JP5182498B2 - Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor - Google Patents

Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor Download PDF

Info

Publication number
JP5182498B2
JP5182498B2 JP2008156699A JP2008156699A JP5182498B2 JP 5182498 B2 JP5182498 B2 JP 5182498B2 JP 2008156699 A JP2008156699 A JP 2008156699A JP 2008156699 A JP2008156699 A JP 2008156699A JP 5182498 B2 JP5182498 B2 JP 5182498B2
Authority
JP
Japan
Prior art keywords
secondary battery
silicon
particles
negative electrode
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008156699A
Other languages
Japanese (ja)
Other versions
JP2009301937A (en
Inventor
浩一朗 渡邊
宏文 福岡
周 樫田
悟 宮脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2008156699A priority Critical patent/JP5182498B2/en
Publication of JP2009301937A publication Critical patent/JP2009301937A/en
Application granted granted Critical
Publication of JP5182498B2 publication Critical patent/JP5182498B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for non-aqueous electrolyte secondary battery which has an excellent initial charge and discharge efficiency and cycle characteristics, and is especially effective for a lithium ion secondary battery, to provide a manufacturing method thereof, to provide a lithium ion secondary battery, and to provide an electrochemical capacitor. <P>SOLUTION: The negative electrode material for non-aqueous electrolyte secondary battery is made of silicon oxide particles represented by general formula: SiO<SB>x</SB>(0.5&le;x&lt;1.6), particles having a structure in which crystallites of silicon are dispersed in a silicon-based compound, or whisker-contained particles composed of a mixture of them in which whiskers are formed on the surfaces of them. The non-aqueous electrolyte secondary battery which has a high initial charge and discharge efficiency and superior cycle characteristics can be obtained by using the negative electrode material so obtained as the negative electrode material of the non-aqueous electrolyte secondary battery. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、非水電解質二次電池、特にリチウムイオン二次電池用負極活物質として用いた際に、優れた初回充放電効率、サイクル特性を有する非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタに関するものである。   The present invention relates to a negative electrode material for a nonaqueous electrolyte secondary battery having excellent initial charge and discharge efficiency and cycle characteristics when used as a negative electrode active material for a nonaqueous electrolyte secondary battery, particularly a lithium ion secondary battery, and its production. The present invention relates to a method, and a lithium ion secondary battery and an electrochemical capacitor.

近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Sn等の酸化物及びそれらの複合酸化物を用いる方法(例えば、特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報参照)、溶融急冷した金属酸化物を負極材として適用する方法(例えば、特許文献3:特開平10−294112号公報参照)、負極材料に酸化珪素を用いる方法(例えば、特許文献4:特許第2997741号公報参照)、負極材料にSi22O及びGe22Oを用いる方法(例えば、特許文献5:特開平11−102705号公報参照)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(例えば、特許文献6:特開2000−243396号公報参照)、珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献7:特開2000−215887号公報参照)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(例えば、特許文献8:特開2002−42806号公報参照)等が挙げられる。 In recent years, with the remarkable development of portable electronic devices, communication devices, etc., secondary batteries with high energy density are strongly demanded from the viewpoints of economy and downsizing and weight reduction of devices. Conventionally, as a measure for increasing the capacity of this type of secondary battery, for example, a method of using an oxide such as V, Si, B, Zr, or Sn and a composite oxide thereof as a negative electrode material (for example, Patent Document 1: Kaihei 5-174818, Patent Document 2: Japanese Patent Laid-Open No. 6-60867, and a method of applying a melt-quenched metal oxide as a negative electrode material (for example, see Patent Document 3: Japanese Patent Laid-Open No. 10-294112) , A method using silicon oxide as a negative electrode material (for example, see Patent Document 4: Japanese Patent No. 2999741), a method using Si 2 N 2 O and Ge 2 N 2 O as a negative electrode material (for example, Patent Document 5: 11-102705) and the like are known. In addition, for the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO with graphite and then carbonizing (see, for example, Patent Document 6: JP 2000-243396 A), a chemical vapor deposition method on the surface of silicon particles (For example, see Patent Document 7: Japanese Patent Laid-Open No. 2000-215887), and a method for coating a carbon layer on the surface of silicon oxide particles by chemical vapor deposition (for example, Patent Document 8: Japanese Patent Laid-Open No. 2002-2002). 42806) and the like.

しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。   However, in the above conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cycleability is insufficient, or the required characteristics of the market are still insufficient, and are not always satisfactory. However, further improvement in energy density has been desired.

特に、特許第2997741号公報(特許文献4)では、酸化珪素をリチウムイオン二次電池負極材として用い、高容量の電極を得ているが、本発明者らが見る限りにおいては、未だ初回充放電時における不可逆容量が大きかったり、サイクル性が実用レベルに達しておらず、改良する余地がある。また、負極材に導電性を付与した技術についても、特開2000−243396号公報(特許文献6)では、固体と固体の融着であるため、均一な炭素皮膜が形成されず、導電性が不十分であるといった問題がある。また、特開2000−215887号公報(特許文献7)の方法においては、均一な炭素皮膜の形成が可能となるものの、Siを負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2002−42806号公報(特許文献8)の方法においては、微細な珪素結晶の析出、炭素被覆の構造及び基材との融合が不十分であることより、サイクル性の向上は確認されるも、充放電のサイクル数を重ねると徐々に容量が低下し、一定回数後に急激に低下するという現象があり、二次電池用としてはまだ不十分であるといった問題があった。   In particular, in Japanese Patent No. 2997741 (Patent Document 4), silicon oxide is used as a negative electrode material for a lithium ion secondary battery to obtain a high-capacity electrode. There is room for improvement because the irreversible capacity at the time of discharge is large and the cycle performance has not reached the practical level. In addition, regarding the technique for imparting conductivity to the negative electrode material, in Japanese Patent Application Laid-Open No. 2000-243396 (Patent Document 6), since it is a solid-solid fusion, a uniform carbon film is not formed, and conductivity is improved. There is a problem that it is insufficient. Further, in the method disclosed in Japanese Patent Application Laid-Open No. 2000-215887 (Patent Document 7), although a uniform carbon film can be formed, since Si is used as a negative electrode material, expansion / desorption during lithium ion adsorption / desorption is performed. The contraction is too large, and as a result, it cannot be put into practical use, and the cycle performance is lowered. Therefore, a charge amount limit must be provided in order to prevent this, and Japanese Patent Application Laid-Open No. 2002-42806 (Patent Document) In the method of 8), although the improvement of cycleability is confirmed from the fact that the precipitation of fine silicon crystals, the carbon coating structure and the fusion with the base material are insufficient, the cycle number of charge / discharge is repeated. There is a phenomenon in which the capacity gradually decreases and rapidly decreases after a certain number of times, and there is a problem that it is still insufficient for a secondary battery.

特開平5−174818号公報JP-A-5-174818 特開平6−60867号公報JP-A-6-60867 特開平10−294112号公報JP 10-294112 A 特許第2997741号公報Japanese Patent No. 2999741 特開平11−102705号公報JP-A-11-102705 特開2000−243396号公報JP 2000-243396 A 特開2000−215887号公報JP 2000-215887 A 特開2002−42806号公報JP 2002-42806 A 特許3952180号公報Japanese Patent No. 3952180

本発明は、上記事情に鑑みなされたもので、良好な初回充放電効率、サイクル特性を有する、特にリチウムイオン二次電池用として有効な非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタを提供することを目的とする。   The present invention has been made in view of the above circumstances, and has good initial charge / discharge efficiency and cycle characteristics, and in particular, a negative electrode material for a non-aqueous electrolyte secondary battery effective as a lithium ion secondary battery, and a method for producing the same, and An object is to provide a lithium ion secondary battery and an electrochemical capacitor.

本発明者らは、上記目的を達成するため種々検討を行った結果、酸化珪素粒子又は珪素の微結晶が珪素系化合物に分散した構造を有する粒子の表面に、ウィスカーが形成されたウィスカー酸化珪素粒子を負極材として用いることで、充放電サイクルを重ねてもウィスカーにより集電性が損なわれず、著しい電池特性の向上が見られることを知見した。   As a result of various studies to achieve the above object, the present inventors have found that whisker silicon oxide in which whiskers are formed on the surface of silicon oxide particles or particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound. It has been found that by using the particles as the negative electrode material, even if the charge and discharge cycles are repeated, the current collecting property is not impaired by the whisker, and the battery characteristics are remarkably improved.

即ち、本発明者らは検討過程において、種々の条件にて得られた粒子の電池特性評価を行った結果、各材料によって特性の相違があることを確認した。そこで、得られた各種材料の分析を行った結果、粒子にウィスカーを有する材料を負極材とすることで、特性の良好な非水電解質二次電池用負極材が得られること及びこれら負極材の製造方法を知見した。   That is, as a result of evaluating battery characteristics of particles obtained under various conditions during the examination process, the present inventors confirmed that there are differences in characteristics depending on the materials. Therefore, as a result of analysis of the obtained various materials, it is possible to obtain a negative electrode material for a nonaqueous electrolyte secondary battery with good characteristics by using a material having whiskers in particles as a negative electrode material, and The manufacturing method was discovered.

従って、本発明は、下記の非水電解質二次電池用負極材及びその製造方法、ならびにリチウムイオン二次電池及び電気化学キャパシタを提供する。
[1].一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子の表面に、酸化珪素、珪素の微結晶が珪素系化合物に分散した構造、又はこれらの混合物からなるウィスカーが形成されたウィスカー含有粒子からなることを特徴とする非水電解質二次電池用負極材。
[2].ウィスカー含有粒子が、その表面がカーボン皮膜で被覆された粒子である[1]記載の非水電解質二次電池用負極材。
[3].一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子を、30000Pa以下の減圧下、900〜1300℃で熱処理することを特徴とする[1]記載の非水電解質二次電池用負極材の製造方法。
[4].一般式SiO x (0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子を、30000Pa以下の減圧下、900〜1300℃の熱処理温度で熱分解してカーボンを生成する有機物のガス中で、900〜1300℃で熱処理することを特徴とする請求項2記載の非水電解質二次電池用負極材の製造方法。
[5].[1]又は[2]記載の非水電解質二次電池用負極材を含むことを特徴とするリチウムイオン二次電池。
[6].[1]又は[2]記載の非水電解質二次電池用負極材を含むことを特徴とする電気化学キャパシタ。
Accordingly, the present invention provides the following negative electrode material for a non-aqueous electrolyte secondary battery, a method for producing the same, a lithium ion secondary battery, and an electrochemical capacitor.
[1]. Silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6), particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound, or a mixture of these particles are formed on the surface of silicon oxide. A negative electrode material for a non-aqueous electrolyte secondary battery comprising a structure in which fine crystals of silicon are dispersed in a silicon-based compound, or whisker-containing particles in which whiskers made of a mixture thereof are formed.
[2]. The negative electrode material for a nonaqueous electrolyte secondary battery according to [1], wherein the whisker-containing particles are particles whose surfaces are coated with a carbon film.
[3]. Silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6), particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound, or mixed particles thereof are reduced in pressure to 30000 Pa or less. The method for producing a negative electrode material for a nonaqueous electrolyte secondary battery according to [1], wherein the heat treatment is performed at 900 to 1300 ° C.
[4]. Silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6), particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound, or mixed particles thereof are reduced in pressure to 30000 Pa or less. The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the heat treatment is performed at 900 to 1300 ° C in an organic gas that is thermally decomposed at a heat treatment temperature of 900 to 1300 ° C to generate carbon. Manufacturing method.
[5]. A lithium ion secondary battery comprising the negative electrode material for a nonaqueous electrolyte secondary battery according to [1] or [2] .
[6]. An electrochemical capacitor comprising the negative electrode material for a non-aqueous electrolyte secondary battery according to [1] or [2] .

本発明で得られた負極材を非水電解質二次電池の負極材として用いることで、高い初回充放電効率を有し、サイクル性に優れた非水電解質二次電池を得ることができる。   By using the negative electrode material obtained in the present invention as a negative electrode material for a non-aqueous electrolyte secondary battery, a non-aqueous electrolyte secondary battery having high initial charge / discharge efficiency and excellent cycleability can be obtained.

本発明の非水電解質二次電池用負極材は、一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子の表面に、ウィスカーが形成されたウィスカー含有粒子からなるものである。 The negative electrode material for a non-aqueous electrolyte secondary battery of the present invention has a structure in which silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6) and silicon microcrystals are dispersed in a silicon compound. It is made of whisker-containing particles in which whiskers are formed on the surface of the particles having the above or mixed particles thereof.

[酸化珪素粒子]
本発明において酸化珪素とは、二酸化珪素と金属珪素との混合物を加熱して生成した一酸化珪素ガスを冷却・析出して得られた非晶質の珪素酸化物の総称であり、本発明においては、一般式SiOx(0.5≦x<1.6)で表されるものをいう。xは0.8≦x<1.6が好ましく、0.8≦x<1.3がより好ましい。
[Silicon oxide particles]
In the present invention, silicon oxide is a general term for amorphous silicon oxides obtained by cooling and precipitating silicon monoxide gas generated by heating a mixture of silicon dioxide and metal silicon. Means a material represented by the general formula SiO x (0.5 ≦ x <1.6). x is preferably 0.8 ≦ x <1.6, and more preferably 0.8 ≦ x <1.3.

酸化珪素はさらに粉砕して酸化珪素粒子とする。酸化珪素粒子の物性については特に限定されるものではないが、平均粒子径はレーザー回折散乱式粒度分布測定法による体積平均値D50(即ち、累積体積が50%となる時の粒子径(メジアン径)が、0.01〜50μmが好ましく、0.1〜10μmがより好ましい。D50が0.01μmより小さいと表面酸化の影響で純度が低下し、非水電解質二次電池用負極材として用いた場合、充放電容量が低下したり、嵩密度が低下し、単位体積あたりの充放電容量が低下するおそれがある。一方、50μmより大きいと負極膜を貫通してショートする原因となるおそれがある。また、BET比表面積は0.1m2/g以上が好ましく、より好ましくは0.2m2/g以上で、上限として30m2/g以下が好ましく、より好ましくは20m2/g以下である。 The silicon oxide is further pulverized into silicon oxide particles. The physical properties of the silicon oxide particles are not particularly limited, but the average particle size is a volume average value D 50 according to the laser diffraction scattering type particle size distribution measurement method (that is, the particle size (median when the cumulative volume becomes 50%) (Diameter) is preferably from 0.01 to 50 μm, more preferably from 0.1 to 10 μm, and if D 50 is smaller than 0.01 μm, purity decreases due to the effect of surface oxidation, and the negative electrode material for a non-aqueous electrolyte secondary battery is used. If used, the charge / discharge capacity may decrease, the bulk density may decrease, and the charge / discharge capacity per unit volume may decrease, whereas if it exceeds 50 μm, it may cause a short circuit through the negative electrode film. there are. Further, BET specific surface area is preferably not less than 0.1 m 2 / g, more preferably 0.2 m 2 / g or more, preferably 30 m 2 / g or less as the upper limit, more preferably 20 m 2 / g or more It is.

[珪素の微結晶が珪素系化合物に分散した構造を有する粒子]
珪素の微結晶が珪素系化合物に分散した構造を有する粒子(珪素複合体粉末)における、珪素系化合物としては、不活性なものが好ましく、二酸化珪素、窒化珪素、炭化珪素、酸窒化珪素が好ましい。
[Particles having a structure in which silicon microcrystals are dispersed in a silicon compound]
In the particles having a structure in which silicon microcrystals are dispersed in a silicon compound (silicon composite powder), the silicon compound is preferably inactive, and silicon dioxide, silicon nitride, silicon carbide, and silicon oxynitride are preferable. .

珪素の微結晶が珪素系化合物に分散した構造を有する粒子は、下記性状を有してことが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、その回折線の広がりをもとに、シェーラーの式によって求めた珪素の結晶の粒子径が好ましくは1〜500nm、より好ましくは2〜200nm、さらに好ましくは2〜20nmである。珪素の微粒子の大きさが1nmより小さいと、充放電容量が小さくなる場合があるし、逆に500nmより大きいと充放電時の膨張収縮が大きくなり、サイクル性が低下するおそれがある。なお、珪素の微粒子の大きさは透過電子顕微鏡写真により測定することができる。
ii.固体NMR(29Si−DDMAS)測定において、そのスペクトルが−110ppm付近を中心とするブロードな二酸化珪素のピークとともに−84ppm付近にSiのダイヤモンド結晶の特徴であるピークが存在する。なお、このスペクトルは、通常の酸化珪素(SiOx:x=1.0+α)とは全く異なるもので、構造そのものが明らかに異なっているものである。また、透過電子顕微鏡によって、シリコンの結晶が無定形の二酸化珪素に分散していることが確認される。
The particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound preferably have the following properties.
i. In X-ray diffraction (Cu-Kα) using copper as the counter-cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° is observed, and based on the broadening of the diffraction line The particle diameter of the silicon crystal determined by the Scherrer equation is preferably 1 to 500 nm, more preferably 2 to 200 nm, and still more preferably 2 to 20 nm. If the size of the silicon fine particles is smaller than 1 nm, the charge / discharge capacity may be reduced. Conversely, if the silicon fine particle is larger than 500 nm, the expansion / contraction during charge / discharge increases, and the cycle performance may decrease. The size of the silicon fine particles can be measured by a transmission electron micrograph.
ii. In solid-state NMR ( 29 Si-DDMAS) measurement, there is a peak characteristic of Si diamond crystals in the vicinity of −84 ppm, along with a broad silicon dioxide peak whose spectrum is centered around −110 ppm. This spectrum is completely different from ordinary silicon oxide (SiO x : x = 1.0 + α), and the structure itself is clearly different. Further, it is confirmed by transmission electron microscope that silicon crystals are dispersed in amorphous silicon dioxide.

珪素の微結晶が珪素系化合物に分散した構造を有する粒子中における、珪素微結晶(Si)の分散量は2〜36質量%が好ましく、10〜30質量%が好ましい。この分散珪素量が2質量%未満では、充放電容量が小さくなる場合があり、逆に36質量%を超えるとサイクル性が低下する場合がある。   The amount of silicon microcrystals (Si) dispersed in particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound is preferably 2 to 36% by mass, and more preferably 10 to 30% by mass. If the amount of dispersed silicon is less than 2% by mass, the charge / discharge capacity may be reduced, and conversely if it exceeds 36% by mass, the cycle performance may be reduced.

珪素の微結晶が珪素系化合物に分散した構造を有する粒子は、平均粒子径はレーザー回折散乱式粒度分布測定法による体積平均値D50(即ち、累積体積が50%となる時の粒子径(メジアン径)が、0.01〜50μmを有するものであれば、その製造方法は特に限定されるものではないが、例えば、一般式SiOx(0.5≦x<1.6)で表される酸化珪素粉末を不活性ガス雰囲気下900〜1400℃の温度域で熱処理を施して不均化する方法により得ることができる。 Particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound have an average particle diameter of a volume average value D 50 (that is, a particle diameter at a cumulative volume of 50% (according to a laser diffraction scattering particle size distribution measurement method) The production method is not particularly limited as long as the median diameter is 0.01 to 50 μm. For example, it is represented by the general formula SiO x (0.5 ≦ x <1.6). The silicon oxide powder can be obtained by subjecting it to a disproportionation by subjecting it to a heat treatment in the temperature range of 900 to 1400 ° C. in an inert gas atmosphere.

酸化珪素粉末の平均粒子径(体積平均値D50)は0.01μm以上が好ましく、0.1μm以上がより好ましく、0.5μm以上がさらに好ましい。上限は特に限定されないが、50μm以下が好ましく、30μm以下がより好ましい。BET比表面積は0.1m2/g以上が好ましく、0.2m2/g以上が好ましく、上限としては特に限定されないが、30m2/g以下が好ましく、20m2/g以下がより好ましい。xの範囲は0.5≦x<1.6であり、0.8≦x<1.3が好ましく、0.8≦x≦1.2がより好ましい。酸化珪素粉末の平均粒子径及びBET比表面積が上記範囲外では所望の平均粒子径及びBET比表面積を有する珪素の微結晶が珪素系化合物に分散した構造を有する粒子が得られないおそれがあり、xの値が0.5より小さいSiOx粉末の製造は困難であるし、xの値が1.6以上のものは、熱処理を行い、不均化反応を行なった際に、不活性なSiO2の割合が大きく、リチウムイオン二次電池として使用した場合、充放電容量が低下するおそれがある。 The average particle diameter (volume average value D 50 ) of the silicon oxide powder is preferably 0.01 μm or more, more preferably 0.1 μm or more, and further preferably 0.5 μm or more. Although an upper limit is not specifically limited, 50 micrometers or less are preferable and 30 micrometers or less are more preferable. BET specific surface area is preferably not less than 0.1 m 2 / g, preferably at least 0.2 m 2 / g, is not particularly limited but preferably is 30 m 2 / g or less, 20 m 2 / g or less is more preferable. The range of x is 0.5 ≦ x <1.6, preferably 0.8 ≦ x <1.3, and more preferably 0.8 ≦ x ≦ 1.2. If the average particle diameter and the BET specific surface area of the silicon oxide powder are outside the above ranges, particles having a structure in which silicon microcrystals having a desired average particle diameter and a BET specific surface area are dispersed in a silicon-based compound may not be obtained. It is difficult to produce a SiO x powder having an x value of less than 0.5, and those having an x value of 1.6 or more are treated with heat treatment and subjected to a disproportionation reaction. The ratio of 2 is large, and when used as a lithium ion secondary battery, the charge / discharge capacity may be reduced.

一方、酸化珪素の不均化において、熱処理温度が900℃より低いと、不均化が全く進行しないかシリコンの微細なセル(珪素の微結晶)の形成に極めて長時間を要し、効率的でなく、逆に1400℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。熱処理温度は1000〜1300℃が好ましく、1100〜1250℃がより好ましい。なお、処理時間(不均化時間)は不均化処理温度に応じて10分〜20時間、特に30分〜12時間程度の範囲で適宜選定することができるが、例えば1100℃の処理温度においては5時間程度で所望の物性を有する、珪素の微結晶が珪素系化合物に分散した構造を有する粒子(珪素複合体粉末)が得られる。   On the other hand, in disproportionation of silicon oxide, if the heat treatment temperature is lower than 900 ° C., disproportionation does not proceed at all or it takes an extremely long time to form fine silicon cells (silicon microcrystals), which is efficient. On the other hand, if the temperature is higher than 1400 ° C., the structure of the silicon dioxide portion is advanced and the lithium ion traffic is hindered, so that the function as the lithium ion secondary battery may be deteriorated. 1000-1300 degreeC is preferable and the heat processing temperature has more preferable 1100-1250 degreeC. The treatment time (disproportionation time) can be appropriately selected in the range of 10 minutes to 20 hours, particularly 30 minutes to 12 hours, depending on the disproportionation treatment temperature. For example, at a treatment temperature of 1100 ° C. Gives particles (silicon composite powder) having a desired physical property and having a structure in which silicon microcrystals are dispersed in a silicon-based compound in about 5 hours.

上記不均化処理は、不活性ガス雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、Ar、He、H2、N2等の上記処理温度にて不活性なガス単独もしくはそれらの混合ガスを用いることができる。 The disproportionation treatment may be performed using a reaction apparatus having a heating mechanism in an inert gas atmosphere, and is not particularly limited, and can be performed by a continuous process or a batch process. Specifically, a fluidized bed reactor, A rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln, or the like can be appropriately selected according to the purpose. In this case, as the (treatment) gas, an inert gas alone or a mixed gas thereof such as Ar, He, H 2 , N 2 or the like can be used.

[ウィスカー含有粒子]
本発明のウィスカー含有粒子は、一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子の表面に、ウィスカーが形成されたものである。
[Whisker-containing particles]
The whisker-containing particles of the present invention include silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6), particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound, or these Whisker is formed on the surface of the mixed particles.

なお、本出願人は、先に特許3952180号において、
「X線回折において、Si(111)に帰属される回折ピークが観察され、その回折線の半価幅をもとにシェーラー法により求めた珪素の結晶の大きさが1〜500nmである、珪素の微結晶が珪素系化合物に分散した構造を有する粒子の表面を炭素でコーティングしてなることを特徴とする非水電解質二次電池負極材用導電性珪素複合体。」
を提案しているが、これは通常、酸化珪素を900〜1400℃の温度で、しかも常圧(大気圧)下で、有機物ガス及び/又は蒸気で不均化することにより製造するものであって、本発明のウィスカーが形成されないものであるから、本発明のウィスカー含有粒子と相違する。
In addition, the applicant of the present invention in Patent No. 3952180,
“In X-ray diffraction, a diffraction peak attributed to Si (111) is observed, and the silicon crystal size determined by the Scherrer method based on the half width of the diffraction line is 1 to 500 nm. A conductive silicon composite for a negative electrode material for a non-aqueous electrolyte secondary battery, wherein the surface of particles having a structure in which microcrystals of the above are dispersed in a silicon compound is coated with carbon. "
This is usually produced by disproportionating silicon oxide with organic gas and / or steam at a temperature of 900 to 1400 ° C. and under normal pressure (atmospheric pressure). Thus, since the whisker of the present invention is not formed, it is different from the whisker-containing particle of the present invention.

ウィスカーは、酸化珪素、珪素の微結晶が珪素系化合物に分散した構造、又はこれらの混合物からなるものであり、その長さは0.01〜30μmが好ましく、0.1〜10μmがより好ましい。0.01μmより短いと集電性向上への寄与が不十分となるおそれがあり、30μmより長いと電極作製時に折れてしまうおそれがある。また、ウィスカーの太さは0.001〜1μmが好ましく、0.01〜0.1μmがより好ましい。0.001μmより細いと強度が不十分となる場合があり、1μmより太いとウィスカーとしての効力を発揮できないおそれがある。酸化珪素粒子に対するウィスカーの存在割合は、0.001〜10質量%が好ましく、0.01〜5質量%がより好ましく、0.1〜1質量%がさらに好ましい。0.001質量%より少ないと存在効果が不十分となるおそれがあり、10質量%より多いと電極作製が困難となるおそれがある。   The whisker is composed of silicon oxide, a structure in which microcrystals of silicon are dispersed in a silicon-based compound, or a mixture thereof, and the length is preferably 0.01 to 30 μm, and more preferably 0.1 to 10 μm. If it is shorter than 0.01 μm, the contribution to improving the current collecting property may be insufficient, and if it is longer than 30 μm, it may be broken during electrode production. The thickness of the whisker is preferably 0.001 to 1 μm, and more preferably 0.01 to 0.1 μm. If it is thinner than 0.001 μm, the strength may be insufficient, and if it is thicker than 1 μm, the effect as a whisker may not be exhibited. 0.001-10 mass% is preferable, the presence ratio of the whisker with respect to a silicon oxide particle is more preferable, 0.01-5 mass% is more preferable, and 0.1-1 mass% is further more preferable. If the amount is less than 0.001% by mass, the existence effect may be insufficient. If the amount is more than 10% by mass, electrode preparation may be difficult.

ウィスカー含有粒子は、粒子、ウィスカー又は両者の表面を、カーボン皮膜で被覆して導電性を付与することが好ましい。カーボン被覆量は特に限定されるものではないが、酸化珪素粒子に対して0.3〜40質量%が好ましく、0.5〜30質量%がより好ましい。カーボン被覆量が0.3質量%より少ないと、導電性を維持できなくなるおそれがあり、結果として非水電解質二次電池用負極材とした場合にサイクル性が低下するおそれがある。逆にカーボン被覆量が40質量%より多くても、効果の向上が見られないばかりか、負極材料に占めるカーボンの割合が多くなり、非水電解質二次電池用負極材として用いた場合、充放電容量が低下するおそれがある。   The whisker-containing particles are preferably provided with conductivity by coating the surfaces of the particles, whiskers, or both with a carbon film. The carbon coating amount is not particularly limited, but is preferably 0.3 to 40% by mass, and more preferably 0.5 to 30% by mass with respect to the silicon oxide particles. If the carbon coating amount is less than 0.3% by mass, the conductivity may not be maintained, and as a result, when the negative electrode material for a non-aqueous electrolyte secondary battery is used, the cycle performance may be reduced. Conversely, even if the carbon coating amount is more than 40% by mass, not only the improvement of the effect is seen, but also the proportion of carbon in the negative electrode material increases, and when used as a negative electrode material for a non-aqueous electrolyte secondary battery, The discharge capacity may be reduced.

ウィスカー含有粒子の平均粒子径は、レーザー回折散乱式粒度分布測定法による体積平均値D50において、0.01〜50μmが好ましく、0.1〜10μmがより好ましい。 The average particle diameter of the whisker-containing particles is preferably 0.01 to 50 μm, and more preferably 0.1 to 10 μm, in the volume average value D 50 by the laser diffraction / scattering particle size distribution measurement method.

本発明のウィスカー含有粒子を得る方法としては、例えば、一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子を、30000Pa以下、好ましくは1〜20000Paの減圧下、900〜1300℃、好ましくは950〜1100℃で熱処理する方法が挙げられる。上記圧力が30000Paより大きいと、ウィスカーの生成が困難となり、処理温度が900℃より低いとウィスカー生成量が少なくなり、1300℃より高いと、二酸化珪素部の構造化が進み、リチウムイオンの往来が阻害されるので、リチウムイオン二次電池用負極材としての機能が低下するおそれがある。なお、処理時間は目的とするウィスカー生成量、処理温度、処理圧力等によって適宜選定されるが、通常、1〜10時間、特に2〜5時間程度が経済的にも効率的である。この製造方法は簡便であり、工業的規模の生産にも十分耐え得るものである。なお、一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子を、30000Pa以下、900〜1300℃で熱処理する場合に、珪素の微結晶が珪素系化合物に分散した構造を有する粒子形成する場合がある。 Examples of the method for obtaining the whisker-containing particles of the present invention include a structure in which silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6) and silicon microcrystals are dispersed in a silicon compound. The method which heat-processes the particle | grains which have or these mixed particles at 900-1300 degreeC under the reduced pressure of 30000 Pa or less, Preferably 1-20000 Pa, Preferably it is 950-1100 degreeC. When the pressure is higher than 30000 Pa, it becomes difficult to generate whiskers. When the processing temperature is lower than 900 ° C., the amount of whisker generated is reduced. When the processing temperature is higher than 1300 ° C., the structuring of the silicon dioxide portion progresses and lithium ions come and go. Since it will be inhibited, the function as a negative electrode material for lithium ion secondary batteries may be reduced. The treatment time is appropriately selected depending on the desired whisker production amount, treatment temperature, treatment pressure, etc. Usually, about 1 to 10 hours, particularly about 2 to 5 hours is economically efficient. This manufacturing method is simple and can sufficiently withstand industrial scale production. When silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6) are heat-treated at 30000 Pa or less and 900 to 1300 ° C., silicon microcrystals are dispersed in the silicon-based compound. Particles having a structure may be formed.

ウィスカー含有粒子の表面をカーボン皮膜で被覆する場合は、化学蒸着による方法が好ましく、上記ウィスカーを形成する熱処理時に、反応器内に有機物ガスを導入することで効率よく行うことも可能である。   When the surface of the whisker-containing particles is coated with a carbon film, a chemical vapor deposition method is preferable, and it is also possible to efficiently carry out by introducing an organic gas into the reactor during the heat treatment for forming the whisker.

本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸性雰囲気下において、上記熱処理温度で熱分解してカーボン(黒鉛)を生成し得るものが選択され、例えば、メタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の炭化水素の単独又は混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環〜3環の芳香族炭化水素又はこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独又は混合物を用いることができる。   As an organic substance used as a raw material for generating an organic gas in the present invention, a substance that can be pyrolyzed at the above heat treatment temperature to generate carbon (graphite) is selected, particularly in a non-acidic atmosphere. For example, methane, ethane, A single or mixture of hydrocarbons such as ethylene, acetylene, propane, butane, butene, pentane, isobutane, hexane, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, chlorobenzene, indene, coumarone , Pyridine, anthracene, phenanthrene, and the like, and monocyclic to tricyclic aromatic hydrocarbons or a mixture thereof. In addition, gas gas oil, creosote oil, anthracene oil, and naphtha cracked tar oil obtained in the tar distillation step can be used alone or as a mixture.

[非水電解質二次電池用負極材]
本発明は、上記ウィスカー含有粒子を非水電解質二次電池用負極材に用いるものであり、ウィスカー含有粒子からなる非水電解質二次電池用負極材である。この本発明で得られた非水電解質二次電池負極材を用いて、負極を作製し、リチウムイオン二次電池を製造することができる。
[Negative electrode material for non-aqueous electrolyte secondary battery]
This invention uses the said whisker containing particle | grain for the negative electrode material for nonaqueous electrolyte secondary batteries, and is a negative electrode material for nonaqueous electrolyte secondary batteries which consists of whisker containing particles. Using the nonaqueous electrolyte secondary battery negative electrode material obtained in the present invention, a negative electrode can be produced to produce a lithium ion secondary battery.

なお、上記非水電解質二次電池用負極材を用いて負極を作製する場合、カーボン、黒鉛等の導電剤を添加することができる。この場合においても導電剤の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl,Ti,Fe,Ni,Cu,Zn,Ag,Sn,Si等の金属粉末や金属繊維又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。   In addition, when producing a negative electrode using the said negative electrode material for nonaqueous electrolyte secondary batteries, electrically conductive agents, such as carbon and graphite, can be added. Also in this case, the kind of the conductive agent is not particularly limited, and any electronic conductive material that does not cause decomposition or alteration in the constituted battery may be used. Specifically, Al, Ti, Fe, Ni, Cu, Metal powder such as Zn, Ag, Sn, Si, metal fiber or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor grown carbon fiber, pitch carbon fiber, PAN carbon fiber, various resin fired bodies Such graphite can be used.

負極(成型体)の調製方法としては下記の方法が挙げられる。上記ウィスカー含有粒子と、必要に応じて導電剤と、結着剤等の他の添加剤とに、N−メチルピロリドン又は水等の溶剤を混練してペースト状の合剤とし、この合剤を集電体のシートに塗布する。この場合、集電体としては、銅箔、ニッケル箔等、通常、負極の集電体として使用されている材料であれば、特に厚さ、表面処理の制限なく使用することができる。なお、合剤をシート状に成形する成形方法は特に限定されず、公知の方法を用いることができる。   Examples of the method for preparing the negative electrode (molded body) include the following methods. A paste-like mixture is prepared by kneading the whisker-containing particles, if necessary, a conductive agent and other additives such as a binder with a solvent such as N-methylpyrrolidone or water. Apply to current collector sheet. In this case, as the current collector, any material that is usually used as a negative electrode current collector, such as a copper foil or a nickel foil, can be used without any particular limitation on thickness and surface treatment. In addition, the shaping | molding method which shape | molds a mixture into a sheet form is not specifically limited, A well-known method can be used.

[リチウムイオン二次電池]
リチウムイオン二次電池は、上記負極材を用いる点に特徴を有し、その他の正極、負極、電解質、セパレータ等の材料及び電池形状等は公知のものを使用することができ、特に限定されない。例えば、正極活物質としてはLiCoO2、LiNiO2、LiMn24、V25、MnO2、TiS2、MoS2等の遷移金属の酸化物、リチウム、及びカルコゲン化合物等が用いられる。電解質としては、例えば、六フッ化リン酸リチウム、過塩素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Lithium ion secondary battery]
The lithium ion secondary battery is characterized in that the negative electrode material is used, and other materials such as the positive electrode, the negative electrode, the electrolyte, and the separator, and the battery shape and the like can be known, and are not particularly limited. For example, as the positive electrode active material, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 and other transition metal oxides, lithium, chalcogen compounds, and the like are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium hexafluorophosphate and lithium perchlorate is used. Examples of the non-aqueous solvent include propylene carbonate, ethylene carbonate, diethyl carbonate, dimethoxyethane, γ-butyrolactone, One type or a combination of two or more types such as 2-methyltetrahydrofuran is used. Various other non-aqueous electrolytes and solid electrolytes can also be used.

[電気化学キャパシタ]
また、電気化学キャパシタを得る場合は、電気化学キャパシタは、上記負極材を用いる点に特徴を有し、その他の電解質、セパレータ等の材料及びキャパシタ形状等は限定されない。例えば、電解質として六フッ化リン酸リチウム、過塩素リチウム、ホウフッ化リチウム、六フッ化砒素酸リチウム等のリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフラン等の1種又は2種類以上を組み合わせて用いられる。また、それ以外の種々の非水系電解質や固体電解質も使用できる。
[Electrochemical capacitor]
In the case of obtaining an electrochemical capacitor, the electrochemical capacitor is characterized in that the negative electrode material is used, and other materials such as an electrolyte and a separator and a capacitor shape are not limited. For example, non-aqueous solutions containing lithium salts such as lithium hexafluorophosphate, lithium perchlorate, lithium borofluoride, lithium hexafluoroarsenate, etc. are used as the electrolyte, and propylene carbonate, ethylene carbonate, dimethyl carbonate are used as the non-aqueous solvent. , Diethyl carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran and the like. Various other non-aqueous electrolytes and solid electrolytes can also be used.

以下、実施例と比較例を示し、本発明を具体的に説明するが、本発明は下記の実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example are shown and this invention is demonstrated concretely, this invention is not limited to the following Example.

[実施例1]
平均粒子径5.0μmの一般式SiOx(x=1.02)で表される酸化珪素粉末200gをバッチ式加熱炉内に仕込んだ。その後、油回転式真空ポンプで100Pa以下まで減圧しつつ、300℃/hrの昇温速度で1100℃まで昇温、5時間保持したのち室温まで自然冷却した。得られた粉末は平均粒子径=5.3μmであった。TEMで確認したところ、珪素の微結晶が珪素系化合物に分散した構造を有する粒子であり、走査型電子顕微鏡(SEM)で確認したところ、視野全体にウィスカーが確認された(図1参照)。ウィスカーの長さは0.5〜5μmであり、ウィスカーの太さは0.05〜0.3μmであり、酸化珪素粒子に対するウィスカーの存在割合は、0.1〜0.3質量%であった。
[Example 1]
200 g of silicon oxide powder represented by the general formula SiO x (x = 1.02) having an average particle diameter of 5.0 μm was charged into a batch type heating furnace. Thereafter, while reducing the pressure to 100 Pa or less with an oil rotary vacuum pump, the temperature was raised to 1100 ° C. at a temperature rising rate of 300 ° C./hr, held for 5 hours, and then naturally cooled to room temperature. The obtained powder had an average particle size = 5.3 μm. When confirmed by TEM, it was a particle having a structure in which silicon microcrystals were dispersed in a silicon-based compound. When confirmed by a scanning electron microscope (SEM), whiskers were confirmed over the entire field of view (see FIG. 1). The length of the whisker was 0.5 to 5 μm, the thickness of the whisker was 0.05 to 0.3 μm, and the ratio of the whisker to the silicon oxide particles was 0.1 to 0.3% by mass. .

<電池特性>
負極材の有用性を確認するため、下記方法で電池特性を評価した。
得られた粉末85質量部と電気化学工業製デンカブラック(カーボン)5質量部、ポリイミド10質量部を混合し、さらにN−メチルピロリドンを加えてスラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、80℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、この電極を350℃で1時間真空乾燥した後、2cm2に打ち抜き負極とした。
<Battery characteristics>
In order to confirm the usefulness of the negative electrode material, the battery characteristics were evaluated by the following method.
85 parts by mass of the obtained powder, 5 parts by mass of Denka Black (carbon) manufactured by Denki Kagaku Kogyo, and 10 parts by mass of polyimide were mixed, and further N-methylpyrrolidone was added to form a slurry. This slurry was formed into a copper foil having a thickness of 20 μm. After coating and drying at 80 ° C. for 1 hour, the electrode was pressure-molded by a roller press, and this electrode was vacuum-dried at 350 ° C. for 1 hour, and then punched out to 2 cm 2 to obtain a negative electrode.

ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートとジエチルカーボネートの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレータに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。   Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride was mixed with 1/1 (volume ratio) of ethylene carbonate and diethyl carbonate as a non-aqueous electrolyte. A lithium ion secondary battery for evaluation using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L and a polyethylene microporous film having a thickness of 30 μm as a separator was prepared.

作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用い、テストセルの電圧が0Vに達するまで0.5mA/cm2の定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が40μA/cm2を下回った時点で充電を終了した。放電は0.5mA/cm2の定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。 The prepared lithium ion secondary battery was allowed to stand at room temperature overnight, and then charged with a secondary battery charge / discharge tester (manufactured by Nagano Co., Ltd.) until the test cell voltage reached 0 V at 0.5 mA / cm 2 . Charging was performed at a constant current, and after reaching 0V, charging was performed by decreasing the current so as to keep the cell voltage at 0V. Then, charging was terminated when the current value fell below 40 μA / cm 2 . Discharging was performed at a constant current of 0.5 mA / cm 2 , and discharging was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.

以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の50サイクル後の充放電試験を行った。その結果、初回充電容量1844mAh/g、初回放電容量1475mAh/g、初回充放電効率80%、50サイクル目の放電容量1342mAh/g、50サイクル後のサイクル保持率91%の高容量であり、かつ初回充放電効率及びサイクル性に優れたリチウムイオン二次電池であることが確認された。   The above charge / discharge test was repeated, and a charge / discharge test after 50 cycles of the lithium ion secondary battery for evaluation was performed. As a result, the initial charge capacity is 1844 mAh / g, the initial discharge capacity is 1475 mAh / g, the initial charge / discharge efficiency is 80%, the discharge capacity at the 50th cycle is 1342 mAh / g, the cycle retention after 50 cycles is 91%, and the high capacity. It was confirmed that the lithium ion secondary battery was excellent in initial charge / discharge efficiency and cycleability.

[比較例1]
実施例1で用いた一般式SiOx(x=1.02)で示される酸化珪素粉末を熱処理せずそのまま使用した他は、実施例1と同様に粉末を得て、電池を作製した。粉末を走査型電子顕微鏡(SEM)で確認したところ、ウィスカーは確認されなかった(図2参照)。
[Comparative Example 1]
A battery was prepared by obtaining a powder in the same manner as in Example 1 except that the silicon oxide powder represented by the general formula SiO x (x = 1.02) used in Example 1 was used as it was without heat treatment. When the powder was confirmed with a scanning electron microscope (SEM), whiskers were not confirmed (see FIG. 2).

この電池に対しても同様な評価を行った結果、初回充放電容量1846mAh/g、初回放電容量1403mAh/g、初回充放電効率76%、50サイクル目の放電容量1221mAh/g、50サイクル後のサイクル保持率87%であり、実施例1に比べ初回充放電効率、サイクル性の劣るリチウムイオン二次電池であった。   As a result of the same evaluation for this battery, the initial charge / discharge capacity was 1846 mAh / g, the initial discharge capacity was 1403 mAh / g, the initial charge / discharge efficiency was 76%, the 50th cycle discharge capacity was 1221 mAh / g, and after 50 cycles. It was a lithium ion secondary battery having a cycle retention of 87% and inferior initial charge / discharge efficiency and cycleability compared to Example 1.

実施例1における導電性粉末のSEM写真を示す。The SEM photograph of the electroconductive powder in Example 1 is shown. 比較例1における導電性粉末のSEM写真を示す。The SEM photograph of the electroconductive powder in the comparative example 1 is shown.

Claims (6)

一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子の表面に、酸化珪素、珪素の微結晶が珪素系化合物に分散した構造、又はこれらの混合物からなるウィスカーが形成されたウィスカー含有粒子からなることを特徴とする非水電解質二次電池用負極材。 Silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6), particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound, or a mixture of these particles are formed on the surface of silicon oxide. A negative electrode material for a non-aqueous electrolyte secondary battery comprising a structure in which fine crystals of silicon are dispersed in a silicon-based compound, or whisker-containing particles in which whiskers made of a mixture thereof are formed. ウィスカー含有粒子が、その表面がカーボン皮膜で被覆された粒子である請求項1記載の非水電解質二次電池用負極材。The negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the whisker-containing particles are particles whose surfaces are coated with a carbon film. 一般式SiOx(0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子を、30000Pa以下の減圧下、900〜1300℃で熱処理することを特徴とする請求項1記載の非水電解質二次電池用負極材の製造方法。 Silicon oxide particles represented by the general formula SiO x (0.5 ≦ x <1.6), particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound, or mixed particles thereof are reduced in pressure to 30000 Pa or less. The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the heat treatment is performed at 900 to 1300 ° C. 一般式SiOGeneral formula SiO xx (0.5≦x<1.6)で表される酸化珪素粒子、珪素の微結晶が珪素系化合物に分散した構造を有する粒子、又はこれらの混合粒子を、30000Pa以下の減圧下、900〜1300℃の熱処理温度で熱分解してカーボンを生成する有機物のガス中で、900〜1300℃で熱処理することを特徴とする請求項2記載の非水電解質二次電池用負極材の製造方法。The silicon oxide particles represented by (0.5 ≦ x <1.6), the particles having a structure in which silicon microcrystals are dispersed in a silicon-based compound, or a mixed particle of these particles is 900 to 30,000 Pa under reduced pressure of 30000 Pa or less. The method for producing a negative electrode material for a non-aqueous electrolyte secondary battery according to claim 2, wherein heat treatment is performed at 900 to 1300 ° C in an organic gas that is thermally decomposed at a heat treatment temperature of 1300 ° C to generate carbon. 請求項1又は2記載の非水電解質二次電池用負極材を含むことを特徴とするリチウムイオン二次電池。 Claim 1 or a lithium ion secondary battery comprising the negative electrode material for non-aqueous electrolyte secondary battery 2 according. 請求項1又は2記載の非水電解質二次電池用負極材を含むことを特徴とする電気化学キャパシタ。 Claim 1 or electrochemical capacitors which comprises a negative electrode material for non-aqueous electrolyte secondary battery 2 according.
JP2008156699A 2008-06-16 2008-06-16 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor Active JP5182498B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008156699A JP5182498B2 (en) 2008-06-16 2008-06-16 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008156699A JP5182498B2 (en) 2008-06-16 2008-06-16 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor

Publications (2)

Publication Number Publication Date
JP2009301937A JP2009301937A (en) 2009-12-24
JP5182498B2 true JP5182498B2 (en) 2013-04-17

Family

ID=41548624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008156699A Active JP5182498B2 (en) 2008-06-16 2008-06-16 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor

Country Status (1)

Country Link
JP (1) JP5182498B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5454353B2 (en) * 2010-05-21 2014-03-26 信越化学工業株式会社 Non-aqueous electrolyte secondary battery negative electrode silicon oxide and method for producing the same, negative electrode, lithium ion secondary battery, and electrochemical capacitor
TWI582041B (en) * 2011-06-03 2017-05-11 半導體能源研究所股份有限公司 Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
US11296322B2 (en) 2011-06-03 2022-04-05 Semiconductor Energy Laboratory Co., Ltd. Single-layer and multilayer graphene, method of manufacturing the same, object including the same, and electric device including the same
WO2013027561A1 (en) * 2011-08-19 2013-02-28 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing graphene-coated object, negative electrode of secondary battery including graphene-coated object, and secondary battery including the negative electrode
JP5942999B2 (en) 2011-11-11 2016-06-29 株式会社豊田自動織機 Negative electrode material and negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2014002890A (en) 2012-06-18 2014-01-09 Toshiba Corp Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode active material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and battery pack
KR101698763B1 (en) 2012-12-10 2017-01-23 삼성에스디아이 주식회사 Anode electrode material, preparation method thereof, electrode comprising the material, and lithium secondary battery comprising the electrode

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004063433A (en) * 2001-12-26 2004-02-26 Shin Etsu Chem Co Ltd Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
JP2005149957A (en) * 2003-11-17 2005-06-09 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP5011629B2 (en) * 2004-02-19 2012-08-29 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
JP2005243431A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
EP2113960B1 (en) * 2006-11-16 2011-07-13 Panasonic Corporation Electricity storage device
JP5196149B2 (en) * 2008-02-07 2013-05-15 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor

Also Published As

Publication number Publication date
JP2009301937A (en) 2009-12-24

Similar Documents

Publication Publication Date Title
JP5245592B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP5196149B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery and electrochemical capacitor
JP5245559B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5184567B2 (en) Anode material for non-aqueous electrolyte secondary battery, lithium ion secondary battery and electrochemical capacitor
JP4450192B2 (en) Silicon composite, method for producing the same, and negative electrode material for non-aqueous electrolyte secondary battery
JP5406799B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, and lithium ion secondary battery
JP4171904B2 (en) Lithium ion secondary battery negative electrode material and method for producing the same
JP5949194B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
US20200295352A1 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and manufacturing method thereof
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2010272411A (en) Negative electrode material for nonaqueous electrolyte secondary battery and method for manufacturing the negative electrode material, lithium ion secondary battery, and electrochemical capacitor
JP2013008696A (en) Method of manufacturing negative electrode material for nonaqueous electrolyte secondary battery
JP2015204192A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method of manufacturing negative electrode material for lithium ion secondary battery
JP5737265B2 (en) Silicon oxide and manufacturing method thereof, negative electrode, lithium ion secondary battery and electrochemical capacitor
JP2004323284A (en) Silicon composite and method of manufacturing the same, and negative electrode material for non-aqueous electrolyte secondary battery
JP2003317717A (en) Method for manufacturing negative electrode material of nonaqueous electrolyte secondary battery
JP5320890B2 (en) Method for producing negative electrode material
JP5910479B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery, lithium ion secondary battery, and method for producing electrochemical capacitor
JP6020331B2 (en) Silicon oxide particles, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2016106358A (en) Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
KR20160076060A (en) Negative electrode active material for rechargeable battery, the preparation method thereof, and rechargeable battery including the same
JP6299248B2 (en) Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode and lithium ion secondary battery
JP5798209B2 (en) Anode material for non-aqueous electrolyte secondary battery and lithium ion secondary battery
KR20220087143A (en) Negative electrode material for lithium ion secondary battery, preparation method thereof, and lithium ion secondary battery comprising same
JP6408639B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121116

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121219

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130101

R150 Certificate of patent or registration of utility model

Ref document number: 5182498

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3