JP2004139886A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004139886A
JP2004139886A JP2002304654A JP2002304654A JP2004139886A JP 2004139886 A JP2004139886 A JP 2004139886A JP 2002304654 A JP2002304654 A JP 2002304654A JP 2002304654 A JP2002304654 A JP 2002304654A JP 2004139886 A JP2004139886 A JP 2004139886A
Authority
JP
Japan
Prior art keywords
negative electrode
electrode active
active material
sio
weight
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2002304654A
Other languages
Japanese (ja)
Other versions
JP5060010B2 (en
Inventor
Toru Tabuchi
田渕 徹
Toshiyuki Aoki
青木 寿之
Katsushi Nishie
西江 勝志
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP2002304654A priority Critical patent/JP5060010B2/en
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to CNB03810136XA priority patent/CN100414743C/en
Priority to US10/513,664 priority patent/US8092940B2/en
Priority to KR1020047016728A priority patent/KR101107041B1/en
Priority to PCT/JP2003/005654 priority patent/WO2003096449A1/en
Publication of JP2004139886A publication Critical patent/JP2004139886A/en
Priority to US13/187,550 priority patent/US20120021286A1/en
Application granted granted Critical
Publication of JP5060010B2 publication Critical patent/JP5060010B2/en
Priority to US14/096,268 priority patent/US20140093780A1/en
Priority to US14/878,624 priority patent/US10038186B2/en
Priority to US16/014,636 priority patent/US20180301700A1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery having high energy density and excellent cycle characteristics. <P>SOLUTION: In this nonaqueous electrolyte secondary battery comprising a positive electrode, a negative electrode containing a negative electrode active material capable of occluding and discharging a lithium ion, the negative electrode active material contains a composite particle 10 composed of a particle 11 of silicon Si, and a particle 12 of a silicon oxide SiO<SB>X</SB>(where, 0≤X≤2), and a carbon material A13. The nonaqueous electrolyte secondary battery having high energy density and excellent cycle characteristics can be obtained by composing the negative electrode active material as mentioned above. <P>COPYRIGHT: (C)2004,JPO

Description

【0001】
【発明の属する技術分野】
本発明は、非水電解質二次電池に関する。
【0002】
【従来の技術】
非水電解質二次電池は、起電力が大きく、エネルギー密度が高いので、携帯用電子機器などの電源として広く利用されている。
従来、非水電解質二次電池においては、リチウムのデンドライト析出を防止できることから負極活物質として炭素材料が広く用いられてきた。しかし、負極活物質として炭素材料を用いた場合、その放電容量を理論容量(372mAh/g)以上に増大させることはできないため、電池としての放電容量を10%以上増大させることは困難であるという問題点があった。
【0003】
そこで、放電容量を増大させ、電池の高エネルギー密度化を図るために、リチウムと合金化しうる金属を活物質として用いる試みがなされている。このような金属としては、ケイ素が挙げられる(例えば、特許文献1参照。)。
【0004】
ケイ素は各原子に4個の原子が配位して形成された四面体が連なったダイヤモンド型の結晶構造を有し、極めて多量のリチウムイオンを吸蔵できる。
【0005】
しかしながら、ケイ素はリチウムイオンの吸蔵に伴なう体積膨張が大きく、充放電の繰り返しにより微粉化しやすい。この微粉化により、導電経路が断絶する部分が発生し、集電効率が低下する。このため、充電−放電のサイクルが進むと、急激に容量が低下し、サイクル寿命が短いものとなってしまう。このような理由から、ケイ素を負極活物質として用いた場合、例えば50サイクル後の容量保持率を20%以上向上させることは困難であった。
【0006】
【特許文献1】
特開平7−29602号公報
【0007】
【発明が解決しようとする課題】
本発明は上記のような事情に基づいて完成されたものであって、高いエネルギー密度を有し、さらにサイクル特性に優れた非水電解質二次電池を提供することを目的とする。
【0008】
【課題を解決するための手段、及び作用・効果】
上記の目的を達成するための手段として、請求項1の発明は、正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、前記負極活物質が、ケイ素Siからなる粒子と、ケイ素酸化物SiO(但し、0<X≦2)からなる粒子と、炭素材料とから構成される複合粒子を含むことを特徴とする。
【0009】
負極活物質がSiからなる粒子と、SiOからなる粒子(但し、0<X≦2)とを含むことにより、高いエネルギー密度の非水電解質二次電池を得ることができる。これは、Siからなる粒子、及びSiOからなる粒子は、リチウムイオンと固溶体や金属間化合物を形成することにより、リチウムイオンを多量に吸蔵することができるからである。
【0010】
請求項2の発明は、正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、前記負極活物質が、ケイ素Siとケイ素酸化物SiO(但し、0<X≦2)とを含む粒子と、炭素材料とから構成される複合粒子を含むことを特徴とする。
【0011】
負極活物質が、SiとSiO(但し、0<X≦2)とを含む粒子を含むことにより、高いエネルギー密度の非水電解質二次電池を得ることができる。これは、SiとSiOとを含む粒子は、リチウムイオンと固溶体や金属間化合物を形成することにより、リチウムイオンを多量に貯蔵することができるからである。
【0012】
SiO(但し、0<X≦2)は、Xが2以下であると高い放電容量を示すから、負極活物質として好ましく使用できる。この理由は以下のように考えられる。ケイ素原子に対する酸素原子の比が2以下であるようなケイ素酸化物は、ケイ素原子と酸素原子との結合の他に、ケイ素原子同士の結合を含んだ骨格構造を形成していると考えられる。このような構造中では、リチウムイオンを吸蔵可能なサイトが非常に多いと考えられる。このため、リチウムイオンを容易にしかも多量に吸蔵放出できると考えられるのである。さらに、SiOを含むことにより体積膨張が抑制されるため、Siのみを負極活物質とする場合よりもサイクル特性が向上すると考えられる。
【0013】
請求項3の発明は、請求項1又は請求項2に記載の非水電解質二次電池において、前記ケイ素Siと前記ケイ素酸化物SiOとの合計に対する前記ケイ素Siの割合が、20重量%以上80重量%以下であることを特徴とする。
【0014】
SiはSiOに比べて放電容量が大きいので、Siの割合を20重量%未満とすると、放電容量が低下するから好ましくない。一方、SiOはSiに比べて、充放電に伴う体積膨張が小さく、サイクル特性に優れているので、Siの割合が80重量%を超えると、サイクル特性が低下するから好ましくない。したがって、SiとSiOとの合計に対するSiの割合は、20重量%以上80重量%以下が好ましい。
【0015】
さらに、前記の負極活物質と炭素材料とを混合することにより、サイクル特性に優れた非水電解質二次電池を得ることができる。これは、充放電に伴って、Siからなる粒子や、SiOからなる粒子、SiとSiOとを含む粒子が微粉化したとしても、炭素材料によって導電経路が維持されるので、集電力の低下が抑制されるからである。
【0016】
負極活物質全体に対する、複合粒子を構成する炭素材料(以下、これを炭素材料Aとする。)の割合が3重量%未満であると、充放電を繰り返した際に、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の微粉化に伴う導電経路の断絶を防止することができず、サイクル特性が低下するので好ましくない。また、60重量%を超えると放電容量が低下するので好ましくない。したがって、負極活物質全体に対する炭素材料の割合は3重量%以上60重量%以下が好ましい。
【0017】
最も結晶性の高い黒鉛材料のd(002)は0.3354nmなので、負極活物質に用いられる炭素材料Aのd(002)は0.3354nm以上が好ましい。他方、0.35nmを超えると、炭素材料Aそのものの導電性が低くなるから好ましくない。以上より、平均面間隔d(002)は、0.3354nm以上0.35nm以下が好ましい。d(002)は、例えば、理学電機製、X−RayDiffractometer、RINT2000を使用し、CuKα線を用いて測定できる。
【0018】
複合粒子を構成する炭素材料Aを、天然黒鉛、人造黒鉛、アセチレンブラック、気相成長炭素繊維からなる群の中から選択することにより、サイクル特性を向上させることができる。これは、上記炭素材料の導電性が高いため、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の導電経路を維持することが容易となるからである。上記炭素材料は、単独で使用しても良く、また2種以上を混合して用いてもよい。
【0019】
複合粒子の表面に炭素材料(以下、複合粒子の表面を被覆する炭素材料を炭素材料Bとする。)が被覆されることにより、サイクル特性が向上した非水電解質二次電池を得ることができる。この理由は、以下のように考えられる。複合粒子の表面に露出したSiからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子については、充放電の繰り返しにより発生した微粉が複合粒子から脱落することによりサイクル特性が低下する場合がある。この複合粒子を炭素材料Bで被覆することにより、複合粒子の表面に露出していたSiからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子についても、導電経路を維持することが可能となるので、サイクル特性が向上すると考えられる。
【0020】
また、複合粒子の表面を炭素材料で被覆しない場合、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子上には、リチウムイオンとの反応性が他と比べて高い部分が存在し、リチウムイオンの吸蔵・放出反応は、この反応性の高い部分で集中的に進行するという、いわゆる反応ムラが発生することがある。すると、反応性の高い部分では、リチウムイオンの吸蔵により負極活物質の体積が膨張するのに対し、反応性の低い部分では、負極活物質の体積膨張は小さなものとなる。このような体積変動のムラが発生することにより、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の形状が崩れて周囲から孤立した部分が生じ、導電経路が断絶されることもある。
【0021】
複合粒子の表面が導電性を有する炭素材料Bで被覆されていることにより、上記のような反応ムラが緩和され、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子とリチウムイオンとは均一に反応するようになる。これにより、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子は均一に体積膨張するから、孤立化が防止されて導電経路が維持される結果、サイクル特性に優れた非水電解質二次電池を得ることができる。
【0022】
負極活物質全体に対する、炭素材料全部(炭素材料Aと炭素材料Bとの合計)の割合が、30重量%未満であると、充放電の繰り返しによりSiからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の微粉が発生した場合に、導電経路を維持することができなくなる結果、サイクル特性が低下するから好ましくない。80重量%を超えると、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の割合が低下する結果、放電容量が低下するから好ましくない。したがって、負極活物質全体に対する、炭素材料全部の割合は、30重量%以上80重量%以下が好ましい。
【0023】
負極活物質全体に対する、複合粒子の表面を覆っている炭素材料Bの割合が、0.5重量%未満であると、上記複合粒子の表面を十分に被覆することができないため、サイクル特性が低下するから好ましくない。40.0重量%を超えると、Siからなる粒子、SiOからなる粒子、及びSiとSiOとを含む粒子の割合が低下する結果、放電容量が低下するから好ましくない。したがって、負極活物質全体に対する、複合粒子の表面を覆っている炭素材料Bの割合は、0.5重量%以上40.0重量%以下が好ましい。
【0024】
負極活物質のBET比表面積が10.0m/gを超えると、バインダの結着性が低下する。このため、充放電に伴う負極活物質の膨張、収縮により、負極活物質間に隙間が生じ、負極活物質同士の電気的接触が断絶する結果、サイクル特性が低下するから好ましくない。したがって、負極活物質のBET比表面積が10.0m/g以下が好ましい。
【0025】
【発明の実施の形態】
以下、本発明の実施形態を添付図面に基づいて説明する。
図5は、本発明の一実施形態である角形非水電解質二次電池の概略断面図である。この角形非水電解質二次電池21は、アルミニウム箔からなる正極集電体に正極合剤を塗布してなる正極23と、銅箔からなる負極集電体に負極合剤を塗布してなる負極24とがセパレータ25を介して巻回された扁平巻状電極群22と、非水電解液とを電池ケース26に収納してなる。
【0026】
電池ケース26には、安全弁28を設けた電池蓋27がレーザー溶接によって取り付けられ、負極端子29は負極リード31を介して負極24と接続され、正極23は正極リード30を介して電池蓋27と接続されている。
【0027】
正極活物質としては、リチウムイオンが可逆的に挿入・脱離することができる化合物を使用することができる。このような化合物の例としては以下の物質が挙げられる。無機化合物としては、組成式LiMO(Mは1種又は2種以上の遷移金属、0≦x≦1)、または組成式Li(Mは1種又は2種以上の遷移金属、0≦y≦2)で表されるリチウム遷移金属複合酸化物、トンネル状の空孔を有する酸化物、層状構造の金属カルコゲン化物等を用いることができる。これらの具体例としては、LiCoO、LiNiO、LiMn、LiMn、MnO、FeO、V、V13、TiO、TiS等が挙げられる。また、有機化合物としては、例えばポリアニリン等の導電性ポリマーなどが挙げられる。更に、無機化合物、有機化合物を問わず、上記各種正極活物質を混合して用いても良い。
【0028】
上記の正極活物質と、導電剤と、結着剤とを混合して正極合剤を調製し、この正極合剤を金属箔からなる正極集電体に塗工することにより正極板を製造することができる。
【0029】
導電剤の種類は特に制限されず、金属であっても非金属であってもよい。金属の導電剤としては、CuやNiなどの金属元素から構成される材料を挙げることができる。また、非金属の導電剤としては、グラファイト、カーボンブラック、アセチレンブラック、ケッチェンブラックなどの炭素材料を挙げることができる。
【0030】
結着剤は、電極製造時に使用する溶媒や電解液に対して安定な材料であれば特にその種類は制限されない。具体的には、セルロース、カルボキシメチルセルロース、スチレン−ブタジエンゴム、イソプレンゴム、ブタジエンゴム、エチレン−プロピレンゴム、シンジオタクチック1,2−ポリブタジエン、エチレン−酢酸ビニル共重合体、プロピレン−α−オレフィン(炭素数2〜12)共重合体、ポリフッ化ビニリデン、ポリテトラフルオロエチレン、ポリテトラフルオロエチレン−エチレン共重合体などを用いることができる。
【0031】
正極集電体には、例えば、Al、Ta、Nb、Ti、Hf、Zr、Zn、W、Bi、およびこれらの金属を含む合金などを例示することができる。これらの金属は、電解液中での陽極酸化によって表面に不動態皮膜を形成するため、正極集電体と電解液との接触部分において非水電解質が酸化分解するのを有効に防止することができる。その結果、非水系二次電池のサイクル特性を有効に高めることができる。
【0032】
図1に、請求項1の発明に係る負極活物質の断面を示す模式図を示す。負極活物質は、Siからなる粒子11と、SiOからなる粒子12(但し、0<X≦2)と、炭素材料A13とから構成される複合粒子10を含む。
【0033】
上記の複合粒子10は、Siからなる粒子11と、SiOからなる粒子12と、炭素材料A13とを、ミルを用いてミリングすることにより得ることができる。このとき、大気中でもよいが、アルゴンや窒素などの不活性雰囲気下でミリングするのが好ましい。ミルの種類としては、ボールミル、振動ミル、衛生ボールミル、チューブミル、ジェットミル、ロッドミル、ハンマーミル、ローラーミル、ディスクミル、アトライタミル、遊星ボールミル、インパクトミルなどが挙げられる。また、メカニカルアロイ法を用いてもよい。ミリング温度は10℃〜300℃の範囲で行うことができる。また、ミリング時間は30秒〜48時間の範囲で行うことができる。
【0034】
また本発明においては、図2に示すように、上記複合粒子10の表面に炭素材料B14が被覆されたものを負極活物質として用いることもできる。
【0035】
図3に、請求項2の発明に係る負極活物質の断面を示す模式図を示す。負極活物質は、SiとSiOとを含む粒子15(但し、0<X≦2)と、炭素材料A13とから構成される複合粒子16を含む。
【0036】
上記複合粒子16は、SiとSiOとを含む粒子15と、炭素材料A13とを、図1に示した複合粒子10と同様の方法により得ることができる。
また、本発明においては、図4に示すように、上記複合粒子16の表面に炭素材料B14が被覆されたものを負極活物質として用いることもできる。
【0037】
複合粒子10、16の表面に炭素材料B14を被覆させるには、有機化合物を複合粒子10、16の表面に被覆した後に焼成する方法や、化学気相析出(CVD)法などを用いることができる。
【0038】
CVD法においては、反応ガスとしては、メタン、アセチレン、ベンゼン、トルエン等の有機化合物を用いることができる。反応温度は、700℃〜1300℃の範囲で行うことができる。反応時間は30秒〜72時間の範囲で行うことができる。CVD法によると、被覆した有機化合物を焼成する方法に比べて、低い反応温度で炭素材料を被覆できる。このため、Siからなる粒子11、SiOからなる粒子12、及びSiとSiOとを含む粒子15の融点以下で被覆処理を行えるので好ましい。
【0039】
炭素材料B14が複合粒子10の表面に被覆されているか否かは、ラマン分光分析を行うことにより確認できる。ラマン分光分析は試料の表面部分の分析を行うから、複合粒子10表面に炭素材料B14が全体に被覆されている場合には、表面に被覆された炭素材料B14の結晶性を示すR値(強度比1580cm−1のピーク強度に対する1360cm−1のピーク強度)が、負極活物質粒子のどこで測定しても一定の値を示すことになる。このラマン分光分析には例えば、
JOBIN,YVON製 T64000を使用することができる。
【0040】
Siからなる粒子、SiO(但し、0<X≦2)からなる粒子、SiとSiO(但し、0<X≦2)とを含む粒子としては、フッ酸、硫酸などの酸で洗浄されたものや、水素で還元されたものなども使用できる。
【0041】
負極活物質全体に対する、炭素材料A13、炭素材料B14の割合は、熱重量分析を行うことにより測定することができる。例えば、10±2℃/分で熱重量測定した場合、炭素材料A13、炭素材料B14の重量減少は30℃〜1000℃の範囲で観測される。そして、580℃近辺において、複合粒子10の表面に被覆された、比較的結晶性の低い炭素材料B14の重量減少が観測され、次に、610℃近辺に、Siからなる粒子11、SiOからなる粒子12、及びSiとSiOとを含む粒子15と共にミリングされた炭素材料A13の重量減少が観測される。Siからなる粒子11、SiOからなる粒子12、及びSiとSiOとを含む粒子15の重量減少は、1500℃〜2000℃近辺において観測される。この結果から、それぞれの材料の重量比率を測定することができる。この熱重量分析には、例えばセイコーインスツルメント製 SSC/5200を使用することができる。
【0042】
負極活物質の比表面積は、例えば島津製作所製、マイクロメリテックス、ジェニミ2370を使用し、液体窒素を用い、圧力測定範囲0〜126.6KPaとする動的定圧法による定温ガス吸着法によって行い、BET法で解析できる。また、データ処理ソフトウェアとしてはGEMINI−PC1を使用できる。
【0043】
負極集電体の材質は、銅、ニッケル、ステンレス等の金属であるのが好ましく、これらの中では薄膜に加工しやすく安価であることから銅箔を使用するのが好ましい。
【0044】
負極板の製造方法は特に制限されず、上記の正極の製造方法と同様の方法により製造することができる。
【0045】
非水電解液の非水溶媒としては、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、γ−ブチロラクトン、γ−バレロラクトン、酢酸メチル、プロピオン酸メチル、テトラヒドロフラン、2−メチルテトラヒドロフラン、テトラヒドロピラン、ジメトキシエタン、ジメトキシメタン、リン酸エチレンメチル、リン酸エチルエチレン、リン酸トリメチル、リン酸トリエチルなどを使用することができる。これらの有機溶媒は、一種類だけを選択して使用してもよいし、二種類以上を組み合わせて用いてもよい。
【0046】
非水電解液の溶質としては、LiClO、LiPF、LiBF等の無機リチウム塩や、LiCFSO、LiN(CFSO  、LiN(CFCFSO )、LiN(CFSO )およびLiC(CFSO等の含フッ素有機リチウム塩等を挙げることができる。これらの溶質は、一種類だけを選択して使用してもよいし、二種類以上を組み合わせて用いてもよい。
【0047】
電解質としては、上記電解液以外にも固体状またはゲル状の電解質を用いることができる。このような電解質としては、無機固体電解質のほか、ポリエチレンオキサイド、ポリプロピレンオキサイドまたはこれらの誘導体などが例示できる。
【0048】
セパレータとしては、絶縁性のポリエチレン微多孔膜、ポリプロピレン微多孔膜、ポリエチレン不織布、ポリプロピレン不織布などに電解液を含浸したものが使用できる。
【0049】
以下、本発明を実施例に基づき詳細に説明する。なお、本発明は下記実施例により何ら限定されるものではない。
<実施例1>
Si30重量部と、SiO30重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製することにより、負極活物質を調製した。
【0050】
上記の負極活物質95重量%と、SBR3重量%と、CMC2重量%とを水中で混合することにより負極ペーストを作製した。この負極ペーストを厚さ15μmの銅箔上に、塗布重量1.15mg/cm、電池内に収納する負極活物質量が2gとなるように塗布し、つぎに、150℃で乾燥することにより、水を蒸発させた。この作業を銅箔の両面に対して行い、さらに、両面をロールプレスで圧縮成型した。このようにして、両面に負極合剤層を備えた負極板を作製した。
【0051】
正極活物質としてコバルト酸リチウム90重量%と、導電剤としてアセチレンブラック5重量%と、結着剤としてPVDF5重量%とをNMP中で分散させることにより、正極ペーストを作製した。この正極ペーストを厚さ20μmのアルミニウム箔上に、塗布重量2.5mg/cm、電池内に収納する正極活物質量が5.3gとなるように塗布し、つぎに、150℃で乾燥することにより、NMPを蒸発させた。以上の操作をアルミニウム箔の両面に行い、さらに、両面をロールプレスで圧縮成型した。このようにして、両面に正極合剤層を備えた正極板を作製した。
【0052】
このようにして作製した正極板及び負極板を、厚さ20μm、多孔度40%の連通多孔体であるポリエチレンセパレータを間に挟んで重ねて巻き、巻回型発電要素を作製した。この発電要素を高さ48mm、幅30mm、厚さ4.2mmの容器内に挿入した後、この電池の内部に非水電解液を注入することによって、角形非水電解質二次電池を作製した。この非水電解液には、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との体積比1:1の混合溶媒に1mol/lのLiPFを溶解したものを用いた。
【0053】
<実施例2>
実施例2については、負極活物質として、Si20重量部と、SiO20重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製した後、メタンを900℃で熱分解する方法(CVD)によって、その複合粒子の表面に炭素材料を被覆したものを用いた以外は、実施例1と同様にして非水電解質二次電池を作製した。
【0054】
<実施例3>
実施例3については、SiOの代わりにSiOを用いた以外は実施例2と同様にして非水電解質二次電池を作製した。
【0055】
<比較例1ないし4>
表1に示した原料を使用した以外は、実施例2と同様にして負極活物質を調製し、これを用いて非水電解質二次電池を作製した。
【0056】
<測定>
(ラマン分光分析)
上記のように調製した負極活物質について、上述の方法によりラマン分光分析を行い、R値を測定した。R値は、負極活物質粒子のどの部分で測定しても約0.8を示した。このR値は、試料の結晶性が高い場合には0を示し、結晶性が低くなるにつれて大きな値を示すものである。R値が約0.8であることから、この粒子は、CVD法に析出した比較的結晶性の低い炭素材料により、均一に被覆されていることが確認された。
【0057】
(熱重量分析)
上記のように調製した負極活物質について、上述の方法により熱重量分析を行い、それぞれの材料の重量比率を測定した。
【0058】
(XRD)
上記のように調製した負極活物質について、上述の方法によりX線回折を行い、CuKα線のX線回折パターンの回折角(2θ)から、炭素材料の平均面間隔d(002)を測定した。
【0059】
(BET比表面積)
上記のように調製した負極活物質について、上述の方法によりBET比表面積測定を行った。
【0060】
(充放電特性)
上記のように作製した非水電解質二次電池を、25℃において、1CmAの電流で4.2Vまで充電し、続いて4.2Vの定電圧で2時間充電した後、1CmAの電流で2.0Vまで放電した。この充放電過程を1サイクルとし、500サイクルの充放電試験を行った。そして、1サイクル目の放電容量に対する500サイクル目の放電容量の割合(百分率表示)を、サイクル容量保持率とした。
【0061】
【表1】

Figure 2004139886
【0062】
<結果>
上記実施例及び比較例に関する種々の測定結果を表1にまとめた。
実施例1ないし3は、SiOを含まない比較例1と比べて容量保持率が高く、また、Siを含まない比較例2と比べて放電容量が大きい。そして、複合粒子中に炭素材料を含まない比較例3と比べて容量保持率が高い。さらに、Si及びSiOを含まない比較例4と比べて放電容量が大きい。
実施例1と、炭素材料により複合粒子が被覆された実施例2、3とを比較すると、実施例2は容量保持率が優れている。
【0063】
<実施例4ないし8>
SiとSiOとの合計量に対するSiの割合を、表2に示すものとした以外は、実施例2と同様にして非水電解質二次電池を作製した。
【0064】
【表2】
Figure 2004139886
【0065】
上記実施例に関する種々の測定結果を、実施例2及び比較例1、2の結果と併せて表2にまとめた。
Siからなる粒子とSiOからなる粒子との合計に対する、Siからなる粒子の割合が、20重量%以上80重量%以下である実施例2、及び5ないし8は、Siからなる粒子の割合が10重量%である実施例4と比べて、放電容量が大きい。
【0066】
<実施例9ないし14>
Si、及びSiOと共に混合する人造黒鉛の添加量を、表3に示す割合とした以外は、実施例2と同様にして非水電解質二次電池を作製した。
【0067】
【表3】
Figure 2004139886
【0068】
上記実施例に関する種々の測定結果を表3にまとめた。
負極活物質全体に対する人造黒鉛の割合が、3重量%以上60重量%以下である実施例10ないし13は、人造黒鉛の割合が1重量%である実施例9と比べて容量保持率が高い。他方、人造黒鉛の割合が70重量%である実施例14と比べると、実施例10ないし13は放電容量が大きい。
【0069】
また、負極活物質全体に対する炭素材料全部の割合が30重量%以上80重量%以下である実施例11ないし13は、炭素材料全部の割合がそれぞれ21重量%、23重量%である実施例9、10と比べて、容量保持率が高い。炭素材料全部の割合が90重量%である実施例14と比べると、実施例11ないし13は、放電容量が大きく、容量保持率も高い。
【0070】
<実施例15ないし17>
Si、及びSiOと共に混合する炭素材料として、人造黒鉛に代えて、実施例15では天然黒鉛を、実施例16ではアセチレンブラックを、実施例17では、気相成長炭素繊維を用いた以外は、実施例2と同様にして非水電解質二次電池を作製した。
【0071】
【表4】
Figure 2004139886
【0072】
上記実施例に関する種々の測定結果を実施例2の結果と併せて表4にまとめた。
平均面間隔d(002)が0.3354nm以上0.35nm以下である実施例2、15、17は、d(002)が0.37nmである実施例16と比べて放電容量が大きく、また容量保持率も優れている。
【0073】
<実施例18ないし20>
CVD法によって炭素材料を被覆する際、反応条件を、適宜変更することにより、複合粒子の表面に被覆される炭素量として表5に示される値を有する負極活物質を調製した。この負極活物質を用いた以外は、実施例2と同様にして非水電解質二次電池を作製した。
【0074】
【表5】
Figure 2004139886
【0075】
上記実施例に関する種々の測定結果を実施例2の結果と併せて表5にまとめた。
負極活物質全体に対する、複合粒子の表面を覆っている炭素材料の割合が、0.5重量%以上40.0重量%以下である実施例2、18、19は、炭素材料の割合が60重量%である実施例20と比べて、放電容量が大きく、容量保持率も高い。
【0076】
<実施例21ないし23>
Si、SiO、及び人造黒鉛として、所定の比表面積を有するものを用いて、表6に示されるBET比表面積を有する負極活物質を調製した。この負極活物質を用いた以外は、実施例2と同様にして非水電解質二次電池を作製した。
【0077】
【表6】
Figure 2004139886
【0078】
上記実施例に関する種々の測定結果を実施例2の結果と併せて表6にまとめた。
負極活物質のBET比表面積が10.0m/g以下である実施例2、21、22は、BET比表面積が20m/gである実施例23と比べて放電容量が大きく、容量保持率も高い。
【0079】
<実施例24>
重量比1:1でSiとSiOとを含む粒子60重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製することにより、負極活物質を調製した。負極活物質以外はすべて実施例1と同様にして、実施例24の非水電解質二次電池を作製した。
【0080】
<実施例25>
負極活物質として、重量比1:1でSiとSiOとを含む粒子40重量部と、人造黒鉛40重量部とを窒素雰囲気中、25℃、30分ボールミルにて処理して複合粒子を調製した後、メタンを900℃で熱分解する方法(CVD)によって、その複合粒子の表面に炭素材料を被覆したものを用いた以外は、実施例24と同様にして、実施例25の非水電解質二次電池を作製した。
【0081】
<実施例26>
SiOの代わりにSiOを用いた以外は実施例25と同様にして、実施例26の非水電解質二次電池を作製した。
【0082】
実施例24ないし26の負極活物質について、実施例1と同様にして、ラマン分光分析、熱重量分析、XRD、BET比表面積を測定した。また、実施例24ないし26の非水電解質二次電池について、実施例1と同様にして、充放電特性を測定した。その結果を表7に示した。なお、表7には比較のため、表1に示した比較例1ないし4のデータも併せて示した。
【0083】
【表7】
Figure 2004139886
【0084】
<結果>
実施例24ないし26は、SiOを含まない比較例1と比べて容量保持率が高く、また、Siを含まない比較例2と比べて放電容量が大きい。そして、複合粒子中に炭素材料を含まない比較例3と比べて容量保持率が高い。さらに、Si及びSiOを含まない比較例4と比べて放電容量が大きい。
実施例24と、炭素材料により複合粒子が被覆された実施例25、26とを比較すると、実施例25、26は容量保持率が優れている。
【0085】
<実施例27ないし31>
SiとSiOとを含む粒子中におけるSiの割合を、表8に示すものとした以外は、実施例25と同様にして、実施例27ないし31の非水電解質二次電池を作製した。
実施例27ないし31に関する種々の測定結果を、実施例25及び比較例1、2の結果と併せて表8にまとめた。
【0086】
【表8】
Figure 2004139886
【0087】
SiとSiOとを含む粒子中におけるSiの割合が20重量%以上80重量%以下である実施例25、及び28ないし31は、Siの割合が10重量%である実施例27と比べて、放電容量が大きい。
【0088】
<実施例32ないし37>
SiとSiOとを含む粒子と混合する人造黒鉛の添加量を、表9に示す割合とした以外は、実施例25と同様にして、実施例32ないし37の非水電解質二次電池を作製した。
実施例32ないし37に関する種々の測定結果を表9にまとめた。
【0089】
【表9】
Figure 2004139886
【0090】
負極活物質全体に対する人造黒鉛の割合が、3重量%以上60重量%以下である実施例33ないし36は、人造黒鉛の割合が1重量%である実施例32と比べて容量保持率が高い。他方、人造黒鉛の割合が70重量%である実施例37に比べると、実施例33ないし36は放電容量が大きい。
【0091】
また、負極活物質全体に対する炭素材料全部の割合が30重量%以上60重量%以下である実施例34ないし36は、炭素材料全部の割合がそれぞれ21重量%、23重量%である実施例32、33と比べて、容量保持率が高い。炭素材料全部の割合が90重量%である実施例37と比べると、実施例34ないし36は、放電容量が大きく、容量保持率も高い。
【0092】
<他の実施形態>
本発明は上記記述及び図面によって説明した実施形態に限定されるものではなく、例えば次のような実施形態も本発明の技術的範囲に含まれ、さらに、下記以外にも要旨を逸脱しない範囲内で種々変更して実施することができる。
【0093】
上記した実施形態では、角形非水電解質二次電池21として説明したが、電池構造は特に限定されず、円筒形、袋状、リチウムポリマー電池等としてもよいことは勿論である。
【0094】
【発明の効果】
本発明によれば、高いエネルギー密度を有し、サイクル特性に優れた非水電解質二次電池を得ることができる。すなわち、炭素材料を負極活物質として用いた従来の電池と比べて、放電容量を10%以上増大させることができ、さらに、ケイ素と炭素との複合体を負極活物質として用いた電池と比べて、容量保持率を20%以上も向上させることができる。
【図面の簡単な説明】
【図1】実施例1の発明に係る負極活物質の断面を示す模式図
【図2】実施例2の発明に係る負極活物質の断面を示す模式図
【図3】実施例24の発明に係る負極活物質の断面を示す模式図
【図4】実施例25の発明に係る負極活物質の断面を示す模式図
【図5】本発明の一実施形態の角形非水電解質二次電池の縦断面図
【符号の説明】
10、16…複合粒子
11…Siからなる粒子
12…SiOからなる粒子
13…炭素材料A
14…炭素材料B
15…SiとSiOとを含む粒子[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a non-aqueous electrolyte secondary battery.
[0002]
[Prior art]
Non-aqueous electrolyte secondary batteries are widely used as power sources for portable electronic devices and the like because of their high electromotive force and high energy density.
Conventionally, in a nonaqueous electrolyte secondary battery, a carbon material has been widely used as a negative electrode active material because it can prevent dendrite precipitation of lithium. However, when a carbon material is used as the negative electrode active material, the discharge capacity cannot be increased to a theoretical capacity (372 mAh / g) or more, so that it is difficult to increase the discharge capacity as a battery by 10% or more. There was a problem.
[0003]
Therefore, in order to increase the discharge capacity and increase the energy density of the battery, attempts have been made to use a metal that can be alloyed with lithium as an active material. Examples of such a metal include silicon (for example, see Patent Document 1).
[0004]
Silicon has a diamond-type crystal structure in which tetrahedrons formed by coordinating four atoms to each atom can store an extremely large amount of lithium ions.
[0005]
However, silicon has a large volume expansion accompanying occlusion of lithium ions, and is easily pulverized by repeated charge and discharge. Due to this pulverization, a portion where the conductive path is disconnected occurs, and the current collection efficiency decreases. For this reason, as the charge-discharge cycle progresses, the capacity rapidly decreases, and the cycle life becomes short. For this reason, when silicon is used as the negative electrode active material, it has been difficult to improve the capacity retention after 50 cycles, for example, by 20% or more.
[0006]
[Patent Document 1]
JP-A-7-29602
[0007]
[Problems to be solved by the invention]
The present invention has been completed based on the above circumstances, and has an object to provide a nonaqueous electrolyte secondary battery having a high energy density and excellent cycle characteristics.
[0008]
[Means for Solving the Problems, Functions and Effects]
As means for achieving the above object, the invention of claim 1 is a positive electrode, a negative electrode containing a negative electrode active material capable of inserting and extracting lithium ions, and a nonaqueous electrolyte secondary battery comprising a nonaqueous electrolyte, The negative electrode active material comprises particles made of silicon Si and silicon oxide SiOX(Where 0 <X ≦ 2) and composite particles composed of a carbon material.
[0009]
A negative electrode active material composed of Si particles and SiOXBy containing particles (where 0 <X ≦ 2), a non-aqueous electrolyte secondary battery having a high energy density can be obtained. This consists of particles made of Si and SiOXThis is because particles formed of can form a solid solution or an intermetallic compound with lithium ions, and can occlude a large amount of lithium ions.
[0010]
The invention according to claim 2 is a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, wherein the negative electrode active material includes silicon Si and silicon oxide. Material SiOX(Where 0 <X ≦ 2) and a composite particle composed of a carbon material.
[0011]
The negative electrode active material is Si and SiOX(Where 0 <X ≦ 2), a non-aqueous electrolyte secondary battery having a high energy density can be obtained. It consists of Si and SiOXThis is because particles containing a lithium ion and a lithium ion can form a solid solution or an intermetallic compound, thereby storing a large amount of lithium ions.
[0012]
SiOX(However, 0 <X ≦ 2) can be preferably used as a negative electrode active material since a high discharge capacity is exhibited when X is 2 or less. The reason is considered as follows. It is considered that a silicon oxide having a ratio of an oxygen atom to a silicon atom of 2 or less forms a skeleton structure including a bond between silicon atoms in addition to a bond between the silicon atom and the oxygen atom. In such a structure, it is considered that there are very many sites that can store lithium ions. For this reason, it is considered that lithium ions can be easily absorbed and released in a large amount. Furthermore, SiOXIs included, the volume expansion is suppressed, and it is considered that the cycle characteristics are improved as compared with the case where only Si is used as the negative electrode active material.
[0013]
The invention according to claim 3 is the non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the silicon Si and the silicon oxide SiOXAnd the proportion of the silicon Si with respect to the total of not less than 20% by weight and not more than 80% by weight.
[0014]
Si is SiOXSince the discharge capacity is large as compared with the above, it is not preferable to set the proportion of Si to less than 20% by weight because the discharge capacity is reduced. On the other hand, SiOXIs smaller in volume expansion due to charge / discharge than Si, and has excellent cycle characteristics. Therefore, when the ratio of Si exceeds 80% by weight, the cycle characteristics are undesirably deteriorated. Therefore, Si and SiOXIs preferably from 20% by weight to 80% by weight.
[0015]
Further, by mixing the negative electrode active material and the carbon material, a non-aqueous electrolyte secondary battery having excellent cycle characteristics can be obtained. This is because the particles made of Si, SiOXParticles consisting of Si and SiOXThis is because, even if the particles containing and are finely divided, the conductive path is maintained by the carbon material, so that the reduction of the power collection is suppressed.
[0016]
When the ratio of the carbon material constituting the composite particles (hereinafter, referred to as carbon material A) to the entire negative electrode active material is less than 3% by weight, when charge and discharge are repeated, particles made of Si, SiOXConsisting of Si and SiOXIt is not possible to prevent the disconnection of the conductive path due to the pulverization of the particles containing, and the cycle characteristics are deteriorated. On the other hand, if it exceeds 60% by weight, the discharge capacity is undesirably reduced. Therefore, the ratio of the carbon material to the entire negative electrode active material is preferably from 3% by weight to 60% by weight.
[0017]
Since d (002) of the graphite material having the highest crystallinity is 0.3354 nm, d (002) of the carbon material A used for the negative electrode active material is preferably 0.3354 nm or more. On the other hand, when the thickness exceeds 0.35 nm, the conductivity of the carbon material A itself becomes low, which is not preferable. As described above, the average plane distance d (002) is preferably 0.3354 nm or more and 0.35 nm or less. d (002) can be measured using CuKα radiation, for example, using an X-Ray Diffractometer, RINT2000, manufactured by Rigaku Corporation.
[0018]
By selecting the carbon material A constituting the composite particles from the group consisting of natural graphite, artificial graphite, acetylene black, and vapor grown carbon fiber, the cycle characteristics can be improved. This is because of the high conductivity of the carbon material, particles made of Si, SiOXConsisting of Si and SiOXThis is because it becomes easy to maintain the conductive path of the particles containing The above carbon materials may be used alone or in combination of two or more.
[0019]
By coating the surface of the composite particles with a carbon material (hereinafter, the carbon material covering the surfaces of the composite particles is referred to as carbon material B), a nonaqueous electrolyte secondary battery with improved cycle characteristics can be obtained. . The reason is considered as follows. Si particles exposed on the surface of the composite particles, SiOXConsisting of Si and SiOXIn some cases, fine particles generated by repeated charge / discharge fall off from the composite particles, resulting in a decrease in cycle characteristics. By coating the composite particles with the carbon material B, particles of Si exposed on the surface of the composite particles, SiOXConsisting of Si and SiOXIt is thought that the cycle characteristics can be improved because the conductive path can be maintained also for particles containing the following.
[0020]
When the surface of the composite particles is not coated with the carbon material, particles made of Si, SiOXConsisting of Si and SiOXOn the particles containing, there is a portion having a higher reactivity with lithium ions than the others, and the occlusion and release reactions of lithium ions proceed intensively in this highly reactive portion, a so-called reaction. Unevenness may occur. Then, in a highly reactive portion, the volume of the negative electrode active material expands due to occlusion of lithium ions, whereas in a low reactivity portion, the volume expansion of the negative electrode active material becomes small. The occurrence of such unevenness in volume fluctuation causes particles made of Si, SiO 2XConsisting of Si and SiOXIn some cases, the shape of the particles including the particles may be broken and a portion isolated from the surroundings may be generated, and the conductive path may be disconnected.
[0021]
Since the surface of the composite particles is coated with the conductive carbon material B, the above-described reaction unevenness is reduced, and the particles made of Si, SiOXConsisting of Si and SiOXAnd the lithium ions uniformly react with each other. Thereby, particles made of Si, SiOXConsisting of Si and SiOXSince the particles containing and are uniformly expanded in volume, isolation is prevented and the conductive path is maintained, so that a nonaqueous electrolyte secondary battery having excellent cycle characteristics can be obtained.
[0022]
If the ratio of the entire carbon material (the sum of the carbon material A and the carbon material B) to the entire negative electrode active material is less than 30% by weight, particles of Si, SiOXConsisting of Si and SiOXWhen fine powder of particles containing the following is generated, the conductive path cannot be maintained, and as a result, cycle characteristics are deteriorated. If it exceeds 80% by weight, particles made of Si, SiOXConsisting of Si and SiOXAs a result, the discharge capacity decreases, which is not preferable. Therefore, the ratio of the whole carbon material to the whole negative electrode active material is preferably 30% by weight or more and 80% by weight or less.
[0023]
If the ratio of the carbon material B covering the surface of the composite particles to the entire negative electrode active material is less than 0.5% by weight, the surface of the composite particles cannot be sufficiently coated, and the cycle characteristics deteriorate. Is not preferred. If it exceeds 40.0% by weight, particles made of Si, SiOXConsisting of Si and SiOXAs a result, the discharge capacity decreases, which is not preferable. Therefore, the ratio of the carbon material B covering the surfaces of the composite particles to the entire negative electrode active material is preferably 0.5% by weight or more and 40.0% by weight or less.
[0024]
The BET specific surface area of the negative electrode active material is 10.0 m2/ G, the binding property of the binder decreases. For this reason, a gap is formed between the negative electrode active materials due to expansion and contraction of the negative electrode active material due to charge and discharge, and electrical contact between the negative electrode active materials is cut off. Therefore, the BET specific surface area of the negative electrode active material is 10.0 m2/ G or less is preferred.
[0025]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings.
FIG. 5 is a schematic sectional view of a prismatic nonaqueous electrolyte secondary battery according to one embodiment of the present invention. The prismatic nonaqueous electrolyte secondary battery 21 has a positive electrode 23 formed by applying a positive electrode mixture to a positive electrode current collector formed of aluminum foil, and a negative electrode formed by applying a negative electrode mixture to a negative electrode current collector formed of copper foil. A flat wound electrode group 22 wound around a separator 25 and a non-aqueous electrolyte are housed in a battery case 26.
[0026]
A battery lid 27 provided with a safety valve 28 is attached to the battery case 26 by laser welding, a negative electrode terminal 29 is connected to the negative electrode 24 via a negative electrode lead 31, and the positive electrode 23 is connected to the battery lid 27 via a positive electrode lead 30. It is connected.
[0027]
As the positive electrode active material, a compound capable of reversibly inserting and removing lithium ions can be used. Examples of such compounds include the following: As the inorganic compound, the composition formula LixMO2(M is one or more transition metals, 0 ≦ x ≦ 1), or a composition formula LiyM2O4(M is one or more transition metals, 0 ≦ y ≦ 2), a lithium transition metal composite oxide, an oxide having tunnel-like vacancies, a metal chalcogenide having a layered structure, or the like is used. Can be. Specific examples of these include LiCoO2, LiNiO2, LiMn2O4, Li2Mn2O4, MnO2, FeO2, V2O5, V6OThirteen, TiO2, TiS2And the like. Examples of the organic compound include a conductive polymer such as polyaniline. Furthermore, regardless of the inorganic compound or the organic compound, the above-mentioned various positive electrode active materials may be mixed and used.
[0028]
The positive electrode active material, a conductive agent, and a binder are mixed to prepare a positive electrode mixture, and the positive electrode mixture is applied to a positive electrode current collector made of a metal foil to produce a positive electrode plate. be able to.
[0029]
The type of the conductive agent is not particularly limited, and may be metal or nonmetal. Examples of the metal conductive agent include materials composed of metal elements such as Cu and Ni. Examples of the non-metallic conductive agent include carbon materials such as graphite, carbon black, acetylene black, and Ketjen black.
[0030]
The type of the binder is not particularly limited as long as it is a material that is stable with respect to a solvent or an electrolytic solution used in manufacturing an electrode. Specifically, cellulose, carboxymethyl cellulose, styrene-butadiene rubber, isoprene rubber, butadiene rubber, ethylene-propylene rubber, syndiotactic 1,2-polybutadiene, ethylene-vinyl acetate copolymer, propylene-α-olefin (carbon Formulas 2 to 12) Copolymers, polyvinylidene fluoride, polytetrafluoroethylene, polytetrafluoroethylene-ethylene copolymer, and the like can be used.
[0031]
Examples of the positive electrode current collector include Al, Ta, Nb, Ti, Hf, Zr, Zn, W, Bi, and alloys containing these metals. Since these metals form a passive film on the surface by anodic oxidation in the electrolyte, it is possible to effectively prevent the non-aqueous electrolyte from being oxidized and decomposed at the contact portion between the positive electrode current collector and the electrolyte. it can. As a result, the cycle characteristics of the non-aqueous secondary battery can be effectively improved.
[0032]
FIG. 1 is a schematic view showing a cross section of the negative electrode active material according to the first embodiment. The negative electrode active material includes particles 11 made of Si, SiO 2XAnd a composite particle 10 composed of particles 12 (where 0 <X ≦ 2) and a carbon material A13.
[0033]
The composite particles 10 are composed of particles 11 made of Si and SiOXCan be obtained by milling particles 12 made of and carbon material A13 using a mill. At this time, milling may be performed in the atmosphere, but preferably in an inert atmosphere such as argon or nitrogen. Examples of the type of the mill include a ball mill, a vibration mill, a sanitary ball mill, a tube mill, a jet mill, a rod mill, a hammer mill, a roller mill, a disk mill, an attritor mill, a planetary ball mill, and an impact mill. Further, a mechanical alloy method may be used. The milling temperature can be in the range of 10C to 300C. The milling time can be set in a range of 30 seconds to 48 hours.
[0034]
Further, in the present invention, as shown in FIG. 2, a composite particle 10 having a surface coated with a carbon material B14 may be used as a negative electrode active material.
[0035]
FIG. 3 is a schematic view showing a cross section of the negative electrode active material according to the second aspect of the present invention. The negative electrode active material is composed of Si and SiOXAnd composite particles 16 composed of a carbon material A13 (where 0 <X ≦ 2).
[0036]
The composite particles 16 are made of Si and SiOXAnd the carbon material A13 can be obtained by the same method as the composite particle 10 shown in FIG.
Further, in the present invention, as shown in FIG. 4, a composite particle 16 having a surface coated with a carbon material B14 may be used as a negative electrode active material.
[0037]
In order to coat the surface of the composite particles 10 and 16 with the carbon material B14, a method in which an organic compound is coated on the surfaces of the composite particles 10 and 16 followed by baking or a chemical vapor deposition (CVD) method can be used. .
[0038]
In the CVD method, an organic compound such as methane, acetylene, benzene, and toluene can be used as a reaction gas. The reaction temperature can be in the range of 700C to 1300C. The reaction time can be in the range of 30 seconds to 72 hours. According to the CVD method, the carbon material can be coated at a lower reaction temperature than the method of firing the coated organic compound. Therefore, the particles 11 made of Si, SiOXParticles 12 consisting of Si and SiOXThe coating treatment can be performed at a temperature equal to or lower than the melting point of the particles 15 containing
[0039]
Whether or not the carbon material B14 is coated on the surface of the composite particle 10 can be confirmed by performing Raman spectroscopy. Since Raman spectroscopy analyzes the surface portion of the sample, when the carbon material B14 is entirely coated on the surface of the composite particle 10, the R value (intensity) indicating the crystallinity of the carbon material B14 coated on the surface is obtained. Ratio 1580cm-11360 cm for the peak intensity of-1Peak intensity) shows a constant value no matter where the negative electrode active material particles are measured. For this Raman spectroscopy, for example,
T64000 manufactured by JOBIN, YVON can be used.
[0040]
Particles made of Si, SiOX(Where 0 <X ≦ 2), Si and SiOX(However, as particles containing 0 <X ≦ 2), particles washed with an acid such as hydrofluoric acid, sulfuric acid, or the like reduced with hydrogen can be used.
[0041]
The ratio of the carbon material A13 and the carbon material B14 to the entire negative electrode active material can be measured by performing thermogravimetric analysis. For example, when thermogravimetry is performed at 10 ± 2 ° C./min, the weight loss of the carbon material A13 and the carbon material B14 is observed in the range of 30 ° C. to 1000 ° C. At around 580 ° C., a decrease in the weight of the relatively low-crystalline carbon material B14 coated on the surface of the composite particle 10 was observed. Next, at around 610 ° C., the particles 11 made of Si, SiO 2XParticles 12 consisting of Si and SiOXAnd the weight reduction of the carbon material A13 milled together with the particles 15 containing. Particles 11 of Si, SiOXParticles 12 consisting of Si and SiOXThe weight loss of the particles 15 containing is observed around 1500 ° C. to 2000 ° C. From this result, the weight ratio of each material can be measured. For this thermogravimetric analysis, for example, SSC / 5200 manufactured by Seiko Instruments can be used.
[0042]
The specific surface area of the negative electrode active material is, for example, manufactured by Shimadzu Corporation, using Micromeritex, Genimi 2370, using liquid nitrogen, and performed by a constant temperature gas adsorption method using a dynamic constant pressure method with a pressure measurement range of 0 to 126.6 KPa. It can be analyzed by the BET method. GEMINI-PC1 can be used as data processing software.
[0043]
The material of the negative electrode current collector is preferably a metal such as copper, nickel, and stainless steel. Among these, it is preferable to use a copper foil because it can be easily formed into a thin film and is inexpensive.
[0044]
The method for manufacturing the negative electrode plate is not particularly limited, and the negative electrode plate can be manufactured by the same method as the above-described method for manufacturing the positive electrode.
[0045]
As the non-aqueous solvent of the non-aqueous electrolyte, for example, ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, γ-butyrolactone, γ-valerolactone, methyl acetate, methyl propionate, tetrahydrofuran, 2-methyltetrahydrofuran, tetrahydropyran, dimethoxyethane, dimethoxymethane, ethylene methyl phosphate, ethyl ethylene phosphate, trimethyl phosphate, triethyl phosphate, and the like can be used. One of these organic solvents may be selected and used, or two or more thereof may be used in combination.
[0046]
As the solute of the non-aqueous electrolyte, LiClO4, LiPF6, LiBF4And inorganic lithium salts such as LiCF3SO3, LiN (CF3SO2  )2, LiN (CF3CF2SO2)2, LiN (CF3SO2)2And LiC (CF3SO2)3And the like. One of these solutes may be selected and used, or two or more may be used in combination.
[0047]
As the electrolyte, a solid or gel electrolyte can be used in addition to the above-mentioned electrolyte. Examples of such an electrolyte include an inorganic solid electrolyte, polyethylene oxide, polypropylene oxide, and derivatives thereof.
[0048]
As the separator, an insulating microporous polyethylene film, a polypropylene microporous film, a polyethylene nonwoven fabric, a polypropylene nonwoven fabric, or the like impregnated with an electrolytic solution can be used.
[0049]
Hereinafter, the present invention will be described in detail based on examples. The present invention is not limited by the following examples.
<Example 1>
30 parts by weight of Si and SiO2A negative electrode active material was prepared by treating 30 parts by weight and 40 parts by weight of artificial graphite with a ball mill in a nitrogen atmosphere at 25 ° C. for 30 minutes to prepare composite particles.
[0050]
A negative electrode paste was prepared by mixing 95% by weight of the above negative electrode active material, 3% by weight of SBR, and 2% by weight of CMC in water. This negative electrode paste was coated on a copper foil having a thickness of 15 μm to a coating weight of 1.15 mg / cm.2Then, the coating was performed so that the amount of the negative electrode active material contained in the battery was 2 g, and then dried at 150 ° C. to evaporate water. This operation was performed on both sides of the copper foil, and both sides were compression-molded by a roll press. In this way, a negative electrode plate having negative electrode mixture layers on both surfaces was produced.
[0051]
A positive electrode paste was prepared by dispersing 90% by weight of lithium cobalt oxide as a positive electrode active material, 5% by weight of acetylene black as a conductive agent, and 5% by weight of PVDF as a binder in NMP. This positive electrode paste was applied on an aluminum foil having a thickness of 20 μm, and the application weight was 2.5 mg / cm 2.2Then, NMP was evaporated by applying so that the amount of the positive electrode active material contained in the battery was 5.3 g, and then drying at 150 ° C. The above operation was performed on both sides of the aluminum foil, and both sides were compression-molded by a roll press. Thus, a positive electrode plate provided with the positive electrode material mixture layers on both surfaces was produced.
[0052]
The positive electrode plate and the negative electrode plate thus produced were stacked and wound with a polyethylene separator, which is a communicating porous body having a thickness of 20 μm and a porosity of 40%, interposed therebetween to produce a wound power generating element. After inserting this power generating element into a container having a height of 48 mm, a width of 30 mm, and a thickness of 4.2 mm, a non-aqueous electrolyte was injected into the inside of the battery to produce a prismatic non-aqueous electrolyte secondary battery. This non-aqueous electrolytic solution contains 1 mol / l LiPF in a mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) at a volume ratio of 1: 1.6Was used.
[0053]
<Example 2>
In Example 2, as the negative electrode active material, 20 parts by weight of Si and SiO 2 were used.220 parts by weight and 40 parts by weight of artificial graphite are treated by a ball mill in a nitrogen atmosphere at 25 ° C. for 30 minutes to prepare composite particles, and then the methane is thermally decomposed at 900 ° C. (CVD). A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1, except that a material having a surface coated with a carbon material was used.
[0054]
<Example 3>
For Example 3, SiO2A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that SiO was used instead of.
[0055]
<Comparative Examples 1 to 4>
A negative electrode active material was prepared in the same manner as in Example 2 except that the raw materials shown in Table 1 were used, and a nonaqueous electrolyte secondary battery was manufactured using the negative electrode active material.
[0056]
<Measurement>
(Raman spectroscopy)
The negative electrode active material prepared as described above was subjected to Raman spectroscopy by the method described above, and the R value was measured. The R value was about 0.8 when measured at any part of the negative electrode active material particles. The R value indicates 0 when the crystallinity of the sample is high, and increases as the crystallinity decreases. Since the R value was about 0.8, it was confirmed that the particles were uniformly coated with a relatively low-crystalline carbon material deposited by the CVD method.
[0057]
(Thermogravimetric analysis)
The negative electrode active material prepared as described above was subjected to thermogravimetric analysis by the method described above, and the weight ratio of each material was measured.
[0058]
(XRD)
The negative electrode active material prepared as described above was subjected to X-ray diffraction by the above-mentioned method, and the average plane distance d (002) of the carbon material was measured from the diffraction angle (2θ) of the X-ray diffraction pattern of CuKα radiation.
[0059]
(BET specific surface area)
The BET specific surface area of the negative electrode active material prepared as described above was measured by the method described above.
[0060]
(Charging and discharging characteristics)
The non-aqueous electrolyte secondary battery produced as described above was charged at 25 ° C. with a current of 1 CmA to 4.2 V, then charged at a constant voltage of 4.2 V for 2 hours, and then charged with a current of 1 CmA for 2 hours. Discharged to 0V. This charge / discharge process was defined as one cycle, and a charge / discharge test of 500 cycles was performed. The ratio of the discharge capacity at the 500th cycle to the discharge capacity at the first cycle (expressed as a percentage) was defined as the cycle capacity retention.
[0061]
[Table 1]
Figure 2004139886
[0062]
<Result>
Table 1 summarizes various measurement results for the above Examples and Comparative Examples.
Examples 1 to 3 are based on SiO 2XIs higher than that of Comparative Example 1 not containing Si, and the discharge capacity is larger than that of Comparative Example 2 not containing Si. And the capacity retention is higher than that of Comparative Example 3 in which the carbon material is not contained in the composite particles. Further, Si and SiOX, The discharge capacity is larger than that of Comparative Example 4 which does not include.
Comparing Example 1 with Examples 2 and 3 in which the composite particles are coated with the carbon material, Example 2 is superior in capacity retention.
[0063]
<Examples 4 to 8>
Si and SiO2A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2, except that the ratio of Si to the total amount of the above was set as shown in Table 2.
[0064]
[Table 2]
Figure 2004139886
[0065]
Table 2 summarizes various measurement results of the above-mentioned Examples, together with the results of Example 2 and Comparative Examples 1 and 2.
Si particles and SiOXExamples 2 and 5 to 8 in which the ratio of the particles made of Si to the total of the particles made of Si are 20% by weight or more and 80% by weight or less, the examples in which the ratio of the particles made of Si is 10% by weight. 4 has a larger discharge capacity.
[0066]
<Examples 9 to 14>
Si and SiO2A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2, except that the amount of artificial graphite mixed with the mixture was adjusted to the ratio shown in Table 3.
[0067]
[Table 3]
Figure 2004139886
[0068]
Table 3 summarizes various measurement results for the above examples.
In Examples 10 to 13 in which the ratio of artificial graphite to the entire negative electrode active material is 3% by weight or more and 60% by weight or less, the capacity retention ratio is higher than in Example 9 in which the ratio of artificial graphite is 1% by weight. On the other hand, Examples 10 to 13 have a larger discharge capacity than Example 14 in which the proportion of artificial graphite is 70% by weight.
[0069]
Examples 11 to 13 in which the ratio of the entire carbon material to the entire negative electrode active material is 30% by weight or more and 80% by weight or less, Example 9 in which the ratio of the entire carbon material is 21% by weight and 23% by weight, 10 has a higher capacity retention rate. Examples 11 to 13 have a larger discharge capacity and a higher capacity retention ratio than Example 14 in which the ratio of the entire carbon material is 90% by weight.
[0070]
<Examples 15 to 17>
Si and SiO2As Example 2, except that artificial graphite was used in place of artificial graphite, natural graphite was used in Example 15, acetylene black was used in Example 16, and vapor-grown carbon fiber was used in Example 17. Thus, a non-aqueous electrolyte secondary battery was manufactured.
[0071]
[Table 4]
Figure 2004139886
[0072]
Table 4 summarizes various measurement results of the above-described examples together with the results of Example 2.
Examples 2, 15, and 17 in which the average plane distance d (002) is 0.3354 nm or more and 0.35 nm or less have a larger discharge capacity and a larger capacity than Example 16 in which d (002) is 0.37 nm. The retention is also excellent.
[0073]
<Examples 18 to 20>
When coating the carbon material by the CVD method, the reaction conditions were appropriately changed to prepare a negative electrode active material having a value shown in Table 5 as the amount of carbon coated on the surface of the composite particles. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that this negative electrode active material was used.
[0074]
[Table 5]
Figure 2004139886
[0075]
Table 5 summarizes various measurement results of the above-described examples together with the results of Example 2.
In Examples 2, 18, and 19, in which the ratio of the carbon material covering the surfaces of the composite particles to the entire negative electrode active material was 0.5% by weight or more and 40.0% by weight or less, the ratio of the carbon material was 60% by weight. %, The discharge capacity is large and the capacity retention rate is high as compared with Example 20 which is%.
[0076]
<Examples 21 to 23>
Si, SiO2A negative active material having a BET specific surface area as shown in Table 6 was prepared by using an artificial graphite having a specific surface area as an artificial graphite. A non-aqueous electrolyte secondary battery was produced in the same manner as in Example 2 except that this negative electrode active material was used.
[0077]
[Table 6]
Figure 2004139886
[0078]
Table 6 summarizes various measurement results of the above examples together with the results of Example 2.
The BET specific surface area of the negative electrode active material is 10.0 m2/ G in Examples 2, 21, and 22, the BET specific surface area is 20 m2/ G, the discharge capacity is larger and the capacity retention ratio is higher than that of Example 23.
[0079]
<Example 24>
Si and SiO at a weight ratio of 1: 12A negative electrode active material was prepared by treating 60 parts by weight of particles containing the above and 40 parts by weight of artificial graphite with a ball mill in a nitrogen atmosphere at 25 ° C. for 30 minutes to prepare composite particles. A nonaqueous electrolyte secondary battery of Example 24 was made in the same manner as Example 1 except for the negative electrode active material.
[0080]
<Example 25>
Si and SiO in a weight ratio of 1: 1 as the negative electrode active material2A method in which 40 parts by weight of particles containing the following and 40 parts by weight of artificial graphite are treated in a nitrogen atmosphere by a ball mill at 25 ° C. for 30 minutes to prepare composite particles, and then methane is thermally decomposed at 900 ° C. (CVD) Thus, a non-aqueous electrolyte secondary battery of Example 25 was produced in the same manner as in Example 24, except that the surface of the composite particles was coated with a carbon material.
[0081]
<Example 26>
SiO2A non-aqueous electrolyte secondary battery of Example 26 was made in the same manner as Example 25 except that SiO was used instead of.
[0082]
For the negative electrode active materials of Examples 24 to 26, Raman spectroscopy, thermogravimetric analysis, XRD, and BET specific surface area were measured in the same manner as in Example 1. The charge / discharge characteristics of the non-aqueous electrolyte secondary batteries of Examples 24 to 26 were measured in the same manner as in Example 1. Table 7 shows the results. Table 7 also shows the data of Comparative Examples 1 to 4 shown in Table 1 for comparison.
[0083]
[Table 7]
Figure 2004139886
[0084]
<Result>
Examples 24 to 26 use SiO 2XIs higher than that of Comparative Example 1 not containing Si, and the discharge capacity is larger than that of Comparative Example 2 not containing Si. And the capacity retention is higher than that of Comparative Example 3 in which the carbon material is not contained in the composite particles. Further, Si and SiOX, The discharge capacity is larger than that of Comparative Example 4 which does not include.
Comparing Example 24 with Examples 25 and 26 in which the composite particles are coated with the carbon material, Examples 25 and 26 are excellent in capacity retention.
[0085]
<Examples 27 to 31>
Si and SiO2Non-aqueous electrolyte secondary batteries of Examples 27 to 31 were produced in the same manner as in Example 25, except that the proportion of Si in the particles containing
Various measurement results for Examples 27 to 31 are summarized in Table 8 together with the results of Example 25 and Comparative Examples 1 and 2.
[0086]
[Table 8]
Figure 2004139886
[0087]
Si and SiO2In Examples 25 and 28 to 31 in which the ratio of Si in the particles containing 20% by weight or more and 80% by weight or less, the discharge capacity is larger than in Example 27 in which the ratio of Si is 10% by weight. .
[0088]
<Examples 32 to 37>
Si and SiO2Non-aqueous electrolyte secondary batteries of Examples 32 to 37 were produced in the same manner as in Example 25, except that the amount of artificial graphite mixed with particles containing
Table 9 summarizes the various measurement results for Examples 32 to 37.
[0089]
[Table 9]
Figure 2004139886
[0090]
In Examples 33 to 36 in which the ratio of artificial graphite to the entire negative electrode active material is 3% by weight or more and 60% by weight or less, the capacity retention ratio is higher than in Example 32 in which the ratio of artificial graphite is 1% by weight. On the other hand, Examples 33 to 36 have larger discharge capacities than Example 37 in which the proportion of artificial graphite is 70% by weight.
[0091]
Examples 34 to 36 in which the ratio of the entire carbon material to the entire negative electrode active material is 30% by weight or more and 60% by weight or less, Example 32 in which the ratio of the entire carbon material is 21% by weight and 23% by weight, 33, the capacity retention rate is higher. Examples 34 to 36 have a larger discharge capacity and a higher capacity retention ratio as compared with Example 37 in which the ratio of the entire carbon material is 90% by weight.
[0092]
<Other embodiments>
The present invention is not limited to the embodiments described with reference to the above description and drawings. For example, the following embodiments are also included in the technical scope of the present invention, and are not limited to the following without departing from the gist. Can be implemented with various modifications.
[0093]
In the above-described embodiment, the rectangular non-aqueous electrolyte secondary battery 21 has been described. However, the battery structure is not particularly limited, and may be a cylindrical shape, a bag shape, a lithium polymer battery, or the like.
[0094]
【The invention's effect】
According to the present invention, a non-aqueous electrolyte secondary battery having high energy density and excellent cycle characteristics can be obtained. That is, the discharge capacity can be increased by 10% or more as compared with a conventional battery using a carbon material as a negative electrode active material, and further, compared with a battery using a composite of silicon and carbon as a negative electrode active material. In addition, the capacity retention can be improved by 20% or more.
[Brief description of the drawings]
FIG. 1 is a schematic view showing a cross section of a negative electrode active material according to the invention of Example 1.
FIG. 2 is a schematic view showing a cross section of a negative electrode active material according to the invention of Example 2.
FIG. 3 is a schematic view showing a cross section of a negative electrode active material according to the invention of Example 24.
FIG. 4 is a schematic view showing a cross section of a negative electrode active material according to the invention of Example 25.
FIG. 5 is a longitudinal sectional view of a prismatic nonaqueous electrolyte secondary battery according to one embodiment of the present invention.
[Explanation of symbols]
10, 16 ... composite particles
11 ... Si particles
12 ... SiOXParticles consisting of
13. Carbon material A
14 ... Carbon material B
15 ... Si and SiOXAnd particles containing

Claims (3)

正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、前記負極活物質が、ケイ素Siからなる粒子と、ケイ素酸化物SiO(但し、0<X≦2)からなる粒子と、炭素材料とから構成される複合粒子を含むことを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, the negative electrode active material includes particles of silicon Si, silicon oxide SiO X (However, a non-aqueous electrolyte secondary battery comprising: composite particles composed of particles of 0 <X ≦ 2) and a carbon material. 正極と、リチウムイオンを吸蔵放出可能な負極活物質を含む負極と、非水電解質とからなる非水電解質二次電池において、前記負極活物質が、ケイ素Siとケイ素酸化物SiO(但し、0<X≦2)とを含む粒子と、炭素材料とから構成される複合粒子を含むことを特徴とする非水電解質二次電池。In a non-aqueous electrolyte secondary battery including a positive electrode, a negative electrode including a negative electrode active material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte, the negative electrode active material includes silicon Si and silicon oxide SiO X (where 0 A non-aqueous electrolyte secondary battery comprising: composite particles composed of particles containing <X ≦ 2) and a carbon material. 請求項1又は請求項2に記載の非水電解質二次電池において、前記ケイ素Siと前記ケイ素酸化物SiOとの合計に対する前記ケイ素Siの割合が、20重量%以上80重量%以下であることを特徴とする非水電解質二次電池。3. The non-aqueous electrolyte secondary battery according to claim 1, wherein a ratio of the silicon Si to a total of the silicon Si and the silicon oxide SiO X is 20% by weight or more and 80% by weight or less. Non-aqueous electrolyte secondary battery characterized by the above-mentioned.
JP2002304654A 2002-05-08 2002-10-18 Nonaqueous electrolyte secondary battery Expired - Lifetime JP5060010B2 (en)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2002304654A JP5060010B2 (en) 2002-10-18 2002-10-18 Nonaqueous electrolyte secondary battery
US10/513,664 US8092940B2 (en) 2002-05-08 2003-05-06 Non-aqueous electrolyte secondary battery
KR1020047016728A KR101107041B1 (en) 2002-05-08 2003-05-06 Nonaqueous electrolyte secondary cell
PCT/JP2003/005654 WO2003096449A1 (en) 2002-05-08 2003-05-06 Nonaqueous electrolyte secondary cell
CNB03810136XA CN100414743C (en) 2002-05-08 2003-05-06 Nonaqueous electrolyte secondary cell
US13/187,550 US20120021286A1 (en) 2002-05-08 2011-07-21 Non-aqueous electrolyte secondary battery
US14/096,268 US20140093780A1 (en) 2002-05-08 2013-12-04 Non-aqueous electrolyte secondary battery
US14/878,624 US10038186B2 (en) 2002-05-08 2015-10-08 Non-aqueous electrolyte secondary battery
US16/014,636 US20180301700A1 (en) 2002-05-08 2018-06-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002304654A JP5060010B2 (en) 2002-10-18 2002-10-18 Nonaqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2011223324A Division JP5601536B2 (en) 2011-10-07 2011-10-07 Nonaqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2004139886A true JP2004139886A (en) 2004-05-13
JP5060010B2 JP5060010B2 (en) 2012-10-31

Family

ID=32452007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002304654A Expired - Lifetime JP5060010B2 (en) 2002-05-08 2002-10-18 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5060010B2 (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
WO2006071076A1 (en) * 2004-12-30 2006-07-06 Sodiff Advanced Materials Co., Ltd. Non-carbon material-inserted spherical carbonaceous powder and process for preparation thereof
JP2006252779A (en) * 2005-03-08 2006-09-21 Jfe Chemical Corp Anode material for lithium-ion secondary battery, its manufacturing method, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2007141504A (en) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery
WO2008018208A1 (en) * 2006-08-10 2008-02-14 Mitsui Mining & Smelting Co., Ltd. Non-aqueous electrolyte secondary battery
JP2008192488A (en) * 2007-02-06 2008-08-21 Nec Tokin Corp Nonaqueous electrolyte secondary battery
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP2009099287A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Electrode material powder for secondary battery, and manufacturing method thereof
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
KR100913177B1 (en) 2007-09-17 2009-08-19 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
JP2009224168A (en) * 2008-03-17 2009-10-01 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, and nonaqueous electrolyte secondary battery using the same
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
WO2011102453A1 (en) * 2010-02-18 2011-08-25 Necエナジーデバイス株式会社 Polymer secondary battery and method for producing same
WO2011162090A1 (en) 2010-06-21 2011-12-29 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
JP2012014939A (en) * 2010-06-30 2012-01-19 Sumitomo Bakelite Co Ltd Carbon material for lithium secondary cell negative electrode, negative-electrode mixture for lithium secondary cell, lithium secondary cell negative electrode, and lithium secondary cell
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
WO2012029420A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
JP2012169259A (en) * 2010-12-24 2012-09-06 Ind Technol Res Inst Energy storage composite particle, battery cathode material, and battery
JP2013051216A (en) * 2012-12-10 2013-03-14 Nec Energy Devices Ltd Nonaqueous electrolyte secondary battery
WO2013054481A1 (en) * 2011-10-12 2013-04-18 株式会社豊田自動織機 Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell
JP2013125662A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
KR20150096781A (en) * 2012-12-20 2015-08-25 우미코르 Negative electrode material for a rechargeable battery and method for producing the same
JP2016219410A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2017022145A (en) * 2016-11-01 2017-01-26 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2017150311A1 (en) * 2016-02-29 2017-09-08 日本電気株式会社 Negative-electrode active material and lithium ion secondary battery using same
JPWO2016194733A1 (en) * 2015-05-29 2018-03-22 日本電気株式会社 Lithium ion secondary battery
WO2019064547A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103920A (en) * 1996-06-17 1998-01-06 Toshiba Corp Lithium secondary battery, and manufacture of the same
JPH11329433A (en) * 1998-05-22 1999-11-30 Kao Corp Nonaqueous secondary battery negative electrode
JP2000003730A (en) * 1998-06-15 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2000243396A (en) * 1999-02-23 2000-09-08 Hitachi Ltd Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP2001283848A (en) * 2000-03-30 2001-10-12 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2002093415A (en) * 2000-09-18 2002-03-29 Nichia Chem Ind Ltd Composite carbon material for nonaqueous lithium secondary battery and its synthetic method
JP2002170561A (en) * 2000-11-30 2002-06-14 Denki Kagaku Kogyo Kk Electrode active material and nonaqueous system secondary battery
JP2002198036A (en) * 2000-12-22 2002-07-12 Sony Corp Negative electrode, nonaqueous electrolyte cell and their manufacturing method
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2002260658A (en) * 2001-03-02 2002-09-13 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2004095306A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004119176A (en) * 2002-09-26 2004-04-15 Toshiba Corp Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH103920A (en) * 1996-06-17 1998-01-06 Toshiba Corp Lithium secondary battery, and manufacture of the same
JPH11329433A (en) * 1998-05-22 1999-11-30 Kao Corp Nonaqueous secondary battery negative electrode
JP2000003730A (en) * 1998-06-15 2000-01-07 Fuji Photo Film Co Ltd Nonaqueous secondary battery
JP2000215887A (en) * 1999-01-26 2000-08-04 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, lithium secondary battery and charging method for lithium secondary battery
JP2000243396A (en) * 1999-02-23 2000-09-08 Hitachi Ltd Lithium secondary battery and its manufacture and its negative electrode material and electric apparatus
JP2001283848A (en) * 2000-03-30 2001-10-12 Mitsui Mining Co Ltd Negative electrode material for lithium secondary battery, its manufacturing method and lithium secondary battery
JP2002093415A (en) * 2000-09-18 2002-03-29 Nichia Chem Ind Ltd Composite carbon material for nonaqueous lithium secondary battery and its synthetic method
JP2002170561A (en) * 2000-11-30 2002-06-14 Denki Kagaku Kogyo Kk Electrode active material and nonaqueous system secondary battery
JP2002198036A (en) * 2000-12-22 2002-07-12 Sony Corp Negative electrode, nonaqueous electrolyte cell and their manufacturing method
JP2002231225A (en) * 2001-02-01 2002-08-16 Hitachi Chem Co Ltd Composite electrode material, its manufacturing method, lithium ion secondary electrode negative material using the same, and lithium ion secondary battery
JP2002260658A (en) * 2001-03-02 2002-09-13 Samsung Sdi Co Ltd Carbonaceous material and lithium secondary battery
JP2004047404A (en) * 2002-05-17 2004-02-12 Shin Etsu Chem Co Ltd Conductive silicon composite and manufacturing method of same as well as negative electrode material for nonaqueous electrolyte secondary battery
JP2004095306A (en) * 2002-08-30 2004-03-25 Toshiba Corp Non-aqueous electrolyte secondary battery
JP2004119176A (en) * 2002-09-26 2004-04-15 Toshiba Corp Negative electrode active material for nonaqueous electrolyte rechargeable battery, and nonaqueous electrolyte rechargeable battery

Cited By (44)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006092969A (en) * 2004-09-24 2006-04-06 Toshiba Corp Anode active material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP4519592B2 (en) * 2004-09-24 2010-08-04 株式会社東芝 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
WO2006071076A1 (en) * 2004-12-30 2006-07-06 Sodiff Advanced Materials Co., Ltd. Non-carbon material-inserted spherical carbonaceous powder and process for preparation thereof
JP2006252779A (en) * 2005-03-08 2006-09-21 Jfe Chemical Corp Anode material for lithium-ion secondary battery, its manufacturing method, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2007141504A (en) * 2005-11-15 2007-06-07 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery
WO2008018208A1 (en) * 2006-08-10 2008-02-14 Mitsui Mining & Smelting Co., Ltd. Non-aqueous electrolyte secondary battery
JP2010501970A (en) * 2006-08-22 2010-01-21 ビーティーアール・ニュー・エナジー・マテリアルズ・インク Silicon / carbon composite cathode material for lithium ion battery and method for producing the same
JP2008192488A (en) * 2007-02-06 2008-08-21 Nec Tokin Corp Nonaqueous electrolyte secondary battery
KR100913177B1 (en) 2007-09-17 2009-08-19 삼성에스디아이 주식회사 Negative active material for lithium secondary battery, and method of preparing same
US8377592B2 (en) 2007-09-17 2013-02-19 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, and method of preparing the same
JP2009099287A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Electrode material powder for secondary battery, and manufacturing method thereof
JP2009123695A (en) * 2007-10-24 2009-06-04 Panasonic Corp Electrode for electrochemical device, and electrochemical device using the electrode
WO2009054149A1 (en) * 2007-10-24 2009-04-30 Panasonic Corporation Electrode for electrochemical device and electrochemical device using the same
JP2009224168A (en) * 2008-03-17 2009-10-01 Shin Etsu Chem Co Ltd Nonaqueous electrolyte secondary battery negative electrode material, and nonaqueous electrolyte secondary battery using the same
EP2104175B1 (en) * 2008-03-17 2019-05-22 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
KR101406013B1 (en) * 2008-03-17 2014-06-11 신에쓰 가가꾸 고교 가부시끼가이샤 Non-aqueous electrolyte secondary battery, negative electrode material, and making method
US8105718B2 (en) 2008-03-17 2012-01-31 Shin-Etsu Chemical Co., Ltd. Non-aqueous electrolyte secondary battery, negative electrode material, and making method
JP2009252705A (en) * 2008-04-11 2009-10-29 Nec Tokin Corp Non-aqueous electrolyte secondary battery
EP2538485A1 (en) * 2010-02-18 2012-12-26 NEC Energy Devices, Ltd. Polymer secondary battery and method for producing same
CN102771002A (en) * 2010-02-18 2012-11-07 Nec能源元器件株式会社 Polymer secondary battery and method for producing same
US20120321962A1 (en) * 2010-02-18 2012-12-20 Nec Energy Devices, Ltd. Polymer secondary battery and method for manufacturing the same
WO2011102453A1 (en) * 2010-02-18 2011-08-25 Necエナジーデバイス株式会社 Polymer secondary battery and method for producing same
JPWO2011102453A1 (en) * 2010-02-18 2013-06-17 Necエナジーデバイス株式会社 Polymer secondary battery and manufacturing method thereof
EP2538485A4 (en) * 2010-02-18 2014-07-09 Nec Energy Devices Ltd Polymer secondary battery and method for producing same
EP3032622A1 (en) 2010-06-21 2016-06-15 NEC Energy Devices, Ltd. Nonaqueous electrolyte secondary battery
WO2011162090A1 (en) 2010-06-21 2011-12-29 Necエナジーデバイス株式会社 Nonaqueous electrolyte secondary battery
JP2012014939A (en) * 2010-06-30 2012-01-19 Sumitomo Bakelite Co Ltd Carbon material for lithium secondary cell negative electrode, negative-electrode mixture for lithium secondary cell, lithium secondary cell negative electrode, and lithium secondary cell
US9543618B2 (en) 2010-09-02 2017-01-10 Nec Corporation Secondary battery
WO2012029420A1 (en) * 2010-09-02 2012-03-08 日本電気株式会社 Secondary battery
JP5978999B2 (en) * 2010-09-02 2016-08-24 日本電気株式会社 Secondary battery
JPWO2012029420A1 (en) * 2010-09-02 2013-10-28 日本電気株式会社 Secondary battery
JP2012169259A (en) * 2010-12-24 2012-09-06 Ind Technol Res Inst Energy storage composite particle, battery cathode material, and battery
WO2013054481A1 (en) * 2011-10-12 2013-04-18 株式会社豊田自動織機 Lithium ion secondary cell, negative electrode for lithium ion secondary cell, and negative electrode material for lithium ion secondary cell
JP2013125662A (en) * 2011-12-15 2013-06-24 Sanyo Electric Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and method for manufacturing the same
JP2013051216A (en) * 2012-12-10 2013-03-14 Nec Energy Devices Ltd Nonaqueous electrolyte secondary battery
KR20150096781A (en) * 2012-12-20 2015-08-25 우미코르 Negative electrode material for a rechargeable battery and method for producing the same
KR101944154B1 (en) * 2012-12-20 2019-01-30 유미코아 Negative electrode material for a rechargeable battery and method for producing the same
JP2016219410A (en) * 2015-05-21 2016-12-22 日立化成株式会社 Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JPWO2016194733A1 (en) * 2015-05-29 2018-03-22 日本電気株式会社 Lithium ion secondary battery
WO2017150311A1 (en) * 2016-02-29 2017-09-08 日本電気株式会社 Negative-electrode active material and lithium ion secondary battery using same
JPWO2017150311A1 (en) * 2016-02-29 2018-12-20 日本電気株式会社 Negative electrode active material and lithium ion secondary battery using the same
US10644347B2 (en) 2016-02-29 2020-05-05 Nec Corporation Negative electrode active material and lithium ion secondary battery using the same
JP2017022145A (en) * 2016-11-01 2017-01-26 株式会社Gsユアサ Nonaqueous electrolyte secondary battery
WO2019064547A1 (en) * 2017-09-29 2019-04-04 日立化成株式会社 Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery

Also Published As

Publication number Publication date
JP5060010B2 (en) 2012-10-31

Similar Documents

Publication Publication Date Title
JP5060010B2 (en) Nonaqueous electrolyte secondary battery
JP5601536B2 (en) Nonaqueous electrolyte secondary battery
US8003253B2 (en) Non-aqueous electrolyte secondary battery
TWI627785B (en) Anode active material for lithium secondary battery and method of preparing the same
JP3726958B2 (en) battery
US8178238B2 (en) Positive-electrode active material for lithium-ion secondary battery, positive electrode, manufacturing method thereof, and lithium-ion secondary battery
WO2015111710A1 (en) Non-aqueous secondary battery
JP2004335195A (en) Nonaqueous electrolyte secondary battery and method of manufacturing negative electrode therefor
US9780357B2 (en) Silicon-based anode active material and secondary battery comprising the same
JP5260887B2 (en) Nonaqueous electrolyte secondary battery
KR20170023832A (en) Negative electrode material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery and method for producing negative electrode active material particles
WO2011052533A1 (en) Lithium secondary battery
JP6297991B2 (en) Nonaqueous electrolyte secondary battery
JP2006253126A (en) Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
JP6448462B2 (en) Anode active material for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and method for producing anode active material for nonaqueous electrolyte secondary battery
JP3670938B2 (en) Lithium secondary battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP2007250390A (en) Negative electrode, secondary battery and manufacturing method of negative electrode
EP1959513B1 (en) Composite anode active material,method of preparing the same,and anode and lithium battery containing the material
CN108463909B (en) Negative electrode material for Li-ion secondary battery, method for producing same, negative electrode for Li-ion secondary battery, and Li-ion secondary battery
JP2005243431A (en) Nonaqueous electrolyte secondary battery
KR20090027901A (en) Method of manufacturing a lithium secondary battery
JP2004200003A (en) Nonaqueous electrolyte secondary battery
WO2017145654A1 (en) Negative electrode active material for nonaqueous electrolyte secondary batteries, nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary batteries
JP2004259485A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20060112

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090210

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090410

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20090914

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20090914

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20100608

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100806

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110707

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111007

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20111025

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20111118

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120803

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150810

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5060010

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

EXPY Cancellation because of completion of term