EP1144723A2 - Method for coating apparatuses and parts of apparatuses used in chemical manufacturing - Google Patents

Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

Info

Publication number
EP1144723A2
EP1144723A2 EP99967007A EP99967007A EP1144723A2 EP 1144723 A2 EP1144723 A2 EP 1144723A2 EP 99967007 A EP99967007 A EP 99967007A EP 99967007 A EP99967007 A EP 99967007A EP 1144723 A2 EP1144723 A2 EP 1144723A2
Authority
EP
European Patent Office
Prior art keywords
polymer
metal
layer
parts
halogenated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP99967007A
Other languages
German (de)
French (fr)
Other versions
EP1144723B1 (en
EP1144723A3 (en
Inventor
Stephan Hüffer
Thilo Krebs
Wolfgang Loth
Bernd Rumpf
Jürgen STURM
Bernd Diebold
Jürgen KORKHAUS
Joachim Nilges
Axel Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1144723A2 publication Critical patent/EP1144723A2/en
Publication of EP1144723A3 publication Critical patent/EP1144723A3/en
Application granted granted Critical
Publication of EP1144723B1 publication Critical patent/EP1144723B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for the surface coating of apparatus and apparatus parts for chemical plant construction - including, for example, apparatus, container and reactor walls, discharge devices, fittings, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals,
  • a metal layer or a metal-polymer dispersion layer is electrolessly deposited on the apparatus or apparatus parts to be coated by contacting the parts with a metal electrolyte solution, which is next to the metal electrolyte Contains reducing agents and optionally the polymer or polymer mixture to be deposited in dispersed form, at least one polymer being halogenated. Subsequently, annealing is optional.
  • Further objects of the invention are surfaces of apparatuses and apparatus parts for chemical plant construction, which have been coated by the method according to the invention, and the use of the coating containing a metal component, at least one halogenated polymer and optionally further polymers, to reduce the tendency of the coated surfaces to deposit solids from fluids with the formation of deposits.
  • the invention relates to apparatus and apparatus parts for chemical plant construction, which are coated by the method according to the invention.
  • the coatings can be harmful or hinder the process in a variety of ways and lead to the need to repeatedly switch off and clean appropriate reactors or processing machines.
  • Measuring devices encrusted with deposits can lead to incorrect and misleading results, which can lead to operating errors.
  • Another problem that arises from the formation of deposits is that the molecular parameters, such as molecular weight or degree of crosslinking, differ significantly from the product specifications, in particular in sheets in polymerization reactors. If deposits build up while running
  • the deposits whose formation is to be prevented are deposits which can be caused, for example, by reactions with and on surfaces. Further reasons are the adhesion to surfaces, which can be caused by van der Waals forces, polarization effects or electrostatic double layers. Important effects are also stagnation of movement on the surface and, if necessary, reactions in the stagnant layers mentioned. Finally, there are: precipitation from solutions, evaporation residues, cracking on locally hot surfaces and microbiological activities.
  • the object of the present invention is therefore to provide a method for the surface modification of apparatuses and apparatus parts for chemical plant construction
  • the surfaces treated according to the method should have a good shelf life, and the method according to the invention should also be inexpensively applicable to surfaces which are difficult to access, and • on the other hand ensures that the product or products are not contaminated by additives.
  • the object of the present invention is to provide protected surfaces of apparatus and apparatus parts for chemical plant construction, and finally to use apparatus and apparatus parts for chemical plant construction.
  • the object of the invention is achieved by a method for coating the surfaces of apparatus and apparatus parts for chemical plant construction, characterized in that a metal layer or a metal-polymer dispersion layer is electrolessly deposited on the apparatus or apparatus parts to be coated by the Parts contacted with a metal electrolyte solution which, in addition to the metal electrolyte, contains a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, at least one polymer being halogenated.
  • the deposition of the metal layer or the metal-polymer dispersion phases serves to coat the apparatuses and apparatus parts known per se in chemical plant construction.
  • the metal layer according to the invention comprises an alloy or alloy-like mixed phase composed of a metal and at least one further element.
  • the metal-polymer dispersion phases preferred according to the invention comprise a polymer, in the context of the invention a halogenated polymer, which in the metal layer is dispersed.
  • the metal alloy is preferably a metal-boron alloy or a metal-phosphorus alloy with a boron or phosphorus content of 0.5 to 15% by weight.
  • a particularly preferred embodiment of the coatings according to the invention is a so-called “chemical nickel system”, that is to say phosphorus-containing nickel alloys with a phosphorus content of 0.5 to 15% by weight; phosphorus-containing nickel alloys with 5 to 12% by weight are very particularly preferred.
  • the metal-polymer dispersion layer preferred according to the invention which is also referred to as a composite layer, contains a metal component and at least one polymer, in the context of the invention at least one halogenated polymer and optionally further polymers which are dispersed in the metal component.
  • the electrons required for chemical or autocatalytic deposition are not provided by an external power source, but are generated by chemical conversion in the electrolyte itself (oxidation of a reducing agent).
  • the coating takes place, for example, by immersing the workpiece in a metal electrolyte solution, which has optionally been mixed beforehand with a stabilized polymer dispersion.
  • metal electrolyte solutions are usually used as metal electrolyte solutions, to which the following components are added in addition to the electrolyte: a reducing agent such as an alkali metal hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH; optionally an activator such as an alkali metal fluoride, preferred are NaF, KF or LiF; Carboxylic acids and optionally a deposition moderator such as Pb 2+ .
  • a reducing agent such as an alkali metal hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH
  • an activator such as an alkali metal fluoride, preferred are NaF, KF or LiF
  • Carboxylic acids optionally a deposition moderator such as Pb 2+ .
  • the reducing agent is selected so that the corresponding element to be installed is already present in the reducing agent.
  • the optionally used halogenated polymer of the process according to the invention is halogenated and preferably fluorinated.
  • suitable fluorinated polymers are polytetrafluoroethylene, perfluoroalkoxy polymers (PFA, for example with Ci-Ca alkoxy units), copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether, for example perfluorovinyl propyl ether.
  • PFA perfluoroalkoxy polymers
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy polymers
  • Commercially available polytetrafluoroethylene dispersions (PTFE dispersions) are usefully used as the form of use.
  • PTFE dispersions with a solids content of 35 to 60% by weight and an average particle diameter of 0.05 to 1.2 ⁇ m, in particular 0.1 to 0.3 ⁇ m, are preferably used.
  • Spherical particles are particularly preferred because the use of spherical particles leads to very homogeneous composite layers.
  • the advantage of using spherical particles is faster layer growth and better, in particular longer, thermal stability of the baths, which offers economic advantages. This can be seen particularly clearly in comparison to systems using irregular polymer particles which are obtained by grinding the corresponding polymer.
  • the dispersions used can be a nonionic detergent (for example polyglycols, alkylphenol ethoxylate or optionally mixtures of the substances mentioned, 80 to 120 g of neutral detergent per liter) or an ionic detergent (for example alkyl and haloalkylsulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, tetraalkylammonium salts or optional Mixtures of the substances mentioned, 15 to 60 g of ionic detergent per liter) to stabilize the dispersion.
  • Fluorinated surfactants neutral and ionic
  • Coating is carried out at a slightly elevated temperature which, however, must not be so high that the dispersion is destabilized. Temperatures of 40 to 95 ° C have proven to be suitable. Temperatures of 80 to 91 ° C. are preferred and 88 ° C. is particularly preferred.
  • Deposition rates of 1 to 15 ⁇ m / h have proven to be useful.
  • the deposition speed can be influenced as follows by the composition of the immersion baths:
  • the deposition rate is increased by higher temperatures, there being a maximum temperature which is limited, for example, by the stability of the optionally added polymer dispersion.
  • the separation speed is reduced by lower temperatures.
  • the deposition rate is increased by higher electrolyte concentrations and reduced by lower ones; where concentrations of 1 g / 1 to 20 g / 1 Ni 2+ are useful, concentrations of 4 g / 1 to 10 g / 1 are preferred; for Cu 2+ 1 g / 1 to 50 g / 1 are advisable.
  • the deposition rate can also be increased by higher concentrations of reducing agent;
  • the deposition rate can be increased by increasing the pH. It is preferred to set a pH between 3 and 6, particularly preferably between 4 and 5.5. Addition of activators such as alkali fluorides, for example NaF or KF, increases the deposition rate.
  • Ni 2+ , sodium hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ are particularly preferably used.
  • Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech GmbH, Berlin.
  • Particularly preferred are solutions which have a pH around 5 and about 27 g / 1 NiS0-6 H 2 0 and about 21 g / 1 NaH 2 P0 2 -H 2 0 with a PTFE content of 1 to 25 g / 1 included.
  • the polymer content of the dispersion coating is mainly influenced by the amount of polymer dispersion added and the choice of detergents.
  • the concentration of the polymer plays the greater role here; High polymer concentrations in the immersion baths lead to a disproportionately high proportion of polymer in the metal-phosphorus-polymer dispersion layer or metal-boron-polymer dispersion layer.
  • the parts to be coated are immersed in immersion baths that contain the metal electrolyte solution.
  • Another embodiment of the method according to the invention is that the containers to be coated are filled with a metal electrolyte solution.
  • Another suitable method is to pump the electrolyte solution through the part to be coated; this variant is particularly recommended when the diameter of the part to be coated is much smaller than the length.
  • the annealing time is generally 5 minutes to 3 hours, preferably 35 to 60 minutes.
  • the surfaces treated according to the invention enable good heat transfer, although the coatings can have a not inconsiderable thickness of 1 to 100 ⁇ m. 3 to 50 ⁇ m, in particular 5 to 25 ⁇ m, are preferred.
  • the polymer content of the dispersion coating is 5 to 30 Vol .-%, preferably 15 to 25 vol .-%.
  • the surfaces treated according to the invention also have excellent durability.
  • the metal-polymer dispersion layer contains an additional polymer in order to further reinforce the non-stick properties of the coating.
  • This polymer can be halogenated or non-halogenated.
  • the use of polytetrafluoroethylene or ethylene polymers and ethylene copolymers or polypropylene is particularly preferred, ultra-high molecular weight polyethylene (UHM-PE) being very particularly preferred.
  • UHM-PE is understood to mean a polyethylene which has a molecular weight M w of 10 6 g or more and a Staudinger index of at least 15 dl / g, preferably at least 20 dl / g.
  • This optionally used polymer is also added as a dispersion or slurry in an aqueous surfactant solution, the order in which the dispersions are added is not critical. However, it is preferable to meter both polymer dispersions simultaneously.
  • Aqueous dispersions of UHM-PE are commercially available, for example from Clariant GmbH, or can be easily prepared by dispersing the UHM-PE in a suitable aqueous surfactant solution.
  • Neutral detergents for example polyglycols, alkylphenol ethoxylate or optionally mixtures thereof, 80 to 120 g of neutral detergent per liter
  • ionic detergents for example alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, tetraalkylammonium salts or optionally mixtures of the aforementioned
  • ionic detergents for example alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, tetraalkylammonium salts or optionally mixtures of the aforementioned
  • Fluorinated surfactants neutral or ionic
  • the particles of the further halogenated or non-halogenated polymer are coarser than those of the halogenated polymer. Average particle diameters of 5 to 50 ⁇ m have been found to be advantageous. 25-35 ⁇ m are particularly advantageous. It is possible that spherical particles are used when using the additional coarser polymer, but the particles of the additional polymer may also have an irregular shape.
  • the particle diameter distribution of the various polymers as a whole is to be regarded as bimodal. 1 to 20 g, preferably 5 to, are used per liter of the immersion bath solution
  • Another object of the present invention is a process for the production of modified, i.e. Coated surfaces of apparatus and apparatus parts for chemical plant construction, which are particularly adhesive, durable and heat-resistant and therefore solve the problem according to the invention in a special way.
  • This process is characterized in that, before the metal-polymer dispersion layer is applied, an additional 1 to 15 ⁇ m, preferably 1 to 5 ⁇ m, thick metal-phosphor layer is applied by electroless chemical deposition.
  • the electroless chemical application of a 1 to 15 ⁇ m thick metal-phosphorus layer to improve adhesion is again carried out by metal electrolyte baths, to which, however, no stabilized polymer dispersion is added in this case. Tempering is preferably dispensed with at this point in time, since this generally has a negative effect on the adhesiveness of the subsequent metal-polymer dispersion layer.
  • the workpiece is placed in a second immersion bath which, in addition to the metal electrolyte, also comprises a stabilized polymer dispersion.
  • the metal-polymer dispersion layer forms here.
  • This method is additionally characterized in that, before the metal-polymer dispersion layer is applied, an additional 1 to 15 ⁇ m, preferably 1 to 5 ⁇ m, thick metal-phosphor layer is applied by electroless chemical deposition.
  • the electroless chemical application of a 1 to 15 ⁇ m thick metal-phosphor layer to improve the adhesion takes place through the already described metal electrolyte baths, to which, however, no stabilized polymer dispersions are added in this case. Tempering is preferably dispensed with at this point in time, since this generally has a negative effect on the adhesiveness of the subsequent metal-polymer dispersion layer.
  • the workpiece is placed in the immersion bath described above, which in addition to the metal electrolyte also contains a stabilized polymer dispersion. This forms the metal-polymer dispersion layer.
  • the finished coating is preferably not tempered.
  • the additional metal-phosphor layer is nickel-phosphorus or copper-phosphorus, with nickel-phosphorus being particularly preferred.
  • the method according to the invention can be used on all surfaces of apparatus and apparatus parts for chemical plant construction threatened by deposits, the surfaces preferably being surfaces made of metal, particularly preferably made of steel.
  • Container and apparatus walls can be present in various containers, apparatus or reactors that are used for chemical reactions.
  • Containers are, for example, receptacles or collecting containers such as tubs, silos, tanks, drums, drums or gas containers.
  • the apparatus and reactors are liquid, gas / liquid, liquid / liquid, solid / liquid, gas / solid or gas reactors, which are implemented in the following ways, for example:
  • Discharge devices are, for example, discharge nozzles, discharge funnels, discharge pipes, valves, discharge taps or discharge devices.
  • - Faucets are, for example, taps, valves, slides, rupture disks, non-return flaps or disks.
  • Pumps are, for example, centrifugal, gear, screw, eccentric screw, rotary lobe, reciprocating, diaphragm, screw trough, or jet liquid pumps, as well as reciprocating, reciprocating diaphragm, rotary lobe, Rotary vane, liquid ring, roller piston, liquid ring or propellant vacuum pumps.
  • Filter devices are, for example, fluid filters, fixed bed filters, gas filters, sieves or separators.
  • Compressors are, for example, reciprocating, reciprocating diaphragm, rotary lobe, rotary slide, liquid ring, rotary, Roots, screw, jet or turbo compressors.
  • Centrifuges are, for example, centrifuges with a screen jacket or a full jacket, with plate, full jacket - screw (decanters), screen screw and pusher centrifuges being preferred.
  • Columns are containers with exchange trays, with bell, valve or sieve trays being preferred.
  • the columns can be filled with different packing such as saddle packing, Raschig rings or balls.
  • Crushers with hammer, impact, roller or jaw crushers being preferred; or around mills, with hammer, impact basket, pin, impact, tube, drum, ball, vibrating, roller mills being preferred.
  • Installations in reactors and vessels are, for example, thermal sleeves, baffles, foam destroyers, fillers, spacers, centering devices, flange connections, static mixers, for analysis. instruments such as pH or IR probes, conductivity measuring instruments, level measuring devices or foam probes.
  • Extruder elements are, for example, screw shafts, elements, extruder cylinders, plasticizing screws or injection nozzles.
  • the invention furthermore relates to apparatuses and apparatus parts for chemical plant construction which are obtainable by the inventive method for surface modification.
  • the surfaces according to the invention are preferably produced by using the method according to the invention.
  • Another object of the invention is the use of the surface modification according to the invention to reduce the tendency of the coated surfaces to deposit solids with the formation of deposits.
  • the deposits, the formation of which is prevented according to the invention, have already been described.
  • Another object of the invention are coated apparatus and apparatus parts for chemical plant construction.
  • the reactors, reactor parts and processing machines for chemical products according to the invention are distinguished by a longer service life, reduced shutdown rates and reduced cleaning effort.
  • the reactors according to the invention can be used for numerous different reactions, such as polymerizations, syntheses of bulk or fine chemicals or pharmaceutical products and their precursors, as well as cracking reactions.
  • the processes are continuous, semi-continuous or batchwise, with the use of the apparatuses and apparatus parts according to the invention for chemical plant construction being particularly suitable in continuously operated processes.
  • the coating was carried out in two stages. First, several parts of the autoclave were removed: stirrer, thermowells, baffles, covers and parts of the inside of the reactor. These parts were immersed at a temperature of 88 ° C in a tub containing 2 liters of an aqueous nickel salt solution, the solution having the following composition: 27 g / 1 NiS0-6 H 2 0, 21 g / 1 NaH 2 P0 2 -2H 2 0, 20 g / 1 lactic acid CH 3 CHOHC0 2 H, 3 g / 1 propionic acid C 2 H 5 CO 2 H, 5 g / 1 Na citrate, 1 g / 1 NaF. The pH was 4.8. It was worked for 45 minutes in order to obtain the desired layer thickness of 9 ⁇ m.
  • the reactor parts were then immersed in a second trough to which, in addition to 2 liters of an analog nickel salt solution, an additional 20 ml, ie 1% by volume, of a PTFE dispersion having a density of 1.5 g / ml had been added.
  • This PTFE dispersion contained 50% by weight solids.
  • the process was completed in 90 minutes (layer thickness 15 ⁇ m).
  • the coated reactor parts were rinsed with water, dried and annealed at 350 ° C. for one hour.
  • the coating was carried out in two stages. First, several parts of the autoclave were removed: stirrer, thermowells, baffles, covers and parts of the inside of the reactor. These parts were immersed at a temperature of 88 ° C in a tub containing 2 liters of an aqueous nickel salt solution, the solution having the following composition: 27 g / 1 NiS0-6 H 2 0, 21 g / 1 NaH 2 P0 2 -2H 2 0, 20 g / 1 lactic acid CH 3 CHOHC0 2 H, 3 g / 1 propionic acid C 2 H 5 C0 2 H, 5 g / 1 Na citrate, 1 g / 1 NaF. The pH was 4.8. It was worked for 45 minutes in order to obtain the desired layer thickness of 9 ⁇ m.
  • the reactor parts were then immersed in a second trough, to which, in addition to 2 liters of an analog nickel salt solution, 20 ml, ie 1% by volume, of a PTFE dispersion having a density of 1.5 g / ml had been added; further 7 g / 1 UHM-PE (Clariant AG) were added.
  • This PTFE / UHM PE dispersion contained 50% by weight solids.
  • the process was completed in 90 minutes (layer thickness 15 ⁇ m).
  • the coated reactor parts were rinsed with water and dried at room temperature. The tempering was dispensed with.
  • the reactor parts were installed in a test autoclave for the production of polystyrene.
  • the stirred kettle thus contained both coated and uncoated parts that could be tested in polymerisation tests under identical conditions.
  • the polymerization was carried out as follows:
  • the reaction was terminated after a total of 20 hours, and the mixture was cooled to room temperature within 1 hour and the stirred kettle was emptied.
  • the inspection of the stirred tank showed that at all points coated with the coating according to the invention a significantly lower polymer coating could be seen than at uncoated points.
  • the polymer coverings at locations coated with a coating according to the invention were easier to remove than the coverings at uncoated locations.
  • the evaluation can be found in Table 1. In some cases, the covering could be rubbed off manually at locations coated with a coating according to the invention. If the coating on areas coated with a coating according to the invention had to be removed by dissolving in toluene or another suitable solvent, the dissolution times were significantly shorter than for coatings on non-coated areas.
  • the stirrer was coated. Again, it was observed that deposits were significantly reduced in areas coated by the process according to the invention and were easier to remove than in uncoated areas.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemically Coating (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Laminated Bodies (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

The present invention relates to a process for coating apparatuses and apparatus parts for chemical plant construction-which are taken to mean, for example, apparatus, tank and reactor walls, discharge devices, valves, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, packing elements and mixing elements-wherein a metal layer or a metal/polymer dispersion layer is deposited in an electroless manner on the apparatus(es) or apparatus part(s) to be coated by bringing the parts into contact with a metal electrolyte solution which, in addition to the metal electrolyte, comprises a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, where at least one polymer is halogenated.

Description

Verfahren zur Beschichtung von Apparaten und Apparateteilen für den chemischen AnlagenbauProcess for coating apparatus and apparatus parts for chemical plant construction
Die Erfindung betrifft ein Verfahren zur Oberf lächenbeschichtung von Apparaten und Apparateteilen für den chemischen Anlagenbau - darunter sind beispielsweise Apparate-, Behälter- und Reaktorwandungen, Austragsvorrichtungen, Armaturen, Pumpen, Filter, Verdichter, Zentrifugen, Kolonnen, Trockner, Zerkleinerungsmaschi - nen, Einbauten, Füllkörper und Mischorgane zu verstehen - gekennzeichnet dadurch, dass man eine Metallschicht oder eine Metall- Polymer-Dispersionsschicht auf dem oder den zu beschichtenden Apparaten oder Apparateteilen stromlos abscheidet, indem man die Teile mit einer Metall -Elektrolytlösung kontaktiert, die neben dem Metall -Elektrolyten ein Reduktionsmittel sowie optional das abzuscheidende Polymer oder Polymergemisch in dispergierter Form enthält, wobei mindestens ein Polymer halogeniert ist. Anschließend wird optional getempert. Weitere Gegenstände der Erfindung sind Oberflächen von Apparaten und Apparateteilen für den chemi - sehen Anlagenbau, die durch das erfindungsgemäße Verfahren beschichtet worden sind, und die Verwendung der Beschichtung, enthaltend eine Metallkomponente, mindestens ein halogeniertes Polymer und optional weitere Polymere, zur Verringerung der Neigung der beschichteten Flächen, Feststoffe aus Fluiden unter Bildung von Ablagerungen anzulagern. Schließlich betrifft die Erfindung Apparate und Apparateteilen für den chemischen Anlagenbau, die nach dem erfindungsgemäßen Verfahren beschichtet sind.The invention relates to a method for the surface coating of apparatus and apparatus parts for chemical plant construction - including, for example, apparatus, container and reactor walls, discharge devices, fittings, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, To understand packing and mixing elements - characterized in that a metal layer or a metal-polymer dispersion layer is electrolessly deposited on the apparatus or apparatus parts to be coated by contacting the parts with a metal electrolyte solution, which is next to the metal electrolyte Contains reducing agents and optionally the polymer or polymer mixture to be deposited in dispersed form, at least one polymer being halogenated. Subsequently, annealing is optional. Further objects of the invention are surfaces of apparatuses and apparatus parts for chemical plant construction, which have been coated by the method according to the invention, and the use of the coating containing a metal component, at least one halogenated polymer and optionally further polymers, to reduce the tendency of the coated surfaces to deposit solids from fluids with the formation of deposits. Finally, the invention relates to apparatus and apparatus parts for chemical plant construction, which are coated by the method according to the invention.
Ablagerungen in Apparaten und Apparateteilen für den chemischen Anlagenbau bedeuten ein ernsthaftes Problem in der chemischen Industrie. Besonders betroffen sind dabei Apparate-, Behälterund Reaktorwandungen, Austragsvorrichtungen, Armaturen, Pumpen, Filter, Verdichter, Zentrifugen, Kolonnen, Trockner, Zerkleinerungsmaschinen, Einbauten, Füllkörper und Mischorgane. Diese Ablagerungen werden auch als Fouling bezeichnet.Deposits in apparatus and apparatus parts for chemical plant construction pose a serious problem in the chemical industry. Apparatus, container and reactor walls, discharge devices, fittings, pumps, filters, compressors, centrifuges, columns, dryers, shredding machines, internals, fillers and mixing elements are particularly affected. These deposits are also known as fouling.
Dabei können die Beläge auf vielfältige Art schädlich oder hindernd für den Prozess wirken und zur Notwendigkeit führen, entsprechende Reaktoren oder Verarbeitungsmaschinen wiederholt abzu- schalten und zu reinigen.The coatings can be harmful or hinder the process in a variety of ways and lead to the need to repeatedly switch off and clean appropriate reactors or processing machines.
Mit Belägen verkrustete Messeinrichtungen können zu fehlerhaften und irreführenden Ergebnissen führen, durch die Bedienungsfehler auftreten können. Ein weiteres Problem, das durch die Bildung von Ablagerungen entsteht, ist darin begründet, dass insbesondere in Bel gen in Polymerisationsreaktoren die molekularen Parameter wie Molekulargewicht oder Vernetzungsgrad deutlich von den Produktspezifikatio- nen abweichen. Wenn sich Ablagerungen während des laufendenMeasuring devices encrusted with deposits can lead to incorrect and misleading results, which can lead to operating errors. Another problem that arises from the formation of deposits is that the molecular parameters, such as molecular weight or degree of crosslinking, differ significantly from the product specifications, in particular in sheets in polymerization reactors. If deposits build up while running
Betriebs lösen, können sie das Produkt verunreinigen (z.B. Stippen in Lacken, Einschlüsse in Suspensionsperlen) . Unerwünschte Ablagerungen können im Falle von Reaktorwandungen, Füllkörpern oder Mischorganen weiterhin zu einer unerwünschten Veränderung des Verweilzeitprofils der Apparatur führen oder die Wirksamkeit der Einbauten oder Mischorgane als solche beeinträchtigen. Abbrechende grobe Teile von Belägen können zum Verstopfen von Austrage- und Aufarbeitungsvorrichtungen führen, kleine Teile können zu Beeinträchtigungen des produzierten Produktes führen.If you loosen them during operation, they can contaminate the product (e.g. specks in paints, inclusions in suspension beads). In the case of reactor walls, packing elements or mixing elements, undesired deposits can furthermore lead to an undesirable change in the residence time profile of the apparatus or impair the effectiveness of the internals or mixing elements as such. Rough, rough parts of coverings can lead to clogging of discharge and processing devices, small parts can lead to impairment of the product produced.
Bei den Ablagerungen, deren Bildung verhindert werden soll, handelt es sich um Beläge, die beispielsweise durch Reaktionen mit und auf Oberflächen verursacht werden kann. Weitere Gründe sind die Adhäsion an Oberflächen, die durch van-der-Waals-Kräfte, Polarisierungseffekte oder elektrostatische Doppelschichten verursacht werden kann. Wichtige Effekte sind weiterhin Stagnation der Bewegung an der Oberfläche und gegebenenfalls Reaktionen in den genannten stagnierenden Schichten. Schließlich sind zu nennen: Niederschläge aus Lösungen, Verdampfungsrückstände, Vercrak- kung an lokal heißen Oberflächen sowie mikrobiologische Aktivitäten.The deposits whose formation is to be prevented are deposits which can be caused, for example, by reactions with and on surfaces. Further reasons are the adhesion to surfaces, which can be caused by van der Waals forces, polarization effects or electrostatic double layers. Important effects are also stagnation of movement on the surface and, if necessary, reactions in the stagnant layers mentioned. Finally, there are: precipitation from solutions, evaporation residues, cracking on locally hot surfaces and microbiological activities.
Die Ursachen sind abhängig von den jeweiligen Stoffkombinationen und können alleine oder in Kombination wirksam werden. Während die Vorgänge, wegen derer die unerwünschten Beläge entstehen, recht gut untersucht sind (z.B. A.P. Watkinson und D.I. Wilson, Experimental Thermal Fluid Sei. 1997, 14, 361 und darin zitierte Literatur), gibt es nur wenig einheitliche Konzepte zur Verhinderung der oben beschriebenen Ablagerungen. Die bisher bekannten Verfahren haben technische Nachteile.The causes depend on the respective combinations of substances and can be effective alone or in combination. While the processes that give rise to the undesirable deposits have been investigated fairly well (for example, AP Watkinson and DI Wilson, Experimental Thermal Fluid Sei. 1997, 14, 361 and the literature cited therein), there are few uniform concepts for preventing the above-described Deposits. The previously known methods have technical disadvantages.
Mechanische Lösungen haben den Nachteil, dass sie erhebliche Mehrkosten verursachen können. Zusätzliche Reaktoreinbauten können weiterhin das Strömungsprofil von Fluiden in den Reaktoren deutlich verändern und dadurch eine teure Neuentwicklung des Verfahrens erforderlich machen. Chemische Additive können zu einer unerwünschten Kontamination des Produktes führen und belasten zum Teil die Umwelt. Aus diesen Gründen wird verstärkt nach Möglichkeiten gesucht, die Fouling-Neigung durch Modifizierung der chemischen Reaktoren, Reaktorteile sowie Verarbeitungsmaschinen für chemische Produkte direkt zu senken.Mechanical solutions have the disadvantage that they can cause considerable additional costs. Additional reactor internals can also significantly change the flow profile of fluids in the reactors, making an expensive new development of the process necessary. Chemical additives can lead to an undesirable contamination of the product and sometimes pollute the environment. For these reasons, possibilities are increasingly being sought to directly reduce the tendency to fouling by modifying the chemical reactors, reactor parts and processing machines for chemical products.
Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren zur Oberflächenmodifizierung von Apparaten und Apparateteilen für den chemischen Anlagenbau bereitzustellen,The object of the present invention is therefore to provide a method for the surface modification of apparatuses and apparatus parts for chemical plant construction,
- das einerseits die Neigung der Oberflächen herabsetzt, Feststoffe unter Bildung von Ablagerungen anzulagern, wobei die verfahrensgemäß behandelten Flächen eine gute Haltbarkeit aufweisen sollen, und wobei das erfindungsgemäße Verfahren auch auf schwer zu- gängliche Flächen kostengünstig anwendbar sein soll, und andererseits gewährleistet, dass das oder die Produkte nicht durch Additive kontaminiert werden.- which on the one hand reduces the tendency of the surfaces to deposit solids with the formation of deposits, the surfaces treated according to the method should have a good shelf life, and the method according to the invention should also be inexpensively applicable to surfaces which are difficult to access, and on the other hand ensures that the product or products are not contaminated by additives.
Weiterhin besteht die Aufgabe der vorliegenden Erfindung darin, geschützte Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau bereitzustellen, und schließlich Apparaten und Apparateteilen für den chemischen Anlagenbau zu verwenden.Furthermore, the object of the present invention is to provide protected surfaces of apparatus and apparatus parts for chemical plant construction, and finally to use apparatus and apparatus parts for chemical plant construction.
Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Beschichtung der Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau, dadurch gekennzeichnet, dass man eine Metallschicht oder eine Metall -Polymer -Dispersionsschicht auf dem oder den zu beschichtenden Apparat oder Apparateteilen stromlos abscheidet, indem man die Teile mit einer Metall-Elektrolytlösung kontaktiert, die neben dem Metall-Elektrolyten ein Reduktionsmittel sowie optional das abzuscheidende Polymer oder Polymergemisch in dispergierter Form enthält, wobei mindestens ein Polymer halo- geniert ist.The object of the invention is achieved by a method for coating the surfaces of apparatus and apparatus parts for chemical plant construction, characterized in that a metal layer or a metal-polymer dispersion layer is electrolessly deposited on the apparatus or apparatus parts to be coated by the Parts contacted with a metal electrolyte solution which, in addition to the metal electrolyte, contains a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, at least one polymer being halogenated.
Dieser erfindungsgemäßen Lösung der Aufgabe liegt ein Verfahren zur stromlosen chemischen Abscheidung von Metall-Polymer-Dispersionsschichten zugrunde, das an sich bekannt ist (W. Riedel: Funktionelle Vernickelung, Verlag Eugen Leize, Saulgau, 1989, S. 231 bis 236, ISBN 3-750480-044-x) . Die Abscheidung der Metallschicht oder der Metall-Polymer-Dispersionsphasen dient zur Beschichtung der an sich bekannten Apparate und Apparateteile des chemischen Anlagenbaus. Die erfindungsgemäße Metallschicht um- fasst eine Legierung oder legierungsähnliche Mischphase aus einem Metall und mindestens einem weiteren Element. Die erfindungsgemäß bevorzugten Metall-Polymer-Dispersionsphasen umfassen ein Polymer, im Rahmen der Erfindung ein halogeniertes Polymer, das in der Metall-Schicht dispergiert ist. Bei der Metall-Legierung handelt es sich bevorzugt um eine Metall-Bor-Legierung oder um eine Metall-Phosphor-Legierung mit einem Bor- bzw. Phosphor-Gehalt von 0, 5 bis 15 Gew. -%.This inventive solution to the problem is based on a method for electroless chemical deposition of metal-polymer dispersion layers which is known per se (W. Riedel: Functional Nickel Plating, Verlag Eugen Leize, Saulgau, 1989, pp. 231 to 236, ISBN 3- 750480-044-x). The deposition of the metal layer or the metal-polymer dispersion phases serves to coat the apparatuses and apparatus parts known per se in chemical plant construction. The metal layer according to the invention comprises an alloy or alloy-like mixed phase composed of a metal and at least one further element. The metal-polymer dispersion phases preferred according to the invention comprise a polymer, in the context of the invention a halogenated polymer, which in the metal layer is dispersed. The metal alloy is preferably a metal-boron alloy or a metal-phosphorus alloy with a boron or phosphorus content of 0.5 to 15% by weight.
Bei einer besonders bevorzugten Ausführungsform der erfindungs- gemäßen Beschichtungen handelt es sich um sogenannte "Chemisch Nickel-Systeme", das sind phosphorhaltige Nickellegierungen mit einem Phosphorgehalt von 0,5 bis 15 Gew.-%; ganz besonders bevor- zugt sind phosphorhaltige Nickellegierungen mit 5 bis 12 Gew.-%.A particularly preferred embodiment of the coatings according to the invention is a so-called “chemical nickel system”, that is to say phosphorus-containing nickel alloys with a phosphorus content of 0.5 to 15% by weight; phosphorus-containing nickel alloys with 5 to 12% by weight are very particularly preferred.
Die erfindungsgemäß bevorzugte Metall-Polymer-Dispersionsschicht, die auch als Komposit-Schicht bezeichnet wird, enthält eine Metallkomponente und mindestens ein Polymer, im Rahmen der Erfin- düng mindestens ein halogeniertes Polymer sowie optional weitere Polymere, die in der Metallkomponente dispergiert sind.The metal-polymer dispersion layer preferred according to the invention, which is also referred to as a composite layer, contains a metal component and at least one polymer, in the context of the invention at least one halogenated polymer and optionally further polymers which are dispersed in the metal component.
Im Gegensatz zur galvanischen Abscheidung werden bei einer chemischen oder autokatalytischen Abscheidung die dazu nötigen Elek- tronen nicht durch eine äußere Stromquelle zur Verfügung gestellt, sondern durch chemische Umsetzung im Elektrolyten selbst erzeugt (Oxidation eines Reduktionsmittels) . Die Beschichtung erfolgt beispielsweise durch Eintauchen des Werkstückes in eine Metall-Elektrolytlösung, die man optional zuvor mit einer stabi- lisierten Polymer-Dispersion gemischt hat.In contrast to galvanic deposition, the electrons required for chemical or autocatalytic deposition are not provided by an external power source, but are generated by chemical conversion in the electrolyte itself (oxidation of a reducing agent). The coating takes place, for example, by immersing the workpiece in a metal electrolyte solution, which has optionally been mixed beforehand with a stabilized polymer dispersion.
Als Metall-Elektrolytlösungen werden gewöhnlich handelsübliche oder frisch zubereitete Metall-Elektrolytlösungen verwendet, denen neben dem Elektrolyten noch die folgenden Komponenten zuge- setzt werden: ein Reduktionsmittel wie ein Alkalimetall-Hypo- phosphit oder Boranat (beispielsweise NaBH4) , eine Puffermischung zur Einstellung des pH-Werts; optional einen Aktivator wie beispielsweise ein Alkalimetallfluorid, bevorzugt sind NaF, KF oder LiF; Carbonsäuren sowie optional einen Abscheidungsmoderator wie beispielsweise Pb2+. Dabei wird das Reduktionsmittel so gewählt, dass das entsprechende einzubauende Element im Reduktionsmittel bereits vorhanden ist.Commercially available or freshly prepared metal electrolyte solutions are usually used as metal electrolyte solutions, to which the following components are added in addition to the electrolyte: a reducing agent such as an alkali metal hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH; optionally an activator such as an alkali metal fluoride, preferred are NaF, KF or LiF; Carboxylic acids and optionally a deposition moderator such as Pb 2+ . The reducing agent is selected so that the corresponding element to be installed is already present in the reducing agent.
Das optional zu verwendende halogenierte Polymer des erfindungs- gemäßen Verfahrens ist halogeniert und bevorzugt fluoriert. Beispiele für geeignete fluorierte Polymere sind Polytetrafluor- ethylen, Perfluor-Alkoxy-Polymere (PFA, z.B. mit Ci-Ca -Alkoxyein- heiten) , Copolymerisate von Tetrafluorethylen und Perfluoralkyl- vinylether z.B. Perfluorvinylpropylether . Besonders bevorzugt sind Polytetrafluorethylen (PTFE) und Perfluor-Alkoxy-Polymere (PFA, nach DIN 7728, Teil 1, Jan. 1988). Als Einsatzform werden sinnvollerweise handelsübliche Polytetra- fluorethylen-Dispersionen (PTFE-Dispersionen) verwendet. Bevorzugt werden PTFE-Dispersionen mit einem Feststoffanteil von 35 bis 60 Gew.-% und einem mittleren Partikeldurchmesser von 0,05 bis 1,2 μm, insbesondere 0,1 bis 0,3 μm, eingesetzt. Besonders bevorzugt werden sphärische Partikel eingesetzt, weil die Verwendung sphärischer Partikel zu sehr homogenen Komposit- Schichten führt. Vorteilhaft an der Verwendung sphärischer Partikel ist ein schnelleres Schichtwachstum und eine bessere, ins- besondere längere Thermostabilität der Bäder, was wirtschaftliche Vorteile bietet. Dies zeigt sich besonders deutlich im Vergleich zu Systemen unter Verwendung von irregulären Polymerpartikeln, welche durch Mahlung des entsprechenden Polymers erhalten werden. Außerdem können die verwendeten Dispersionen ein nichtionisches Detergenz (zum Beispiel Polyglykole, Alkylphenolethoxylat oder optional Gemische aus den genannten Stoffen, 80 bis 120 g neutrales Detergenz pro Liter) oder ein ionisches Detergenz (zum Beispiel Alkyl- und Haloalkylsulfonate, Alkylbenzolsulfonate, Alkylphenolethersulfate, Tetraalkylammoniumsalze oder optional Gemische aus den genannten Stoffen, 15 bis 60 g ionisches Detergenz pro Liter) zur Stabilisierung der Dispersion enthalten. Es können zusätzlich auch fluorierte Tenside (neutral und ionisch) zugesetzt werden, wobei typischerweise 1-10 Gew.-%, bezogen auf die Gesamtmenge an Tensid zum Einsatz kommen.The optionally used halogenated polymer of the process according to the invention is halogenated and preferably fluorinated. Examples of suitable fluorinated polymers are polytetrafluoroethylene, perfluoroalkoxy polymers (PFA, for example with Ci-Ca alkoxy units), copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether, for example perfluorovinyl propyl ether. Polytetrafluoroethylene (PTFE) and perfluoroalkoxy polymers (PFA, according to DIN 7728, Part 1, Jan. 1988) are particularly preferred. Commercially available polytetrafluoroethylene dispersions (PTFE dispersions) are usefully used as the form of use. PTFE dispersions with a solids content of 35 to 60% by weight and an average particle diameter of 0.05 to 1.2 μm, in particular 0.1 to 0.3 μm, are preferably used. Spherical particles are particularly preferred because the use of spherical particles leads to very homogeneous composite layers. The advantage of using spherical particles is faster layer growth and better, in particular longer, thermal stability of the baths, which offers economic advantages. This can be seen particularly clearly in comparison to systems using irregular polymer particles which are obtained by grinding the corresponding polymer. In addition, the dispersions used can be a nonionic detergent (for example polyglycols, alkylphenol ethoxylate or optionally mixtures of the substances mentioned, 80 to 120 g of neutral detergent per liter) or an ionic detergent (for example alkyl and haloalkylsulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, tetraalkylammonium salts or optional Mixtures of the substances mentioned, 15 to 60 g of ionic detergent per liter) to stabilize the dispersion. Fluorinated surfactants (neutral and ionic) can also be added, typically 1-10% by weight, based on the total amount of surfactant.
Zur Beschichtung wird bei leicht erhöhter Temperatur gearbeitet, die aber nicht so hoch sein darf, dass es zur Destabilisierung der Dispersion kommt. Als Temperaturen haben sich 40 bis 95°C als geeignet erwiesen. Bevorzugt sind Temperaturen von 80 bis 91°C und besonders bevorzugt ist 88°C.Coating is carried out at a slightly elevated temperature which, however, must not be so high that the dispersion is destabilized. Temperatures of 40 to 95 ° C have proven to be suitable. Temperatures of 80 to 91 ° C. are preferred and 88 ° C. is particularly preferred.
Als Abscheidegeschwindigkeiten haben sich 1 bis 15 μm/h als nützlich erwiesen. Dabei lässt sich die Abscheidegeschwindigkeit wie folgt durch die Zusammensetzung der Tauchbäder beeinflussen:Deposition rates of 1 to 15 μm / h have proven to be useful. The deposition speed can be influenced as follows by the composition of the immersion baths:
Durch höhere Temperaturen wird die Abscheidegeschwindigkeit erhöht, wobei es eine Maximaltemperatur gibt, die beispielsweise durch die Stabilität der optional zugegebenen Polymer- Dispersion begrenzt ist. Durch niedrigere Temperaturen wird die Abscheidegeschwindigkeit gesenkt.The deposition rate is increased by higher temperatures, there being a maximum temperature which is limited, for example, by the stability of the optionally added polymer dispersion. The separation speed is reduced by lower temperatures.
Durch höhere Elektrolytkonzentrationen wird die Abscheidegeschwindigkeit erhöht, durch niedrigere gesenkt; wobei Konzentrationen von 1 g/1 bis 20 g/1 Ni2+ sinnvoll sind, bevorzugt sind Konzentrationen von 4 g/1 bis 10 g/1; für Cu2+ sind 1 g/1 bis 50 g/1 sinnvoll.The deposition rate is increased by higher electrolyte concentrations and reduced by lower ones; where concentrations of 1 g / 1 to 20 g / 1 Ni 2+ are useful, concentrations of 4 g / 1 to 10 g / 1 are preferred; for Cu 2+ 1 g / 1 to 50 g / 1 are advisable.
Durch höhere Konzentrationen an Reduktionsmittel lässt sich die Abscheidegeschwindigkeit ebenfalls erhöhen; Durch Erhöhung des pH-Wertes lässt sich die Abscheidegeschwindigkeit erhöhen. Bevorzugt stellt man einen pH-Wert zwischen 3 und 6, besonders bevorzugt zwischen 4 und 5,5 ein. Zugabe von Aktivatoren wie beispielsweise Alkalifluoriden, beispielsweise NaF oder KF, erhöht die Abscheidegeschwindigkeit .The deposition rate can also be increased by higher concentrations of reducing agent; The deposition rate can be increased by increasing the pH. It is preferred to set a pH between 3 and 6, particularly preferably between 4 and 5.5. Addition of activators such as alkali fluorides, for example NaF or KF, increases the deposition rate.
Besonders bevorzugt werden handelsübliche Nickelelektrolytlösun- gen eingesetzt, die Ni2+, Natriumhypophosph.it, Carbonsäuren und Fluorid und ggf. Abscheidungsmoderatoren wie Pb2+ enthalten. Solche Lösungen werden zum Beispiel von der Riedel, Galvano- und Filtertechnik GmbH, Halle, Westfalen und der Atotech Deutschland GmbH, Berlin vertrieben. Besonders bevorzugt sind Lösungen, die einen pH-Wert um 5 aufweisen und etwa 27 g/1 NiS0-6 H20 und etwa 21 g/1 NaH2P02-H20 bei einem PTFE-Gehalt von 1 bis 25 g/1 enthalten.Commercial nickel electrolyte solutions which contain Ni 2+ , sodium hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ are particularly preferably used. Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech Deutschland GmbH, Berlin. Particularly preferred are solutions which have a pH around 5 and about 27 g / 1 NiS0-6 H 2 0 and about 21 g / 1 NaH 2 P0 2 -H 2 0 with a PTFE content of 1 to 25 g / 1 included.
Der Polymeranteil der Dispersionsbeschichtung wird hauptsächlich durch die Menge der zugesetzten Polymerdispersion und die Wahl der Detergentien beeinflusst. Dabei spielt die Konzentration des Polymers die größere Rolle; hohe Polymerkonzentrationen der Tauchbäder führen zu einem überproportional hohen Polymeranteil in der Metall-Phosphor-Polymer-Dispersionsschicht bzw. Metall- Bor-Polymer-Dispersionsschicht .The polymer content of the dispersion coating is mainly influenced by the amount of polymer dispersion added and the choice of detergents. The concentration of the polymer plays the greater role here; High polymer concentrations in the immersion baths lead to a disproportionately high proportion of polymer in the metal-phosphorus-polymer dispersion layer or metal-boron-polymer dispersion layer.
Zur Kontaktierung werden die zu beschichtenden Teile in Tauchbäder getaucht, die die Metall-Elektrolytlösung enthalten. Eine andere Ausführungsform des erfindungsgemäßen Verfahren besteht darin, dass die zu beschichtenden Behälter mit Metall-Elektrolyt - lösung befüllt werden. Ein weiteres geeignetes Verfahren besteht darin, die Elektrolyt-Lösung durch das zu beschichtende Teil zu pumpen; diese Variante empfiehlt sich insbesondere dann, wenn der Durchmesser des zu beschichtenden Teils viel kleiner ist als die Länge.For contacting, the parts to be coated are immersed in immersion baths that contain the metal electrolyte solution. Another embodiment of the method according to the invention is that the containers to be coated are filled with a metal electrolyte solution. Another suitable method is to pump the electrolyte solution through the part to be coated; this variant is particularly recommended when the diameter of the part to be coated is much smaller than the length.
Vorzugsweise tempert man im Anschluß an den Tauchvorgang bei Temperaturen von 200 bis 400°C, vor allem bei 315 bis 380°C. Die Tem- perungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 60 Minuten.It is preferred to temper after the dipping process at temperatures from 200 to 400 ° C, especially at 315 to 380 ° C. The annealing time is generally 5 minutes to 3 hours, preferably 35 to 60 minutes.
Es wurde gefunden, daß die erfindungsgemäß behandelten Oberflächen einen guten Wärmedurchgang ermöglichen, obwohl die Beschichtungen eine nicht unerhebliche Dicke von 1 bis 100 μm aufweisen können. Bevorzugt sind 3 bis 50 μm, insbesondere 5 bis 25 μm. Der Polymeranteil der Dispersionsbeschichtung beträgt 5 bis 30 Vol.-%, bevorzugt 15 bis 25 Vol.-%. Die erfindungsgemäß behandelten Oberflächen weisen ferner eine exzellente Haltbarkeit auf.It has been found that the surfaces treated according to the invention enable good heat transfer, although the coatings can have a not inconsiderable thickness of 1 to 100 μm. 3 to 50 μm, in particular 5 to 25 μm, are preferred. The polymer content of the dispersion coating is 5 to 30 Vol .-%, preferably 15 to 25 vol .-%. The surfaces treated according to the invention also have excellent durability.
In einer weiteren Ausführungsform enthält die Metall-Polymer-Dis- persionsschicht ein zusätzliches Polymer, um die antihaf tenden Eigenschaften der Beschichtung weiter zu verstärken. Dieses Polymer kann halogeniert oder nichc-halogeniert sein. Besonders bevorzugt ist die Verwendung von Polytetrafluorethylen oder Ethylenpolymerisaten und Ethylencopolymerisaten oder Poly- propylen, wobei ultrahochmolekulares Polyethylen (UHM-PE) ganz besonders bevorzugt ist. Dabei wird unter UHM-PE ein Polyethylen verstanden, das eine Molmasse Mw von 106 g oder mehr und einem Staudinger-Index von mindestens 15 dl/g, bevorzugt mindestens 20 dl/g hat.In a further embodiment, the metal-polymer dispersion layer contains an additional polymer in order to further reinforce the non-stick properties of the coating. This polymer can be halogenated or non-halogenated. The use of polytetrafluoroethylene or ethylene polymers and ethylene copolymers or polypropylene is particularly preferred, ultra-high molecular weight polyethylene (UHM-PE) being very particularly preferred. UHM-PE is understood to mean a polyethylene which has a molecular weight M w of 10 6 g or more and a Staudinger index of at least 15 dl / g, preferably at least 20 dl / g.
Dieses optional verwendete Polymer gibt man ebenfalls als Dispersion oder Aufschlämmung in einer wässrigen Tensidlösung zu, wobei die Reihenfolge der Zugabe der Dispersionen unkritisch ist. Vorzuziehen ist jedoch eine gleichzeitige Dosierung beider Polymer- dispersionen. Wässrige Dispersionen von UHM-PE sind im Handel erhältlich, beispielsweise von der Firma Clariant GmbH, oder können durch Dispergieren des UHM-PE in einer geeigneten wässrigen Tensidlösung leicht selber hergestellt werden. Geeignet sind neutrale Detergenzien (zum Beispiel Polyglykole, Alkylphenol- ethoxylat oder optional Gemische derselben, 80 bis 120 g neutrales Detergenz pro Liter) , ionische Detergenzien (zum Beispiel Alkyl- und Haloalkylsulfonate, Alkylbenzolsulfonate, Alkylphenol- ethersulfate, Tetraalkylammoniumsalze oder optional Gemische aus den genannten Stoffen, 15 bis 60 g ionisches Detergenz pro Liter) enthalten. Es können zusätzlich auch fluorierte Tenside (neutral oder ionisch) zugesetzt werden, wobei typischerweise 1-10 Gew.-%, bezogen auf die Gesamtmenge an Tensid, zum Einsatz kommen.This optionally used polymer is also added as a dispersion or slurry in an aqueous surfactant solution, the order in which the dispersions are added is not critical. However, it is preferable to meter both polymer dispersions simultaneously. Aqueous dispersions of UHM-PE are commercially available, for example from Clariant GmbH, or can be easily prepared by dispersing the UHM-PE in a suitable aqueous surfactant solution. Neutral detergents (for example polyglycols, alkylphenol ethoxylate or optionally mixtures thereof, 80 to 120 g of neutral detergent per liter), ionic detergents (for example alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, tetraalkylammonium salts or optionally mixtures of the aforementioned) are suitable Substances, 15 to 60 g of ionic detergent per liter). Fluorinated surfactants (neutral or ionic) can also be added, typically 1-10% by weight, based on the total amount of surfactant, being used.
Wichtig ist, dass die Partikel des weiteren, halogenierten oder nicht-halogenierten Polymers gröber sind als die des halogenierten Polymers. So haben sich mittlere Partikeldurchmesser von 5 bis 50 μm als vorteilhaft herausgestellt. Besonders vorteilhaft sind 25-35 μm. Es ist möglich, sind bei der Verwendung des zusätzlichen gröberen Polymers sphärische Partikel, jedoch dürfen die Partikel des zusätzlichen Polymers auch irregulär geformt sein.It is important that the particles of the further halogenated or non-halogenated polymer are coarser than those of the halogenated polymer. Average particle diameters of 5 to 50 μm have been found to be advantageous. 25-35 μm are particularly advantageous. It is possible that spherical particles are used when using the additional coarser polymer, but the particles of the additional polymer may also have an irregular shape.
Wichtig ist, dass die Partikeldurchmesserverteilung der verschiedenen Polymere insgesamt als bimodal zu betrachten ist. Pro Liter der Tauchbadlösung werden 1 bis 20 g, bevorzugt 5 bisIt is important that the particle diameter distribution of the various polymers as a whole is to be regarded as bimodal. 1 to 20 g, preferably 5 to, are used per liter of the immersion bath solution
10 g des gröberen Polymers zugesetzt.10 g of the coarser polymer were added.
Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Ver- fahren zur Herstellung modifizierter, d.h. beschichteter Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau, die besonders haftfest, haltbar und wärmebeständig sind und deshalb die erfindungsgemäße Aufgabe in besonderer Weise lösen.Another object of the present invention is a process for the production of modified, i.e. Coated surfaces of apparatus and apparatus parts for chemical plant construction, which are particularly adhesive, durable and heat-resistant and therefore solve the problem according to the invention in a special way.
Dieses Verfahren ist dadurch gekennzeichnet, dass man vor dem Aufbringen der Metall-Polymer-Dispersionsschicht zusätzlich eine 1 bis 15 μm, bevorzugt 1 bis 5 μm dicke Metall-Phosphor-Schicht durch stromloses chemisches Abscheiden aufbringt.This process is characterized in that, before the metal-polymer dispersion layer is applied, an additional 1 to 15 μm, preferably 1 to 5 μm, thick metal-phosphor layer is applied by electroless chemical deposition.
Das stromlose chemische Aufbringen einer 1 bis 15 μm dicken Metall-Phosphor-Schicht zur Haftverbesserung erfolgt wiederum durch Metall-Elektrolytbäder, denen jedoch in diesem Fall keine stabilisierte Polymer-Dispersion zugesetzt wird. Auf eine Temperung wird zu diesem Zeitpunkt vorzugsweise verzichtet, da diese die Haftfähigkeit der nachfolgenden Metall-Polymer-Dispersionsschicht im Allgemeinen negativ beeinflusst. Nach Abscheidung der Metall- Phosphor-Schicht wird das Werkstück in ein zweites Tauchbad gebracht, das neben dem Metall-Elektrolyt auch eine stabilisierte Polymer-Dispersion umfaßt. Hierbei bildet sich die Metall-Poly- mer-Dispersionsschicht .The electroless chemical application of a 1 to 15 μm thick metal-phosphorus layer to improve adhesion is again carried out by metal electrolyte baths, to which, however, no stabilized polymer dispersion is added in this case. Tempering is preferably dispensed with at this point in time, since this generally has a negative effect on the adhesiveness of the subsequent metal-polymer dispersion layer. After the metal-phosphor layer has been deposited, the workpiece is placed in a second immersion bath which, in addition to the metal electrolyte, also comprises a stabilized polymer dispersion. The metal-polymer dispersion layer forms here.
Dieses Verfahren ist zusätzlich dadurch gekennzeichnet, dass man vor dem Aufbringen der Metall-Polymer-Dispersionsschicht zusätzlich eine 1 bis 15 μm, bevorzugt 1 bis 5 μm dicke Metall-Phosphor- Schicht durch stromloses chemisches Abscheiden aufbringt.This method is additionally characterized in that, before the metal-polymer dispersion layer is applied, an additional 1 to 15 μm, preferably 1 to 5 μm, thick metal-phosphor layer is applied by electroless chemical deposition.
Das stromlose chemische Aufbringen einer 1 bis 15 μm dicken Metall-Phosphor-Schicht zur Haftverbesserung erfolgt durch die schon beschriebenen Metall-Elektrolytbäder, denen jedoch in die- sem Fall keine stabilisierten Polymer-Dispersionen zugesetzt werden. Auf eine Temperung wird zu diesem Zeitpunkt vorzugsweise verzichtet, da diese die Haftfähigkeit der nachfolgenden Metall- Polymer-Dispersionsschicht im allgemeinen negativ beeinflusst. Nach Abscheidung der Metall-Phosphor-Schicht bringt man das Werk- stück in das oben beschriebene Tauchbad, das neben dem Metall- Elektrolyt auch eine stabilisierte Polymer-Dispersion enthält. Hierbei bildet sich die Metall-Polymer-Dispersionsschicht.The electroless chemical application of a 1 to 15 μm thick metal-phosphor layer to improve the adhesion takes place through the already described metal electrolyte baths, to which, however, no stabilized polymer dispersions are added in this case. Tempering is preferably dispensed with at this point in time, since this generally has a negative effect on the adhesiveness of the subsequent metal-polymer dispersion layer. After the metal-phosphor layer has been deposited, the workpiece is placed in the immersion bath described above, which in addition to the metal electrolyte also contains a stabilized polymer dispersion. This forms the metal-polymer dispersion layer.
Wenn diejenige Ausführungsform gewählt wird, die die zusätzliche Verwendung eines nicht-halogenierten Polymeren vorsieht, wird auf eine Temperung der fertigen Beschichtung vorzugsweise verzichtet. In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren handelt es sich bei der zusätzlichen Metall-Phosphor- Schicht um Nickel-Phosphor oder Kupfer-Phosphor, wobei Nickel- Phosphor besonders bevorzugt ist.If the embodiment is chosen which provides for the additional use of a non-halogenated polymer, the finished coating is preferably not tempered. In a preferred embodiment of the method according to the invention, the additional metal-phosphor layer is nickel-phosphorus or copper-phosphorus, with nickel-phosphorus being particularly preferred.
Das erfindungsgemäße Verfahren lässt sich aufgrund seiner einfachen Handhabung an allen von Ablagerungen bedrohten Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau anwenden, wobei die Flächen bevorzugt Oberflächen aus Metall, be- sonders bevorzugt aus Stahl, sind.Because of its simple handling, the method according to the invention can be used on all surfaces of apparatus and apparatus parts for chemical plant construction threatened by deposits, the surfaces preferably being surfaces made of metal, particularly preferably made of steel.
Behälter- und Apparatewandungen können in verschiedenen Behältern, Apparaten oder Reaktoren, die zu chemischen Reaktionen dienen, vorhanden sein.Container and apparatus walls can be present in various containers, apparatus or reactors that are used for chemical reactions.
Bei Behältern handelt es sich beispielsweise um Vorlage- oder Sammelbehälter wie beispielsweise Wannen, Silos, Tanks, Fässern, Trommeln oder Gasbehälter.Containers are, for example, receptacles or collecting containers such as tubs, silos, tanks, drums, drums or gas containers.
- Bei den Apparaten und Reaktoren handelt es sich um Flüssig-, Gas/Flüssig-, Flüssig/Flüssig-, Fest/Flüssig-, Gas/Fest- oder Gasreaktoren, die beispielsweise in folgenden Möglichkeiten realisiert sind:- The apparatus and reactors are liquid, gas / liquid, liquid / liquid, solid / liquid, gas / solid or gas reactors, which are implemented in the following ways, for example:
- Rühr-, Strahlschlaufen- und Strahldüsenreaktoren,- stirring, jet loop and jet nozzle reactors,
Strahlpumpen,Jet pumps,
Verweilzeitzellen, statische Mischer,Dwell cells, static mixers,
Rührkolonnen, - Rohrreaktoren,Stirred columns, tubular reactors,
Zylinderrührer,Cylinder stirrer,
Blasensäulen,Bubble columns,
Strahl- und Venturiwäscher,Jet and venturi washer,
Festbettreaktoren, - Reaktionskolonnen,Fixed bed reactors, reaction columns,
Verdampfer,Evaporator,
Drehscheibenreaktoren,Turntable reactors,
Extraktionskolonnen,Extraction columns,
Knet- und Mischreaktoren und Extruder, - Mühlen,Kneading and mixing reactors and extruders, mills,
Bandreaktoren,Belt reactors,
Drehrohren oder zirkulierende Wirbelschichten; Bei Austragsvorrichtungen handelt es sich beispielsweise um Austragsstutzen, Austragstrichter, Austragsrohre, Ventilen, Austragshähne oder AuswurfVorrichtungen handeln.Rotary tubes or circulating fluidized beds; Discharge devices are, for example, discharge nozzles, discharge funnels, discharge pipes, valves, discharge taps or discharge devices.
- Bei Armaturen handelt es sich beispielsweise um Hähne, Ventile, Schieber, Berstscheiben, Rückschlagklappen oder Scheiben.- Faucets are, for example, taps, valves, slides, rupture disks, non-return flaps or disks.
Bei Pumpen handelt es sich beispielsweise um Kreisel-, Zahn- rad-, Schraubenspindel-, Exzenterschnecken-, Kreiskolben-, Hubkolben-, Membran-, Schneckentrog-, oder Strahlflüssigkeitspumpen handeln, außerdem um Hubkolben-, Hubkolben-Membran-, Drehkolben-, Drehschieber-, Flüssigkeitsring-, Wälz- kolben-, Flüssigkeitsring- oder Treibmittelvakuumpumpen.Pumps are, for example, centrifugal, gear, screw, eccentric screw, rotary lobe, reciprocating, diaphragm, screw trough, or jet liquid pumps, as well as reciprocating, reciprocating diaphragm, rotary lobe, Rotary vane, liquid ring, roller piston, liquid ring or propellant vacuum pumps.
Bei Filterapparaten handelt es sich beispielsweise um Fluid- filter, Festbettfilter, Gasfilter, Siebe oder Abscheider.Filter devices are, for example, fluid filters, fixed bed filters, gas filters, sieves or separators.
Bei Verdichtern handelt es sich beispielsweise um Hubkolben-, Hubkolben-Membran-, Drehkolben-, Drehschieber-, Flüssigkeits- ring-, Rotations-, Roots-, Schrauben-, Strahl- oder Turboverdichter.Compressors are, for example, reciprocating, reciprocating diaphragm, rotary lobe, rotary slide, liquid ring, rotary, Roots, screw, jet or turbo compressors.
Bei Zentrifugen handelt es sich beispielsweise um Zentrifugen mit Siebmantel oder Vollmantel, wobei Teller-, Vollmantel - Schnecken- (Dekanter) , Siebschnecken- und Schubzentrifugen bevorzugt sind.Centrifuges are, for example, centrifuges with a screen jacket or a full jacket, with plate, full jacket - screw (decanters), screen screw and pusher centrifuges being preferred.
Bei Kolonnen handelt es sich um Behälter mit Austauschböden, wobei Glocken-, Ventil- oder Siebböden bevorzugt sind. Außerdem können die Kolonnen mit unterschiedlichen Füllkörpern wie beispielsweise Sattelkörpern, Raschigringen oder Kugeln befüllt sein.Columns are containers with exchange trays, with bell, valve or sieve trays being preferred. In addition, the columns can be filled with different packing such as saddle packing, Raschig rings or balls.
- Bei Zerkleinerungsmaschinen handelt es sich beispielsweise um- Crushing machines are, for example
Brecher, wobei Hammer-, Prall-, Walzen- oder Backenbrecher bevorzugt sind; oder um Mühlen, wobei Hammer-, Schlagkorb-, Stift-, Prall-, Rohr-, Trommel-, Kugel-, Schwing-, Walzenmühlen bevorzugt sind.Crushers, with hammer, impact, roller or jaw crushers being preferred; or around mills, with hammer, impact basket, pin, impact, tube, drum, ball, vibrating, roller mills being preferred.
Bei Einbauten in Reaktoren und Behältern handelt es sich beispielsweise um Thermohülsen, Stromstörer, Schaumzerstörer, Füllkörper, Abstandhalter, Zentriereinrichtungen, Flanschverbindungen, statische Mischer, zur Analytik die- nende Instrumente wie pH- oder IR-Sonden, Leitfähigkeitsmessinstrumente, Standmessungsgeräte oder Schaumsonden.Installations in reactors and vessels are, for example, thermal sleeves, baffles, foam destroyers, fillers, spacers, centering devices, flange connections, static mixers, for analysis. instruments such as pH or IR probes, conductivity measuring instruments, level measuring devices or foam probes.
Bei Extruderelementen handelt es sich beispielsweise um Schneckenwellen, -elementen, Extruderzylinder, Plastifizier- schnecken oder Einspritzdüsen.Extruder elements are, for example, screw shafts, elements, extruder cylinders, plasticizing screws or injection nozzles.
Ein weiterer Gegenstand der Erfindung sind durch das erfindungs- gemäße Verfahren zur Oberflächenmodifizierung erhältliche Appa- rate und Apparateteile für den chemischen Anlagenbau. Vorzugsweise erfolgt die Herstellung der erfindungsgemäßen Oberflächen durch Anwendung des erfindungsgemäßen Verfahrens.The invention furthermore relates to apparatuses and apparatus parts for chemical plant construction which are obtainable by the inventive method for surface modification. The surfaces according to the invention are preferably produced by using the method according to the invention.
Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Oberflächenmodifikation zur Verringerung der Neigung der beschichteten Flächen, Feststoffe unter Bildung von Ablagerungen anzulagern. Die Ablagerungen, deren Bildung erfindungsgemäß verhindert wird, sind bereits beschrieben worden.Another object of the invention is the use of the surface modification according to the invention to reduce the tendency of the coated surfaces to deposit solids with the formation of deposits. The deposits, the formation of which is prevented according to the invention, have already been described.
Ein weiterer Gegenstand der Erfindung sind beschichtete Apparate und Apparateteile für den chemischen Anlagenbau. Die erfindungs- gemäßen Reaktoren, Reaktorteile und Verarbeitungsmaschinen für chemische Produkte für zeichnen sich durch eine höhere Standzeit, verringerte Abschaltquoten sowie reduzierten Reinigungsaufwand aus.Another object of the invention are coated apparatus and apparatus parts for chemical plant construction. The reactors, reactor parts and processing machines for chemical products according to the invention are distinguished by a longer service life, reduced shutdown rates and reduced cleaning effort.
Die erfindungsgemäßen Reaktoren können für zahlreiche verschiedenartige Reaktionen verwendet werden, wie beispielsweise Polymerisationen, Synthesen von Massen- oder Feinchemikalien oder phar- mazeutischen Produkten und ihren Vorstufen sowie Crackreaktionen. Die Verfahren sind kontinuierlich, halbkontinuierlich oder satzweise, wobei sich die Verwendung der erfindungsgemäßen Apparate und Apparateteile für den chemischen Anlagenbau in kontinuierlich betriebenen Verfahren besonders anbietet.The reactors according to the invention can be used for numerous different reactions, such as polymerizations, syntheses of bulk or fine chemicals or pharmaceutical products and their precursors, as well as cracking reactions. The processes are continuous, semi-continuous or batchwise, with the use of the apparatuses and apparatus parts according to the invention for chemical plant construction being particularly suitable in continuously operated processes.
Die Erfindung soll anhand eines Arbeitsbeispiels erläutert werden.The invention will be explained using a working example.
Arbeitsbeispiel:Working example:
Bei Versuchen zur Verfahrensoptimierung der Styropor®-Herstellung (nach EP-A 0 575 872) im Labormaßstab (41-Rührkessel) wurden parallel zu nicht-beschichteten V2A-Stählen Stähle mit einer erfindungsgemäß modifizierten Oberfläche verwendet. Zur Beschichtung wurde wie folgt vorgegangen:In tests for process optimization of the Styropor ® production (according to EP-A 0 575 872) on a laboratory scale (41 stirred kettle), steels with a surface modified according to the invention were used in parallel with non-coated V2A steels. The coating procedure was as follows:
1. Beschichtung mit Nickel-PTFE1. Coating with nickel PTFE
Die Beschichtung erfolgte in 2 Stufen. Zunächst wurde mehrere Teile des Autoklaven ausgebaut: Rührer, Thermohülsen, Strom- störer, Deckel sowie Teile der Reaktorinnenseite. Diese Teile wurden bei einer Temperatur von 88°C in eine Wanne getaucht, die 2 Liter einer wässrigen Nickelsalzlösung enthielt, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/1 NiS0-6 H20, 21 g/1 NaH2P02-2H20, 20 g/1 Milchsäure CH3CHOHC02H, 3 g/1 Propionsäure C2H5CO2H, 5 g/1 Na-Citrat, 1 g/1 NaF. Der pH-Wert betrug 4,8. Es wurde 45 Minuten gearbeitet, um die gewünschte Schichtdicke von 9 μm zu erhalten.The coating was carried out in two stages. First, several parts of the autoclave were removed: stirrer, thermowells, baffles, covers and parts of the inside of the reactor. These parts were immersed at a temperature of 88 ° C in a tub containing 2 liters of an aqueous nickel salt solution, the solution having the following composition: 27 g / 1 NiS0-6 H 2 0, 21 g / 1 NaH 2 P0 2 -2H 2 0, 20 g / 1 lactic acid CH 3 CHOHC0 2 H, 3 g / 1 propionic acid C 2 H 5 CO 2 H, 5 g / 1 Na citrate, 1 g / 1 NaF. The pH was 4.8. It was worked for 45 minutes in order to obtain the desired layer thickness of 9 μm.
Nach diesem Schritt wurde nicht gespült.No rinsing was carried out after this step.
Anschließend wurden die Reaktorteile in eine zweite Wanne getaucht, der neben 2 Litern einer analogen Nickelsalzlösung zusätzlich mit 20 ml, das ist 1 Vol.-% einer PTFE-Dispersion mit einer Dichte von 1,5 g/ml versetzt worden war. Diese PTFE-Dispersion enthielt 50 Gew.-% Feststoff. Bei einer Abscheidegeschwindigkeit von 10 μm/h war der Prozess in 90 Minuten beendet (Schichtdicke 15 μm) . Die beschichteten Reak- torteile wurden mit Wasser gespült, getrocknet und bei 350°C eine Stunde lang getempert.The reactor parts were then immersed in a second trough to which, in addition to 2 liters of an analog nickel salt solution, an additional 20 ml, ie 1% by volume, of a PTFE dispersion having a density of 1.5 g / ml had been added. This PTFE dispersion contained 50% by weight solids. At a deposition speed of 10 μm / h, the process was completed in 90 minutes (layer thickness 15 μm). The coated reactor parts were rinsed with water, dried and annealed at 350 ° C. for one hour.
2. Beschichtung mit Nickel-PTFE/UHM-PE2. Coating with nickel-PTFE / UHM-PE
Die Beschichtung erfolgte in 2 Stufen. Zunächst wurde mehrere Teile des Autoklaven ausgebaut: Rührer, Thermohülsen, Strom- störer, Deckel sowie Teile der Reaktorinnenseite. Diese Teile wurden bei einer Temperatur von 88°C in eine Wanne getaucht, die 2 Liter einer wässrigen Nickelsalzlösung enthielt, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/1 NiS0-6 H20, 21 g/1 NaH2P02-2H20, 20 g/1 Milchsäure CH3CHOHC02H, 3 g/1 Propionsäure C2H5C02H, 5 g/1 Na-Citrat, 1 g/1 NaF. Der pH-Wert betrug 4,8. Es wurde 45 Minuten gearbeitet, um die gewünschte Schichtdicke von 9 μm zu erhalten.The coating was carried out in two stages. First, several parts of the autoclave were removed: stirrer, thermowells, baffles, covers and parts of the inside of the reactor. These parts were immersed at a temperature of 88 ° C in a tub containing 2 liters of an aqueous nickel salt solution, the solution having the following composition: 27 g / 1 NiS0-6 H 2 0, 21 g / 1 NaH 2 P0 2 -2H 2 0, 20 g / 1 lactic acid CH 3 CHOHC0 2 H, 3 g / 1 propionic acid C 2 H 5 C0 2 H, 5 g / 1 Na citrate, 1 g / 1 NaF. The pH was 4.8. It was worked for 45 minutes in order to obtain the desired layer thickness of 9 μm.
Nach diesem Schritt wurde nicht gespült.No rinsing was carried out after this step.
Anschließend wurden die Reaktorteile in eine zweite Wanne getaucht, der neben 2 Litern einer analogen Nickelsalzlösung zusätzlich mit 20 ml, das ist 1 Vol.-% einer PTFE-Dispersion mit einer Dichte von 1,5 g/ml versetzt worden war; weiterhin wurden 7 g/1 UHM-PE (Clariant AG) zugegeben. Diese PTFE/UHM- PE-Dispersion enthielt 50 Gew.-% Feststoff. Bei einer Abscheidegeschwindigkeit von 10 μm/h war der Prozess in 90 Minuten beendet (Schichtdicke 15 μm) . Die beschichteten Reaktorteile wurden mit Wasser gespült und bei Zimmertemperatur getrocknet. Auf die Temperung wurde verzichtet.The reactor parts were then immersed in a second trough, to which, in addition to 2 liters of an analog nickel salt solution, 20 ml, ie 1% by volume, of a PTFE dispersion having a density of 1.5 g / ml had been added; further 7 g / 1 UHM-PE (Clariant AG) were added. This PTFE / UHM PE dispersion contained 50% by weight solids. At a deposition speed of 10 μm / h, the process was completed in 90 minutes (layer thickness 15 μm). The coated reactor parts were rinsed with water and dried at room temperature. The tempering was dispensed with.
Die Reaktorteile wurden in einen Testautoklaven für die Styropor- Herstellung eingebaut. Damit enthielt der Rührkessel sowohl beschichtete als auch unbeschichtete Teile, die in Polymerisations - versuchen unter identischen Bedingungen getestet werden konnten. Nach einem Verfahren, das sich an das in EP-B 0 575 872 (S. 5, Zeile 8 ff.) beschriebenen Verfahren anlehnt, wurde wie folgt polymerisiert :The reactor parts were installed in a test autoclave for the production of polystyrene. The stirred kettle thus contained both coated and uncoated parts that could be tested in polymerisation tests under identical conditions. According to a process which is based on the process described in EP-B 0 575 872 (p. 5, lines 8 ff.), The polymerization was carried out as follows:
2,61 g NaP20 wurden bei Zimmertemperatur in 89,7 ml Wasser gelöst. Unter Rühren wurde zu dieser Lösung eine Lösung von 4,89 g MgS04-7 H20 in 44,8 ml Wasser gegeben und weitere 5 Minuten gerührt.2.61 g of NaP 2 0 were dissolved in 89.7 ml of water at room temperature. A solution of 4.89 g of MgSO 4 - 7 H 2 O in 44.8 ml of water was added to this solution with stirring and the mixture was stirred for a further 5 minutes.
In dem Rührkessel, der die oben beschriebenen beschichteten Einbauten enthielt, wurden 1,4 1 Wasser vorgelegt und unter Rühren die a4P2θ7-MgSθ4-Lösung gegeben. Anschließend wurden 1523 ml Styrol (frisch destilliert) zusammen mit 4,23 g Dicumylperoxid und 2,26 g Dibenzoylperoxid zugegeben. In der organischen Phase wurden weiterhin 0,55 g -Methylstyrol und 1,7 g Luwax® unter Rühren gelöst. Es wurde mit Stickstoff gesättigt und innerhalb von 2 Stunden auf 90°C erhitzt. 2 Stunden nach Überschreiten der 80°C-Schwelle wurden 0,23 g einer 40-Gew. -%igen Lösung von Mersolat® K30 zusammen mit 0,18 g einer 20-Gew. -%igen wässrigen Natronlauge sowie 0,12 g Acrylsäure (100%) zugegeben, weitere 50 Minuten darauf wurden 123,5 g n-Heptan zugegeben. Währenddessen wurde die Temperatur konstant auf 90°C gehalten und die Suspension auspolymerisiert .1.4 l of water were placed in the stirred kettle which contained the coated internals described above, and the a 4 P 2 θ 7 -MgSθ 4 solution was added with stirring. Then 1523 ml of styrene (freshly distilled) were added together with 4.23 g of dicumyl peroxide and 2.26 g of dibenzoyl peroxide. 0.55 g of methylstyrene and 1.7 g of Luwax® were also dissolved in the organic phase with stirring. It was saturated with nitrogen and heated to 90 ° C. within 2 hours. 2 hours after the 80 ° C. threshold was exceeded, 0.23 g of a 40 wt. -% solution of Mersolat® K30 together with 0.18 g of a 20 wt. % aqueous sodium hydroxide solution and 0.12 g of acrylic acid (100%) were added, and a further 50 minutes were added to 123.5 g of n-heptane. In the meantime, the temperature was kept constant at 90 ° C. and the suspension was polymerized.
Nach insgesamt 20 Stunden wurde die Reaktion beendet, und innerhalb von 1 Stunde auf Zimmertemperatur abgekühlt und der Rührkessel entleert.The reaction was terminated after a total of 20 hours, and the mixture was cooled to room temperature within 1 hour and the stirred kettle was emptied.
Die Inspektion des Rührkessels ergab, dass an allen mit der erfindungsgemäßen Beschichtung beschichteten Stellen ein deutlich geringerer Polymer-Belag zu erkennen war als an unbeschichteten Stellen. Die Polymer-Beläge an mit einer erfindungsgemäßen Beschichtung beschichteten Stellen ließen sich leichter entfernen als die Beläge an unbeschichteten Stellen. Die Auswertung findet sich in Tabelle 1. Teilweise konnte der Belag an mit einer erfindungsgemäßen Be- schichtung beschichteten Stellen manuell abgerieben werden. Wenn der Belag an mit einer erfindungsgemäßen Beschichtung beschichteten Stellen durch Auflösen in Toluol oder einem anderem geeigneten Lösungsmittel entfernt werden musste, waren die Lösungszeiten deutlich kürzer als bei Belägen an nicht beschichteten Stellen.The inspection of the stirred tank showed that at all points coated with the coating according to the invention a significantly lower polymer coating could be seen than at uncoated points. The polymer coverings at locations coated with a coating according to the invention were easier to remove than the coverings at uncoated locations. The evaluation can be found in Table 1. In some cases, the covering could be rubbed off manually at locations coated with a coating according to the invention. If the coating on areas coated with a coating according to the invention had to be removed by dissolving in toluene or another suitable solvent, the dissolution times were significantly shorter than for coatings on non-coated areas.
Zur Auswertung wurden die Beläge an Stromstörern und an Rührern ausgewogen.The deposits on baffles and stirrers were weighed out for evaluation.
1 Stromstörer wurde nicht beschichtet,1 baffle was not coated,
Leergewicht: 61,51 g unbeschichtet 1 Stromstörer wurde nach dem erfindungsgemäßen Verfahren mit Ni-PTFE beschichtetEmpty weight: 61.51 g uncoated 1 baffle was coated with Ni-PTFE using the method according to the invention
Leergewicht: 60,78 g beschichtet, 1 Stromstörer wurde nach dem erfindungsgemäßen Verfahren mit Ni-PTFE/UHM-PE beschichtetEmpty weight: 60.78 g coated, 1 baffle was coated with Ni-PTFE / UHM-PE according to the inventive method
Leergewicht: 62,04g beschichtet Die Polymerisationsbeispiele wurden wiederholt, jeweils 1 Versuch mit einem Rührer unbeschichtet und 1 Versuch mit einem Rührer mit einer erfindungsgemäßen Beschichtung beschichtetEmpty weight: 62.04 g coated The polymerization examples were repeated, in each case 1 test with a stirrer uncoated and 1 test with a stirrer coated with a coating according to the invention
Leergewicht: 490,52g unbeschichtet Leergewicht: 493,28g beschichtetEmpty weight: 490.52g uncoated Empty weight: 493.28g coated
Die Rührerdrehzahlen gehen aus Tabelle 1 hervor.The stirrer speeds are shown in Table 1.
Tabelle 1Table 1
n.b. nicht bestimmt nb not determined
Ebenfalls wurden bei grundlegenden Versuchen zur Verfahrensoptimierung der Terluran-Herstellung im Labormaßstab (41-Autoklav) parallel zu V2A-Stählen Stähle mit einer modifizierten Oberfläche durch eine erfindungsgemäße Beschichtung verwendet. Die Polymerisationsbeispiele wurden in Anlehnung an DE-A 197 28 629 und EP-A 0 062 901, jeweils Beispiel 1, durchgeführt, jedoch wurden die Mengenverhältnisse an den 2-Liter-Autoklaven angepasst und die Rührerdrehzahl gemäß Tabelle 2 variiert.Likewise, in basic experiments for process optimization of the production of terlurane on a laboratory scale (41-autoclave), steels with a modified surface by a coating according to the invention were used in parallel with V2A steels. The polymerization examples were carried out based on DE-A 197 28 629 and EP-A 0 062 901, in each case Example 1, but the proportions of the 2-liter autoclave were adjusted and the stirrer speed varied according to Table 2.
Ausgehend von insgesamt 661,61 g Butadien wurde in Gegenwart von 6,59 g tert.-Dodecylmercaptan ( "TDM" ) , 4,6 g Kaliumstearat, 1,23 g Kaliumpersulfat, 1,99 g Natriumhydrogencarbonat und 824 g Wasser bei 67°C polymerisiert . Anschließend wurde der Reaktor entleert und inspiziert.Starting from a total of 661.61 g of butadiene in the presence of 6.59 g of tert-dodecyl mercaptan ("TDM"), 4.6 g of potassium stearate, 1.23 g of potassium persulfate, 1.99 g of sodium hydrogen carbonate and 824 g of water at 67 ° C polymerizes. The reactor was then emptied and inspected.
Beschichtet wurde der Rührer. Wieder konnte beobachtet werden, dass Beläge an nach dem erfindungsgemäßen Verfahren beschichteten Stellen deutlich reduziert auftraten und sich einfacher entfernen ließen als an unbeschichteten Stellen.The stirrer was coated. Again, it was observed that deposits were significantly reduced in areas coated by the process according to the invention and were easier to remove than in uncoated areas.
Ausgewogen wurden Beläge an den Rührern.Pads on the stirrers were weighed out.
3 Versuche wurden reproduziert, jeweils 1 Versuch mit einem Rührer unbeschichtet und3 experiments were reproduced, 1 experiment with an uncoated stirrer and
1 Versuch mit einem Rührer Ni-P-PTFE beschichtet1 experiment coated with a stirrer Ni-P-PTFE
Leergewicht: 376,53g unbeschichtetEmpty weight: 376.53g uncoated
Leergewicht: 378,49g beschichtetEmpty weight: 378.49g coated
mit sonst gleichen Reaktions- und Verfahrensbedingungen.with otherwise identical reaction and process conditions.
Tabelle 2:Table 2:

Claims

Patentansprüche claims
1. Verfahren zur Beschichtung von Apparaten und Apparateteilen für den chemischen Anlagenbau, dadurch gekennzeichnet, dass man eine Metallschicht oder eine Metall -Polymer -Dispersions - Schicht auf dem oder den zu beschichtenden Apparaten oder Apparateteilen stromlos abscheidet, indem man die Teile mit einer Metall-Elektrolytlösung kontaktiert, die neben dem Metall -Elektrolyten ein Reduktionsmittel sowie optional das abzuscheidende Polymer oder Polymergemisch in dispergierter Form enthält, wobei mindestens ein Polymer halogeniert ist.1. Process for coating apparatus and apparatus parts for chemical plant construction, characterized in that a metal layer or a metal-polymer dispersion layer is electrolessly deposited on the apparatus or apparatus parts to be coated by the parts with a metal Contacted electrolyte solution, which in addition to the metal electrolyte contains a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, at least one polymer being halogenated.
2. Verfahren gemäß Anspruch 1, dadurch gekennzeichnet, dass es sich bei den Apparaten und Apparateteilen für den chemischen2. The method according to claim 1, characterized in that it is in the apparatus and apparatus parts for the chemical
Anlagenbau um Apparate-, Behälter- und Reaktorinnenwandungen, Austragsvorrichtungen, Armaturen, Leitungssysteme, Pumpen, Filter, Verdichter, Zentrifugen, Kolonnen, Trockner, Zerkleinerungsmaschinen, Einbauten, Füllkörper und Mischorgane han- delt, die aus einem metallischen Werkstoff bestehen.Plant engineering deals with apparatus, container and reactor inner walls, discharge devices, fittings, piping systems, pumps, filters, compressors, centrifuges, columns, dryers, shredding machines, internals, fillers and mixing elements, which consist of a metallic material.
3. Verfahren gemäß Anspruch 1 und 2, dadurch gekennzeichnet, dass man als Metall-Elektrolyten eine Nickel- oder Kupfer- Elektrolytlösung und als Reduktionsmittel ein Hypophosphit oder ein Boranat verwendet.3. The method according to claim 1 and 2, characterized in that a nickel or copper electrolyte solution is used as the metal electrolyte and a hypophosphite or a boranate is used as the reducing agent.
4. Verfahren gemäß Anspruch 1 bis 3, dadurch gekennzeichnet, dass man der Metall-Elektrolytlösung eine Dispersion eines halogenierten Polymers zusetzt.4. The method according to claim 1 to 3, characterized in that a dispersion of a halogenated polymer is added to the metal electrolyte solution.
5. Verfahren gemäß Anspruch 1 bis 4, dadurch gekennzeichnet, dass man als Metall-Elektrolyt eine Nickelsalz-Lösung einsetzt, die man in situ mit einem Alkalimetallhypophosphit reduziert und der man als halogeniertes Polymer eine Polytetra- fluorethylen-Dispersion zusetzt.5. The method according to claim 1 to 4, characterized in that a nickel salt solution is used as the metal electrolyte, which is reduced in situ with an alkali metal hypophosphite and which is added as a halogenated polymer, a polytetrafluoroethylene dispersion.
6. Verfahren gemäß den Ansprüchen 1 bis 5, dadurch gekennzeichnet, dass man ein halogeniertes Polymer aus Partikeln mit einem mittleren Durchmesser von 0,1 bis 1,0 μm verwendet., 6. The method according to claims 1 to 5, characterized in that one uses a halogenated polymer made of particles with an average diameter of 0.1 to 1.0 microns. ,
7. Verfahren gemäß den Ansprüchen 1 bis 6, dadurch gekennzeichnet, dass man ein halogenierte Polymer aus sphärischen Partikeln mit einem mittleren Durchmesser von 0,1 bis 1,0 μm verwendet. 7. The method according to claims 1 to 6, characterized in that one uses a halogenated polymer made of spherical particles with an average diameter of 0.1 to 1.0 microns.
8. Verfahren gemäß den Ansprüchen 1 bis 7, dadurch gekennzeichnet, dass man eine Nickel-Phosphor-Polytetrafluorethylen- Schicht mit einer Dicke von 1 bis 100 μm abscheidet.8. The method according to claims 1 to 7, characterized in that a nickel-phosphorus-polytetrafluoroethylene layer is deposited with a thickness of 1 to 100 microns.
5 9. Verfahren gemäß den Ansprüchen 1 bis 8, dadurch gekennzeichnet, dass man eine Nickel-Phosphor-Polytetrafluorethylen- Schicht mit einer Dicke von 3 bis 50 μm abscheidet.5 9. The method according to claims 1 to 8, characterized in that a nickel-phosphorus-polytetrafluoroethylene layer is deposited with a thickness of 3 to 50 microns.
10. Verfahren gemäß den Ansprüchen 1 bis 9, dadurch gekennzeich- 10 net, dass man eine Nickel-Phosphor-Polytetrafluorethylen-10. The method according to claims 1 to 9, characterized in that a nickel-phosphorus-polytetrafluoroethylene-
Schicht mit einer Dicke von 5 bis 25 μm abscheidet.Deposits layer with a thickness of 5 to 25 microns.
11. Verfahren gemäß den Ansprüchen 1 bis 10, dadurch gekennzeichnet, dass man der Metall-Elektrolytlösung eine weitere Dis-11. The method according to claims 1 to 10, characterized in that the metal electrolyte solution a further dis-
15 persion eines halogenierten oder nichthalogenierten Polymers zusetzt.15 persion of a halogenated or non-halogenated polymer is added.
12. Verfahren gemäß den Ansprüchen 11, dadurch gekennzeichnet, dass man als zusätzliches Polymer ein Polytetrafluorethylen12. The method according to claims 11, characterized in that a polytetrafluoroethylene as an additional polymer
20 oder Polyethylen oder Polypropylen verwendet.20 or polyethylene or polypropylene used.
13. Verfahren gemäß den Ansprüchen 11 bis 12, dadurch gekennzeichnet, dass man als zusätzliches Polymer ein Polytetra- fluorethylen oder Polyethylen oder Polypropylen aus Partikeln13. The method according to claims 11 to 12, characterized in that a polytetrafluoroethylene or polyethylene or polypropylene of particles as an additional polymer
25 mit einem mittleren Durchmesser von 5 bis 50 μm verwendet.25 used with an average diameter of 5 to 50 microns.
14. Verfahren gemäß den Ansprüchen 1 bis 13, dadurch gekennzeichnet, dass man vor dem Aufbringen der Metall-Polymer-Dispersionsschicht zunächst eine zusätzliche 1 bis 15 μm dicke14. The method according to claims 1 to 13, characterized in that before the application of the metal-polymer dispersion layer, an additional 1 to 15 microns thick
30 Metall-Phosphor-Schicht stromlos chemisch abscheidet.30 Electrolessly electrolessly deposits metal-phosphor layer.
15. Verfahren nach Anspruch 1 bis 14, dadurch gekennzeichnet, dass man als zusätzliche Schicht eine Nickel-Phosphor-Schicht abscheidet.15. The method according to claim 1 to 14, characterized in that a nickel-phosphor layer is deposited as an additional layer.
3535
16. Apparate und Apparateteile für den chemischen Anlagenbau, erhältlich nach dem Verfahren gemäß den Ansprüchen 1 bis 15.16. Apparatus and apparatus parts for chemical plant construction, obtainable by the process according to claims 1 to 15.
17. Apparate-, Behälter- und Reaktorwandungen, Austragsvorrich- 40 tungen, Armaturen, Leitungssysteme, Pumpen, Filter, Verdichter, Zentrifugen, Kolonnen, Trockner, Zerkleinerungsmaschinen, Einbauten, Füllkörper und Mischorgane, erhältlich nach dem Verfahren gemäß den Ansprüchen 1 bis 16.17. Apparatus, container and reactor walls, discharge devices, fittings, line systems, pumps, filters, compressors, centrifuges, columns, dryers, size reduction machines, internals, fillers and mixing elements, obtainable by the process according to claims 1 to 16.
45 18. Verwendung von Apparate-, Behälter- und Reaktorwandungen,45 18. Use of apparatus, container and reactor walls,
Austragsvorrichtungen, Armaturen, Leitungssystemen, Pumpen, Filtern, Verdichtern, Zentrifugen, Kolonnen, Trocknern, Zer- kleinerungsmaschinen, Einbauten, Füllkörper und Mischorgane gemäß den Ansprüchen 18 und 19 zur Vermeidung oder Verringerung von Ablagerungen aus Fiuiden. Discharge devices, fittings, pipe systems, pumps, filters, compressors, centrifuges, columns, dryers, pulverizers reduction machines, internals, packing and mixing elements according to claims 18 and 19 to avoid or reduce deposits from fiuiden.
EP99967007A 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing Expired - Lifetime EP1144723B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19860526A DE19860526A1 (en) 1998-12-30 1998-12-30 Heat exchangers with reduced tendency to form deposits and processes for their production
DE19860526 1998-12-30
PCT/EP1999/010371 WO2000040774A2 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

Publications (3)

Publication Number Publication Date
EP1144723A2 true EP1144723A2 (en) 2001-10-17
EP1144723A3 EP1144723A3 (en) 2002-11-13
EP1144723B1 EP1144723B1 (en) 2003-04-09

Family

ID=7892984

Family Applications (3)

Application Number Title Priority Date Filing Date
EP99965554A Expired - Lifetime EP1144725B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins
EP99964672A Expired - Lifetime EP1144724B1 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same
EP99967007A Expired - Lifetime EP1144723B1 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

Family Applications Before (2)

Application Number Title Priority Date Filing Date
EP99965554A Expired - Lifetime EP1144725B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins
EP99964672A Expired - Lifetime EP1144724B1 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same

Country Status (10)

Country Link
US (3) US6617047B1 (en)
EP (3) EP1144725B1 (en)
JP (3) JP2002534606A (en)
KR (3) KR20010100013A (en)
CN (3) CN1636305A (en)
AT (3) ATE227360T1 (en)
CA (2) CA2358099A1 (en)
DE (4) DE19860526A1 (en)
ES (2) ES2204184T3 (en)
WO (3) WO2000040773A2 (en)

Families Citing this family (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049338A1 (en) * 2000-10-05 2002-04-11 Basf Ag Micro-structured, self-cleaning catalytically-active surface comprises catalytically-active material in the hollows of the micro-structure, used for the production of hydrogenation catalysts in the form of metal foil
JP2004525754A (en) * 2001-01-12 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Surface dirt prevention treatment method
US6887955B2 (en) 2001-08-20 2005-05-03 Basell Polyolefine Gmbh Method for high pressure polymerization of ethylene
DE10241947A1 (en) * 2001-09-14 2003-04-03 Magna Steyr Powertrain Ag & Co Process for surface treating a weakly loaded machine element comprises mechanically working the workpiece and coating the contact zones with a nickel layer having embedded particles of an oscillating damping non-metal
DE10146027B4 (en) * 2001-09-18 2006-07-13 Huppmann Ag Component for a brewery plant and method for producing such components
US20030066632A1 (en) 2001-10-09 2003-04-10 Charles J. Bishop Corrosion-resistant heat exchanger
DE10205442A1 (en) * 2002-02-08 2003-08-21 Basf Ag Hydrophilic composite material
US6887348B2 (en) * 2002-11-27 2005-05-03 Kimberly-Clark Worldwide, Inc. Rolled single ply tissue product having high bulk, softness, and firmness
US6837923B2 (en) * 2003-05-07 2005-01-04 David Crotty Polytetrafluoroethylene dispersion for electroless nickel plating applications
DE10344845A1 (en) * 2003-09-26 2005-04-14 Basf Ag Apparatus for mixing, drying and coating powdered, granular or formed bulk material in a fluidized bed and process for the preparation of supported catalysts using such apparatus
ATE368137T1 (en) * 2004-09-17 2007-08-15 Bernd Terstegen METHOD FOR COATING APPARATUS AND APPARATUS PARTS FOR CHEMICAL PLANT ENGINEERING
KR100753476B1 (en) * 2004-12-10 2007-08-31 주식회사 엘지화학 Coating film for inhibiting cokes formation in ethylene dichloride cracker and method for producing the same
DE102005017327B4 (en) * 2005-04-14 2007-08-30 EKATO Rühr- und Mischtechnik GmbH processing plant
US20080271712A1 (en) * 2005-05-18 2008-11-06 Caterpillar Inc. Carbon deposit resistant component
US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
US20070028588A1 (en) * 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
JP4495054B2 (en) * 2005-09-02 2010-06-30 三菱重工業株式会社 Rotary machine parts and rotary machines
JP4644814B2 (en) * 2006-03-30 2011-03-09 山形県 Method for forming a functional metal film on a metal product having a temperature control function
JP5176337B2 (en) * 2006-05-12 2013-04-03 株式会社デンソー Film structure and method for forming the same
JP5225978B2 (en) * 2007-03-23 2013-07-03 イーグル工業株式会社 Solenoid valve and manufacturing method thereof
DE102008014272A1 (en) * 2008-03-04 2009-09-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Coating for a heat transfer element of a heat transfer device at a side that is turned to a media space with vapor-liquid-phase change, comprises a matrix made of a metallic material, and hydrophobic polymer islands arranged at the matrix
AU2009296789A1 (en) * 2008-09-24 2010-04-01 Earth To Air Systems, Llc Heat transfer refrigerant transport tubing coatings and insulation for a direct exchange geothermal heating/cooling system and tubing spool core size
JP5616764B2 (en) * 2010-11-26 2014-10-29 本田技研工業株式会社 Internal heat exchange type distillation equipment
EP2458030A1 (en) 2010-11-30 2012-05-30 Alfa Laval Corporate AB Method of coating a part of a heat exchanger and heat exchanger
AT511572B1 (en) * 2011-06-01 2013-02-15 Ke Kelit Kunststoffwerk Gmbh COATING INCLUDING NI-P-PTFE IN COMBINATION WITH A POLYMERIC POLYMER
FR3011308B1 (en) * 2013-10-02 2017-01-13 Vallourec Oil & Gas France CONNECTING ELEMENT OF A TUBULAR COMPONENT COATED WITH A COMPOSITE METAL DEPOSITION
GB2551107A (en) * 2016-04-27 2017-12-13 Edwards Ltd Vacuum pump component
US11054199B2 (en) 2019-04-12 2021-07-06 Rheem Manufacturing Company Applying coatings to the interior surfaces of heat exchangers
CN113846318A (en) * 2021-09-16 2021-12-28 一汽解放汽车有限公司 Venturi tube surface treatment method
DE102022108533B4 (en) 2022-04-08 2024-06-20 CSB Chemische Spezialbeschichtungen GmbH Process for the preparation of a chemical NiP electrolyte dispersion with solid particles to be incorporated

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753757A (en) * 1970-05-15 1973-08-21 Union Carbide Corp Two step porous boiling surface formation
US4064914A (en) * 1974-05-08 1977-12-27 Union Carbide Corporation Porous metallic layer and formation
CH623851A5 (en) 1975-10-04 1981-06-30 Akzo Nv
JPS52133321U (en) * 1976-04-06 1977-10-11
CH633586A5 (en) * 1979-09-25 1982-12-15 Fonte Electr Sa Chemical metallising or metal recovery - by contacting hot surface with soln. of metal salt and reducing agent
US4344993A (en) * 1980-09-02 1982-08-17 The Dow Chemical Company Perfluorocarbon-polymeric coatings having low critical surface tensions
DE3114875A1 (en) 1981-04-13 1982-11-04 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING IMPACT-RESISTANT THERMOPLASTIC MOLDING MATERIALS
IT1152230B (en) * 1982-05-31 1986-12-31 Montedison Spa PROCEDURE FOR THE PREPARATION OF LUBRICANT FATS BASED ON POLYTETRAFLUOROETHYLENE AND PERFLUOROPOLYETERS
US4483711A (en) * 1983-06-17 1984-11-20 Omi International Corporation Aqueous electroless nickel plating bath and process
JPS60174454A (en) * 1984-02-21 1985-09-07 Matsushita Electric Ind Co Ltd Heat exchanger for water heating
JPS63280775A (en) * 1987-05-14 1988-11-17 Nippon Paint Co Ltd Coating composition and heat exchanger coated therewith
JPS63293169A (en) * 1987-05-25 1988-11-30 Kurose:Kk Surface treatment of tube sheet of heat exchanger
SU1671740A1 (en) * 1989-10-23 1991-08-23 Казахский Химико-Технологический Институт Electrolyte for depositing composite nickel-fluoropolymer coats
DE4010271A1 (en) 1990-03-30 1991-10-02 Basf Ag METHOD FOR PRODUCING ETHYLENE POLYMERISATS AT PRESSURES ABOVE 500 BAR IN A PIPE REACTOR WITH INJECTION FINGER
JPH04328146A (en) * 1991-04-30 1992-11-17 Kunio Mori Conductive anisotropic pvc material
JPH0517649A (en) * 1991-07-11 1993-01-26 Kunio Mori Conductive, anisotropic pvc material
DE4214173A1 (en) 1992-04-30 1993-11-04 Basf Ag METHOD FOR REMOVING LOW MOLECULAR TOE PRODUCTS IN THE HIGH PRESSURE POLYMERIZATION OF ETHYLENE
DE4220225A1 (en) 1992-06-20 1993-12-23 Basf Ag Process for the production of pearl-shaped expandable styrene polymers
JPH0626786A (en) 1992-07-09 1994-02-04 Nippon Hanetsuku:Kk Heat exchange plate
JPH06108287A (en) 1992-09-30 1994-04-19 Nippon Zeon Co Ltd Heat exchanger
JP2936129B2 (en) * 1995-04-12 1999-08-23 セイコー精機株式会社 Anti-corrosion structure
GB2306510B (en) 1995-11-02 1999-06-23 Univ Surrey Modification of metal surfaces
FI104823B (en) 1996-06-24 2000-04-14 Borealis Polymers Oy Anti-fouling coating
US5930581A (en) * 1996-12-24 1999-07-27 The Dow Chemical Company Method of preparing complex-shaped ceramic-metal composite articles and the products produced thereby
DE19708472C2 (en) 1997-02-20 1999-02-18 Atotech Deutschland Gmbh Manufacturing process for chemical microreactors
DE19728629A1 (en) 1997-07-04 1999-01-07 Basf Ag Thermoplastic molding compounds with low intrinsic color
DE19835467A1 (en) * 1998-08-06 2000-02-17 Elenac Gmbh Solid reactor with antistatic coating for carrying out reactions in the gas phase
US6230498B1 (en) * 1998-10-22 2001-05-15 Inframetrics Inc. Integrated cryocooler assembly with improved compressor performance

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO0040774A2 *

Also Published As

Publication number Publication date
EP1144725B1 (en) 2003-07-16
DE59906313D1 (en) 2003-08-21
JP2002534605A (en) 2002-10-15
DE59903362D1 (en) 2002-12-12
WO2000040775A3 (en) 2000-11-09
JP2002534606A (en) 2002-10-15
ATE237006T1 (en) 2003-04-15
WO2000040773A3 (en) 2000-11-09
EP1144723B1 (en) 2003-04-09
US6513581B1 (en) 2003-02-04
CA2358097A1 (en) 2000-07-13
KR20010100013A (en) 2001-11-09
KR20010103724A (en) 2001-11-23
WO2000040774A3 (en) 2002-09-26
DE59905005D1 (en) 2003-05-15
EP1144724B1 (en) 2002-11-06
DE19860526A1 (en) 2000-07-06
WO2000040773A2 (en) 2000-07-13
ATE227360T1 (en) 2002-11-15
JP2003511551A (en) 2003-03-25
KR20010100009A (en) 2001-11-09
CN1338008A (en) 2002-02-27
ES2197710T3 (en) 2004-01-01
US6617047B1 (en) 2003-09-09
EP1144725A2 (en) 2001-10-17
ES2204184T3 (en) 2004-04-16
CA2358099A1 (en) 2000-07-13
CN1332810A (en) 2002-01-23
US6509103B1 (en) 2003-01-21
CN1636305A (en) 2005-07-06
EP1144723A3 (en) 2002-11-13
WO2000040774A2 (en) 2000-07-13
EP1144724A2 (en) 2001-10-17
ATE245210T1 (en) 2003-08-15
WO2000040775A2 (en) 2000-07-13

Similar Documents

Publication Publication Date Title
EP1144723B1 (en) Method for coating apparatuses and parts of apparatuses used in chemical manufacturing
EP1272686A2 (en) Method for coating apparatuses and parts of apparatuses for the construction of chemical installations
EP0045931B1 (en) Continuous process and apparatus to produce a vinylchloride resin in an aqueous suspension
DE2625149B2 (en) Process and device for the continuous production of vinyl chloride polymers in aqueous emulsion
DE2418284B2 (en) Composition suitable for heat-resistant coatings and process for their production
DE2734369C2 (en) Process for the agglomeration of polytetrafluoroethylene molding powder
DE102006008465A1 (en) Rotatable machine and parts thereof
DE60209224T2 (en) Use of powder paint
DE69732521T2 (en) ULTRASONIC USE FOR MIXING TREATMENT COMPOSITIONS FOR CONTINUOUS HOLES
EP2163300B1 (en) Use of a distribution plate for splitting fluid flows
EP1412104A1 (en) Method for removing deposits from chemical reactors
DE2832617A1 (en) APPARATUS AND METHOD FOR POLYMERIZATION OF VINYL CHLORIDE MONOMERS
DE10057319A1 (en) Use of apparatus with surfaces that are difficult to wet
DE102005022557B4 (en) Liquid phase polymerization process
EP1207189A2 (en) Method for coating apparatus or parts of apparatus
DE19700532A1 (en) Homogeneous dispersion of very fine particles
EP1630251A2 (en) Process for coating apparatus and parts of apparatus used to make chemical plants
DE60009077T2 (en) METHOD FOR SULFONING AND PREVENTING DEPOSITS IN REACTOR TANKS
EP4247869B1 (en) Process for preparing aqueous polymer dispersions in a tubular reactor
WO2003016363A2 (en) Device and method for polymerisation
DE2832628A1 (en) METHOD AND DEVICE FOR POLYMERIZING VINYL CHLORIDE IN SUSPENSION
MXPA01006623A (en) Method for coating apparatuses and parts of apparatuses used in chemical manufacturing
DE168224C (en)
DD242815A1 (en) PROCESS FOR REDUCING DEPOSITS IN THE POLYMERIZATION REACTOR
DE1495515B2 (en) Process for the preparation of aqueous polyvinyl fluoride dispersions

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

17Q First examination report despatched

Effective date: 20020128

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

PUAK Availability of information related to the publication of the international search report

Free format text: ORIGINAL CODE: 0009015

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030409

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

XX Miscellaneous (additional remarks)

Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030709

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1144723E

Country of ref document: IE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031224

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2197710

Country of ref document: ES

Kind code of ref document: T3

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030909

REG Reference to a national code

Ref country code: CH

Ref legal event code: PCAR

Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101229

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20101231

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101230

Year of fee payment: 12

Ref country code: IT

Payment date: 20101222

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110225

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111229

Year of fee payment: 13

Ref country code: FR

Payment date: 20120105

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120126

Year of fee payment: 13

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59905005

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111224

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20120127

Year of fee payment: 13

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20121231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 237006

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121224

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20140307

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121225