰 가가꾸 고교 가부시끼가이샤 Metal silicon powder for negative electrode material for non-aqueous electrolyte secondary battery and negative electrode material for non-aqueous electrolyte secondary battery
JP2013168328A (en) * 2012-02-16 2013-08-29 Hitachi Chemical Co Ltd Anode material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
KR20130096637A (en) 2010-08-03 2013-08-30 히다치 막셀 에너지 가부시키가이샤 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP2013175478A (en) * 2013-05-09 2013-09-05 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2013129346A1 (en) 2012-03-02 2013-09-06 日本電気株式会社 Secondary battery
JPWO2012026067A1 (en) * 2010-08-25 2013-10-28 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP2013225469A (en) * 2012-04-19 2013-10-31 Lg Chem Ltd Silicon-based positive active material and secondary battery comprising the same
JP2014026949A (en) * 2012-07-26 2014-02-06 Lg Chem Ltd Electrode active material for secondary battery
JP2014026950A (en) * 2012-07-24 2014-02-06 Lg Chem Ltd Porous silicon-based electrode active material and secondary battery comprising the same
KR101378125B1 (en) 2010-04-19 2014-03-25 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
WO2014065418A1 (en) * 2012-10-26 2014-05-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2014088270A1 (en) * 2012-12-06 2014-06-12 주식회사 엘지화학 High-capacity anode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
CN103872292A (en) * 2012-12-12 2014-06-18 信越化学工业株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
US8790829B2 (en) 2010-12-20 2014-07-29 Hitachi Maxell, Ltd. Nonaqueous secondary battery
JP2014139919A (en) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
JP2014139948A (en) * 2014-03-28 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
WO2014119238A1 (en) * 2013-01-30 2014-08-07 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries using said negative electrode active material, and nonaqueous electrolyte secondary battery using said negative electrode
KR20140105753A (en) 2011-12-19 2014-09-02 히다치 막셀 가부시키가이샤 Lithium secondary battery
JP2014192064A (en) * 2013-03-28 2014-10-06 Shin Etsu Chem Co Ltd Silicon-containing particle, negative electrode material of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US20140302395A1 (en) * 2011-10-14 2014-10-09 Shi-Etsu Chemical Co., Ltd. Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
CN104241652A (en) * 2013-06-20 2014-12-24 信越化学工业株式会社 active material for nonaqueous electrolyte secondary battery, negative electrode form, and nonaqueous electrolyte secondary battery
JP2015005376A (en) * 2013-06-20 2015-01-08 信越化学工業株式会社 Pulverization assistant for nonaqueous electrolyte secondary battery active material, and pulverization method
WO2015015883A1 (en) * 2013-07-31 2015-02-05 日本電気株式会社 Lithium secondary battery and electrolyte solution for lithium secondary batteries
JP2015028943A (en) * 2014-09-08 2015-02-12 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
WO2015041167A1 (en) * 2013-09-20 2015-03-26 日立マクセル株式会社 Non-aqueous secondary battery
US8999562B2 (en) 2010-09-02 2015-04-07 Nec Corporation Secondary battery and secondary battery electrolytic solution for use in secondary battery
US9077045B2 (en) 2010-09-02 2015-07-07 Nec Corporation Secondary battery
KR20150078059A (en) 2013-12-30 2015-07-08 삼성정밀화학 주식회사 Anode material for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery comprising the same
TWI497808B (en) * 2012-10-16 2015-08-21 Lg Chemical Ltd Silicon oxide for anode active material of secondary battery
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
JP2015164139A (en) * 2015-05-14 2015-09-10 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
WO2015140907A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, battery pack and method for producing active material for nonaqueous electrolyte secondary batteries
WO2015145522A1 (en) * 2014-03-24 2015-10-01 株式会社 東芝 Electrode active material for non-aqueous electrolyte cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and cell pack
TWI508355B (en) * 2010-04-05 2015-11-11 Shinetsu Chemical Co A method for producing a negative electrode material for a nonaqueous electrolyte battery and a negative electrode material for a nonaqueous electrolyte battery, and a lithium ion secondary battery
KR20150126843A (en) 2013-03-11 2015-11-13 히다치 막셀 가부시키가이샤 Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
JP2016026381A (en) * 2009-12-24 2016-02-12 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode active material for lithium ion secondary battery, electric motor-driven tool, electric vehicle and electric power storage system
KR20160018717A (en) 2013-07-23 2016-02-17 신닛테츠스미킨 카부시키카이샤 Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JP2016048628A (en) * 2014-08-27 2016-04-07 株式会社豊田自動織機 Silicon material-carbon layer-cationic polymer layer complex
US9312534B2 (en) 2010-12-09 2016-04-12 Nec Corporation Nonaqueous electrolytic solution secondary battery, and positive electrode and negative electrode used in the same
WO2016056155A1 (en) * 2014-10-08 2016-04-14 信越化学工業株式会社 Negative electrode active substance for nonaqueous electrolyte secondary cell, negative electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing negative electrode material for nonaqueous electrolyte secondary cell
JP2016110738A (en) * 2014-12-03 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler
JP2016110834A (en) * 2014-12-05 2016-06-20 株式会社東芝 Active material for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
US9373867B2 (en) 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid
US9425480B2 (en) 2010-09-02 2016-08-23 Nec Corporation Secondary battery
KR20160104718A (en) 2014-02-04 2016-09-05 미쓰이 가가쿠 가부시키가이샤 Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
JP2016164870A (en) * 2015-02-26 2016-09-08 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
US9466827B2 (en) 2010-09-02 2016-10-11 Nec Corporation Secondary battery
CN106025237A (en) * 2016-07-21 2016-10-12 中国科学院山西煤炭化学研究所 Double-coated silicon-based composite material and preparation method thereof
US20160315310A1 (en) * 2015-04-22 2016-10-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, method of producing the same, non-aqueous electrolyte secondary battery using the negative electrode active material, and method of producing negative electrode material...
JP2016190749A (en) * 2015-03-31 2016-11-10 信越化学工業株式会社 Apparatus for forming carbon film, method for forming carbon film, anode material for lithium ion battery and lithium ion battery
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
KR20160141676A (en) 2015-06-01 2016-12-09 히다치 막셀 가부시키가이샤 Lithium ion secondary battery
JP2016219410A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016222475A (en) * 2015-05-28 2016-12-28 信越化学工業株式会社 Graphite-coated particle, and method for producing the same
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
US9577255B2 (en) 2014-12-31 2017-02-21 Dae Joo Electronic Materials Co., Ltd Negative electrode active material for non-aqueous electrolyte rechargeable battery, method of fabricating the same, and non-aqueous electrolyte rechargeable battery including the same
JPWO2014188851A1 (en) * 2013-05-23 2017-02-23 信越化学工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
US9583278B2 (en) 2012-06-18 2017-02-28 Jsr Corporation Binder composition for electrical storage device electrodes, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
TWI578600B (en) * 2012-07-06 2017-04-11 東麗股份有限公司 Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondar
US9748608B2 (en) 2012-03-02 2017-08-29 Nec Corporation Second battery comprising a phosphate ester compound and a fluorinated carbonate compound
WO2017169988A1 (en) 2016-03-30 2017-10-05 Necエナジーデバイス株式会社 Electrode, method for manufacturing same, and secondary cell
US9786952B2 (en) 2011-06-23 2017-10-10 Nec Corporation Lithium secondary cell including an electrolytic solution including cyclic acid anhydrides
JP2017191707A (en) * 2016-04-13 2017-10-19 株式会社豊田自動織機 METHOD FOR PRODUCING CARBON COATED Si-CONTAINING NEGATIVE ELECTRODE ACTIVE MATERIAL
JP2018513098A (en) * 2015-03-31 2018-05-24 エルジー・ケム・リミテッド Porous silicon-silicon oxide-carbon composite and production method thereof
US10003100B2 (en) 2012-02-03 2018-06-19 Nec Corporation Nonaqueous electrolyte with fluorine containing ether compound for lithium secondary battery
KR20180072856A (en) * 2014-01-31 2018-06-29 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
JP2018522996A (en) * 2015-04-30 2018-08-16 キャボット コーポレイションCabot Corporation Carbon coating particles
KR20190039425A (en) 2016-09-08 2019-04-11 맥셀 홀딩스 가부시키가이샤 Lithium ion secondary battery and manufacturing method thereof
JPWO2018052077A1 (en) * 2016-09-15 2019-06-27 日本電気株式会社 Lithium ion secondary battery
KR20190085942A (en) 2016-11-22 2019-07-19 미쯔비시 케미컬 주식회사 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
US10361432B2 (en) 2014-01-24 2019-07-23 Maxell Holdings, Ltd. Non-aqueous secondary battery
CN110148730A (en) * 2019-05-28 2019-08-20 合肥国轩高科动力能源有限公司 A kind of Gao Shouxiao long-life silicon based anode material and its preparation method and application
WO2020044931A1 (en) 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid
JP2020129556A (en) * 2015-11-06 2020-08-27 国立大学法人 新潟大学 Method for manufacturing nonaqueous electrolyte secondary battery negative electrode
CN111656582A (en) * 2018-01-31 2020-09-11 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR20210013253A (en) 2013-01-07 2021-02-03 맥셀 홀딩스 가부시키가이샤 Nonaqueous electrolyte secondary battery
US20210057730A1 (en) * 2018-05-22 2021-02-25 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
US10944111B2 (en) 2016-10-28 2021-03-09 Nec Corporation Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
KR20210031563A (en) 2019-09-11 2021-03-22 대주전자재료 주식회사 Silicon-containing anode material for lithium-ion secondary battery and preparation method thereof
KR20210055137A (en) 2019-11-06 2021-05-17 대주전자재료 주식회사 Silicon-carbon composite for anode material of secondary battery and preparation method of the same
KR20220044723A (en) 2019-08-09 2022-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Negative electrode, secondary battery, and solid secondary battery
CN114583135A (en) * 2022-03-15 2022-06-03 中国科学院过程工程研究所 Spherical silicon-carbon composite material prepared by cutting waste silicon powder in one step and preparation method and application thereof
CN114597384A (en) * 2021-12-30 2022-06-07 深圳技术大学 Method for preparing lithium ion battery cathode material by using crystal silicon wire saw waste mortar
US11916227B2 (en) 2018-02-23 2024-02-27 National Institute Of Advanced Industrial Science And Technology Multilayer body and method for producing same

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5411781B2 (en) 2010-04-05 2014-02-12 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing anode material for non-aqueous electrolyte secondary battery, and lithium ion secondary battery
EP2581970A4 (en) 2010-06-14 2014-02-26 Osaka Titanium Technologies Co Powder for lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode, capacitor negative electrode, lithium ion secondary battery, and capacitor
US20130224600A1 (en) * 2010-10-15 2013-08-29 Osaka Titanium Technologies Co., Ltd. Negative electrode material powder for lithium ion secondary battery, negative electrode for lithium ion secondary battery and negative electrode for capacitor, and lithium ion secondary battery and capacitor
KR101191625B1 (en) 2010-12-01 2012-10-17 삼성에스디아이 주식회사 Rechargeable Lithium Battery Including Negative Active Material
CN103229336A (en) * 2010-12-07 2013-07-31 株式会社大阪钛技术 Powder for negative electrode material for lithium ion secondary battery, negative electrode of lithium ion secondary battery and negative electrode of capacitor respectively using same, lithium ion secondary battery and capacitor
JP5662485B2 (en) * 2011-02-09 2015-01-28 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
KR101772113B1 (en) 2011-11-08 2017-08-29 삼성에스디아이 주식회사 anode electrode material, preparation method thereof, electrode comprising the material, and lithium battery comprising the electrode
KR101718055B1 (en) 2012-02-13 2017-03-20 삼성에스디아이 주식회사 Negative active material and lithium battery containing the material
TWI624984B (en) * 2012-10-26 2018-05-21 日立化成股份有限公司 Anode material for lithium ion secondary cell, anode for lithium ion secondary cell and lithium ion secondary cell
KR101698763B1 (en) 2012-12-10 2017-01-23 삼성에스디아이 주식회사 Anode electrode material, preparation method thereof, electrode comprising the material, and lithium secondary battery comprising the electrode
JP6100610B2 (en) 2013-05-27 2017-03-22 信越化学工業株式会社 Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof
JP6466635B2 (en) 2013-06-14 2019-02-06 信越化学工業株式会社 Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
KR101634288B1 (en) * 2013-09-30 2016-06-30 삼성전자주식회사 Composite, carbon composite using the composite, electrode, lithium battery, field emission device, biosensor, and semiconductor device including the same
JP2015072809A (en) 2013-10-03 2015-04-16 信越化学工業株式会社 Silicon-containing material, and negative electrode for nonaqueous electrolytic secondary batteries and nonaqueous electrolyte secondary battery, and manufacturing method thereof
CN106604890B (en) 2014-08-27 2019-08-06 株式会社丰田自动织机 Carbon is coated the manufacturing method of silicon materials
WO2016031099A1 (en) 2014-08-27 2016-03-03 株式会社豊田自動織機 Method for producing carbon-coated silicon material
WO2018179111A1 (en) 2017-03-28 2018-10-04 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR102307911B1 (en) 2017-04-27 2021-10-01 삼성에스디아이 주식회사 Anode active material for lithium secondary battery and lithium secondary battery comprising anode including the anode active material
US11094931B2 (en) 2018-01-31 2021-08-17 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11063255B2 (en) 2018-01-31 2021-07-13 Showa Denko Materials Co., Ltd. Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7441859B2 (en) 2019-05-20 2024-03-01 ナノグラフ コーポレイション Anode active material containing low-defect turbostratic carbon

Cited By (238)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8092940B2 (en) 2002-05-08 2012-01-10 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US10038186B2 (en) 2002-05-08 2018-07-31 Gs Yuasa International Ltd. Non-aqueous electrolyte secondary battery
US8709648B2 (en) 2002-06-04 2014-04-29 Ener1, Inc. Conductor-mixed active electrode material, electrode structure, rechargeable battery, and manufacturing method of conductor-mixed active electrode material
JP2004139886A (en) * 2002-10-18 2004-05-13 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2004319170A (en) * 2003-04-14 2004-11-11 Japan Storage Battery Co Ltd Nonaqueous electrolyte battery
JP4635409B2 (en) * 2003-04-14 2011-02-23 株式会社Gsユアサ Non-aqueous electrolyte battery
US8795890B2 (en) 2003-07-29 2014-08-05 Lg Chem, Ltd. Negative active material containing silicon particles for a lithium secondary battery and a method for preparing the same
JP2007500421A (en) * 2003-07-29 2007-01-11 エルジー・ケム・リミテッド Negative active material for lithium secondary battery and method for producing the same
JP2012234832A (en) * 2003-07-29 2012-11-29 Lg Chem Ltd Negative activity material for lithium secondary battery and method of manufacturing the same
JP2005235589A (en) * 2004-02-19 2005-09-02 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2005243640A (en) * 2004-02-25 2005-09-08 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, method of manufacturing the same, and lithium secondary battery comprising the negative active material
US7517614B2 (en) 2004-02-25 2009-04-14 Samsung Sdi Co., Ltd. Negative active material for a rechargeable lithium battery, a method of preparing the same, and a rechargeable lithium battery comprising the same
US7790316B2 (en) 2004-03-26 2010-09-07 Shin-Etsu Chemical Co., Ltd. Silicon composite particles, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP2005340132A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery, manufacturing method thereof and lithium ion secondary battery using the same
JP2006062949A (en) * 2004-07-30 2006-03-09 Shin Etsu Chem Co Ltd Si-c-o-based composite and its manufacturing method as well as negative electrode material for non-aqueous electrolyte secondary battery
TWI396320B (en) * 2004-07-30 2013-05-11 Shinetsu Chemical Co Si-C-O composite material and its manufacturing method and nonaqueous electrolyte battery
WO2006022254A1 (en) * 2004-08-26 2006-03-02 Matsushita Electric Industrial Co., Ltd. Composite particle for electrode, method for producing same and secondary battery
JP2006100255A (en) * 2004-09-03 2006-04-13 Shin Etsu Chem Co Ltd Metal silicon powder for non-aqueous electrolyte secondary battery negative electrode material, and non-aqueous electrolyte secondary battery negative electrode
KR101296447B1 (en) * 2004-09-03 2013-08-13 신에쓰 가가꾸 고교 가부시끼가이샤 Metal silicon powder for negative electrode material for non-aqueous electrolyte secondary battery and negative electrode material for non-aqueous electrolyte secondary battery
US7919205B2 (en) 2004-11-11 2011-04-05 Panasonic Corporation Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
JP2006164689A (en) * 2004-12-06 2006-06-22 Enerstruct Kk Electrode structure, secondary battery, and capacitor
US7824801B2 (en) 2004-12-16 2010-11-02 Panasonic Corporation Negative electrode for lithium ion secondary battery, production method thereof and lithium ion secondary battery comprising the same
WO2006067891A1 (en) * 2004-12-22 2006-06-29 Matsushita Electric Industrial Co., Ltd. Composite negative-electrode active material, process for producing the same and nonaqueous-electrolyte secondary battery
JP4504279B2 (en) * 2005-08-02 2010-07-14 株式会社東芝 Nonaqueous electrolyte battery and negative electrode active material
JP2007042393A (en) * 2005-08-02 2007-02-15 Toshiba Corp Nonaqueous electrolyte battery and anode active material
JP2007141504A (en) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery
US8216719B2 (en) 2006-02-13 2012-07-10 Hitachi Maxell Energy, Ltd. Non-aqueous secondary battery and method for producing the same
JP2007242590A (en) * 2006-02-13 2007-09-20 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2007220411A (en) * 2006-02-15 2007-08-30 Kuraray Co Ltd Complex and its manufacturing method, as well as electrode material for power storage device
JP2007294423A (en) * 2006-03-27 2007-11-08 Shin Etsu Chem Co Ltd Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
US7776473B2 (en) 2006-03-27 2010-08-17 Shin-Etsu Chemical Co., Ltd. Silicon-silicon oxide-lithium composite, making method, and non-aqueous electrolyte secondary cell negative electrode material
JP2008153006A (en) * 2006-12-15 2008-07-03 Shin Etsu Chem Co Ltd Negative electrode for non-aqueous electrolyte secondary battery and its manufacturing method
JP2008153117A (en) * 2006-12-19 2008-07-03 Nec Tokin Corp Anode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US7833662B2 (en) 2007-01-05 2010-11-16 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
US8309252B2 (en) 2007-01-05 2012-11-13 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2009009727A (en) * 2007-06-26 2009-01-15 Nec Tokin Corp Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using it
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
KR100898293B1 (en) 2007-11-27 2009-05-18 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
KR101568334B1 (en) 2008-02-07 2015-11-11 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte secondary battery negative electrode material making method lithium ion secondary battery and electrochemical capacitor
JP2009212074A (en) * 2008-02-07 2009-09-17 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor
JP2009205950A (en) * 2008-02-28 2009-09-10 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2009224168A (en) * 2008-03-17 2009-10-01 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, and nonaqueous electrolyte secondary battery using the same
EP2104175A3 (en) * 2008-03-17 2010-12-01 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP2009238663A (en) * 2008-03-28 2009-10-15 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2009259723A (en) * 2008-04-21 2009-11-05 Shin Etsu Chem Co Ltd Negative electrode material for non-aqueous electrolyte secondary battery, manufacturing method therefor, negative electrode for non-aqueous electrolyte secondary battery, and the non-aqueous electrolyte secondary battery
JP2009301935A (en) * 2008-06-16 2009-12-24 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor
KR101794344B1 (en) 2008-06-16 2017-11-06 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for non-aqueous electrolyte secondary battery and method for preparing the same, and lithium ion secondary battery and electrochemical capacitor
JP2010033830A (en) * 2008-07-28 2010-02-12 Nec Tokin Corp Negative electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using the same
US9806333B2 (en) 2008-11-14 2017-10-31 Sony Corporation Secondary battery and anode
US9620810B2 (en) 2008-11-14 2017-04-11 Sony Corporation Secondary battery and anode
JP2010140885A (en) * 2008-11-14 2010-06-24 Sony Corp Secondary battery and anode
JP2010267588A (en) * 2009-05-18 2010-11-25 Shin-Etsu Chemical Co Ltd Anode material for nonaqueous electrolyte secondary battery, its manufacturing method, and lithium ion secondary battery
KR101618374B1 (en) * 2009-05-18 2016-05-04 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolytic secondary battery and process for producing the same, and lithium ion secondary battery
US8420039B2 (en) 2009-09-10 2013-04-16 Osaka Titanium Technologies Co., Ltd. Silicon oxide and negative electrode material for lithium-ion secondary battery
WO2011030486A1 (en) * 2009-09-10 2011-03-17 株式会社大阪チタニウムテクノロジーズ Silicon oxide and anode material for lithium ion secondary cell
US9203107B2 (en) 2009-09-29 2015-12-01 Nec Energy Devices, Ltd. Secondary battery
US9627687B2 (en) 2009-09-29 2017-04-18 Nec Energy Devices, Ltd. Secondary battery
WO2011040447A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
WO2011040443A1 (en) 2009-09-29 2011-04-07 Necエナジーデバイス株式会社 Secondary battery
JP2011090869A (en) * 2009-10-22 2011-05-06 Shin-Etsu Chemical Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, method of manufacturing the same, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
KR101767265B1 (en) * 2009-10-28 2017-08-10 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode material for nonaqueous electrolytic secondary battery and process for producing the same, and lithium ion secondary battery
US9287561B2 (en) 2009-10-28 2016-03-15 Shin-Etsu Chemical Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary batteries, manufacturing method therefor, and lithium-ion secondary batteries
JP2011096455A (en) * 2009-10-28 2011-05-12 Shin-Etsu Chemical Co Ltd Negative electrode material for non-aqueous electrolyte secondary battery, method of manufacturing the same, and lithium-ion secondary battery
JP2011113863A (en) * 2009-11-27 2011-06-09 Hitachi Maxell Ltd Nonaqueous secondary battery
JP2016026381A (en) * 2009-12-24 2016-02-12 ソニー株式会社 Lithium ion secondary battery, negative electrode for lithium ion secondary battery, negative electrode active material for lithium ion secondary battery, electric motor-driven tool, electric vehicle and electric power storage system
KR101073017B1 (en) 2010-01-05 2011-10-12 삼성에스디아이 주식회사 Negative electrode for rechargeable lithium battery and rechargeable lithium battery including the same
JP2011142021A (en) * 2010-01-07 2011-07-21 Shin-Etsu Chemical Co Ltd Silicon oxide for nonaqueous electrolyte secondary battery anode material, method of manufacturing silicon oxide for nonaqueous electrolyte secondary battery anode material, lithium ion secondary battery, and electrochemical capacitor
WO2011118387A1 (en) 2010-03-26 2011-09-29 Necエナジーデバイス株式会社 Non-aqueous electrolyte secondary battery
TWI508355B (en) * 2010-04-05 2015-11-11 Shinetsu Chemical Co A method for producing a negative electrode material for a nonaqueous electrolyte battery and a negative electrode material for a nonaqueous electrolyte battery, and a lithium ion secondary battery
KR101378125B1 (en) 2010-04-19 2014-03-25 주식회사 엘지화학 Negative active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
US9306209B2 (en) 2010-04-19 2016-04-05 Ulsan National Institute Of Science And Technology Method of preparing negative active material containing a carbon-coated silicon core for a rechargeable lithium battery and a rechargeable lithium battery
JP2012014939A (en) * 2010-06-30 2012-01-19 Sumitomo Bakelite Co Ltd Carbon material for lithium secondary cell negative electrode, negative-electrode mixture for lithium secondary cell, lithium secondary cell negative electrode, and lithium secondary cell
JP2012033317A (en) * 2010-07-29 2012-02-16 Shin Etsu Chem Co Ltd Cathode material for nonaqueous electrolytic secondary battery and method of manufacturing the same, and lithium ion secondary battery
JPWO2012018035A1 (en) * 2010-08-03 2013-10-03 日立マクセル株式会社 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
JP5615926B2 (en) * 2010-08-03 2014-10-29 日立マクセル株式会社 Negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
KR20180088519A (en) 2010-08-03 2018-08-03 맥셀 홀딩스 가부시키가이샤 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20200045018A (en) 2010-08-03 2020-04-29 맥셀 홀딩스 가부시키가이샤 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
KR20130096637A (en) 2010-08-03 2013-08-30 히다치 막셀 에너지 가부시키가이샤 Negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
US9537139B2 (en) 2010-08-03 2017-01-03 Hitachi Maxell Ltd. Negative electrode for non-aqueous secondary battery, and a non-aqueous secondary battery
JPWO2012026067A1 (en) * 2010-08-25 2013-10-28 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
JP5584299B2 (en) * 2010-08-25 2014-09-03 株式会社大阪チタニウムテクノロジーズ Powder for negative electrode material of lithium ion secondary battery, lithium ion secondary battery negative electrode and capacitor negative electrode using the same, lithium ion secondary battery and capacitor
US9123971B2 (en) 2010-09-02 2015-09-01 Nec Corporation Secondary battery
WO2012029551A1 (en) 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery and secondary battery electrolyte used therein
US9077045B2 (en) 2010-09-02 2015-07-07 Nec Corporation Secondary battery
US9425480B2 (en) 2010-09-02 2016-08-23 Nec Corporation Secondary battery
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
US9219274B2 (en) 2010-09-02 2015-12-22 Nec Corporation Secondary battery
US9466827B2 (en) 2010-09-02 2016-10-11 Nec Corporation Secondary battery
US8999562B2 (en) 2010-09-02 2015-04-07 Nec Corporation Secondary battery and secondary battery electrolytic solution for use in secondary battery
EP2618406A1 (en) * 2010-09-14 2013-07-24 Hitachi Maxell, Ltd. Nonaqueous secondary cell
EP2618406A4 (en) * 2010-09-14 2014-03-05 Hitachi Maxell Nonaqueous secondary cell
US8859147B2 (en) 2010-09-14 2014-10-14 Hitachi Maxell, Ltd. Non-aqueous secondary battery
WO2012036127A1 (en) 2010-09-14 2012-03-22 日立マクセルエナジー株式会社 Nonaqueous secondary cell
JP2012227154A (en) * 2010-09-14 2012-11-15 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
US8481212B2 (en) 2010-09-14 2013-07-09 Hitachi Maxell, Ltd. Non-aqueous secondary battery
JPWO2012049889A1 (en) * 2010-10-14 2014-02-24 日本電気株式会社 Secondary battery and electrolyte for secondary battery used therefor
US9299985B2 (en) 2010-10-14 2016-03-29 Nec Corporation Secondary battery and electrolyte solution for secondary battery to be used in same
WO2012049889A1 (en) * 2010-10-14 2012-04-19 日本電気株式会社 Secondary battery and electrolyte solution for secondary battery to be used in same
WO2012056765A1 (en) * 2010-10-29 2012-05-03 日本電気株式会社 Secondary battery and method for manufacturing same
US10290894B2 (en) 2010-10-29 2019-05-14 Nec Corporation Secondary battery and method for manufacturing same
JPWO2012056765A1 (en) * 2010-10-29 2014-03-20 日本電気株式会社 Secondary battery and manufacturing method thereof
JP2012099341A (en) * 2010-11-02 2012-05-24 Shin Etsu Chem Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and method for producing the same, lithium ion secondary battery, and electrochemical capacitor
WO2012077712A1 (en) 2010-12-07 2012-06-14 日本電気株式会社 Lithium secondary battery
US9312534B2 (en) 2010-12-09 2016-04-12 Nec Corporation Nonaqueous electrolytic solution secondary battery, and positive electrode and negative electrode used in the same
US8790829B2 (en) 2010-12-20 2014-07-29 Hitachi Maxell, Ltd. Nonaqueous secondary battery
JP2012178344A (en) * 2011-02-02 2012-09-13 Hitachi Chem Co Ltd Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012111472A1 (en) 2011-02-15 2012-08-23 Jsr株式会社 Electrode for electricity storage device, slurry for electrode, binder composition for electrode, and electricity storage device
WO2012115093A1 (en) 2011-02-24 2012-08-30 日本電気株式会社 Separator for accumulators, and accumulator
WO2012115092A1 (en) 2011-02-24 2012-08-30 日本電気株式会社 Separator for accumulators, and accumulator
JP2012204195A (en) * 2011-03-25 2012-10-22 Waseda Univ Active material for lithium secondary battery, negative electrode for lithium secondary battery, and lithium secondary battery
US9373867B2 (en) 2011-03-28 2016-06-21 Nec Corporation Secondary battery and electrolyte liquid
US10749208B2 (en) 2011-03-28 2020-08-18 Nec Corporation Secondary battery and electrolyte liquid
JP2012232870A (en) * 2011-04-28 2012-11-29 Tohoku Univ Method for producing silica material with carbon-coated surface, carbon-coated silica material produced by the method and use thereof
JP2015046398A (en) * 2011-05-26 2015-03-12 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2015228381A (en) * 2011-05-26 2015-12-17 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
JP2013008654A (en) * 2011-05-26 2013-01-10 Shin Etsu Chem Co Ltd Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
JP2015046397A (en) * 2011-05-26 2015-03-12 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, lithium ion secondary battery, and electrochemical capacitor
US9786952B2 (en) 2011-06-23 2017-10-10 Nec Corporation Lithium secondary cell including an electrolytic solution including cyclic acid anhydrides
KR20130018498A (en) * 2011-08-15 2013-02-25 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, rechargeable lithium battery including the same, and method of preparing negative electrode for rechargeable lithium battery including the same
KR101711985B1 (en) 2011-08-15 2017-03-06 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery, rechargeable lithium battery including the same, and method of preparing negative electrode for rechargeable lithium battery including the same
US20130052533A1 (en) * 2011-08-31 2013-02-28 Samsung Sdi Co., Ltd. Negative active material for lithium secondary battery and lithium secondary battery including the same
WO2013047024A1 (en) * 2011-09-26 2013-04-04 日本電気株式会社 Lithium secondary battery and vehicle using same
JPWO2013047024A1 (en) * 2011-09-26 2015-03-26 日本電気株式会社 Lithium secondary battery and vehicle using the same
JP2012009457A (en) * 2011-10-07 2012-01-12 Gs Yuasa Corp Nonaqueous electrolyte secondary battery
EP2768050A4 (en) * 2011-10-14 2015-06-03 Shinetsu Chemical Co Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
US20140302395A1 (en) * 2011-10-14 2014-10-09 Shi-Etsu Chemical Co., Ltd. Silicon oxide for non-aqueous electrolyte secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery, and electrochemical capacitor
KR101947620B1 (en) 2011-10-14 2019-02-14 신에쓰 가가꾸 고교 가부시끼가이샤 Silicon oxide for negative electrode material of nonaqueous electroltye secondary cell, method for producing same, lithium ion secondary cell, and electrochemical capacitor
KR20140105753A (en) 2011-12-19 2014-09-02 히다치 막셀 가부시키가이샤 Lithium secondary battery
JP2012059721A (en) * 2011-12-26 2012-03-22 Hitachi Maxell Energy Ltd Nonaqueous secondary battery
JP2013143376A (en) * 2012-01-06 2013-07-22 Samsung Sdi Co Ltd Anode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same
US10003100B2 (en) 2012-02-03 2018-06-19 Nec Corporation Nonaqueous electrolyte with fluorine containing ether compound for lithium secondary battery
JP2013168328A (en) * 2012-02-16 2013-08-29 Hitachi Chemical Co Ltd Anode material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
WO2013129346A1 (en) 2012-03-02 2013-09-06 日本電気株式会社 Secondary battery
US9748608B2 (en) 2012-03-02 2017-08-29 Nec Corporation Second battery comprising a phosphate ester compound and a fluorinated carbonate compound
US9012093B2 (en) 2012-03-02 2015-04-21 Nec Corporation Secondary battery
US9512523B2 (en) 2012-04-19 2016-12-06 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
US9780357B2 (en) 2012-04-19 2017-10-03 Lg Chem, Ltd. Silicon-based anode active material and secondary battery comprising the same
US9831500B2 (en) 2012-04-19 2017-11-28 Lg Chem, Ltd. Porous electrode active material and secondary battery including the same
JP2013225469A (en) * 2012-04-19 2013-10-31 Lg Chem Ltd Silicon-based positive active material and secondary battery comprising the same
US9583278B2 (en) 2012-06-18 2017-02-28 Jsr Corporation Binder composition for electrical storage device electrodes, slurry for electrical storage device electrodes, electrical storage device electrode, and electrical storage device
TWI578600B (en) * 2012-07-06 2017-04-11 東麗股份有限公司 Negative electrode material for lithium ion secondary battery, composite negative electrode material for lithium ion secondary battery, resin composition for negative electrode of lithium ion secondary battery, negative electrode for lithium ion secondar
US9196896B2 (en) 2012-07-24 2015-11-24 Lg Chem, Ltd. Porous silicon-based electrode active material and secondary battery comprising the same
JP2014026950A (en) * 2012-07-24 2014-02-06 Lg Chem Ltd Porous silicon-based electrode active material and secondary battery comprising the same
US9879344B2 (en) 2012-07-26 2018-01-30 Lg Chem, Ltd. Electrode active material for secondary battery
JP2014026949A (en) * 2012-07-26 2014-02-06 Lg Chem Ltd Electrode active material for secondary battery
TWI497808B (en) * 2012-10-16 2015-08-21 Lg Chemical Ltd Silicon oxide for anode active material of secondary battery
US10892482B2 (en) 2012-10-26 2021-01-12 Showa Denko Materials Co., Ltd. Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018160460A (en) * 2012-10-26 2018-10-11 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2020113547A (en) * 2012-10-26 2020-07-27 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
WO2014065418A1 (en) * 2012-10-26 2014-05-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN110635123A (en) * 2012-10-26 2019-12-31 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2014065418A1 (en) * 2012-10-26 2016-09-08 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101562017B1 (en) 2012-12-06 2015-10-20 주식회사 엘지화학 Anode active material for lithium secondary battery with high capacity, a manufacturing method of the same and Lithium secondary battery comprising the same
WO2014088270A1 (en) * 2012-12-06 2014-06-12 주식회사 엘지화학 High-capacity anode active material for lithium secondary battery, manufacturing method therefor, and lithium secondary battery comprising same
KR102029485B1 (en) * 2012-12-12 2019-10-07 신에쓰 가가꾸 고교 가부시끼가이샤 Method for producing negative electrode active material for nonaqueous electrolytic secondary battery, lithium ion secondary battery and electrochemical capacitor
CN103872292A (en) * 2012-12-12 2014-06-18 信越化学工业株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery and method for producing the same
JP2014116249A (en) * 2012-12-12 2014-06-26 Shin Etsu Chem Co Ltd Anode active material for nonaqueous electrolytic secondary battery and manufacturing method thereof
KR20140076497A (en) 2012-12-12 2014-06-20 신에쓰 가가꾸 고교 가부시끼가이샤 Negative electrode active material for nonaqueous electrolytic secondary battery and method for producing the same
JP2014139919A (en) * 2012-12-18 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
KR20210013253A (en) 2013-01-07 2021-02-03 맥셀 홀딩스 가부시키가이샤 Nonaqueous electrolyte secondary battery
WO2014119238A1 (en) * 2013-01-30 2014-08-07 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries using said negative electrode active material, and nonaqueous electrolyte secondary battery using said negative electrode
JPWO2014119238A1 (en) * 2013-01-30 2017-01-26 三洋電機株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery using the negative electrode active material, and nonaqueous electrolyte secondary battery using the negative electrode
USRE49407E1 (en) 2013-03-11 2023-01-31 Maxell, Ltd. Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
KR20200133396A (en) 2013-03-11 2020-11-27 맥셀 홀딩스 가부시키가이샤 Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
KR20150126843A (en) 2013-03-11 2015-11-13 히다치 막셀 가부시키가이샤 Lithium secondary cell pack, as well as electronic device, charging system, and charging method using said pack
US10044072B2 (en) 2013-03-11 2018-08-07 Maxell Holdings, Ltd. Lithium secondary battery pack, as well as electronic device, charging system, and charging method using said pack
JP2014192064A (en) * 2013-03-28 2014-10-06 Shin Etsu Chem Co Ltd Silicon-containing particle, negative electrode material of nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2013175478A (en) * 2013-05-09 2013-09-05 Shin Etsu Chem Co Ltd Negative electrode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JPWO2014188851A1 (en) * 2013-05-23 2017-02-23 信越化学工業株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and secondary battery
JP2015005377A (en) * 2013-06-20 2015-01-08 信越化学工業株式会社 Active material for nonaqueous electrolyte secondary batteries, negative electrode mold, and nonaqueous electrolyte secondary battery
CN104241652A (en) * 2013-06-20 2014-12-24 信越化学工业株式会社 active material for nonaqueous electrolyte secondary battery, negative electrode form, and nonaqueous electrolyte secondary battery
JP2015005376A (en) * 2013-06-20 2015-01-08 信越化学工業株式会社 Pulverization assistant for nonaqueous electrolyte secondary battery active material, and pulverization method
CN104241652B (en) * 2013-06-20 2019-05-14 信越化学工业株式会社 Active material, cathode formed body and non-aqueous electrolyte secondary battery for non-aqueous electrolyte secondary battery
KR20160018717A (en) 2013-07-23 2016-02-17 신닛테츠스미킨 카부시키카이샤 Composite particles, method for manufacturing same, electrode, and non-aqueous electrolyte secondary cell
JPWO2015015883A1 (en) * 2013-07-31 2017-03-02 株式会社Adeka Lithium secondary battery and electrolyte for lithium secondary battery
WO2015015883A1 (en) * 2013-07-31 2015-02-05 日本電気株式会社 Lithium secondary battery and electrolyte solution for lithium secondary batteries
WO2015041167A1 (en) * 2013-09-20 2015-03-26 日立マクセル株式会社 Non-aqueous secondary battery
KR20150078059A (en) 2013-12-30 2015-07-08 삼성정밀화학 주식회사 Anode material for rechargeable lithium battery, manufacturing method thereof, and rechargeable lithium battery comprising the same
US9979007B2 (en) 2013-12-30 2018-05-22 Samsung Electronics Co., Ltd. Negative electrode material for lithium secondary battery, production method for same, and lithium secondary battery comprising same as negative electrode
US10361432B2 (en) 2014-01-24 2019-07-23 Maxell Holdings, Ltd. Non-aqueous secondary battery
KR102143708B1 (en) * 2014-01-31 2020-08-11 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
KR20180072856A (en) * 2014-01-31 2018-06-29 가부시키가이샤 도요다 지도숏키 Negative electrode for nonaqueous secondary batteries; nonaqueous secondary battery; negative electrode active material; method for producing negative electrode active material; composite body comprising nano-silicon, carbon layer and cationic polymer layer; and method for producing composite body composed of nano-silicon and carbon layer
US10297817B2 (en) 2014-02-04 2019-05-21 Mitsui Chemicals, Inc. Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
KR20160104718A (en) 2014-02-04 2016-09-05 미쓰이 가가쿠 가부시키가이샤 Negative electrode for lithium ion secondary cell, lithium-ion secondary cell, mixture paste for negative electrode for lithium-ion secondary cell, and method for manufacturing negative electrode for lithium-ion secondary cell
WO2015140907A1 (en) * 2014-03-17 2015-09-24 株式会社東芝 Active material for nonaqueous electrolyte secondary batteries, electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, battery pack and method for producing active material for nonaqueous electrolyte secondary batteries
US10326129B2 (en) 2014-03-17 2019-06-18 Kabushiki Kaisha Toshiba Active material, electrode, nonaqueous electrolyte secondary battery, battery pack and production method of active material
WO2015145522A1 (en) * 2014-03-24 2015-10-01 株式会社 東芝 Electrode active material for non-aqueous electrolyte cell, electrode for non-aqueous electrolyte secondary cell, non-aqueous electrolyte secondary cell, and cell pack
JP2014139948A (en) * 2014-03-28 2014-07-31 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery, and lithium ion secondary battery
JP2016048628A (en) * 2014-08-27 2016-04-07 株式会社豊田自動織機 Silicon material-carbon layer-cationic polymer layer complex
JP2015028943A (en) * 2014-09-08 2015-02-12 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US10396353B2 (en) 2014-10-08 2019-08-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method of producing negative electrode material for non-aqueous electrolyte secondary battery
WO2016056155A1 (en) * 2014-10-08 2016-04-14 信越化学工業株式会社 Negative electrode active substance for nonaqueous electrolyte secondary cell, negative electrode for nonaqueous electrolyte secondary cell, nonaqueous electrolyte secondary cell, and method for producing negative electrode material for nonaqueous electrolyte secondary cell
JP2016076449A (en) * 2014-10-08 2016-05-12 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode for nonaqueous electrolyte secondary battery material
JP2016110738A (en) * 2014-12-03 2016-06-20 山陽特殊製鋼株式会社 Powder for conductive filler
JP2016110834A (en) * 2014-12-05 2016-06-20 株式会社東芝 Active material for nonaqueous electrolyte battery, electrode for nonaqueous electrolyte battery, nonaqueous electrolyte secondary battery and battery pack
US9577255B2 (en) 2014-12-31 2017-02-21 Dae Joo Electronic Materials Co., Ltd Negative electrode active material for non-aqueous electrolyte rechargeable battery, method of fabricating the same, and non-aqueous electrolyte rechargeable battery including the same
JP2016164870A (en) * 2015-02-26 2016-09-08 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP2016190749A (en) * 2015-03-31 2016-11-10 信越化学工業株式会社 Apparatus for forming carbon film, method for forming carbon film, anode material for lithium ion battery and lithium ion battery
US10892477B2 (en) 2015-03-31 2021-01-12 Lg Chem, Ltd. Porous silicon-silicon oxide-carbon composite, and method of preparing the same
JP2018513098A (en) * 2015-03-31 2018-05-24 エルジー・ケム・リミテッド Porous silicon-silicon oxide-carbon composite and production method thereof
US20160315310A1 (en) * 2015-04-22 2016-10-27 Shin-Etsu Chemical Co., Ltd. Negative electrode active material for non-aqueous electrolyte secondary battery, method of producing the same, non-aqueous electrolyte secondary battery using the negative electrode active material, and method of producing negative electrode material...
JP2020128548A (en) * 2015-04-30 2020-08-27 キャボット コーポレイションCabot Corporation Carbon coated particles
US11198774B2 (en) 2015-04-30 2021-12-14 Cabot Corporation Carbon coated particles
US11692081B2 (en) 2015-04-30 2023-07-04 Cabot Corporation Carbon-coated particles
JP2018522996A (en) * 2015-04-30 2018-08-16 キャボット コーポレイションCabot Corporation Carbon coating particles
US10519298B2 (en) 2015-04-30 2019-12-31 Cabot Corporation Carbon coated particles
JP7087019B2 (en) 2015-04-30 2022-06-20 キャボット コーポレイション Carbon coated particles
JP2022048155A (en) * 2015-04-30 2022-03-25 キャボット コーポレイション Carbon coated particles
JP2015164139A (en) * 2015-05-14 2015-09-10 信越化学工業株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery arranged by use thereof
JP2016219410A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016222475A (en) * 2015-05-28 2016-12-28 信越化学工業株式会社 Graphite-coated particle, and method for producing the same
KR20160141676A (en) 2015-06-01 2016-12-09 히다치 막셀 가부시키가이샤 Lithium ion secondary battery
US9819018B2 (en) 2015-06-01 2017-11-14 Hitachi Maxell, Ltd. Lithium ion secondary battery
JP2020129556A (en) * 2015-11-06 2020-08-27 国立大学法人 新潟大学 Method for manufacturing nonaqueous electrolyte secondary battery negative electrode
WO2017169988A1 (en) 2016-03-30 2017-10-05 Necエナジーデバイス株式会社 Electrode, method for manufacturing same, and secondary cell
JP2017191707A (en) * 2016-04-13 2017-10-19 株式会社豊田自動織機 METHOD FOR PRODUCING CARBON COATED Si-CONTAINING NEGATIVE ELECTRODE ACTIVE MATERIAL
CN106025237A (en) * 2016-07-21 2016-10-12 中国科学院山西煤炭化学研究所 Double-coated silicon-based composite material and preparation method thereof
KR20190039425A (en) 2016-09-08 2019-04-11 맥셀 홀딩스 가부시키가이샤 Lithium ion secondary battery and manufacturing method thereof
JP7059931B2 (en) 2016-09-15 2022-04-26 日本電気株式会社 Lithium ion secondary battery
US11817546B2 (en) 2016-09-15 2023-11-14 Nec Corporation Lithium ion secondary battery
JPWO2018052077A1 (en) * 2016-09-15 2019-06-27 日本電気株式会社 Lithium ion secondary battery
US10944111B2 (en) 2016-10-28 2021-03-09 Nec Corporation Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
US11183679B2 (en) 2016-11-22 2021-11-23 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
KR20190085942A (en) 2016-11-22 2019-07-19 미쯔비시 케미컬 주식회사 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
CN111656582A (en) * 2018-01-31 2020-09-11 日立化成株式会社 Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US11916227B2 (en) 2018-02-23 2024-02-27 National Institute Of Advanced Industrial Science And Technology Multilayer body and method for producing same
US20210057730A1 (en) * 2018-05-22 2021-02-25 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2020044931A1 (en) 2018-08-30 2020-03-05 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
CN110148730A (en) * 2019-05-28 2019-08-20 合肥国轩高科动力能源有限公司 A kind of Gao Shouxiao long-life silicon based anode material and its preparation method and application
KR20220044723A (en) 2019-08-09 2022-04-11 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Negative electrode, secondary battery, and solid secondary battery
KR20210031563A (en) 2019-09-11 2021-03-22 대주전자재료 주식회사 Silicon-containing anode material for lithium-ion secondary battery and preparation method thereof
KR20210055137A (en) 2019-11-06 2021-05-17 대주전자재료 주식회사 Silicon-carbon composite for anode material of secondary battery and preparation method of the same
CN114597384B (en) * 2021-12-30 2023-06-23 深圳技术大学 Method for preparing lithium ion battery cathode material by utilizing crystalline silicon wire saw waste mortar
CN114597384A (en) * 2021-12-30 2022-06-07 深圳技术大学 Method for preparing lithium ion battery cathode material by using crystal silicon wire saw waste mortar
CN114583135A (en) * 2022-03-15 2022-06-03 中国科学院过程工程研究所 Spherical silicon-carbon composite material prepared by cutting waste silicon powder in one step and preparation method and application thereof

Also Published As

Publication number Publication date
JP3952180B2 (en) 2007-08-01

Similar Documents

Publication Publication Date Title
JP3952180B2 (en) Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
US7037581B2 (en) Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP6601421B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery
KR100595896B1 (en) A negative active material for lithium secondary battery and a method for preparing same
TWI392133B (en) Silicon-silicon oxide-lithium composite and its preparation method and non-electrolyte battery anode material
JP6499082B2 (en) Negative electrode material for rechargeable battery and method of manufacturing the same
CA2269388C (en) Graphite powders suited for negative electrode material of lithium ion secondary battery
EP2991141A1 (en) Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
KR102374350B1 (en) Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
JP2004063433A (en) Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
CN107624202B (en) Composite powder for use in anode of lithium ion battery, method for manufacturing composite powder, and lithium ion battery
JP6100610B2 (en) Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof
WO2015049836A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
JP2007294423A (en) Silicon-silicon oxide-lithium based composite and its manufacturing method as well as negative electrode material for nonaqueous electrolyte secondary battery
WO2011162348A1 (en) Silicic acid compound, positive electrode for secondary cell, and method for producing secondary cell
JP7127275B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
JP6808959B2 (en) Composite active material for lithium-ion secondary battery and its manufacturing method
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
CN107925074B (en) Negative electrode material for lithium ion secondary battery, method for producing same, and lithium ion secondary battery
JP2004296161A (en) Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery
KR20240054329A (en) Method for manufacturing silicon-carbon composite materials
KR20240011662A (en) Advanced cathode material containing spherical additive-reinforced graphite particles and method for manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041026

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060802

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060922

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3952180

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130511

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160511

Year of fee payment: 9

EXPY Cancellation because of completion of term