JP2004296161A - Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery - Google Patents

Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2004296161A
JP2004296161A JP2003084229A JP2003084229A JP2004296161A JP 2004296161 A JP2004296161 A JP 2004296161A JP 2003084229 A JP2003084229 A JP 2003084229A JP 2003084229 A JP2003084229 A JP 2003084229A JP 2004296161 A JP2004296161 A JP 2004296161A
Authority
JP
Japan
Prior art keywords
silicon
conductive material
specific resistance
secondary battery
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003084229A
Other languages
Japanese (ja)
Inventor
Satoru Miyawaki
悟 宮脇
Mikio Aramata
幹夫 荒又
Hirofumi Fukuoka
宏文 福岡
Kazuma Momii
一磨 籾井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shin Etsu Chemical Co Ltd
Original Assignee
Shin Etsu Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shin Etsu Chemical Co Ltd filed Critical Shin Etsu Chemical Co Ltd
Priority to JP2003084229A priority Critical patent/JP2004296161A/en
Publication of JP2004296161A publication Critical patent/JP2004296161A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a conductive material-coated silicon material having a small specific resistivity which is used as a negative electrode material for a non-aqueous electrolyte secondary battery and gives excellent cycle characteristics. <P>SOLUTION: This is the conductive material-coated silicon having a small specific resistivity, and one kind or a plurality of kinds of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, galium or indium are doped, and the surface of the powder particles of the silicon material which has a resistance value at wafer or ingot of 10 Ωcm or less is coated by carbon containing much of crystalline component. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、珪素の導電性物質被覆物、その製造方法、及びリチウムイオン二次電池等の非水電解質二次電池用負極材に関する。
【0002】
【従来の技術】
近年、携帯型の電子機器、通信機器等の著しい発展に伴い、経済性と機器の小型化、軽量化の観点から、高エネルギー密度の二次電池が強く要望されている。従来、この種の二次電池の高容量化策として、例えば、負極材料にV、Si、B、Zr、Snなどの酸化物及びそれらの複合酸化物を用いる方法(特許文献1:特開平5−174818号公報、特許文献2:特開平6−60867号公報他)、溶融急冷した金属酸化物を負極材として適用する方法(特許文献3:特開平10−294112号公報)、負極材料に酸化珪素を用いる方法(特許文献4:特許第2997741号公報)、負極材料にSiO及びGeOを用いる方法(特許文献5:特開平11−102705号公報)等が知られている。また、負極材に導電性を付与する目的として、SiOを黒鉛とメカニカルアロイング後、炭化処理する方法(特許文献6:特開2000−243396号公報)、Si粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献7:特開2000−215887号公報)、酸化珪素粒子表面に化学蒸着法により炭素層を被覆する方法(特許文献8:特開2002−42806号公報)、珪素材料中にホウ素を含有する方法(特許文献9:特開2000−149951号公報)、RFスパッタリング法によるシリコン薄膜を用いた方法(特許文献10:特開2002−83594号公報)がある。
【0003】
【特許文献1】
特開平5−174818号公報
【特許文献2】
特開平6−60867号公報
【特許文献3】
特開平10−294112号公報
【特許文献4】
特許第2997741号公報
【特許文献5】
特開平11−102705号公報
【特許文献6】
特開2000−243396号公報
【特許文献7】
特開2000−215887号公報
【特許文献8】
特開2002−42806号公報
【特許文献9】
特開2000−149951号公報
【特許文献10】
特開2002−83594号公報
【0004】
【発明が解決しようとする課題】
しかしながら、上記従来の方法では、充放電容量が上がり、エネルギー密度が高くなるものの、サイクル性が不十分であったり、市場の要求特性には未だ不十分であったりし、必ずしも満足でき得るものではなく、更なるエネルギー密度の向上が望まれていた。
【0005】
特に、特開2000−215887号公報の方法においては、均一な炭素皮膜の形成が可能となるものの、Si自体の導電性が低い状態のまま負極材として用いているため、リチウムイオンの吸脱着時の膨張・収縮があまりにも大きすぎて、結果として実用に耐えられず、サイクル性が低下するためにこれを防止するべく充電量の制限を設けなくてはならず、特開2000−149951号公報の方法においては、珪素中にホウ素をドープさせ、SiとSiBを共存させることにより、サイクル性の改善がなされているが、未だ不十分である。特開2002−83594号公報の方法においては、RFスパッタリング法によるシリコン薄膜を用いるため工業的生産に不利である。
【0006】
本発明は、上記事情に鑑みなされたもので、よりサイクル性の高いリチウムイオン二次電池等の非水電解質二次電池用負極材を与える珪素の導電性物質被覆物、その製造方法、及び非水電解質二次電池用負極材を提供することを目的とする。
【0007】
【課題を解決するための手段及び発明の実施の形態】
本発明者は、上記目的を達成するため鋭意検討を行った結果、よりサイクル性の高い非水電解質二次電池負極用の活剤として有効な比抵抗の小さい珪素材料を見出した。
【0008】
即ち、充放電容量の大きな電極材料の開発は極めて重要であり、各所で研究開発が行われている。このような中で、リチウムイオン二次電池用負極活物質として珪素はその容量が大きいということで大きな関心を持たれているが、繰り返し充放電をしたときの劣化が大きい、即ちサイクル性に劣ること、また、珪素粉末自体が導電性が低いことから、ごく一部のものを除き実用化には至っていないのが現状であった。このような観点より、このサイクル性及び初期効率の改善を目標に検討した結果、珪素自体の比抵抗を小さくした後、CVD(即ち、化学蒸着)処理を施すことによって、従来のものと比較して格段にその性能が向上することを見出した。
【0009】
更に詳述すると、珪素をリチウムイオン二次電池負極の活物質として使用した時に、数回の充放電後の急激な充放電容量低下の原因について、構造そのものからの検討を行い、解析した結果、リチウムを大量に吸蔵・放出することによって大きな体積変化が起こり、これに伴い粒子の破壊が起こること、更にリチウムの吸蔵によってもともと導電性が小さい珪素が体積膨張することによって電極自体の導電率が低下し、結果として集電性の低下によりリチウムイオンの電極内の移動が妨げられ、サイクル性及び効率低下が惹起されたことが原因であることがわかった。
【0010】
そこで、このようなことに基づいて、表面の導電性はもちろん、珪素自体の比抵抗を小さくすることについて鋭意検討を行った結果、珪素自体をボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種をドープすることによって比抵抗を小さくし、更にこの表面の少なくとも一部に導電性を賦与するための炭素を融着させることによって、リチウムイオン二次電池負極活物質としての上記問題を解決し、安定して大容量の充放電容量を有し、かつ充放電のサイクル性及び効率を大幅に向上できることを見出した。即ち、珪素の比抵抗を小さくし、またこの場合、特にこの複合物の表面の少なくとも一部が融着するように結晶性成分を多く含む炭素でコートすることが有効であることを知見し、本発明をなすに至った。
【0011】
従って、本発明は、下記の比抵抗の小さい珪素の導電性物質被覆物及びその製造方法並びに非水電解質二次電池用負極材を提供する。
(1)珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの抵抗値が10Ωcm以下である珪素材料の粉末粒子の表面を結晶性成分を多く含む炭素でコーティングしたことを特徴とする比抵抗の小さい珪素の導電性物質被覆物。
(2)平均粒子径が0.01〜30μm、BET比表面積が0.5〜20m/g、被覆炭素量が3〜70重量%である(1)記載の比抵抗の小さい珪素の導電性物質被覆物。
(3)珪素の表面の少なくとも一部が炭素と融着していることを特徴とする(1)又は(2)記載の比抵抗の小さい珪素の導電性物質被覆物。
(4)ラマン分光スペクトルより、ラマンシフトが1330cm−1付近及び1580cm−1付近にグラファイト構造特有のスペクトルを有することを特徴とする(1)乃至(3)のいずれかに記載の比抵抗の小さい珪素の導電性物質被覆物。
(5)上記珪素材料を900〜1400℃の温度で有機物ガス及び/又は蒸気で化学蒸着処理することを特徴とする(1)記載の比抵抗の小さい珪素の導電性物質被覆物の製造方法。
(6)化学蒸着処理を流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉又はロータリーキルンのいずれかの反応装置を用いて行うことを特徴とする(5)記載の比抵抗の小さい珪素の導電性物質被覆物の製造方法。
(7)(1)乃至(4)のいずれかに記載の比抵抗の小さい珪素の導電性物質被覆物を用いた非水電解質二次電池用負極材。
(8)(1)乃至(4)のいずれかに記載の比抵抗の小さい珪素の導電性物質被覆物と導電材料との混合物であって、混合物中の導電材料が1〜60重量%であり、かつ混合物中の全炭素量が25〜90重量%である混合物を用いた非水電解質二次電池用負極材。
【0012】
以下、本発明につき更に詳しく説明する。
本発明は、特にリチウムイオン二次電池用負極活物質として使用した場合、充放電容量が現在主流であるグラファイト系のものと比較してその数倍の容量であることから期待されている反面、繰り返しの充放電による性能低下が大きなネックとなっている珪素系物質のサイクル性及び効率を改善した比抵抗の小さい珪素材料の導電性物質被覆物に関するもので、この比抵抗の小さい珪素材料の導電性物質被覆物は、珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、珪素自体の比抵抗が小さい粒子の表面の少なくとも一部が結晶性成分を多く含む炭素と融合した状態で炭素でコーティング(融着)されてなるものである。
【0013】
本発明において、融着とは、層状に整列した炭素層と、内部の比抵抗の小さい珪素材料との間に炭素と珪素が共存し、かつ、双方が界面部において融合している状態を示し、透過電子顕微鏡で観察することができる。
【0014】
この場合、本発明の比抵抗の小さい珪素材料の導電性物質被覆物は、下記性状を有していることが好ましい。
i.銅を対陰極としたX線回折(Cu−Kα)において、2θ=28.4°付近を中心としたSi(111)に帰属される回折ピークが観察され、2θ=26.0°付近を中心としたCに帰属される回折ピークが観察される。
ii.粒子の表面部分を透過電子顕微鏡で観察すると、カーボンが層状に整列し、これによって導電性が高まり、更に、その内側は比抵抗が小さい珪素材料との融合状態にあることによって、カーボン層の脱落防止ができ、安定した導電性が確保される。
iii.ラマン分光スペクトルより、1330cm−1付近及び1580cm−1付近にグラファイトに帰属されるスペクトルを有することより、炭素の一部又は全てがグラファイト構造である。
【0015】
本発明の比抵抗の小さい珪素材料の導電性物質被覆物の平均粒子径は、0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上、特に好ましくは0.3μm以上で、上限として30μm以下、より好ましくは20μm以下、更に好ましくは10μm以下が好ましい。平均粒子径が小さすぎると、嵩密度が小さくなりすぎて、単位体積当たりの充放電容量が低下するし、逆に平均粒子径が大きすぎると、電極膜作製が困難になり、集電体から剥離するおそれがある。なお、平均粒子径は、レーザー光回折法による粒度分布測定における重量平均値D50(即ち、累積重量が50%となる時の粒子径又はメジアン径)として測定した値である。
【0016】
本発明の比抵抗の小さい珪素材料の導電性物質被覆物のBET比表面積は、0.5〜20m/g、特に1〜10m/gが好ましい。BET比表面積が0.5m/gより小さいと、表面活性が小さくなり、電極作製時の結着剤の結着力が小さくなり、結果として充放電を繰り返した時のサイクル性が低下するし、逆にBET比表面積が20m/gより大きいと、電極作製時に溶媒の吸収量が大きくなり、結着性を維持するために結着剤を大量に添加する場合が生じ、結果として導電性が低下し、サイクル性が低下するおそれがある。なお、BET比表面積はNガス吸着量によって測定するBET1点法にて測定した値である。
【0017】
また、本発明における比抵抗の小さい珪素材料の導電性物質被覆物の被覆(蒸着)炭素量は、上記比抵抗の小さい珪素材料の導電性物質被覆物(即ち、化学蒸着処理により表面が導電性皮膜で覆われた比抵抗の小さい珪素材料粉末)中、3重量%以上、より好ましくは5重量%以上、更に好ましくは10重量%以上で、上限として70重量%以下、より好ましくは50重量%以下、更に好ましくは40重量%以下、特に好ましくは30重量%以下が好ましい。被覆(蒸着)炭素量が少なすぎると、比抵抗の小さい珪素材料の導電性は改善されるものの、リチウムイオン二次電池とした場合のサイクル特性が十分でない場合があり、多すぎると、炭素の割合が多くなりすぎ、負極量が減少してしまう場合がある。また、嵩密度が小さくなり、単位体積当たりの充放電容量が低下してしまう場合がある。
【0018】
また、本発明における比抵抗の小さい珪素材料の導電性物質被覆物の被覆(蒸着)炭素の性質は、ラマン分光スペクトルより、ラマンシフトが1330cm−1付近及び1580cm−1付近のグラファイトに帰属されるスペクトルを有する結晶性成分を多く含んだ炭素であることが望ましい。結晶性成分が少ないとサイクル特性が十分でない場合があるからである。
【0019】
比抵抗の小さい珪素材料の導電性物質被覆物の電気伝導率は1×10−6S/m以上、特に1×10−4S/m以上が望ましい。電気伝導率が1×10−6S/mより小さいと電極の導電性が小さく、リチウムイオン二次電池用負極材として用いた場合にサイクル性が低下するおそれがある。なお、ここでいう、電気伝導率とは4端子を持つ円筒状のセル内に被測定粉末を充填し、この被測定粉末に電流を流した時の電圧降下を測定することで求めた値である。
【0020】
次に、本発明における比抵抗の小さい珪素材料の導電性物質被覆物の製造方法について説明する。
【0021】
本発明の比抵抗の小さい珪素材料は、シリコン単結晶の成長を磁界下引上げ(MCZ)法、チョクラルスキー(CZ)法、浮遊帯域溶融(FZ)法のいずれかを用いて、ボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの比抵抗が10Ωcm以下に形成された単結晶シリコン、ブリッジマン法で製造されたボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの比抵抗が10Ωcm以下に形成された多結晶シリコン、溶融法による金属シリコンの精製時に純度を高めるため酸素ガス等の吹き込みを行い、不純物をスラグ化して排出する時、ガス吹き込みと同時にリンやボロンを含む化合物と塩を吹き込むことにより、ボロンやリンの濃度を高め比抵抗が10Ωcm以下に形成された金属シリコン、珪素と水素とで構成されるシラン化合物又はその誘導体からなる珪素化合物を用いて金属箔上に化学薄膜形成法を用いて形成したシリコン薄膜にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ比抵抗が10Ωcm以下に形成されたシリコンであれば、その製造方法は特に限定されるものではない。
【0022】
なお、本発明において比抵抗の小さい珪素材料とは、ボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム、インジウムの一種又は二種以上がドープされて、ウェハーもしくはインゴットでの抵抗値が10Ωcm以下に形成された比抵抗の小さい珪素であり、より好ましくは1Ωcm以下、更に好ましくは0.1Ωcm以下である。なお、抵抗値の下限は特に制限されるものではないが、通常1×10−5Ωcm以上、特に1×10−3Ωcm以上である。
この場合、上記元素のドープ量は、珪素の比抵抗を上記値とする量であるが、通常1×1014〜1×1020atoms/cmである。
【0023】
また、本発明の比抵抗の小さい珪素材料の平均粒子径は0.01μm以上、より好ましくは0.1μm以上、更に好ましくは0.5μm以上で、上限として30μm以下、より好ましくは20μm以下が好ましい。BET比表面積は0.1m/g以上、より好ましくは0.2m/g以上で、上限として30m/g以下、より好ましくは20m/g以下が好ましい。
【0024】
化学蒸着処理は、800〜1400℃、好ましくは900〜1400℃、特に1000〜1400℃の温度域での化学蒸着処理(即ち、熱CVD処理)が好ましい。化学蒸着処理の温度が低すぎると、導電性炭素皮膜と比抵抗の小さい珪素との融合、炭素原子の整列(結晶化)が不十分であり、逆に1400℃より高いと、比抵抗の小さい珪素材料の結晶の成長が進み、炭素皮膜がリチウムイオンの往来が阻害されるので、リチウムイオン二次電池としての機能が低下するおそれがある。
【0025】
このように、熱CVD(800℃以上での化学蒸着処理)を施すことにより炭素膜を作製するが、熱CVDの時間は、炭素量との関係で、適宜設定される。この処理において粒子が凝集する場合があるが、この凝集物をボールミル等で解砕する。また、場合によっては、再度同様に熱CVDを繰り返し行う。
【0026】
本発明における有機物ガスを発生する原料として用いられる有機物としては、特に非酸化性雰囲気下において、上記熱処理温度で熱分解して炭素(黒鉛)を生成し得るものが選択され、例えばメタン、エタン、エチレン、アセチレン、プロパン、ブタン、ブテン、ペンタン、イソブタン、ヘキサン等の脂肪族又は脂環式炭化水素の単独もしくは混合物、ベンゼン、トルエン、キシレン、スチレン、エチルベンゼン、ジフェニルメタン、ナフタレン、フェノール、クレゾール、ニトロベンゼン、クロルベンゼン、インデン、クマロン、ピリジン、アントラセン、フェナントレン等の1環乃至3環の芳香族炭化水素もしくはこれらの混合物が挙げられる。また、タール蒸留工程で得られるガス軽油、クレオソート油、アントラセン油、ナフサ分解タール油も単独もしくは混合物として用いることができるが、蒸着する炭素の結晶性成分が多くなる材料としては、不飽和炭素やベンゼン環を含まない炭化水素及びその化合物が好ましい。
【0027】
なお、上記熱CVD(化学蒸着)処理は、非酸化性雰囲気において、加熱機構を有する反応装置を用いればよく、特に限定されず、連続法、回分法での処理が可能で、具体的には流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉、ロータリーキルン等をその目的に応じ適宜選択することができる。この場合、(処理)ガスとしては、上記有機物ガス単独あるいは有機物ガスとAr、He、H、N等の非酸化性ガスの混合ガスを用いることができる。
【0028】
この場合、回転炉、ロータリーキルン等の炉芯管が水平方向に配設され、炉芯管が回転する構造の反応装置が好ましく、これにより珪素材料粒子を転動させながら化学蒸着処理を施すことで、珪素材料粒子同士に凝集を生じさせることなく、安定した製造が可能となる。炉芯管の回転速度は0.5〜30rpm、特に1〜10rpmとすることが好ましい。なお、この反応装置は、雰囲気を保持できる炉芯管と、炉芯管を回転させる回転機溝と、昇温・保持できる加熱機構を有しているものであれば特に限定されず、目的によって原料供給機構(例えばフィーダー)、製品回収機構(例えばホッパー)を設けることや、原料の滞留時間を制御するために、炉芯管を傾斜したり、炉芯管内に邪魔板を設けることもできる。また、炉芯管の材質についても特に限定されず、炭化珪素、アルミナ、ムライト、窒化珪素等のセラミックスや、モリブデン、タングステンといった高融点金属、SUS、石英等を処理条件、処理目的によって適宜選定して使用することができるが、蒸着する炭素の結晶性成分が多くなる材料としては、セラミックス系が好ましい。
【0029】
また、流動ガス線速u(m/sec)は、流動化開始速度umfとの比u/umfが1.5≦u/umf≦5となる範囲とすることで、より効率的に導電性皮膜を形成することができる。u/umfが1.5より小さいと流動化が不十分となり、導電性皮膜にバラツキを生じる場合があり、逆にu/umfが5を超えると、粒子同士の二次凝集が発生し、均一な導電性皮膜を形成することができない場合がある。なお、ここで流動化開始速度は、粒子の大きさ、処理温度、処理雰囲気等により異なり、流動化ガス(線速)を徐々に増加させ、その時の粉体圧損がW(粉体重量)/A(流動層断面積)となった時の流動化ガス線速の値と定義することができる。なお、umfは、通常0.1〜30cm/sec、好ましくは0.5〜10cm/sec程度の範囲で行うことができ、このumfを与える粒子径としては一般的に0.5〜100μm、好ましくは5〜50μmとすることができる。粒子径が0.5μmより小さいと二次凝集が起こり、個々の粒子の表面を有効に処理することができない場合があり、また100μmより大きいとリチウムイオン二次電池の集電体表面に均一に塗布することが困難となる場合がある。
【0030】
本発明で得られた比抵抗の小さい珪素材料の導電性物質被覆物の粉末は、これを負極材(負極活物質)として、高容量でかつサイクル特性の優れた非水電解質二次電池、特に、リチウムイオン二次電池を製造することができる。
【0031】
この場合、得られたリチウムイオン二次電池は、上記負極活物質を用いる点に特徴を有し、その他の正極、負極、電解質、セパレーターなどの材料及び電池形状などは限定されない。正極活物質としては、例えば、LiCoO、LiNiO、LiMn、V、MnO、TiS、MoSなどの遷移金属の酸化物及びカルコゲン化合物などが用いられる。電解質としては、例えば、過塩素酸リチウムなどのリチウム塩を含む非水溶液が用いられ、非水溶媒としてはプロピレンカーボネート、エチレンカーボネート、ジメトキシエタン、γ−ブチロラクトン、2−メチルテトラヒドロフランなどが単体で又は二種類以上を組み合わせて用いられる。また、これら以外の種々の非水系電解質や固体電解質も使用できる。
【0032】
なお、上記比抵抗の小さい珪素材料の導電性物質被覆物粉末を用いて負極を作製する場合、比抵抗の小さい珪素材料の導電性物質被覆物粉末に黒鉛等の導電材料を添加することができる。この場合においても導電材料の種類は特に限定されず、構成された電池において、分解や変質を起こさない電子伝導性の材料であればよく、具体的にはAl、Ti、Fe、Ni、Cu、Zn、Ag、Sn、Si等の金属粉末や金属繊維、又は天然黒鉛、人造黒鉛、各種のコークス粉末、メソフェーズ炭素、気相成長炭素繊維、ピッチ系炭素繊維、PAN系炭素繊維、各種の樹脂焼成体等の黒鉛を用いることができる。
【0033】
ここで、導電材料の添加量は、比抵抗の小さい珪素材料の導電性物質被覆物粉末と導電材料の混合物中1〜60重量%が好ましく、特に10〜50重量%、とりわけ20〜50重量%が好ましい。1重量%未満だと充放電に伴う膨張・収縮に耐えられなくなる場合があり、60重量%を超えると充放電容量が小さくなる場合がある。また、混合物中の全炭素量(即ち、比抵抗の小さい珪素材料の導電性物質被覆物粉末表面の被覆(蒸着)炭素量と、導電材料中の炭素量との合計量)は25〜90重量%が好ましく、特に30〜50重量%が好ましい。全炭素量が25重量%未満だと充放電に伴う膨張・収縮に耐えられなくなる場合があり、90重量%を超えると充放電容量が小さくなる場合がある。
【0034】
【実施例】
以下、実施例及び比較例を挙げて本発明を具体的に説明するが、本発明は下記実施例に限定されるものではない。なお、下記例で組成を示す%は重量%を示す。
【0035】
[実施例1]
半導体用シリコン(抵抗率0.1Ωcm、ボロンドープ1.2×1015atoms/cm、リンドープ1.1×1015atoms/cm)を粗砕して3mm角程度とし、ヘキサンを分散媒としたボールミル粉砕器で粉砕し、得られた懸濁物を濾過し、窒素雰囲気下で脱溶剤後、平均粒子径が3μmの粉末を得た。この比抵抗の小さい珪素材料粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン(50:50vol%)混合ガス通気下で1150℃、平均滞留時間約2時間の条件で熱CVDを行い、黒色の粉末を得た。こうして得られたものは、蒸着炭素量21.5%であった。熱CVD後、比抵抗の小さい珪素材料の導電性物質被覆物をらいかい器で解砕し、平均粒子径が約4.2μm、BET比表面積19.8m/gの粉末を得た。これを用いて下記の方法で電池評価を行った。結果を表1に示す。
【0036】
電池評価
リチウムイオン二次電池負極活物質としての評価は全ての実施例、比較例ともに同一で、以下の方法・手順にて行った。
【0037】
まず、得られた比抵抗の小さい珪素材料の導電性物質被覆物に人造黒鉛(平均粒子径D50=5μm)を、人造黒鉛の炭素と蒸着した比抵抗の小さい珪素材料の導電性物質被覆物の炭素が合計40%となるように加え、混合物を製造した。この混合物にポリフッ化ビニリデンを10%加え、更にN−メチルピロリドンを加え、スラリーとし、このスラリーを厚さ20μmの銅箔に塗布し、120℃で1時間乾燥後、ローラープレスにより電極を加圧成形し、最終的には2cmに打ち抜き、負極とした。
【0038】
ここで、得られた負極の充放電特性を評価するために、対極にリチウム箔を使用し、非水電解質として六フッ化リンリチウムをエチレンカーボネートと1,2−ジメトキシエタンの1/1(体積比)混合液に1モル/Lの濃度で溶解した非水電解質溶液を用い、セパレーターに厚さ30μmのポリエチレン製微多孔質フィルムを用いた評価用リチウムイオン二次電池を作製した。
【0039】
作製したリチウムイオン二次電池は、一晩室温で放置した後、二次電池充放電試験装置((株)ナガノ製)を用いて、テストセルの電圧が0Vに達するまで3mAの定電流で充電を行い、0Vに達した後は、セル電圧を0Vに保つように電流を減少させて充電を行った。そして、電流値が100μAを下回った時点で充電を終了した。放電は3mAの定電流で行い、セル電圧が2.0Vを上回った時点で放電を終了し、放電容量を求めた。
【0040】
以上の充放電試験を繰り返し、評価用リチウムイオン二次電池の充放電試験を20サイクル行った。結果を表1に示す。
【0041】
[実施例2]
半導体用シリコン(抵抗率8Ωcm、ボロンドープ1.7×1017atoms/cm、リンドープ1.5×1017atoms/cm、窒素ドープ1.1×1017atoms/cm)を粗砕して3mm角程度とし、ヘキサンを分散媒としたボールミル粉砕器で粉砕し、得られた懸濁物を濾過し、窒素雰囲気下で脱溶剤後、平均粒子径が3μmの粉末を得た。この比抵抗の小さい珪素材料粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン(50:50vol%)混合ガス通気下で1150℃、平均滞留時間約2時間の条件で熱CVDを行い、黒色の粉末を得た。こうして得られたものは、蒸着炭素量が20.5%であった。この比抵抗の小さい珪素材料の導電性物質被覆物をらいかい器で解砕し、平均粒子径が約4.4μm、BET比表面積が20.3m/gの粉末を得た。これを用いて実施例1と全く同じ条件で電池評価を行った。その結果を表1に示す。
【0042】
[比較例1]
ケミカルグレード用金属珪素粉末(抵抗率>1000Ωcm、鉄2000ppm、アルミニウム100ppm、クロム500ppm、ニッケル80ppm、ジルコン1600ppm、その他元素(Mo、Ca、P、Ti、Cu、Zn、V)100ppm以下、平均粒子径3.2μm)をロータリーキルン型の反応器を用いて、ベンゼン−アルゴン(0.2cc/min,4.0NL/min)混合ガス通気下で1150℃、平均滞留時間約2時間の条件で熱CVDを行い、黒色の粉末を得た。こうして得られたものは、蒸着炭素量19.3%、平均粒子径4.8μm、BET比表面積9.7m/gであった。また、X線回折測定においては、珪素と結晶性炭素と非晶質の炭素が確認された。これを用いて実施例1と全く同じ条件で電池評価を行った。その結果を表1に示す。
【0043】
[比較例2]
半導体用シリコン(抵抗率200Ωcm、ボロンドープ2.3×1013atoms/cm、リンドープ2.3×1013atoms/cm)を粗砕して3mm角程度とし、ヘキサンを分散媒としたボールミル粉砕器で20時間粉砕し、平均粒子径D50=3μmの粉末を得た。得られた珪素粉末をロータリーキルン型の反応器を用いて、メタン−アルゴン(50:50vol%)混合ガス通気下で1150℃、平均滞留時間約2時間の条件で熱CVDを行い、黒色の粉末を得た。こうして得られたものは、蒸着炭素量20.2%、平均粒子径4.5μm、BET比表面積17.4m/gであった。また、X線回折測定においては、珪素と結晶性炭素が確認された。これを用いて実施例1と全く同じ条件で電池評価を行った。その結果を表1に示す。
【0044】
【表1】

Figure 2004296161
【0045】
【発明の効果】
本発明の比抵抗の小さい珪素材料の導電性物質被覆物は、非水電解質二次電池用負極材として用いられて、良好なサイクル性を与える。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a conductive material coating of silicon, a method for producing the same, and a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery.
[0002]
[Prior art]
2. Description of the Related Art In recent years, with the remarkable development of portable electronic devices, communication devices, and the like, a secondary battery having a high energy density has been strongly demanded from the viewpoints of economy and reduction in size and weight of the devices. Conventionally, as a measure for increasing the capacity of a secondary battery of this type, for example, a method using an oxide such as V, Si, B, Zr, Sn or the like and a composite oxide thereof as a negative electrode material (Patent Document 1: JP-A-174818, Patent Document 2: JP-A-6-60867 and others), a method of applying a metal oxide that has been melted and quenched as a negative electrode material (Patent Document 3: JP-A-10-294112), and oxidizing the negative electrode material A method using silicon (Patent Document 4: Japanese Patent No. 2997741), a method using Si 2 N 2 O and Ge 2 N 2 O as a negative electrode material (Patent Document 5: Japanese Patent Application Laid-Open No. 11-102705), and the like are known. ing. For the purpose of imparting conductivity to the negative electrode material, a method of carbonizing SiO after mechanical alloying with graphite (Patent Document 6: Japanese Patent Application Laid-Open No. 2000-243396) is known. (Patent Document 7: Japanese Patent Application Laid-Open No. 2000-215887), a method of coating the surface of silicon oxide particles with a carbon layer by a chemical vapor deposition method (Patent Document 8: Japanese Patent Application Laid-Open No. 2002-42806), (Patent Document 9: JP-A-2000-149951) and a method using a silicon thin film by RF sputtering (Patent Document 10: JP-A-2002-83594).
[0003]
[Patent Document 1]
JP-A-5-174818 [Patent Document 2]
JP-A-6-60867 [Patent Document 3]
JP-A-10-294112 [Patent Document 4]
Japanese Patent No. 2997741 [Patent Document 5]
JP-A-11-102705 [Patent Document 6]
JP 2000-243396 A [Patent Document 7]
JP 2000-21587 A [Patent Document 8]
JP 2002-42806 A [Patent Document 9]
JP 2000-149951 A [Patent Document 10]
JP-A-2002-83594
[Problems to be solved by the invention]
However, in the above-mentioned conventional method, although the charge / discharge capacity is increased and the energy density is increased, the cyclability is insufficient, or the characteristics required in the market are still insufficient, and cannot always be satisfied. Therefore, further improvement in energy density was desired.
[0005]
In particular, in the method disclosed in Japanese Patent Application Laid-Open No. 2000-215887, although a uniform carbon film can be formed, since Si itself is used as a negative electrode material in a state of low conductivity, it can be used to absorb and desorb lithium ions. Japanese Patent Application Laid-Open No. 2000-149951 discloses that the expansion / contraction of the rubber is too large, and as a result, it cannot be put to practical use and the cycleability is reduced. In the method (1), the cycleability is improved by doping boron into silicon and allowing Si and SiB 4 to coexist, but it is still insufficient. The method disclosed in JP-A-2002-83594 is disadvantageous for industrial production because a silicon thin film formed by an RF sputtering method is used.
[0006]
The present invention has been made in view of the above circumstances, and provides a conductive material coating of silicon that provides a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery having a higher cycle property, a method for producing the same, and a method for manufacturing the same. An object of the present invention is to provide a negative electrode material for a water electrolyte secondary battery.
[0007]
Means for Solving the Problems and Embodiments of the Invention
As a result of intensive studies to achieve the above object, the present inventor has found a silicon material having a small specific resistance that is effective as an active agent for a negative electrode of a non-aqueous electrolyte secondary battery having higher cyclability.
[0008]
That is, the development of an electrode material having a large charge / discharge capacity is extremely important, and research and development are being conducted in various places. In such a situation, silicon has been of great interest as a negative electrode active material for a lithium ion secondary battery because of its large capacity, but has a large deterioration when repeatedly charged and discharged, that is, is inferior in cyclability. In addition, since the silicon powder itself has low conductivity, it has not been put to practical use except for a very small portion of the powder. From such a viewpoint, as a result of studying with the aim of improving the cyclability and the initial efficiency, the silicon (Si) was subjected to CVD (that is, chemical vapor deposition) treatment after reducing the specific resistance of silicon itself. And found that the performance was significantly improved.
[0009]
More specifically, when silicon was used as the active material of the negative electrode of the lithium ion secondary battery, the cause of the rapid decrease in charge / discharge capacity after several times of charge / discharge was examined from the structure itself, and the analysis results showed that A large volume change occurs due to the absorption and release of a large amount of lithium, which leads to the destruction of particles, and furthermore, the conductivity of the electrode itself decreases due to the volume expansion of silicon, which originally has low conductivity due to the absorption of lithium. However, as a result, it was found that the reason was that the movement of lithium ions in the electrode was hindered due to a decrease in current collecting performance, and a decrease in cyclability and efficiency was caused.
[0010]
Therefore, based on such a fact, as a result of intensive studies on reducing the specific resistance of silicon itself as well as the conductivity of the surface, silicon itself was changed to boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium. Or, by lowering the specific resistance by doping one or more kinds of indium, and further by fusing carbon for imparting conductivity to at least a part of this surface, as a lithium ion secondary battery negative electrode active material It has been found that the above problems have been solved, and that a large capacity charge / discharge capacity can be stably provided, and that the cyclability and efficiency of charge / discharge can be significantly improved. That is, it has been found that it is effective to reduce the specific resistance of silicon, and in this case, to coat with carbon containing a large amount of a crystalline component so that at least a part of the surface of the composite is fused. The present invention has been made.
[0011]
Accordingly, the present invention provides the following conductive material coating of silicon having a small specific resistance, a method for producing the same, and a negative electrode material for a non-aqueous electrolyte secondary battery.
(1) Silicon is doped with one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, and indium, and the surface of a silicon material powder particle having a wafer or ingot having a resistance value of 10 Ωcm or less is crystallized. A conductive material coating of silicon having a small specific resistance, which is coated with carbon containing a large amount of a conductive component.
(2) Conductivity of silicon having a small specific resistance according to (1), wherein the average particle diameter is 0.01 to 30 μm, the BET specific surface area is 0.5 to 20 m 2 / g, and the coating carbon amount is 3 to 70% by weight. Material coating.
(3) The conductive material coating of silicon having a small specific resistance according to (1) or (2), wherein at least a part of the surface of silicon is fused with carbon.
(4) to the Raman spectrum, the Raman shift is small specific resistance according to any of characterized by having a graphite structure characteristic spectrum in the vicinity of 1330 cm -1 and near 1580 cm -1 (1) to (3) Silicon conductive material coating.
(5) The method according to (1), wherein the silicon material is subjected to a chemical vapor deposition treatment with an organic gas and / or vapor at a temperature of 900 to 1400 ° C.
(6) The ratio according to (5), wherein the chemical vapor deposition treatment is performed by using any one of a reaction apparatus of a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace or a rotary kiln. A method for producing a conductive material coating of silicon having low resistance.
(7) A negative electrode material for a non-aqueous electrolyte secondary battery using the silicon-containing conductive material coating having a small specific resistance according to any one of (1) to (4).
(8) A mixture of a conductive material coating of silicon having a low specific resistance according to any one of (1) to (4) and a conductive material, wherein the conductive material in the mixture is 1 to 60% by weight. And a negative electrode material for a non-aqueous electrolyte secondary battery using a mixture in which the total carbon content of the mixture is 25 to 90% by weight.
[0012]
Hereinafter, the present invention will be described in more detail.
The present invention, particularly when used as a negative electrode active material for a lithium ion secondary battery, is expected to have a charge / discharge capacity several times that of a graphite-based battery which is currently the mainstream, The present invention relates to a conductive material coating of a silicon material having a small specific resistance, which has improved cycleability and efficiency of a silicon-based material in which performance degradation due to repeated charge / discharge is a major bottleneck. The silicon-containing material is doped with one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, or indium, and at least a part of the surface of the particles having a low specific resistance of silicon itself is a crystalline component. And is coated (fused) with carbon in a state of being fused with carbon containing a large amount of.
[0013]
In the present invention, fusion refers to a state in which carbon and silicon coexist between a layered carbon layer and a silicon material having a low specific resistance inside, and both are fused at an interface. Can be observed with a transmission electron microscope.
[0014]
In this case, the conductive material coating of the silicon material having a small specific resistance of the present invention preferably has the following properties.
i. In X-ray diffraction (Cu-Kα) using copper as a cathode, a diffraction peak attributed to Si (111) centered around 2θ = 28.4 ° was observed, and centered around 2θ = 26.0 °. The diffraction peak attributed to C is observed.
ii. When the surface of the particles is observed with a transmission electron microscope, the carbon is aligned in a layered manner, which increases the conductivity, and the inside of the particles is fused with a silicon material having a low specific resistance. Can be prevented, and stable conductivity is secured.
iii. From Raman spectrum, than to have a spectrum that is attributable to the graphite in the vicinity of 1330 cm -1 and near 1580 cm -1, some or all of the carbon is graphite structure.
[0015]
The average particle diameter of the conductive material coating of the silicon material having a low specific resistance of the present invention is 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.2 μm or more, particularly preferably 0.3 μm or more. The upper limit is preferably 30 μm or less, more preferably 20 μm or less, and still more preferably 10 μm or less. If the average particle size is too small, the bulk density becomes too small, and the charge / discharge capacity per unit volume decreases.On the other hand, if the average particle size is too large, it becomes difficult to prepare an electrode film, and from the current collector. There is a risk of peeling. The average particle diameter is a value measured as a weight average value D 50 (that is, a particle diameter or a median diameter when the cumulative weight becomes 50%) in a particle size distribution measurement by a laser light diffraction method.
[0016]
The BET specific surface area of the conductive material coating of a silicon material having a small specific resistance according to the present invention is preferably 0.5 to 20 m 2 / g, particularly preferably 1 to 10 m 2 / g. When the BET specific surface area is less than 0.5 m 2 / g, the surface activity becomes small, the binding force of the binder at the time of producing the electrode becomes small, and as a result, the cyclability at the time of repeating charge and discharge decreases, Conversely, if the BET specific surface area is larger than 20 m 2 / g, the amount of solvent absorbed during electrode preparation increases, and a large amount of a binder may be added to maintain the binding property. And the cycleability may be reduced. In addition, the BET specific surface area is a value measured by a BET one-point method measured by the amount of adsorbed N 2 gas.
[0017]
In the present invention, the amount of carbon coated (deposited) on the conductive material coating of the silicon material having a small specific resistance is determined by the amount of the conductive material coating (that is, the surface of the silicon material having the low specific resistance is made conductive by the chemical vapor deposition). 3% by weight or more, more preferably 5% by weight or more, still more preferably 10% by weight or more, up to 70% by weight or less, more preferably 50% by weight or more in the silicon material powder covered with the film and having a small specific resistance. The content is more preferably 40% by weight or less, particularly preferably 30% by weight or less. If the amount of coated (deposited) carbon is too small, the conductivity of the silicon material having a small specific resistance is improved, but the cycle characteristics in the case of a lithium ion secondary battery may not be sufficient. The ratio may become too large, and the amount of the negative electrode may decrease. Further, the bulk density may be reduced, and the charge / discharge capacity per unit volume may be reduced.
[0018]
Further, properties of the coating (deposition) of carbon atoms in the conductive material coating the small silicon material resistivity in the present invention, from the Raman spectrum, the Raman shift is attributed to graphite near 1330 cm -1 and near 1580 cm -1 It is desirable that the carbon contains a large amount of crystalline components having a spectrum. This is because if the amount of the crystalline component is small, the cycle characteristics may not be sufficient.
[0019]
The electrical conductivity of the conductive material coating of a silicon material having a small specific resistance is preferably 1 × 10 −6 S / m or more, particularly preferably 1 × 10 −4 S / m or more. When the electric conductivity is less than 1 × 10 −6 S / m, the conductivity of the electrode is small, and when used as a negative electrode material for a lithium ion secondary battery, the cyclability may be reduced. Here, the electric conductivity is a value obtained by filling a powder to be measured in a cylindrical cell having four terminals and measuring a voltage drop when an electric current is applied to the powder to be measured. is there.
[0020]
Next, a method for producing a conductive material coating of a silicon material having a small specific resistance according to the present invention will be described.
[0021]
The silicon material having a low specific resistance according to the present invention can be formed by using a method of growing a silicon single crystal by using a magnetic field pulling (MCZ) method, a Czochralski (CZ) method, or a floating zone melting (FZ) method. , Nitrogen, antimony, arsenic, aluminum, gallium or indium, one or more of which are doped, and the specific resistance of the wafer or ingot is formed to be 10 Ωcm or less, single crystal silicon, boron, phosphorus produced by the Bridgman method, Nitrogen, antimony, arsenic, aluminum, gallium, or indium, doped with one or more kinds, polycrystalline silicon formed in a wafer or ingot with a specific resistance of 10 Ωcm or less, in order to increase the purity when purifying metallic silicon by a melting method. When injecting oxygen gas etc. to slag and discharge impurities, gas injection Simultaneously, a compound containing phosphorus or boron and a salt are blown therein to increase the concentration of boron or phosphorus and increase the specific resistance to 10 Ωcm or less. Metallic silicon, a silane compound composed of silicon and hydrogen, or silicon composed of a derivative thereof One or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium or indium is doped into a silicon thin film formed on a metal foil using a chemical thin film forming method using a compound, and the specific resistance is formed to 10 Ωcm or less. The manufacturing method is not particularly limited as long as the silicon is used.
[0022]
Note that, in the present invention, a silicon material having a small specific resistance refers to one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, and indium, and has a resistance of 10 Ωcm or less in a wafer or ingot. And more preferably 1 Ωcm or less, more preferably 0.1 Ωcm or less. Although the lower limit of the resistance value is not particularly limited, it is usually 1 × 10 −5 Ωcm or more, particularly 1 × 10 −3 Ωcm or more.
In this case, the doping amount of the above element is an amount that makes the specific resistance of silicon the above value, and is usually 1 × 10 14 to 1 × 10 20 atoms / cm 3 .
[0023]
Further, the average particle diameter of the silicon material having a small specific resistance of the present invention is 0.01 μm or more, more preferably 0.1 μm or more, further preferably 0.5 μm or more, and as an upper limit 30 μm or less, more preferably 20 μm or less. . BET specific surface area was 0.1 m 2 / g or more, more preferably 0.2 m 2 / g or more, 30 m 2 / g or less as the upper limit, more preferably 20 m 2 / g or less.
[0024]
The chemical vapor deposition process is preferably a chemical vapor deposition process (that is, a thermal CVD process) in a temperature range of 800 to 1400 ° C, preferably 900 to 1400 ° C, particularly 1000 to 1400 ° C. If the temperature of the chemical vapor deposition process is too low, fusion of the conductive carbon film with silicon having a low specific resistance and alignment (crystallization) of carbon atoms are insufficient. Conversely, if the temperature is higher than 1400 ° C., the specific resistance is low. Since the growth of the crystal of the silicon material proceeds and the carbon film hinders the flow of lithium ions, the function as a lithium ion secondary battery may be reduced.
[0025]
As described above, a carbon film is produced by performing thermal CVD (chemical vapor deposition at 800 ° C. or higher), and the time of thermal CVD is appropriately set in relation to the amount of carbon. Particles may be aggregated in this treatment, and the aggregates are crushed by a ball mill or the like. In some cases, thermal CVD is repeated again.
[0026]
As an organic substance used as a raw material for generating an organic substance gas in the present invention, a substance capable of being thermally decomposed at the heat treatment temperature to produce carbon (graphite), particularly in a non-oxidizing atmosphere, is selected. For example, methane, ethane, Aliphatic or alicyclic hydrocarbons such as ethylene, acetylene, propane, butane, butene, pentane, isobutane and hexane, alone or in a mixture, benzene, toluene, xylene, styrene, ethylbenzene, diphenylmethane, naphthalene, phenol, cresol, nitrobenzene, Examples thereof include monocyclic to tricyclic aromatic hydrocarbons such as chlorobenzene, indene, coumarone, pyridine, anthracene, and phenanthrene, and mixtures thereof. Gas gas oil, creosote oil, anthracene oil, and naphtha-decomposed tar oil obtained in the tar distillation step can be used alone or as a mixture. And hydrocarbons and compounds containing no benzene ring are preferred.
[0027]
Note that the thermal CVD (chemical vapor deposition) treatment may be performed in a non-oxidizing atmosphere using a reactor having a heating mechanism, and is not particularly limited, and a continuous method or a batch method can be used. A fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, a rotary kiln and the like can be appropriately selected according to the purpose. In this case, as the (processing) gas, the organic substance gas alone or a mixed gas of the organic substance gas and a non-oxidizing gas such as Ar, He, H 2 , and N 2 can be used.
[0028]
In this case, a reactor having a structure in which a furnace core tube such as a rotary furnace or a rotary kiln is disposed in a horizontal direction and the furnace core tube is rotated is preferable, whereby a chemical vapor deposition process is performed while rolling silicon material particles. Thus, stable production can be achieved without causing aggregation of the silicon material particles. The rotation speed of the furnace core tube is preferably 0.5 to 30 rpm, particularly preferably 1 to 10 rpm. The reactor is not particularly limited as long as it has a furnace core tube capable of holding an atmosphere, a rotating machine groove for rotating the furnace core tube, and a heating mechanism capable of heating and holding the temperature. A raw material supply mechanism (for example, a feeder) and a product recovery mechanism (for example, a hopper) may be provided, and a furnace core tube may be inclined or a baffle plate may be provided in the furnace core tube in order to control the residence time of the raw material. Also, the material of the furnace core tube is not particularly limited, and ceramics such as silicon carbide, alumina, mullite, and silicon nitride, refractory metals such as molybdenum and tungsten, SUS, and quartz are appropriately selected according to processing conditions and processing purposes. However, ceramic materials are preferable as the material that increases the crystalline component of carbon to be deposited.
[0029]
Also, the fluidizing gas linear velocity u (m / sec), by a range of the ratio u / u mf the fluidization velocity u mf is 1.5 ≦ u / u mf ≦ 5 , more efficiently A conductive film can be formed. If u / umf is smaller than 1.5, fluidization becomes insufficient and the conductive film may vary, whereas if u / umf exceeds 5, secondary agglomeration of particles occurs. In some cases, a uniform conductive film cannot be formed. Here, the fluidization start speed varies depending on the particle size, the processing temperature, the processing atmosphere, and the like. The fluidizing gas (linear velocity) is gradually increased, and the powder pressure loss at that time is W (powder weight) / It can be defined as the value of the fluidized gas linear velocity when A (fluidized bed cross-sectional area) is reached. Incidentally, u mf is usually 0.1 to 30 cm / sec, preferably be in a range of about 0.5 to 10 cm / sec, typically 0.5~100μm as particle size to give this u mf , Preferably 5 to 50 μm. If the particle size is smaller than 0.5 μm, secondary aggregation occurs, and the surface of each particle may not be effectively treated. If the particle size is larger than 100 μm, the surface of the current collector of the lithium ion secondary battery may be uniformly formed. It may be difficult to apply.
[0030]
The conductive material coated powder of a silicon material having a small specific resistance obtained by the present invention is used as a negative electrode material (a negative electrode active material), and is a nonaqueous electrolyte secondary battery having high capacity and excellent cycle characteristics, particularly , A lithium ion secondary battery can be manufactured.
[0031]
In this case, the obtained lithium ion secondary battery is characterized in that the above-described negative electrode active material is used, and other materials such as a positive electrode, a negative electrode, an electrolyte, a separator, and a battery shape are not limited. As the positive electrode active material, for example, oxides of transition metals such as LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , V 2 O 5 , MnO 2 , TiS 2 , MoS 2 and chalcogen compounds are used. As the electrolyte, for example, a non-aqueous solution containing a lithium salt such as lithium perchlorate is used.As the non-aqueous solvent, propylene carbonate, ethylene carbonate, dimethoxyethane, γ-butyrolactone, 2-methyltetrahydrofuran, or the like is used alone or in combination. A combination of more than one type is used. Various other non-aqueous electrolytes and solid electrolytes can also be used.
[0032]
When a negative electrode is manufactured using the conductive material coating powder of a silicon material having a low specific resistance, a conductive material such as graphite can be added to the conductive material coating powder of a silicon material having a low specific resistance. . Also in this case, the type of the conductive material is not particularly limited, and may be an electronically conductive material that does not cause decomposition or deterioration in the configured battery. Specifically, Al, Ti, Fe, Ni, Cu, Metal powders and metal fibers such as Zn, Ag, Sn, and Si, or natural graphite, artificial graphite, various coke powders, mesophase carbon, vapor-grown carbon fiber, pitch-based carbon fiber, PAN-based carbon fiber, and various resin firings Graphite such as a body can be used.
[0033]
Here, the addition amount of the conductive material is preferably 1 to 60% by weight, more preferably 10 to 50% by weight, especially 20 to 50% by weight in the mixture of the conductive material coating powder of the silicon material having a small specific resistance and the conductive material. Is preferred. If it is less than 1% by weight, it may not be able to withstand expansion and contraction due to charge and discharge, and if it exceeds 60% by weight, the charge and discharge capacity may be small. The total amount of carbon in the mixture (that is, the total amount of the amount of carbon coated (deposited) on the surface of the conductive material coating powder of a silicon material having a small specific resistance and the amount of carbon in the conductive material) is 25 to 90% by weight. %, Particularly preferably 30 to 50% by weight. If the total carbon content is less than 25% by weight, it may not be able to withstand expansion and contraction accompanying charge / discharge, and if it exceeds 90% by weight, the charge / discharge capacity may be reduced.
[0034]
【Example】
Hereinafter, the present invention will be specifically described with reference to Examples and Comparative Examples, but the present invention is not limited to the following Examples. In the following examples,% indicating the composition indicates% by weight.
[0035]
[Example 1]
Silicon for semiconductor (resistivity: 0.1 Ωcm, boron-doped 1.2 × 10 15 atoms / cm 3 , phosphorus-doped 1.1 × 10 15 atoms / cm 3 ) is roughly crushed to about 3 mm square, and hexane is used as a dispersion medium. The resulting suspension was pulverized with a ball mill pulverizer, and the obtained suspension was filtered and the solvent was removed under a nitrogen atmosphere to obtain a powder having an average particle diameter of 3 μm. This silicon material powder having a small specific resistance is subjected to thermal CVD using a rotary kiln type reactor at 1150 ° C. under an atmosphere of methane-argon (50:50 vol%) mixed gas at an average residence time of about 2 hours. Was obtained. The product thus obtained had a deposited carbon amount of 21.5%. After the thermal CVD, the conductive material coating of the silicon material having a small specific resistance was pulverized with a grinder to obtain a powder having an average particle diameter of about 4.2 μm and a BET specific surface area of 19.8 m 2 / g. Using this, battery evaluation was performed by the following method. Table 1 shows the results.
[0036]
Battery evaluation The evaluation as a negative electrode active material for a lithium ion secondary battery was the same for all Examples and Comparative Examples, and was performed by the following method and procedure.
[0037]
First, an artificial graphite (average particle diameter D 50 = 5 μm) is deposited on the obtained conductive material coating of a silicon material having a low specific resistance, and a conductive material coating of a silicon material having a low specific resistance is deposited on carbon of the artificial graphite. Was added so that the total amount of carbon was 40% to produce a mixture. 10% of polyvinylidene fluoride was added to this mixture, and N-methylpyrrolidone was further added to form a slurry. The slurry was applied to a copper foil having a thickness of 20 μm, dried at 120 ° C. for 1 hour, and then the electrode was pressed by a roller press. It was molded and finally punched into 2 cm 2 to obtain a negative electrode.
[0038]
Here, in order to evaluate the charge / discharge characteristics of the obtained negative electrode, a lithium foil was used as a counter electrode, and lithium hexafluoride as a non-aqueous electrolyte was 1/1 (volume) of ethylene carbonate and 1,2-dimethoxyethane. Ratio) Using a non-aqueous electrolyte solution dissolved at a concentration of 1 mol / L in the mixed solution, a lithium ion secondary battery for evaluation using a 30 μm thick polyethylene microporous film as a separator was produced.
[0039]
The manufactured lithium ion secondary battery was left overnight at room temperature, and then charged with a constant current of 3 mA using a secondary battery charge / discharge tester (manufactured by Nagano Corporation) until the test cell voltage reached 0 V. After reaching 0 V, charging was performed by reducing the current so as to maintain the cell voltage at 0 V. Then, the charging was terminated when the current value became lower than 100 μA. The discharge was performed at a constant current of 3 mA, and the discharge was terminated when the cell voltage exceeded 2.0 V, and the discharge capacity was determined.
[0040]
The above charge / discharge test was repeated, and a charge / discharge test of the lithium ion secondary battery for evaluation was performed for 20 cycles. Table 1 shows the results.
[0041]
[Example 2]
Silicon for semiconductor (resistivity 8 Ωcm, boron-doped 1.7 × 10 17 atoms / cm 3 , phosphorus-doped 1.5 × 10 17 atoms / cm 3 , nitrogen-doped 1.1 × 10 17 atoms / cm 3 ) is roughly crushed. The powder was crushed with a ball mill crusher using hexane as a dispersion medium, and the obtained suspension was filtered and desolvated under a nitrogen atmosphere to obtain a powder having an average particle diameter of 3 μm. This silicon material powder having a small specific resistance is subjected to thermal CVD using a rotary kiln type reactor at 1150 ° C. under an atmosphere of methane-argon (50:50 vol%) mixed gas at an average residence time of about 2 hours. Was obtained. The product thus obtained had a deposited carbon amount of 20.5%. The conductive material coating of the silicon material having a small specific resistance was pulverized with a grinder to obtain a powder having an average particle diameter of about 4.4 μm and a BET specific surface area of 20.3 m 2 / g. Using this, battery evaluation was performed under exactly the same conditions as in Example 1. Table 1 shows the results.
[0042]
[Comparative Example 1]
Metallic silicon powder for chemical grade (resistivity> 1000Ωcm, iron 2000ppm, aluminum 100ppm, chromium 500ppm, nickel 80ppm, zircon 1600ppm, other elements (Mo, Ca, P, Ti, Cu, Zn, V) 100ppm or less, average particle diameter 3.2 μm) using a rotary kiln type reactor under a condition of 1150 ° C. and an average residence time of about 2 hours under a benzene-argon (0.2 cc / min, 4.0 NL / min) mixed gas flow. Performed to obtain a black powder. The thus obtained product had a deposited carbon amount of 19.3%, an average particle size of 4.8 μm, and a BET specific surface area of 9.7 m 2 / g. In the X-ray diffraction measurement, silicon, crystalline carbon, and amorphous carbon were confirmed. Using this, battery evaluation was performed under exactly the same conditions as in Example 1. Table 1 shows the results.
[0043]
[Comparative Example 2]
Silicon for semiconductor (resistivity: 200 Ωcm, boron-doped 2.3 × 10 13 atoms / cm 3 , phosphorus-doped 2.3 × 10 13 atoms / cm 3 ) is roughly crushed to about 3 mm square, and ball mill crushing using hexane as a dispersion medium. The mixture was pulverized for 20 hours using a vessel to obtain a powder having an average particle diameter D 50 = 3 μm. Using a rotary kiln type reactor, the obtained silicon powder was subjected to thermal CVD under a condition of 1150 ° C. and an average residence time of about 2 hours under a methane-argon (50:50 vol%) mixed gas flow, and a black powder was obtained. Obtained. The thus obtained product had a deposited carbon amount of 20.2%, an average particle size of 4.5 μm, and a BET specific surface area of 17.4 m 2 / g. In the X-ray diffraction measurement, silicon and crystalline carbon were confirmed. Using this, battery evaluation was performed under exactly the same conditions as in Example 1. Table 1 shows the results.
[0044]
[Table 1]
Figure 2004296161
[0045]
【The invention's effect】
The conductive material coating of a silicon material having a small specific resistance of the present invention is used as a negative electrode material for a non-aqueous electrolyte secondary battery, and gives good cycleability.

Claims (8)

珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの抵抗値が10Ωcm以下である珪素材料の粉末粒子の表面を結晶性成分を多く含む炭素でコーティングしたことを特徴とする比抵抗の小さい珪素の導電性物質被覆物。Silicon is doped with one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, and indium, and the surface of the silicon material powder particles having a resistance value of 10 Ωcm or less at the wafer or ingot is formed of a crystalline component. A conductive material coating made of silicon having a small specific resistance, which is coated with a carbon containing a large amount. 平均粒子径が0.01〜30μm、BET比表面積が0.5〜20m/g、被覆炭素量が3〜70重量%である請求項1記載の比抵抗の小さい珪素の導電性物質被覆物。 2. The conductive material coating of silicon having a low specific resistance according to claim 1, wherein the average particle diameter is 0.01 to 30 μm, the BET specific surface area is 0.5 to 20 m 2 / g, and the coating carbon amount is 3 to 70% by weight. 3. . 珪素の表面の少なくとも一部が炭素と融着していることを特徴とする請求項1又は2記載の比抵抗の小さい珪素の導電性物質被覆物。The conductive material coating of silicon having a small specific resistance according to claim 1 or 2, wherein at least a part of the surface of silicon is fused with carbon. ラマン分光スペクトルより、ラマンシフトが1330cm−1付近及び1580cm−1付近にグラファイト構造特有のスペクトルを有することを特徴とする請求項1乃至3のいずれか1項記載の比抵抗の小さい珪素の導電性物質被覆物。From Raman spectroscopy, electrical conductivity of less silicon resistivity of any one of claims 1 to 3, characterized in that Raman shift has a spectrum of graphite structure unique to around 1330 cm -1 and near 1580 cm -1 Material coating. 珪素にボロン、リン、窒素、アンチモン、砒素、アルミニウム、ガリウム又はインジウムの一種又は複数種がドープされ、ウェハーもしくはインゴットでの抵抗値が10Ωcm以下である珪素材料を900〜1400℃の温度で有機物ガス及び/又は蒸気で化学蒸着処理することを特徴とする請求項1記載の比抵抗の小さい珪素の導電性物質被覆物の製造方法。Silicon is doped with one or more of boron, phosphorus, nitrogen, antimony, arsenic, aluminum, gallium, and indium, and a silicon material having a wafer or ingot having a resistance value of 10 Ωcm or less at a temperature of 900 to 1400 ° C. The method of claim 1, wherein chemical vapor deposition is performed with steam and / or vapor. 化学蒸着処理を流動層反応炉、回転炉、竪型移動層反応炉、トンネル炉、バッチ炉又はロータリーキルンのいずれかの反応装置を用いて行うことを特徴とする請求項5項記載の比抵抗の小さい珪素の導電性物質被覆物の製造方法。The resistivity of claim 5, wherein the chemical vapor deposition treatment is performed by using any one of a fluidized bed reactor, a rotary furnace, a vertical moving bed reactor, a tunnel furnace, a batch furnace, and a rotary kiln. Method for producing small silicon conductive material coating. 請求項1乃至4のいずれか1項記載の比抵抗の小さい珪素の導電性物質被覆物を含む非水電解質二次電池用負極材。A negative electrode material for a non-aqueous electrolyte secondary battery, comprising the conductive material coating of silicon having a small specific resistance according to any one of claims 1 to 4. 請求項1乃至4のいずれか1項記載の比抵抗の小さい珪素の導電性物質被覆物と導電材料との混合物であって、混合物中の導電材料が1〜60重量%であり、かつ混合物中の全炭素量が25〜90重量%である混合物を含む非水電解質二次電池用負極材。5. A mixture of a conductive material coating of silicon having a low specific resistance according to claim 1 and a conductive material, wherein the conductive material in the mixture is 1 to 60% by weight. Negative electrode material for a non-aqueous electrolyte secondary battery, comprising a mixture having a total carbon content of 25 to 90% by weight.
JP2003084229A 2003-03-26 2003-03-26 Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery Pending JP2004296161A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003084229A JP2004296161A (en) 2003-03-26 2003-03-26 Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003084229A JP2004296161A (en) 2003-03-26 2003-03-26 Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2004296161A true JP2004296161A (en) 2004-10-21

Family

ID=33399441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003084229A Pending JP2004296161A (en) 2003-03-26 2003-03-26 Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2004296161A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006210348A (en) * 2005-01-28 2006-08-10 Samsung Sdi Co Ltd Negative electrode active material, its manufacturing method, and negative electrode and lithium battery using it
KR100738054B1 (en) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2007246329A (en) * 2006-03-15 2007-09-27 Tokyo Denki Univ Nano-silicon particle excellent in durability of light emission brightness and its producing method
WO2008093512A1 (en) * 2007-01-31 2008-08-07 Sharp Kabushiki Kaisha Polycrystal silicon, polycrystal silicon base, manufacturing method thereof, and photoelectric conversion element using the polycrystal silicon base
JP2009104892A (en) * 2007-10-23 2009-05-14 Panasonic Corp Lithium secondary battery
WO2009063801A1 (en) * 2007-11-12 2009-05-22 Sanyo Electric Co., Ltd. Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silicon particles for active material for negative electrode material for rechargeable battery with nonaqueous electrolyte
JP2014523066A (en) * 2011-06-24 2014-09-08 ネクソン リミテッド Structured particles
JP2016106358A (en) * 2015-12-25 2016-06-16 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
CN110838584A (en) * 2019-11-15 2020-02-25 中南大学 Boron-phosphorus co-doped porous silicon negative electrode material and preparation method thereof
WO2023008866A1 (en) * 2021-07-28 2023-02-02 주식회사 그랩실 Multi-layered anode active material, method for manufacturing same, and lithium secondary battery comprising same

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100738054B1 (en) 2004-12-18 2007-07-12 삼성에스디아이 주식회사 Anode active material, method of preparing the same, and anode and lithium battery containing the material
US7951489B2 (en) 2005-01-28 2011-05-31 Samsung Sdi Co., Ltd. Anode active material, method of preparing the same, and anode and lithium battery employing the same
JP2006210348A (en) * 2005-01-28 2006-08-10 Samsung Sdi Co Ltd Negative electrode active material, its manufacturing method, and negative electrode and lithium battery using it
JP2007246329A (en) * 2006-03-15 2007-09-27 Tokyo Denki Univ Nano-silicon particle excellent in durability of light emission brightness and its producing method
WO2008093512A1 (en) * 2007-01-31 2008-08-07 Sharp Kabushiki Kaisha Polycrystal silicon, polycrystal silicon base, manufacturing method thereof, and photoelectric conversion element using the polycrystal silicon base
JP2008184376A (en) * 2007-01-31 2008-08-14 Sharp Corp Polycrystalline silicon, polycrystalline silicon substrate and its manufacturing method and photoelectric conversion element using polycrystal silicon substrate
JP2009104892A (en) * 2007-10-23 2009-05-14 Panasonic Corp Lithium secondary battery
JP2013229347A (en) * 2007-11-12 2013-11-07 Shin Etsu Chem Co Ltd Process for producing polycrystalline silicon particle for active material in negative electrode material for nonaqueous electrolyte secondary battery
WO2009063801A1 (en) * 2007-11-12 2009-05-22 Sanyo Electric Co., Ltd. Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silicon particles for active material for negative electrode material for rechargeable battery with nonaqueous electrolyte
JP5338676B2 (en) * 2007-11-12 2013-11-13 三洋電機株式会社 Non-aqueous electrolyte secondary battery negative electrode material, non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery
CN101919090B (en) * 2007-11-12 2014-04-16 三洋电机株式会社 Negative electrode material for rechargeable battery with nonaqueous electrolyte, negative electrode for rechargeable battery with nonaqueous electrolyte, rechargeable battery with nonaqueous electrolyte, and process for producing polycrystalline silcon particle as active ingredient of rechargeable battery negative electrode material
US8734991B2 (en) 2007-11-12 2014-05-27 Sanyo Electric Co., Ltd. Negative electrode material for nonaqueous electrolyte secondary battery
JP2014523066A (en) * 2011-06-24 2014-09-08 ネクソン リミテッド Structured particles
JP2016106358A (en) * 2015-12-25 2016-06-16 信越化学工業株式会社 Method for manufacturing negative electrode active material for nonaqueous electrolyte secondary battery
CN110838584A (en) * 2019-11-15 2020-02-25 中南大学 Boron-phosphorus co-doped porous silicon negative electrode material and preparation method thereof
CN110838584B (en) * 2019-11-15 2022-09-23 中南大学 Boron-phosphorus co-doped porous silicon negative electrode material and preparation method thereof
WO2023008866A1 (en) * 2021-07-28 2023-02-02 주식회사 그랩실 Multi-layered anode active material, method for manufacturing same, and lithium secondary battery comprising same

Similar Documents

Publication Publication Date Title
US10700348B2 (en) Negative electrode material for nonaqueous electrolyte secondary batteries, and secondary battery
JP3952180B2 (en) Conductive silicon composite, method for producing the same, and negative electrode material for nonaqueous electrolyte secondary battery
EP2088221B1 (en) Non-aqueous electrolyte secondary battery negative electrode material, making method, lithium ion secondary battery, and electrochemical capacitor
TWI392133B (en) Silicon-silicon oxide-lithium composite and its preparation method and non-electrolyte battery anode material
KR100590123B1 (en) Graphite Powders Suited for Negative Electrode Material of Lithium Ion Secondary Battery
JP4985949B2 (en) Method for producing silicon-silicon oxide-lithium composite, and negative electrode material for non-aqueous electrolyte secondary battery
EP2991141A1 (en) Silicon-containing material, non-aqueous electrolyte secondary battery negative electrode and method for manufacturing same, and non-aqueous electrolyte secondary battery and method for manufacturing same
JP5965040B2 (en) Method for producing negative electrode active material for non-aqueous electrolyte secondary battery
KR20110112215A (en) Negative electrode material for nonaqueous electrolytic secondary battery, process for producing negative electrode material for nonaqueous electrolytic secondary battery, and lithium ion secondary battery
JP6100610B2 (en) Negative electrode active material, non-aqueous electrolyte secondary battery, and production method thereof
JP2004063433A (en) Conductive silicon oxide powder, its manufacturing method, and negative electrode material for nonaqueous secondary battery using the same
EP3054505A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR102452874B1 (en) Carbon-silicon complex oxide compoite for anode material of secondary battery and method for preparing the same
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP2004296161A (en) Conductive material-coated silicon and its manufacturing method and electrode material for non-aqueous electrolyte secondary battery
JP2004288525A (en) Negative electrode material for nonaqueous electrolyte secondary battery
KR20240054329A (en) Method for manufacturing silicon-carbon composite materials

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060828

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061025

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20061218

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080116

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080314

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080319

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080425