EP1144723B1 - Method for coating apparatuses and parts of apparatuses used in chemical manufacturing - Google Patents

Method for coating apparatuses and parts of apparatuses used in chemical manufacturing Download PDF

Info

Publication number
EP1144723B1
EP1144723B1 EP99967007A EP99967007A EP1144723B1 EP 1144723 B1 EP1144723 B1 EP 1144723B1 EP 99967007 A EP99967007 A EP 99967007A EP 99967007 A EP99967007 A EP 99967007A EP 1144723 B1 EP1144723 B1 EP 1144723B1
Authority
EP
European Patent Office
Prior art keywords
metal
polymer
layer
parts
deposited
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99967007A
Other languages
German (de)
French (fr)
Other versions
EP1144723A3 (en
EP1144723A2 (en
Inventor
Stephan Hüffer
Thilo Krebs
Wolfgang Loth
Bernd Rumpf
Jürgen STURM
Bernd Diebold
Jürgen KORKHAUS
Joachim Nilges
Axel Franke
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1144723A2 publication Critical patent/EP1144723A2/en
Publication of EP1144723A3 publication Critical patent/EP1144723A3/en
Application granted granted Critical
Publication of EP1144723B1 publication Critical patent/EP1144723B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for surface coating of apparatuses and apparatus parts for chemical plant construction - these include, for example, apparatus, container and reactor walls, Discharge devices, fittings, pumps, filters, compressors, Centrifuges, columns, dryers, shredding machines, Understand internals, fillers and mixing elements - marked by having a metal layer or a metal-polymer dispersion layer on the one or more to be coated Separate devices or parts of devices without current by pressing the apparatus or parts of the apparatus first a 1 to 15 microns thick Deposits metal-phosphor layer and then with a Contacted metal electrolyte solution next to the metal electrolyte a reducing agent and optionally the one to be separated Contains polymer or polymer mixture in dispersed form, wherein at least one polymer is halogenated and made of spherical particles with an average diameter of 0.1 to 1.0 microns.
  • annealing is optional.
  • Further objects of the invention are surfaces of devices and device parts for the chemical plant construction by the inventive method have been coated, and the use of the coating, containing a metal component, at least one halogenated Polymer and optionally other polymers to reduce the tendency of the coated surfaces, solids from fluids under Build up deposits. Finally, that affects Invention of apparatus and apparatus parts for chemical plant construction, which are coated by the process according to the invention.
  • the coverings can be harmful or hindering in a variety of ways work for the process and lead to necessity, appropriate Shut down reactors or processing machines repeatedly and clean.
  • Measuring devices encrusted with deposits can lead to faulty ones and lead to misleading results due to operating errors may occur.
  • the deposits whose formation is to be prevented act coverings that are caused, for example, by reactions with and can be caused on surfaces. Other reasons are adhesion to surfaces caused by van der Waals forces, Polarization effects or electrostatic double layers caused can be. Stagnation continues to be important effects the movement on the surface and any reactions in the stagnant layers mentioned. Finally, there are: Precipitation from solutions, evaporation residues, cracking on locally hot surfaces as well as microbiological activities.
  • EP-A 0 737 759 describes a coating for the purpose of corrosion protection, which consists of two layers: a Ni-P layer and a Ni-P-PTFE layer. Both the drawings 1A and 1B as pictures 2 to 4 also show rough structures and cracks as well as holes in the coating. Holes can be added of extremely fine PTFE particles, fluorinated graphite, ceramics or the like sealed during the 2nd coating step (column 9, line 1-9). EP-A 0 737 759 gives no information, how fine these additional particles have to be and how to make them. However, the addition of another reagent is cumbersome, in addition, EP-A 0 737 759 does not show how Cracks can be filled. The coating is cracked but, for example, algae growth is possible through which the mode of action the coating can be reduced.
  • the object of the present invention is Protected surfaces of devices and device parts for the chemical plant construction, and finally apparatus and apparatus parts for chemical plant construction.
  • the object of the invention is achieved by a method for Coating the surfaces of apparatus and apparatus parts for chemical plant construction, characterized in that one Metal layer or a metal-polymer dispersion layer on the or the apparatus or apparatus parts to be coated are de-energized deposits by covering the parts with a metal electrolyte solution contacted, in addition to the metal electrolyte, a reducing agent and optionally the polymer or polymer mixture to be deposited contains in dispersed form, with at least one polymer halogenating is.
  • This object of the invention is a method for electroless chemical deposition of metal-polymer dispersion layers which is known per se (W. Riedel: Functional nickel plating, Verlag Eugen Leize, Saulgau, 1989, p. 231 to 236, ISBN 3-750480-044-x).
  • the deposition of the metal layer or the metal-polymer dispersion phases is used for Coating of the known apparatuses and apparatus parts of the chemical plant construction.
  • the metal layer according to the invention comprises an alloy or alloy-like mixed phase from one Metal and at least one other element.
  • the invention preferred metal-polymer dispersion phases comprise a polymer, in the context of the invention a halogenated polymer which in the metal layer is dispersed. Acting in the metal alloy it is preferably a metal-boron alloy or one Metal-phosphorus alloy with a boron or phosphorus content of 0.5 to 15% by weight.
  • Coatings are so-called “chemical Nickel systems” are phosphorus-containing nickel alloys a phosphorus content of 0.5 to 15% by weight; very particularly preferred are phosphorus-containing nickel alloys with 5 to 12 wt .-%.
  • the metal-polymer dispersion layer preferred according to the invention which is also called a composite layer, contains one Metal component and at least one polymer, in the context of the invention at least one halogenated polymer and optionally more Polymers dispersed in the metal component.
  • metal electrolyte solutions commercially available or freshly prepared metal electrolyte solutions are usually used, to which the following components are added in addition to the electrolyte: a reducing agent such as an alkali metal hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH value; optionally an activator such as an alkali metal fluoride, preferred are NaF, KF or LiF; Carboxylic acids and optionally a deposition moderator such as Pb 2+ .
  • a reducing agent such as an alkali metal hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH value
  • an activator such as an alkali metal fluoride, preferred are NaF, KF or LiF
  • Carboxylic acids optionally a deposition moderator such as Pb 2+ .
  • the reducing agent is selected so that the corresponding element to be installed is already present in the reducing agent.
  • the optionally used halogenated polymer of the process according to the invention is halogenated and preferably fluorinated.
  • suitable fluorinated polymers are polytetrafluoroethylene, perfluoroalkoxy polymers (PFA, for example with C 1 -C 8 -alkoxy units), copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether, for example perfluorovinyl propyl ether.
  • PFA perfluoroalkoxy polymers
  • PTFE polytetrafluoroethylene
  • PFA perfluoroalkoxy polymers
  • PTFE dispersions Commercially available polytetrafluoroethylene dispersions are sensibly used (PTFE dispersions) used.
  • Especially spherical particles are preferably used because the Use of spherical particles to form very homogeneous composite layers leads.
  • Advantageous in the use of spherical particles is faster layer growth and better, in particular longer thermal stability of the baths, which is economical Offers advantages. This is particularly evident in the comparison to systems using irregular polymer particles, which are obtained by grinding the corresponding polymer.
  • the dispersions used can be a nonionic Detergent (e.g. polyglycols, alkylphenol ethoxylate or optional mixtures of the substances mentioned, 80 to 120 g neutral Detergent per liter) or an ionic detergent (for Example alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, Alkylphenol ether sulfates, tetraalkylammonium salts or optional Mixtures of these substances, 15 to 60 g of ionic detergent per liter) to stabilize the dispersion. It can also use fluorinated surfactants (neutral and ionic) can be added, typically 1-10% by weight, based on the total amount of surfactant is used.
  • a nonionic Detergent e.g. polyglycols, alkylphenol ethoxylate or optional mixtures of the substances mentioned, 80 to 120 g neutral Detergent per liter
  • an ionic detergent for Example alkyl
  • Coating is carried out at a slightly elevated temperature, but which must not be so high that it destabilizes the dispersion comes. As temperatures have 40 to 95 ° C as proven suitable. Temperatures of 80 to 91 ° C. and 88 ° C. is particularly preferred.
  • Ni 2+ , sodium hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ are particularly preferably used.
  • Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech GmbH, Berlin. Solutions which have a pH around 5 and about 27 g / l NiSO 4 .6H 2 O and about 21 g / l NaH 2 PO 2 .H 2 O with a PTFE content of 1 to 25 g are particularly preferred / l included.
  • the polymer portion of the dispersion coating is mainly by the amount of polymer dispersion added and the choice of detergents.
  • concentration of the Polymers the bigger role; high polymer concentrations of Immersion baths lead to a disproportionately high proportion of polymer in the metal-phosphor polymer dispersion layer or metal-boron polymer dispersion layer.
  • the parts to be coated are placed in immersion baths for contacting immersed which contain the metal electrolyte solution.
  • the annealing time is generally 5 minutes to 3 hours, preferably 35 to 60 minutes.
  • the surfaces treated according to the invention allow good heat transfer, although the coatings have a not inconsiderable thickness of 1 to 100 ⁇ m can. 3 to 50 ⁇ m, in particular 5 to 25 ⁇ m, are preferred.
  • the polymer content of the dispersion coating is 5 to 30 Vol .-%, preferably 15 to 25 vol .-%.
  • the treated according to the invention Surfaces also have excellent durability.
  • the metal-polymer dispersion layer contains an additional polymer in order to further strengthen the non-stick properties of the coating.
  • This polymer can be halogenated or non-halogenated.
  • the use of polytetrafluoroethylene or ethylene polymers and ethylene copolymers or polypropylene is particularly preferred, ultra-high molecular weight polyethylene (UHM-PE) being very particularly preferred.
  • UHM-PE is understood to mean a polyethylene which has a molecular weight M w of 10 6 g or more and a Staudinger index of at least 15 dl / g, preferably at least 20 dl / g.
  • This optionally used polymer is also given as a dispersion or slurry in an aqueous surfactant solution, wherein the order in which the dispersions are added is not critical. Preferable is however a simultaneous metering of both polymer dispersions.
  • Aqueous dispersions of UHM-PE are commercially available, for example from Clariant GmbH, or can by dispersing the UHM-PE in a suitable aqueous Surfactant solution can be easily prepared by yourself.
  • Neutral ones are suitable Detergents (for example polyglycols, alkylphenol ethoxylate or optionally mixtures thereof, 80 to 120 g neutral Detergent per liter), ionic detergents (for example Alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, Tetraalkylammoniumsalze or optionally mixtures from the substances mentioned, 15 to 60 g of ionic detergent per liter) contain.
  • Fluorinated surfactants neutral or ionic
  • the particles are further halogenated or non-halogenated polymers are coarser than those of halogenated Polymer. Average particle diameters of 5 up to 50 ⁇ m was found to be advantageous. Particularly advantageous are 25-35 ⁇ m. It is possible when using the additional coarser polymer spherical particles, however, may the particles of the additional polymer are also irregularly shaped his.
  • Another object of the present invention is a method for the production of modified, i.e. coated surfaces of apparatuses and apparatus parts for chemical plant construction, which are particularly adhesive, durable and heat-resistant and therefore solve the problem of the invention in a special way.
  • This procedure is characterized in that before Application of the metal-polymer dispersion layer additionally one 1 to 15 microns, preferably 1 to 5 microns thick metal-phosphor layer by electroless chemical deposition.
  • Electroless chemical application of a 1 to 15 ⁇ m thick metal-phosphor layer to improve adhesion is done by Metal electrolyte baths, but in this case none stabilized Polymer dispersion is added.
  • For tempering is preferably dispensed with at this time, since this is the Adhesion of the subsequent metal-polymer dispersion layer generally adversely affected.
  • the workpiece is placed in a second immersion bath, which in addition to the metal electrolyte also a stabilized one Includes polymer dispersion. This forms the metal-polymer dispersion layer.
  • This process is also characterized in that before applying the metal-polymer dispersion layer additionally a 1 to 15 ⁇ m, preferably 1 to 5 ⁇ m thick metal-phosphor layer by electroless chemical deposition.
  • Electroless chemical application of a 1 to 15 ⁇ m thick metal-phosphor layer to improve adhesion is done by the already described metal electrolyte baths, but which in this If no stabilized polymer dispersions are added. An annealing is preferred at this time dispenses with this, since this reduces the adherence of the subsequent metal-polymer dispersion layer generally adversely affected.
  • the workpiece is brought in the immersion bath described above, which is next to the metal electrolyte also contains a stabilized polymer dispersion. This forms the metal-polymer dispersion layer.
  • the additional metal-phosphor layer to nickel phosphorus or copper phosphorus is particularly preferred.
  • the method according to the invention can be done on the basis of its simple Handling on all surfaces threatened by deposits of apparatus and apparatus parts for chemical plant construction use, the surfaces preferably surfaces made of metal, especially preferably made of steel.
  • Another object of the invention are the inventive Processes for surface modification of apparatus available and apparatus parts for chemical plant construction.
  • the surfaces according to the invention are produced by using the method according to the invention.
  • Another object of the invention is the use of surface modification according to the invention to reduce the Inclination of the coated surfaces, solids to form To deposit deposits.
  • the deposits, their formation prevented according to the invention have already been described.
  • Another object of the invention is coated apparatus and apparatus parts for chemical plant construction.
  • the invention Reactors, reactor parts and processing machines for chemical products for are characterized by a longer service life, reduced shutdown rates and reduced cleaning effort out.
  • the reactors according to the invention can be used for numerous different types Reactions are used, such as polymerizations, Synthesis of bulk or fine chemicals or pharmaceuticals Products and their precursors as well as crack reactions.
  • the processes are continuous, semi-continuous or batchwise, whereby the use of the apparatuses according to the invention and apparatus parts for chemical plant construction in continuous particularly offers operated procedures.
  • the covering could be coated with a coating according to the invention coated areas are rubbed off manually. If the covering is coated with a coating according to the invention Make by dissolving in toluene or other suitable Solvent had to be removed was the solution times significantly shorter than with coverings in uncoated areas.
  • stirrer speeds are shown in Table 1. attempt Stirrer speed / U / min Covering in places without coating [g] Covering in places with a NiP-PTFE coating [g] stirrer baffles stirrer Baffles without PE Stroner with PE 1 300 nb 4.21 0.43 2 350 nb 5.01 0.87 3a / 3b 375 4.20 - 3.38 2.89 - 1.02 0.48 0.53 0.21 4a / 4b 275 7.26 - 6.31 5.22 - 1.87 0.98 0.68 0.59 5 300 nb 2.14 0.20 6a / 6b 325 4.87 - 3.20 4.25 - 1.72 0.51 0.57 0.32 nb: not determined
  • the polymerization examples were based on DE-A 197 28 629 and EP-A 0 062 901, each Example 1, carried out, however the proportions of the 2 liter autoclave were adjusted and the stirrer speed varies according to Table 2.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemically Coating (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Laminated Bodies (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

The present invention relates to a process for coating apparatuses and apparatus parts for chemical plant construction-which are taken to mean, for example, apparatus, tank and reactor walls, discharge devices, valves, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, packing elements and mixing elements-wherein a metal layer or a metal/polymer dispersion layer is deposited in an electroless manner on the apparatus(es) or apparatus part(s) to be coated by bringing the parts into contact with a metal electrolyte solution which, in addition to the metal electrolyte, comprises a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, where at least one polymer is halogenated.

Description

Die Erfindung betrifft ein Verfahren zur Oberflächenbeschichtung von Apparaten und Apparateteilen für den chemischen Anlagenbau - darunter sind beispielsweise Apparate-, Behälter- und Reaktorwandungen, Austragsvorrichtungen, Armaturen, Pumpen, Filter, Verdichter, Zentrifugen, Kolonnen, Trockner, Zerkleinerungsmaschinen, Einbauten, Füllkörper und Mischorgane zu verstehen - gekennzeichnet dadurch, dass man eine Metallschicht oder eine Metall-Polymer-Dispersionsschicht auf dem oder den zu beschichtenden Apparaten oder Apparateteilen stromlos abscheidet, indem man auf den Apparaten oder Apparateteilen zunächst eine 1 bis 15 µm dicke Metall-Phosphor-Schicht abscheidet und sie anschließend mit einer Metall-Elektrolytlösung kontaktiert, die neben dem Metall-Elektrolyten ein Reduktionsmittel sowie optional das abzuscheidende Polymer oder Polymergemisch in dispergierter Form enthält, wobei mindestens ein Polymer halogeniert ist und aus sphärischen Partikeln mit einem mittleren Durchmesser von 0,1 bis 1,0 µm besteht. Anschließend wird optional getempert. Weitere Gegenstände der Erfindung sind Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau, die durch das erfindungsgemäße Verfahren beschichtet worden sind, und die Verwendung der Beschichtung, enthaltend eine Metallkomponente, mindestens ein halogeniertes Polymer und optional weitere Polymere, zur Verringerung der Neigung der beschichteten Flächen, Feststoffe aus Fluiden unter Bildung von Ablagerungen anzulagern. Schließlich betrifft die Erfindung Apparate und Apparateteilen für den chemischen Anlagenbau, die nach dem erfindungsgemäßen Verfahren beschichtet sind.The invention relates to a method for surface coating of apparatuses and apparatus parts for chemical plant construction - these include, for example, apparatus, container and reactor walls, Discharge devices, fittings, pumps, filters, compressors, Centrifuges, columns, dryers, shredding machines, Understand internals, fillers and mixing elements - marked by having a metal layer or a metal-polymer dispersion layer on the one or more to be coated Separate devices or parts of devices without current by pressing the apparatus or parts of the apparatus first a 1 to 15 microns thick Deposits metal-phosphor layer and then with a Contacted metal electrolyte solution next to the metal electrolyte a reducing agent and optionally the one to be separated Contains polymer or polymer mixture in dispersed form, wherein at least one polymer is halogenated and made of spherical particles with an average diameter of 0.1 to 1.0 microns. Subsequently, annealing is optional. Further objects of the invention are surfaces of devices and device parts for the chemical plant construction by the inventive method have been coated, and the use of the coating, containing a metal component, at least one halogenated Polymer and optionally other polymers to reduce the tendency of the coated surfaces, solids from fluids under Build up deposits. Finally, that affects Invention of apparatus and apparatus parts for chemical plant construction, which are coated by the process according to the invention.

Ablagerungen in Apparaten und Apparateteilen für den chemischen Anlagenbau bedeuten ein ernsthaftes Problem in der chemischen Industrie. Besonders betroffen sind dabei Apparate-, Behälterund Reaktorwandungen, Austragsvorrichtungen, Armaturen, Pumpen, Filter, Verdichter, Zentrifugen, Kolonnen, Trockner, Zerkleinerungsmaschinen, Einbauten, Füllkörper und Mischorgane. Diese Ablagerungen werden auch als Fouling bezeichnet.Deposits in apparatus and apparatus parts for the chemical Plant engineering pose a serious problem in chemical Industry. Apparatus, containers and are particularly affected Reactor walls, discharge devices, fittings, pumps, Filters, compressors, centrifuges, columns, dryers, shredding machines, Internals, packing and mixing elements. This Deposits are also known as fouling.

Dabei können die Beläge auf vielfältige Art schädlich oder hindernd für den Prozess wirken und zur Notwendigkeit führen, entsprechende Reaktoren oder Verarbeitungsmaschinen wiederholt abzuschalten und zu reinigen. The coverings can be harmful or hindering in a variety of ways work for the process and lead to necessity, appropriate Shut down reactors or processing machines repeatedly and clean.

Mit Belägen verkrustete Messeinrichtungen können zu fehlerhaften und irreführenden Ergebnissen führen, durch die Bedienungsfehler auftreten können. Measuring devices encrusted with deposits can lead to faulty ones and lead to misleading results due to operating errors may occur.

Ein weiteres Problem, das durch die Bildung von Ablagerungen entsteht, ist darin begründet, dass insbesondere in Belägen in Polymerisationsreaktoren die molekularen Parameter wie Molekulargewicht oder Vernetzungsgrad deutlich von den Produktspezifikationen abweichen. Wenn sich Ablagerungen während des laufenden Betriebs lösen, können sie das Produkt verunreinigen (z.B. Stippen in Lacken, Einschlüsse in Suspensionsperlen). Unerwünschte Ablagerungen können im Falle von Reaktorwandungen, Füllkörpern oder Mischorganen weiterhin zu einer unerwünschten Veränderung des Verweilzeitprofils der Apparatur führen oder die Wirksamkeit der Einbauten oder Mischorgane als solche beeinträchtigen. Abbrechende grobe Teile von Belägen können zum Verstopfen von Austrags- und Aufarbeitungsvorrichtungen führen, kleine Teile können zu Beeinträchtigungen des produzierten Produktes führen.Another problem that arises from the formation of deposits, is due to the fact that in particular in coatings in polymerization reactors the molecular parameters like molecular weight or degree of cross-linking clearly from the product specifications differ. If deposits build up while running Loosened during operation, they can contaminate the product (e.g. specks in paints, inclusions in suspension pearls). unwanted Deposits can form in the case of reactor walls, packing elements or mixing organs continue to cause an undesirable change of the residence time profile of the equipment or its effectiveness of the internals or mixing elements as such. Crashing coarse parts of coverings can be used to clog discharge and lead reprocessing devices, small parts can lead to impairment of the product produced.

Bei den Ablagerungen, deren Bildung verhindert werden soll, handelt es sich um Beläge, die beispielsweise durch Reaktionen mit und auf Oberflächen verursacht werden kann. Weitere Gründe sind die Adhäsion an Oberflächen, die durch van-der-Waals-Kräfte, Polarisierungseffekte oder elektrostatische Doppelschichten verursacht werden kann. Wichtige Effekte sind weiterhin Stagnation der Bewegung an der Oberfläche und gegebenenfalls Reaktionen in den genannten stagnierenden Schichten. Schließlich sind zu nennen: Niederschläge aus Lösungen, Verdampfungsrückstände, Vercrakkung an lokal heißen Oberflächen sowie mikrobiologische Aktivitäten.The deposits whose formation is to be prevented act coverings that are caused, for example, by reactions with and can be caused on surfaces. Other reasons are adhesion to surfaces caused by van der Waals forces, Polarization effects or electrostatic double layers caused can be. Stagnation continues to be important effects the movement on the surface and any reactions in the stagnant layers mentioned. Finally, there are: Precipitation from solutions, evaporation residues, cracking on locally hot surfaces as well as microbiological activities.

Die Ursachen sind abhängig von den jeweiligen Stoffkombinationen und können alleine oder in Kombination wirksam werden. Während die Vorgänge, wegen derer die unerwünschten Beläge entstehen, recht gut untersucht sind (z.B. A.P. Watkinson und D.I. Wilson, Experimental Thermal Fluid Sci. 1997, 14, 361 und darin zitierte Literatur), gibt es nur wenig einheitliche Konzepte zur Verhinderung der oben beschriebenen Ablagerungen. Die bisher bekannten Verfahren haben technische Nachteile.The causes depend on the respective combinations of substances and can be effective alone or in combination. While the processes that give rise to the undesirable deposits have been studied fairly well (e.g. AP Watkinson and DI Wilson, Experimental Thermal Fluid Sci. 1997, 14 , 361 and the literature cited therein), there are only a few standardized concepts for preventing the above-described deposits. The previously known methods have technical disadvantages.

Mechanische Lösungen haben den Nachteil, dass sie erhebliche Mehrkosten verursachen können. Zusätzliche Reaktoreinbauten können weiterhin das Strömungsprofil von Fluiden in den Reaktoren deutlich verändern und dadurch eine teure Neuentwicklung des Verfahrens erforderlich machen. Chemische Additive können zu einer unerwünschten Kontamination des Produktes führen und belasten zum Teil die Umwelt. Mechanical solutions have the disadvantage that they are significant Can cause additional costs. Additional reactor internals can continue the flow profile of fluids in the reactors change significantly and thereby an expensive new development of the process make necessary. Chemical additives can lead to a unwanted contamination of the product lead to and burden Share the environment.

Aus diesen Gründen wird verstärkt nach Möglichkeiten gesucht, die Fouling-Neigung durch Modifizierung der chemischen Reaktoren, Reaktorteile sowie Verarbeitungsmaschinen für chemische Produkte direkt zu senken.For these reasons, opportunities are increasingly being sought that Tendency to foul by modification of the chemical reactors, Reactor parts and processing machines for chemical products lower directly.

EP-A 0 737 759 beschreibt eine Beschichtung zum Zwecke des Korrosionsschutzes, die aus zwei Schichten besteht: einer Ni-P-Schicht und einer Ni-P-PTFE-Schicht. Sowohl die Zeichnungen 1A und 1B als auch die Aufnahmen 2 bis 4 zeigen grobe Strukturen und Risse sowie Löcher in der Beschichtung. Löcher können durch die Zugabe von extrem feinen PTFE-Partikeln, fluoriertem Graphit, Keramik oder ähnlichem während des 2. Beschichtungsschrittes verschlossen werden (Spalte 9 Zeile 1-9). EP-A 0 737 759 gibt keinen Aufschluss, wie fein diese zusätzlichen Partikel sein müssen und wie man sie herstellt. Die Zugabe eines weiteren Reagenzes ist jedoch umständlich, außerdem wird in EP-A 0 737 759 nicht gezeigt, wie Risse aufgefüllt werden können. In Rissen der Beschichtung ist aber beispielsweise ein Algenwachstum möglich, durch das die Wirkungsweise der Beschichtung verringert werden kann.EP-A 0 737 759 describes a coating for the purpose of corrosion protection, which consists of two layers: a Ni-P layer and a Ni-P-PTFE layer. Both the drawings 1A and 1B as pictures 2 to 4 also show rough structures and cracks as well as holes in the coating. Holes can be added of extremely fine PTFE particles, fluorinated graphite, ceramics or the like sealed during the 2nd coating step (column 9, line 1-9). EP-A 0 737 759 gives no information, how fine these additional particles have to be and how to make them. However, the addition of another reagent is cumbersome, in addition, EP-A 0 737 759 does not show how Cracks can be filled. The coating is cracked but, for example, algae growth is possible through which the mode of action the coating can be reduced.

Transactions of the Institute of Metal Finishings 1983, 61, 147-9 beschreibt Beschichtungen aus Ni-P-PTFE zur Verhinderung von Anbackungen. Für zahlreiche Anwendungen im Anlagenbau sind die offenbarten Beschichtungen jedoch nicht stabil genug, da sie nach kurzer Zeit abplatzen oder Risse zeigen.Transactions of the Institute of Metal Finishings 1983, 61, 147-9 describes coatings made of Ni-P-PTFE to prevent Caking. They are suitable for numerous applications in plant construction However, the coatings disclosed are not stable enough since they are after flake off or show cracks in a short time.

J. Mat. Sci. Lett. 1998, 17, 119 (Y.Z. Zhang et al.) beschreibt die Charakterisierung der aus Transactions of the Institute of Metal Finishings bekannten Beschichtungen mit einer einfachen Schicht aus Ni-P-PTFE. Wie auch bei den in Transactions of the Institute of Metal Finishings beschriebenen Schichten sind diese Schichten nicht stabil genug gegen Abplatzen.J. Mat. Sci. Lett. 1998, 17, 119 (Y.Z. Zhang et al.) the characterization of the from Transactions of the Institute of Metal finishes known coatings with a simple Layer made of Ni-P-PTFE. As with the transactions in the The layers described by Institute of Metal Finishings are these Layers not stable enough against flaking.

Aufgabe der vorliegenden Erfindung ist es deshalb, ein Verfahren zur Oberflächenmodifizierung von Apparaten und Apparateteilen für den chemischen Anlagenbau bereitzustellen,

  • das einerseits die Neigung der Oberflächen herabsetzt, Feststoffe unter Bildung von Ablagerungen anzulagern,
  • wobei die verfahrensgemäß behandelten Flächen eine gute Haltbarkeit aufweisen sollen,
  • und wobei das erfindungsgemäße Verfahren auch auf schwer zugängliche Flächen kostengünstig anwendbar sein soll, und andererseits
  • gewährleistet, dass das oder die Produkte nicht durch Additive kontaminiert werden.
The object of the present invention is therefore to provide a method for the surface modification of apparatuses and apparatus parts for chemical plant construction,
  • which on the one hand reduces the tendency of the surfaces to deposit solids with the formation of deposits,
  • the surfaces treated according to the method should have a good durability,
  • and the method according to the invention should also be cost-effective to use on hard-to-access areas, and on the other hand
  • ensures that the product or products are not contaminated by additives.

Weiterhin besteht die Aufgabe der vorliegenden Erfindung darin, geschützte Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau bereitzustellen, und schließlich Apparaten und Apparateteilen für den chemischen Anlagenbau zu verwenden.Furthermore, the object of the present invention is Protected surfaces of devices and device parts for the chemical plant construction, and finally apparatus and apparatus parts for chemical plant construction.

Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Beschichtung der Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau, dadurch gekennzeichnet, dass man eine Metallschicht oder eine Metall-Polymer-Dispersionsschicht auf dem oder den zu beschichtenden Apparat oder Apparateteilen stromlos abscheidet, indem man die Teile mit einer Metall-Elektrolytlösung kontaktiert, die neben dem Metall-Elektrolyten ein Reduktionsmittel sowie optional das abzuscheidende Polymer oder Polymergemisch in dispergierter Form enthält, wobei mindestens ein Polymer halogeniert ist.The object of the invention is achieved by a method for Coating the surfaces of apparatus and apparatus parts for chemical plant construction, characterized in that one Metal layer or a metal-polymer dispersion layer on the or the apparatus or apparatus parts to be coated are de-energized deposits by covering the parts with a metal electrolyte solution contacted, in addition to the metal electrolyte, a reducing agent and optionally the polymer or polymer mixture to be deposited contains in dispersed form, with at least one polymer halogenating is.

Dieser erfindungsgemäßen Lösung der Aufgabe liegt ein Verfahren zur stromlosen chemischen Abscheidung von Metall-Polymer-Dispersionsschichten zugrunde, das an sich bekannt ist (W. Riedel: Funktionelle Vernickelung, Verlag Eugen Leize, Saulgau, 1989, S. 231 bis 236, ISBN 3-750480-044-x). Die Abscheidung der Metallschicht oder der Metall-Polymer-Dispersionsphasen dient zur Beschichtung der an sich bekannten Apparate und Apparateteile des chemischen Anlagenbaus. Die erfindungsgemäße Metallschicht umfasst eine Legierung oder legierungsähnliche Mischphase aus einem Metall und mindestens einem weiteren Element. Die erfindungsgemäß bevorzugten Metall-Polymer-Dispersionsphasen umfassen ein Polymer, im Rahmen der Erfindung ein halogeniertes Polymer, das in der Metall-Schicht dispergiert ist. Bei der Metall-Legierung handelt es sich bevorzugt um eine Metall-Bor-Legierung oder um eine Metall-phosphor-Legierung mit einem Bor- bzw. Phosphor-Gehalt von 0,5 bis 15 Gew.-%.This object of the invention is a method for electroless chemical deposition of metal-polymer dispersion layers which is known per se (W. Riedel: Functional nickel plating, Verlag Eugen Leize, Saulgau, 1989, p. 231 to 236, ISBN 3-750480-044-x). The deposition of the metal layer or the metal-polymer dispersion phases is used for Coating of the known apparatuses and apparatus parts of the chemical plant construction. The metal layer according to the invention comprises an alloy or alloy-like mixed phase from one Metal and at least one other element. The invention preferred metal-polymer dispersion phases comprise a polymer, in the context of the invention a halogenated polymer which in the metal layer is dispersed. Acting in the metal alloy it is preferably a metal-boron alloy or one Metal-phosphorus alloy with a boron or phosphorus content of 0.5 to 15% by weight.

Bei einer besonders bevorzugten Ausführungsform der erfindungsgemäßen Beschichtungen handelt es sich um sogenannte "Chemisch Nickel-Systeme", das sind phosphorhaltige Nickellegierungen mit einem Phosphorgehalt von 0,5 bis 15 Gew.-%; ganz besonders bevorzugt sind phosphorhaltige Nickellegierungen mit 5 bis 12 Gew.-%.In a particularly preferred embodiment of the invention Coatings are so-called "chemical Nickel systems "are phosphorus-containing nickel alloys a phosphorus content of 0.5 to 15% by weight; very particularly preferred are phosphorus-containing nickel alloys with 5 to 12 wt .-%.

Die erfindungsgemäß bevorzugte Metall-Polymer-Dispersionsschicht, die auch als Komposit-Schicht bezeichnet wird, enthält eine Metallkomponente und mindestens ein Polymer, im Rahmen der Erfindung mindestens ein halogeniertes Polymer sowie optional weitere Polymere, die in der Metallkomponente dispergiert sind.The metal-polymer dispersion layer preferred according to the invention, which is also called a composite layer, contains one Metal component and at least one polymer, in the context of the invention at least one halogenated polymer and optionally more Polymers dispersed in the metal component.

Im Gegensatz zur galvanischen Abscheidung werden bei einer chemischen oder autokatalytischen Abscheidung die dazu nötigen Elektronen nicht durch eine äußere Stromquelle zur Verfügung gestellt, sondern durch chemische Umsetzung im Elektrolyten selbst erzeugt (Oxidation eines Reduktionsmittels). Die Beschichtung erfolgt beispielsweise durch Eintauchen des Werkstückes in eine Metall-Elektrolytlösung, die man optional zuvor mit einer stabilisierten Polymer-Dispersion gemischt hat.In contrast to galvanic deposition, chemical or autocatalytic deposition the necessary electrons not provided by an external power source, but through chemical conversion in the electrolyte itself generated (oxidation of a reducing agent). The coating takes place, for example, by immersing the workpiece in a Metal electrolyte solution, which can be optionally stabilized beforehand Polymer dispersion has mixed.

Als Metall-Elektrolytlösungen werden gewöhnlich handelsübliche oder frisch zubereitete Metall-Elektrolytlösungen verwendet, denen neben dem Elektrolyten noch die folgenden Komponenten zugesetzt werden: ein Reduktionsmittel wie ein Alkalimetall-Hypophosphit oder Boranat (beispielsweise NaBH4), eine Puffermischung zur Einstellung des pH-Werts; optional einen Aktivator wie beispielsweise ein Alkalimetallfluorid, bevorzugt sind NaF, KF oder LiF; Carbonsäuren sowie optional einen Abscheidungsmoderator wie beispielsweise Pb2+. Dabei wird das Reduktionsmittel so gewählt, dass das entsprechende einzubauende Element im Reduktionsmittel bereits vorhanden ist.As metal electrolyte solutions, commercially available or freshly prepared metal electrolyte solutions are usually used, to which the following components are added in addition to the electrolyte: a reducing agent such as an alkali metal hypophosphite or boranate (for example NaBH 4 ), a buffer mixture for adjusting the pH value; optionally an activator such as an alkali metal fluoride, preferred are NaF, KF or LiF; Carboxylic acids and optionally a deposition moderator such as Pb 2+ . The reducing agent is selected so that the corresponding element to be installed is already present in the reducing agent.

Das optional zu verwendende halogenierte Polymer des erfindungsgemäßen Verfahrens ist halogeniert und bevorzugt fluoriert. Beispiele für geeignete fluorierte Polymere sind Polytetrafluorethylen, Perfluor-Alkoxy-Polymere (PFA, z.B. mit C1-C8-Alkoxyeinheiten), Copolymerisate von Tetrafluorethylen und Perfluoralkylvinylether z.B. Perfluorvinylpropylether. Besonders bevorzugt sind Polytetrafluorethylen (PTFE) und Perfluor-Alkoxy-Polymere (PFA, nach DIN 7728, Teil 1, Jan. 1988). The optionally used halogenated polymer of the process according to the invention is halogenated and preferably fluorinated. Examples of suitable fluorinated polymers are polytetrafluoroethylene, perfluoroalkoxy polymers (PFA, for example with C 1 -C 8 -alkoxy units), copolymers of tetrafluoroethylene and perfluoroalkyl vinyl ether, for example perfluorovinyl propyl ether. Polytetrafluoroethylene (PTFE) and perfluoroalkoxy polymers (PFA, according to DIN 7728, Part 1, Jan. 1988) are particularly preferred.

Als Einsatzform werden sinnvollerweise handelsübliche Polytetrafluorethylen-Dispersionen (PTFE-Dispersionen) verwendet. Bevorzugt werden PTFE-Dispersionen mit einem Feststoffanteil von 35 bis 60 Gew.-% und einem mittleren Partikeldurchmesser von 0,05 bis 1,2 µm, insbesondere 0,1 bis 0,3 µm, eingesetzt. Besonders bevorzugt werden sphärische Partikel eingesetzt, weil die Verwendung sphärischer Partikel zu sehr homogenen Komposit-Schichten führt. Vorteilhaft an der Verwendung sphärischer Partikel ist ein schnelleres Schichtwachstum und eine bessere, insbesondere längere Thermostabilität der Bäder, was wirtschaftliche Vorteile bietet. Dies zeigt sich besonders deutlich im Vergleich zu Systemen unter Verwendung von irregulären Polymerpartikeln, welche durch Mahlung des entsprechenden Polymers erhalten werden. Außerdem können die verwendeten Dispersionen ein nichtionisches Detergenz (zum Beispiel Polyglykole, Alkylphenolethoxylat oder optional Gemische aus den genannten Stoffen, 80 bis 120 g neutrales Detergenz pro Liter) oder ein ionisches Detergenz (zum Beispiel Alkyl- und Haloalkylsulfonate, Alkylbenzolsulfonate, Alkylphenolethersulfate, Tetraalkylammoniumsalze oder optional Gemische aus den genannten Stoffen, 15 bis 60 g ionisches Detergenz pro Liter) zur Stabilisierung der Dispersion enthalten. Es können zusätzlich auch fluorierte Tenside (neutral und ionisch) zugesetzt werden, wobei typischerweise 1-10 Gew.-%, bezogen auf die Gesamtmenge an Tensid zum Einsatz kommen.Commercially available polytetrafluoroethylene dispersions are sensibly used (PTFE dispersions) used. Prefers PTFE dispersions with a solids content of 35 up to 60% by weight and an average particle diameter of 0.05 up to 1.2 µm, in particular 0.1 to 0.3 µm, used. Especially spherical particles are preferably used because the Use of spherical particles to form very homogeneous composite layers leads. Advantageous in the use of spherical particles is faster layer growth and better, in particular longer thermal stability of the baths, which is economical Offers advantages. This is particularly evident in the comparison to systems using irregular polymer particles, which are obtained by grinding the corresponding polymer. In addition, the dispersions used can be a nonionic Detergent (e.g. polyglycols, alkylphenol ethoxylate or optional mixtures of the substances mentioned, 80 to 120 g neutral Detergent per liter) or an ionic detergent (for Example alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, Alkylphenol ether sulfates, tetraalkylammonium salts or optional Mixtures of these substances, 15 to 60 g of ionic detergent per liter) to stabilize the dispersion. It can also use fluorinated surfactants (neutral and ionic) can be added, typically 1-10% by weight, based on the total amount of surfactant is used.

Zur Beschichtung wird bei leicht erhöhter Temperatur gearbeitet, die aber nicht so hoch sein darf, dass es zur Destabilisierung der Dispersion kommt. Als Temperaturen haben sich 40 bis 95°C als geeignet erwiesen. Bevorzugt sind Temperaturen von 80 bis 91°C und besonders bevorzugt ist 88°C.Coating is carried out at a slightly elevated temperature, but which must not be so high that it destabilizes the dispersion comes. As temperatures have 40 to 95 ° C as proven suitable. Temperatures of 80 to 91 ° C. and 88 ° C. is particularly preferred.

Als Abscheidegeschwindigkeiten haben sich 1 bis 15 µm/h als nützlich erwiesen. Dabei lässt sich die Abscheidegeschwindigkeit wie folgt durch die Zusammensetzung der Tauchbäder beeinflussen:

  • Durch höhere Temperaturen wird die Abscheidegeschwindigkeit erhöht, wobei es eine Maximaltemperatur gibt, die beispielsweise durch die Stabilität der optional zugegebenen Polymer-Dispersion begrenzt ist. Durch niedrigere Temperaturen wird die Abscheidegeschwindigkeit gesenkt.
  • Durch höhere Elektrolytkonzentrationen wird die Abscheidegeschwindigkeit erhöht, durch niedrigere gesenkt; wobei Konzentrationen von 1 g/l bis 20 g/l Ni2+ sinnvoll sind, bevorzugt sind Konzentrationen von 4 g/l bis 10 g/l; für Cu2+ sind 1 g/l bis 50 g/l sinnvoll.
  • Durch höhere Konzentrationen an Reduktionsmittel lässt sich die Abscheidegeschwindigkeit ebenfalls erhöhen;
  • Durch Erhöhung des pH-Wertes lässt sich die Abscheidegeschwindigkeit erhöhen. Bevorzugt stellt man einen pH-Wert zwischen 3 und 6, besonders bevorzugt zwischen 4 und 5,5 ein.
  • Zugabe von Aktivatoren wie beispielsweise Alkalifluoriden, beispielsweise NaF oder KF, erhöht die Abscheidegeschwindigkeit.
Deposition rates of 1 to 15 µm / h have been found to be useful. The deposition speed can be influenced as follows by the composition of the immersion baths:
  • The deposition rate is increased by higher temperatures, there being a maximum temperature which is limited, for example, by the stability of the optionally added polymer dispersion. The separation speed is reduced by lower temperatures.
  • The deposition rate is increased by higher electrolyte concentrations and reduced by lower ones; where concentrations of 1 g / l to 20 g / l Ni 2+ are useful, concentrations of 4 g / l to 10 g / l are preferred; for Cu 2+ 1 g / l to 50 g / l are advisable.
  • The deposition rate can also be increased by higher concentrations of reducing agent;
  • The deposition rate can be increased by increasing the pH. It is preferred to set a pH between 3 and 6, particularly preferably between 4 and 5.5.
  • Addition of activators such as alkali fluorides, for example NaF or KF, increases the deposition rate.

Besonders bevorzugt werden handelsübliche Nickelelektrolytlösungen eingesetzt, die Ni2+, Natriumhypophosphit, Carbonsäuren und Fluorid und ggf. Abscheidungsmoderatoren wie Pb2+ enthalten. Solche Lösungen werden zum Beispiel von der Riedel, Galvano- und Filtertechnik GmbH, Halle, Westfalen und der Atotech Deutschland GmbH, Berlin vertrieben. Besonders bevorzugt sind Lösungen, die einen pH-Wert um 5 aufweisen und etwa 27 g/l NiSO4·6 H2O und etwa 21 g/l NaH2PO2·H2O bei einem PTFE-Gehalt von 1 bis 25 g/l enthalten.Commercial nickel electrolyte solutions which contain Ni 2+ , sodium hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ are particularly preferably used. Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech Deutschland GmbH, Berlin. Solutions which have a pH around 5 and about 27 g / l NiSO 4 .6H 2 O and about 21 g / l NaH 2 PO 2 .H 2 O with a PTFE content of 1 to 25 g are particularly preferred / l included.

Der Polymeranteil der Dispersionsbeschichtung wird hauptsächlich durch die Menge der zugesetzten Polymerdispersion und die Wahl der Detergentien beeinflusst. Dabei spielt die Konzentration des Polymers die größere Rolle; hohe Polymerkonzentrationen der Tauchbäder führen zu einem überproportional hohen Polymeranteil in der Metall-Phosphor-Polymer-Dispersionsschicht bzw. Metall-Bor-Polymer-Dispersionsschicht.The polymer portion of the dispersion coating is mainly by the amount of polymer dispersion added and the choice of detergents. The concentration of the Polymers the bigger role; high polymer concentrations of Immersion baths lead to a disproportionately high proportion of polymer in the metal-phosphor polymer dispersion layer or metal-boron polymer dispersion layer.

Zur Kontaktierung werden die zu beschichtenden Teile in Tauchbäder getaucht, die die Metall-Elektrolytlösung enthalten. Eine andere Ausführungsform des erfindungsgemäßen Verfahren besteht darin, dass die zu beschichtenden Behälter mit Metall-Elektrolytlösung befüllt werden. Ein weiteres geeignetes Verfahren besteht darin, die Elektrolyt-Lösung durch das zu beschichtende Teil zu pumpen; diese Variante empfiehlt sich insbesondere dann, wenn der Durchmesser des zu beschichtenden Teils viel kleiner ist als die Länge.The parts to be coated are placed in immersion baths for contacting immersed which contain the metal electrolyte solution. A there is another embodiment of the method according to the invention in that the container to be coated with metal electrolyte solution be filled. Another suitable method exists in that the electrolyte solution through the part to be coated pump; this variant is particularly recommended if the Diameter of the part to be coated is much smaller than that Length.

Vorzugsweise tempert man im Anschluß an den Tauchvorgang bei Temperaturen von 200 bis 400°C, vor allem bei 315 bis 380°C. Die Temperungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 60 Minuten.It is preferable to temper at the temperature after the dipping process from 200 to 400 ° C, especially at 315 to 380 ° C. The annealing time is generally 5 minutes to 3 hours, preferably 35 to 60 minutes.

Es wurde gefunden, daß die erfindungsgemäß behandelten Oberflächen einen guten Wärmedurchgang ermöglichen, obwohl die Beschichtungen eine nicht unerhebliche Dicke von 1 bis 100 µm aufweisen können. Bevorzugt sind 3 bis 50 µm, insbesondere 5 bis 25 µm. Der Polymeranteil der Dispersionsbeschichtung beträgt 5 bis 30 Vol.-%, bevorzugt 15 bis 25 Vol.-%. Die erfindungsgemäß behandelten Oberflächen weisen ferner eine exzellente Haltbarkeit auf.It was found that the surfaces treated according to the invention allow good heat transfer, although the coatings have a not inconsiderable thickness of 1 to 100 µm can. 3 to 50 μm, in particular 5 to 25 μm, are preferred. The The polymer content of the dispersion coating is 5 to 30 Vol .-%, preferably 15 to 25 vol .-%. The treated according to the invention Surfaces also have excellent durability.

In einer weiteren Ausführungsform enthält die Metall-Polymer-Dispersionsschicht ein zusätzliches Polymer, um die antihaftenden Eigenschaften der Beschichtung weiter zu verstärken. Dieses Polymer kann halogeniert oder nicht-halogeniert sein. Besonders bevorzugt ist die Verwendung von Polytetrafluorethylen oder Ethylenpolymerisaten und Ethylencopolymerisaten oder Polypropylen, wobei ultrahochmolekulares Polyethylen (UHM-PE) ganz besonders bevorzugt ist. Dabei wird unter UHM-PE ein Polyethylen verstanden, das eine Molmasse Mw von 106 g oder mehr und einem Staudinger-Index von mindestens 15 dl/g, bevorzugt mindestens 20 dl/g hat.In a further embodiment, the metal-polymer dispersion layer contains an additional polymer in order to further strengthen the non-stick properties of the coating. This polymer can be halogenated or non-halogenated. The use of polytetrafluoroethylene or ethylene polymers and ethylene copolymers or polypropylene is particularly preferred, ultra-high molecular weight polyethylene (UHM-PE) being very particularly preferred. UHM-PE is understood to mean a polyethylene which has a molecular weight M w of 10 6 g or more and a Staudinger index of at least 15 dl / g, preferably at least 20 dl / g.

Dieses optional verwendete Polymer gibt man ebenfalls als Dispersion oder Aufschlämmung in einer wässrigen Tensidlösung zu, wobei die Reihenfolge der Zugabe der Dispersionen unkritisch ist. Vorzuziehen ist jedoch eine gleichzeitige Dosierung beider Polymerdispersionen. Wässrige Dispersionen von UHM-PE sind im Handel erhältlich, beispielsweise von der Firma Clariant GmbH, oder können durch Dispergieren des UHM-PE in einer geeigneten wässrigen Tensidlösung leicht selber hergestellt werden. Geeignet sind neutrale Detergenzien (zum Beispiel Polyglykole, Alkylphenolethoxylat oder optional Gemische derselben, 80 bis 120 g neutrales Detergenz pro Liter), ionische Detergenzien (zum Beispiel Alkyl- und Haloalkylsulfonate, Alkylbenzolsulfonate, Alkylphenolethersulfate, Tetraalkylammoniumsalze oder optional Gemische aus den genannten Stoffen, 15 bis 60 g ionisches Detergenz pro Liter) enthalten. Es können zusätzlich auch fluorierte Tenside (neutral oder ionisch) zugesetzt werden, wobei typischerweise 1-10 Gew.-%, bezogen auf die Gesamtmenge an Tensid, zum Einsatz kommen.This optionally used polymer is also given as a dispersion or slurry in an aqueous surfactant solution, wherein the order in which the dispersions are added is not critical. Preferable is however a simultaneous metering of both polymer dispersions. Aqueous dispersions of UHM-PE are commercially available, for example from Clariant GmbH, or can by dispersing the UHM-PE in a suitable aqueous Surfactant solution can be easily prepared by yourself. Neutral ones are suitable Detergents (for example polyglycols, alkylphenol ethoxylate or optionally mixtures thereof, 80 to 120 g neutral Detergent per liter), ionic detergents (for example Alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, Tetraalkylammoniumsalze or optionally mixtures from the substances mentioned, 15 to 60 g of ionic detergent per liter) contain. Fluorinated surfactants (neutral or ionic) are added, typically 1-10% by weight, based on the total amount of surfactant.

Wichtig ist, dass die Partikel des weiteren, halogenierten oder nicht-halogenierten Polymers gröber sind als die des halogenierten Polymers. So haben sich mittlere Partikeldurchmesser von 5 bis 50 µm als vorteilhaft herausgestellt. Besonders vorteilhaft sind 25-35 µm. Es ist möglich, sind bei der Verwendung des zusätzlichen gröberen Polymers sphärische Partikel, jedoch dürfen die Partikel des zusätzlichen Polymers auch irregulär geformt sein.It is important that the particles are further halogenated or non-halogenated polymers are coarser than those of halogenated Polymer. Average particle diameters of 5 up to 50 µm was found to be advantageous. Particularly advantageous are 25-35 µm. It is possible when using the additional coarser polymer spherical particles, however, may the particles of the additional polymer are also irregularly shaped his.

Wichtig ist, dass die Partikeldurchmesserverteilung der verschiedenen Polymere insgesamt als bimodal zu betrachten ist. It is important that the particle diameter distribution of the different Polymers as a whole are to be regarded as bimodal.

Pro Liter der Tauchbadlösung werden 1 bis 20 g, bevorzugt 5 bis 10 g des gröberen Polymers zugesetzt.1 to 20 g, preferably 5 to, are used per liter of the immersion bath solution 10 g of the coarser polymer were added.

Ein weiterer Gegenstand der vorliegenden Erfindung ist ein Verfahren zur Herstellung modifizierter, d.h. beschichteter Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau, die besonders haftfest, haltbar und wärmebeständig sind und deshalb die erfindungsgemäße Aufgabe in besonderer Weise lösen.Another object of the present invention is a method for the production of modified, i.e. coated surfaces of apparatuses and apparatus parts for chemical plant construction, which are particularly adhesive, durable and heat-resistant and therefore solve the problem of the invention in a special way.

Dieses Verfahren ist dadurch gekennzeichnet, dass man vor dem Aufbringen der Metall-Polymer-Dispersionsschicht zusätzlich eine 1 bis 15 µm, bevorzugt 1 bis 5 µm dicke Metall-Phosphor-Schicht durch stromloses chemisches Abscheiden aufbringt.This procedure is characterized in that before Application of the metal-polymer dispersion layer additionally one 1 to 15 microns, preferably 1 to 5 microns thick metal-phosphor layer by electroless chemical deposition.

Das stromlose chemische Aufbringen einer 1 bis 15 µm dicken Metall-Phosphor-Schicht zur Haftverbesserung erfolgt wiederum durch Metall-Elektrolytbäder, denen jedoch in diesem Fall keine stabilisierte Polymer-Dispersion zugesetzt wird. Auf eine Temperung wird zu diesem Zeitpunkt vorzugsweise verzichtet, da diese die Haftfähigkeit der nachfolgenden Metall-Polymer-Dispersionsschicht im Allgemeinen negativ beeinflusst. Nach Abscheidung der Metall-Phosphor-Schicht wird das Werkstück in ein zweites Tauchbad gebracht, das neben dem Metall-Elektrolyt auch eine stabilisierte Polymer-Dispersion umfaßt. Hierbei bildet sich die Metall-Polymer-Dispersionsschicht.Electroless chemical application of a 1 to 15 µm thick metal-phosphor layer to improve adhesion is done by Metal electrolyte baths, but in this case none stabilized Polymer dispersion is added. For tempering is preferably dispensed with at this time, since this is the Adhesion of the subsequent metal-polymer dispersion layer generally adversely affected. After the deposition of the metal-phosphor layer the workpiece is placed in a second immersion bath, which in addition to the metal electrolyte also a stabilized one Includes polymer dispersion. This forms the metal-polymer dispersion layer.

Dieses Verfahren ist zusätzlich dadurch gekennzeichnet, dass man vor dem Aufbringen der Metall-Polymer-Dispersionsschicht zusätzlich eine 1 bis 15 µm, bevorzugt 1 bis 5 µm dicke Metall-Phosphor-Schicht durch stromloses chemisches Abscheiden aufbringt.This process is also characterized in that before applying the metal-polymer dispersion layer additionally a 1 to 15 µm, preferably 1 to 5 µm thick metal-phosphor layer by electroless chemical deposition.

Das stromlose chemische Aufbringen einer 1 bis 15 µm dicken Metall-Phosphor-Schicht zur Haftverbesserung erfolgt durch die schon beschriebenen Metall-Elektrolytbäder, denen jedoch in diesem Fall keine stabilisierten Polymer-Dispersionen zugesetzt werden. Auf eine Temperung wird zu diesem Zeitpunkt vorzugsweise verzichtet, da diese die Haftfähigkeit der nachfolgenden Metall-Polymer-Dispersionsschicht im allgemeinen negativ beeinflusst. Nach Abscheidung der Metall-Phosphor-Schicht bringt man das Werkstück in das oben beschriebene Tauchbad, das neben dem Metall-Elektrolyt auch eine stabilisierte Polymer-Dispersion enthält. Hierbei bildet sich die Metall-Polymer-Dispersionsschicht.Electroless chemical application of a 1 to 15 µm thick metal-phosphor layer to improve adhesion is done by the already described metal electrolyte baths, but which in this If no stabilized polymer dispersions are added. An annealing is preferred at this time dispenses with this, since this reduces the adherence of the subsequent metal-polymer dispersion layer generally adversely affected. After the metal-phosphor layer has been deposited, the workpiece is brought in the immersion bath described above, which is next to the metal electrolyte also contains a stabilized polymer dispersion. This forms the metal-polymer dispersion layer.

Wenn diejenige Ausführungsform gewählt wird, die die zusätzliche Verwendung eines nicht-halogenierten Polymeren vorsieht, wird auf eine Temperung der fertigen Beschichtung vorzugsweise verzichtet. If the embodiment is chosen that the additional Provides use of a non-halogenated polymer annealing of the finished coating is preferably dispensed with.

In einer bevorzugten Ausführungsform der erfindungsgemäßen Verfahren handelt es sich bei der zusätzlichen Metall-Phosphor-Schicht um Nickel-Phosphor oder Kupfer-Phosphor, wobei Nickel-Phosphor besonders bevorzugt ist.In a preferred embodiment of the method according to the invention is the additional metal-phosphor layer to nickel phosphorus or copper phosphorus, with nickel phosphorus is particularly preferred.

Das erfindungsgemäße Verfahren lässt sich aufgrund seiner einfachen Handhabung an allen von Ablagerungen bedrohten Oberflächen von Apparaten und Apparateteilen für den chemischen Anlagenbau anwenden, wobei die Flächen bevorzugt Oberflächen aus Metall, besonders bevorzugt aus Stahl, sind.The method according to the invention can be done on the basis of its simple Handling on all surfaces threatened by deposits of apparatus and apparatus parts for chemical plant construction use, the surfaces preferably surfaces made of metal, especially preferably made of steel.

Behälter- und Apparatewandungen können in verschiedenen Behältern, Apparaten oder Reaktoren, die zu chemischen Reaktionen dienen, vorhanden sein.

  • Bei Behältern handelt es sich beispielsweise um Vorlage- oder Sammelbehälter wie beispielsweise Wannen, Silos, Tanks, Fässern, Trommeln oder Gasbehälter.
  • Bei den Apparaten und Reaktoren handelt es sich um Flüssig-, Gas/Flüssig-, Flüssig/Flüssig-, Fest/Flüssig-, Gas/Fest- oder Gasreaktoren, die beispielsweise in folgenden Möglichkeiten realisiert sind:
    • Rühr-, Strahlschlaufen- und Strahldüsenreaktoren,
    • Strahlpumpen,
    • Verweilzeitzellen,
    • statische Mischer,
    • Rührkolonnen,
    • Rohrreaktoren,
    • Zylinderrührer,
    • Blasensäulen,
    • Strahl- und Venturiwäscher,
    • Festbettreaktoren,
    • Reaktionskolonnen,
    • Verdampfer,
    • Drehscheibenreaktoren,
    • Extraktionskolonnen,
    • Knet- und Mischreaktoren und Extruder,
    • Mühlen,
    • Bandreaktoren,
    • Drehrohren oder
    • zirkulierende Wirbelschichten;
  • Bei Austragsvorrichtungen handelt es sich beispielsweise um Austragsstutzen, Austragstrichter, Austragsrohre, Ventilen, Austragshähne oder Auswurfvorrichtungen handeln.
  • Bei Armaturen handelt es sich beispielsweise um Hähne, Ventile, Schieber, Berstscheiben, Rückschlagklappen oder Scheiben.
  • Bei Pumpen handelt es sich beispielsweise um Kreisel-, Zahnrad-, Schraubenspindel-, Exzenterschnecken-, Kreiskolben-, Hubkolben-, Membran-, Schneckentrog-, oder Strahlflüssigkeitspumpen handeln, außerdem um Hubkolben-, Hubkolben-Membran-, Drehkolben-, Drehschieber-, Flüssigkeitsring-, Wälzkolben-, Flüssigkeitsring- oder Treibmittelvakuumpumpen.
  • Bei Filterapparaten handelt es sich beispielsweise um Fluldfilter, Festbettfilter, Gasfilter, Siebe oder Abscheider.
  • Bei Verdichtern handelt es sich beispielsweise um Hubkolben-, Hubkolben-Membran-, Drehkolben-, Drehschieber-, Flüssigkeitsring-, Rotations-, Roots-, Schrauben-, Strahl- oder Turboverdichter.
  • Bei Zentrifugen handelt es sich beispielsweise um Zentrifugen mit Siebmantel oder Vollmantel, wobei Teller-, Vollmantelschnecken- (Dekanter), Siebschnecken- und Schubzentrifugen bevorzugt sind.
  • Bei Kolonnen handelt es sich um Behälter mit Austauschböden, wobei Glocken-, Ventil- oder Siebböden bevorzugt sind. Außerdem können die Kolonnen mit unterschiedlichen Füllkörpern wie beispielsweise Sattelkörpern, Raschigringen oder Kugeln befüllt sein.
  • Bei Zerkleinerungsmaschinen handelt es sich beispielsweise um
    • Brecher, wobei Hammer-, Prall-, Walzen- oder Backenbrecher bevorzugt sind;
    • oder um Mühlen, wobei Hammer-, Schlagkorb-, Stift-, Prall-, Rohr-, Trommel-, Kugel-, Schwing-, Walzenmühlen bevorzugt sind.
    • Bei Einbauten in Reaktoren und Behältern handelt es sich beispielsweise um Thermohülsen, Stromstörer, Schaumzerstörer, Füllkörper, Abstandhalter, Zentriereinrichtungen, Flanschverbindungen, statische Mischer, zur Analytik dienende Instrumente wie pH- oder IR-Sonden, Leitfähigkeitsmessinstrumente, Standmessungsgeräte oder Schaumsonden.
  • Bei Extruderelementen handelt es sich beispielsweise um Schneckenwellen, -elementen, Extruderzylinder, Plastifizierschnecken oder Einspritzdüsen.
Container and apparatus walls can be present in various containers, apparatus or reactors that are used for chemical reactions.
  • Containers are, for example, receptacles or collecting containers such as tubs, silos, tanks, drums, drums or gas containers.
  • The apparatuses and reactors are liquid, gas / liquid, liquid / liquid, solid / liquid, gas / solid or gas reactors, which are implemented in the following ways, for example:
    • Stirring, jet loop and jet nozzle reactors,
    • Jet pumps,
    • residence-time,
    • static mixers,
    • stirred columns,
    • Tubular reactors,
    • Zylinderrührer,
    • Bubble columns,
    • Jet and venturi washer,
    • Fixed bed reactors,
    • Reaction columns
    • Evaporator,
    • Hub reactors
    • Extraction columns,
    • Kneading and mixing reactors and extruders,
    • mills,
    • Belt reactors,
    • Rotary tubes or
    • circulating fluidized beds;
  • Discharge devices are, for example, discharge nozzles, discharge funnels, discharge pipes, valves, discharge taps or discharge devices.
  • Fittings are, for example, taps, valves, slides, rupture disks, non-return flaps or disks.
  • Pumps are, for example, centrifugal, gear, screw spindle, eccentric screw, rotary lobe, reciprocating, diaphragm, screw trough or jet liquid pumps, as well as reciprocating, reciprocating diaphragm, rotary lobe, rotary slide valve , Liquid ring, Roots, liquid ring or propellant vacuum pumps.
  • Filter devices are, for example, flood filters, fixed bed filters, gas filters, sieves or separators.
  • Compressors are, for example, reciprocating, reciprocating diaphragm, rotary lobe, rotary slide, liquid ring, rotary, Roots, screw, jet or turbo compressors.
  • Centrifuges are, for example, centrifuges with a screen jacket or a full jacket, with disc, full jacket screw (decanters), screen screw and pusher centrifuges being preferred.
  • Columns are containers with exchange trays, with bell, valve or sieve trays being preferred. In addition, the columns can be filled with different packing such as saddle packing, Raschig rings or balls.
  • Comminution machines are, for example
    • Crushers, with hammer, impact, roller or jaw crushers being preferred;
    • or around mills, with hammer, impact basket, pin, impact, tube, drum, ball, vibrating, roller mills being preferred.
    • Installations in reactors and vessels are, for example, thermal sleeves, baffles, foam destroyers, packing, spacers, centering devices, flange connections, static mixers, analytical instruments such as pH or IR probes, conductivity measuring instruments, level measuring devices or foam probes.
  • Extruder elements are, for example, screw shafts, elements, extruder cylinders, plasticizing screws or injection nozzles.

Ein weiterer Gegenstand der Erfindung sind durch das erfindungsgemäße Verfahren zur Oberflächenmodifizierung erhältliche Apparate und Apparateteile für den chemischen Anlagenbau. Vorzugsweise erfolgt die Herstellung der erfindungsgemäßen Oberflächen durch Anwendung des erfindungsgemäßen Verfahrens.Another object of the invention are the inventive Processes for surface modification of apparatus available and apparatus parts for chemical plant construction. Preferably the surfaces according to the invention are produced by using the method according to the invention.

Ein weiterer Gegenstand der Erfindung ist die Verwendung der erfindungsgemäßen Oberflächenmodifikation zur Verringerung der Neigung der beschichteten Flächen, Feststoffe unter Bildung von Ablagerungen anzulagern. Die Ablagerungen, deren Bildung erfindungsgemäß verhindert wird, sind bereits beschrieben worden.Another object of the invention is the use of surface modification according to the invention to reduce the Inclination of the coated surfaces, solids to form To deposit deposits. The deposits, their formation prevented according to the invention have already been described.

Ein weiterer Gegenstand der Erfindung sind beschichtete Apparate und Apparateteile für den chemischen Anlagenbau. Die erfindungsgemäßen Reaktoren, Reaktorteile und Verarbeitungsmaschinen für chemische Produkte für zeichnen sich durch eine höhere Standzeit, verringerte Abschaltquoten sowie reduzierten Reinigungsaufwand aus.Another object of the invention is coated apparatus and apparatus parts for chemical plant construction. The invention Reactors, reactor parts and processing machines for chemical products for are characterized by a longer service life, reduced shutdown rates and reduced cleaning effort out.

Die erfindungsgemäßen Reaktoren können für zahlreiche verschiedenartige Reaktionen verwendet werden, wie beispielsweise Polymerisationen, Synthesen von Massen- oder Feinchemikalien oder pharmazeutischen Produkten und ihren Vorstufen sowie Crackreaktionen. Die Verfahren sind kontinuierlich, halbkontinuierlich oder satzweise, wobei sich die Verwendung der erfindungsgemäßen Apparate und Apparateteile für den chemischen Anlagenbau in kontinuierlich betriebenen Verfahren besonders anbietet.The reactors according to the invention can be used for numerous different types Reactions are used, such as polymerizations, Synthesis of bulk or fine chemicals or pharmaceuticals Products and their precursors as well as crack reactions. The processes are continuous, semi-continuous or batchwise, whereby the use of the apparatuses according to the invention and apparatus parts for chemical plant construction in continuous particularly offers operated procedures.

Die Erfindung soll anhand eines Arbeitsbeispiels erläutert werden.The invention will be explained using a working example.

Arbeitsbeispiel:Working Example:

Bei Versuchen zur Verfahrensoptimierung der Styropor®-Herstellung (nach EP-A 0 575 872) im Labormaßstab (41-Rührkessel) wurden parallel zu nicht-beschichteten V2A-Stählen Stähle mit einer erfindungsgemäß modifizierten Oberfläche verwendet. In experiments to optimize the process of Styropor® production (according to EP-A 0 575 872) on a laboratory scale (41 stirred kettle) were parallel for non-coated V2A steels with a surface used according to the invention.

Zur Beschichtung wurde wie folgt vorgegangen:

  • 1. Beschichtung mit Nickel-PTFE Die Beschichtung erfolgte in 2 Stufen. Zunächst wurde mehrere Teile des Autoklaven ausgebaut: Rührer, Thermohülsen, Stromstörer, Deckel sowie Teile der Reaktorinnenseite. Diese Teile wurden bei einer Temperatur von 88°C in eine Wanne getaucht, die 2 Liter einer wässrigen Nickelsalzlösung enthielt, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/l NiSO4·6 H2O, 21 g/l NaH2PO2·2H2O, 20 g/l Milchsäure CH3CHOHCO2H, 3 g/l Propionsäure C2H5CO2H, 5 g/l Na-Citrat, 1 g/l NaF. Der pH-Wert betrug 4,8. Es wurde 45 Minuten gearbeitet, um die gewünschte Schichtdicke von 9 µm zu erhalten.Nach diesem Schritt wurde nicht gespült.Anschließend wurden die Reaktorteile in eine zweite Wanne getaucht, der neben 2 Litern einer analogen Nickelsalzlösung zusätzlich mit 20 ml, das ist 1 Vol.-% einer PTFE-Dispersion mit einer Dichte von 1,5 g/ml versetzt worden war. Diese PTFE-Dispersion enthielt 50 Gew.-% Feststoff. Bei einer Abscheidegeschwindigkeit von 10 µm/h war der Prozess in 90 Minuten beendet (Schichtdicke 15 µm). Die beschichteten Reaktorteile wurden mit Wasser gespült, getrocknet und bei 350°C eine Stunde lang getempert.
  • 2. Beschichtung mit Nickel-PTFE/UHM-PE Die Beschichtung erfolgte in 2 Stufen. Zunächst wurde mehrere Teile des Autoklaven ausgebaut: Rührer, Thermohülsen, Stromstörer, Deckel sowie Teile der Reaktorinnenseite. Diese Teile wurden bei einer Temperatur von 88°C in eine Wanne getaucht, die 2 Liter einer wässrigen Nickelsalzlösung enthielt, wobei die Lösung die folgende Zusammensetzung hatte: 27 g/l NiSO4·6 H2O, 21 g/l NaH2PO2·2H2O, 20 g/l Milchsäure CH3CHOHCO2H, 3 g/l Propionsäure C2H5CO2H, 5 g/l Na-Citrat, 1 g/l NaF. Der pH-Wert betrug 4,8. Es wurde 45 Minuten gearbeitet, um die gewünschte Schichtdicke von 9 µm zu erhalten.Nach diesem Schritt wurde nicht gespült.Anschließend wurden die Reaktorteile in eine zweite Wanne getaucht, der neben 2 Litern einer analogen Nickelsalzlösung zusätzlich mit 20 ml, das ist 1 Vol.-% einer PTFE-Dispersion mit einer Dichte von 1,5 g/ml versetzt worden war; weiterhin wurden 7 g/l UHM-PE (Clariant AG) zugegeben. Diese PTFE/UHM-PE-Dispersion enthielt 50 Gew.-% Feststoff. Bei einer Abscheidegeschwindigkeit von 10 µm/h war der Prozess in 90 Minuten beendet (Schichtdicke 15 µm). Die beschichteten Reaktorteile wurden mit Wasser gespült und bei Zimmertemperatur getrocknet. Auf die Temperung wurde verzichtet.
  • The coating procedure was as follows:
  • 1. Coating with nickel PTFE The coating was carried out in 2 stages. Initially, several parts of the autoclave were removed: stirrer, thermowells, baffles, covers and parts of the inside of the reactor. These parts were immersed at a temperature of 88 ° C in a tub containing 2 liters of an aqueous nickel salt solution, the solution having the following composition: 27 g / l NiSO 4 .6 H 2 O, 21 g / l NaH 2 PO 2 · 2H 2 O, 20 g / l lactic acid CH 3 CHOHCO 2 H, 3 g / l propionic acid C 2 H 5 CO 2 H, 5 g / l Na citrate, 1 g / l NaF. The pH was 4.8. It was worked for 45 minutes to obtain the desired layer thickness of 9 µm. After this step, no rinsing was carried out. Subsequently, the reactor parts were immersed in a second tub which, in addition to 2 liters of an analogous nickel salt solution, was additionally filled with 20 ml, that is 1 vol. -% of a PTFE dispersion with a density of 1.5 g / ml had been added. This PTFE dispersion contained 50% by weight solids. At a deposition speed of 10 µm / h, the process was completed in 90 minutes (layer thickness 15 µm). The coated reactor parts were rinsed with water, dried and annealed at 350 ° C for one hour.
  • 2. Coating with nickel-PTFE / UHM-PE The coating was carried out in two stages. Initially, several parts of the autoclave were removed: stirrer, thermowells, baffles, covers and parts of the inside of the reactor. These parts were immersed at a temperature of 88 ° C in a tub containing 2 liters of an aqueous nickel salt solution, the solution having the following composition: 27 g / l NiSO 4 .6 H 2 O, 21 g / l NaH 2 PO 2 · 2H 2 O, 20 g / l lactic acid CH 3 CHOHCO 2 H, 3 g / l propionic acid C 2 H 5 CO 2 H, 5 g / l Na citrate, 1 g / l NaF. The pH was 4.8. It was worked for 45 minutes to obtain the desired layer thickness of 9 µm. After this step, no rinsing was carried out. Subsequently, the reactor parts were immersed in a second tub which, in addition to 2 liters of an analogous nickel salt solution, was additionally filled with 20 ml, that is 1 vol. -% of a PTFE dispersion with a density of 1.5 g / ml had been added; further 7 g / l UHM-PE (Clariant AG) were added. This PTFE / UHM-PE dispersion contained 50% by weight solids. At a deposition speed of 10 µm / h, the process was completed in 90 minutes (layer thickness 15 µm). The coated reactor parts were rinsed with water and dried at room temperature. The tempering was dispensed with.
  • Die Reaktorteile wurden in einen Testautoklaven für die Styropor-Herstellung eingebaut. Damit enthielt der Rührkessel sowohl beschichtete als auch unbeschichtete Teile, die in Polymerisationsversuchen unter identischen Bedingungen getestet werden konnten. Nach einem Verfahren, das sich an das in EP-B 0 575 872 (S. 5, Zeile 8 ff.) beschriebenen Verfahren anlehnt, wurde wie folgt polymerisiert:The reactor parts were placed in a test autoclave for polystyrene production built-in. The stirred kettle thus contained both coated as well as uncoated parts that are used in polymerization experiments could be tested under identical conditions. According to a process which follows that described in EP-B 0 575 872 (p. 5, Line 8 ff.) Was described as follows polymerized:

    2,61 g Na4P2O7 wurden bei Zimmertemperatur in 89,7 ml Wasser gelöst. Unter Rühren wurde zu dieser Lösung eine Lösung von 4,89 g MgSO4·7 H2O in 44,8 ml Wasser gegeben und weitere 5 Minuten gerührt.2.61 g of Na 4 P 2 O 7 were dissolved in 89.7 ml of water at room temperature. A solution of 4.89 g of MgSO 4 .7H 2 O in 44.8 ml of water was added to this solution with stirring and the mixture was stirred for a further 5 minutes.

    In dem Rührkessel, der die oben beschriebenen beschichteten Einbauten enthielt, wurden 1,4 1 Wasser vorgelegt und unter Rühren die Na4P2O7-MgSO4-Lösung gegeben. Anschließend wurden 1523 ml Styrol (frisch destilliert) zusammen mit 4,23 g Dicumylperoxid und 2,26 g Dibenzoylperoxid zugegeben. In der organischen Phase wurden weiterhin 0,55 g α-Methylstyrol und 1,7 g Luwax® unter Rühren gelöst. Es wurde mit Stickstoff gesättigt und innerhalb von 2 Stunden auf 90°C erhitzt. 2 Stunden nach Überschreiten der 80°C-Schwelle wurden 0,23 g einer 40-Gew.-%igen Lösung von Mersolat® K30 zusammen mit 0,18 g einer 20-Gew.-%igen wässrigen Natronlauge sowie 0,12 g Acrylsäure (100%) zugegeben, weitere 50 Minuten darauf wurden 123,5 g n-Heptan zugegeben. Währenddessen wurde die Temperatur konstant auf 90°C gehalten und die Suspension auspolymerisiert.1.4 l of water were placed in the stirred kettle which contained the coated internals described above, and the Na 4 P 2 O 7 -MgSO 4 solution was added with stirring. 1523 ml of styrene (freshly distilled) were then added together with 4.23 g of dicumyl peroxide and 2.26 g of dibenzoyl peroxide. 0.55 g of α-methylstyrene and 1.7 g of Luwax® were also dissolved in the organic phase with stirring. It was saturated with nitrogen and heated to 90 ° C. within 2 hours. 2 hours after the 80 ° C. threshold was exceeded, 0.23 g of a 40% by weight solution of Mersolat® K30 together with 0.18 g of a 20% by weight aqueous sodium hydroxide solution and 0.12 g of acrylic acid were added (100%) was added, 123.5 g of n-heptane were added a further 50 minutes later. In the meantime, the temperature was kept constant at 90 ° C. and the suspension was polymerized.

    Nach insgesamt 20 Stunden wurde die Reaktion beendet, und innerhalb von 1 Stunde auf Zimmertemperatur abgekühlt und der Rührkessel entleert.After a total of 20 hours the reaction was stopped and within cooled from 1 hour to room temperature and the stirred kettle emptied.

    Die Inspektion des Rührkessels ergab, dass an allen mit der erfindungsgemäßen Beschichtung beschichteten Stellen ein deutlich geringerer Polymer-Belag zu erkennen war als an unbeschichteten Stellen. Die Polymer-Beläge an mit einer erfindungsgemäßen Beschichtung beschichteten Stellen ließen sich leichter entfernen als die Beläge an unbeschichteten Stellen. Die Auswertung findet sich in Tabelle 1. The inspection of the stirred tank showed that everyone with the Coating areas according to the invention a clearly less polymer coating was seen than on uncoated Put. The polymer coatings on with a coating according to the invention coated areas were easier to remove than the coatings on uncoated areas. The evaluation takes place in Table 1.

    Teilweise konnte der Belag an mit einer erfindungsgemäßen Beschichtung beschichteten Stellen manuell abgerieben werden. Wenn der Belag an mit einer erfindungsgemäßen Beschichtung beschichteten Stellen durch Auflösen in Toluol oder einem anderem geeigneten Lösungsmittel entfernt werden musste, waren die Lösungszeiten deutlich kürzer als bei Belägen an nicht beschichteten Stellen.Partly the covering could be coated with a coating according to the invention coated areas are rubbed off manually. If the covering is coated with a coating according to the invention Make by dissolving in toluene or other suitable Solvent had to be removed was the solution times significantly shorter than with coverings in uncoated areas.

    Zur Auswertung wurden die Beläge an Stromstörern und an Rührern ausgewogen.

    1
    Stromstörer wurde nicht beschichtet,
       Leergewicht: 61,51 g unbeschichtet
    1
    Stromstörer wurde nach dem erfindungsgemäßen Verfahren mit Ni-PTFE beschichtet
       Leergewicht: 60,78 g beschichtet,
    1
    Stromstörer wurde nach dem erfindungsgemäßen Verfahren mit Ni-PTFE/UHM-PE beschichtet
       Leergewicht: 62,04g beschichtet
    Die Polymerisationsbeispiele wurden wiederholt, jeweils
    1
    Versuch mit einem Rührer unbeschichtet und
    1
    Versuch mit einem Rührer mit einer erfindungsgemäßen Beschichtung beschichtet
       Leergewicht: 490,52g unbeschichtet
       Leergewicht: 493,28g beschichtet
    The deposits on baffles and stirrers were weighed out for evaluation.
    1
    Baffle was not coated,
    Empty weight: 61.51 g uncoated
    1
    The baffle was coated with Ni-PTFE using the method according to the invention
    Empty weight: 60.78 g coated,
    1
    The baffle was coated with Ni-PTFE / UHM-PE using the method according to the invention
    Empty weight: 62.04 g coated
    The polymerization examples were repeated, each
    1
    Experiment with an uncoated stirrer and
    1
    Experiment coated with a stirrer with a coating according to the invention
    Empty weight: 490.52g uncoated
    Empty weight: 493.28g coated

    Die Rührerdrehzahlen gehen aus Tabelle 1 hervor. Versuch Rührerdrehzahl/ U/min Belag an Stellen ohne Beschichtung [g] Belag an Stellen mit einer NiP-PTFE-Beschichtung [g] Rührer Stromstörer Rührer Stromstörer ohne PE Stronistörer mit PE 1 300 n.b. 4,21 0,43 2 350 n.b. 5,01 0,87 3a/3b 375 4,20 - 3,38 2,89 - 1,02 0,48 0,53 0,21 4a/4b 275 7,26 - 6,31 5,22 - 1,87 0,98 0,68 0,59 5 300 n.b. 2,14 0,20 6a/6b 325 4,87 - 3,20 4,25 - 1,72 0,51 0,57 0,32 n.b.: nicht bestimmt The stirrer speeds are shown in Table 1. attempt Stirrer speed / U / min Covering in places without coating [g] Covering in places with a NiP-PTFE coating [g] stirrer baffles stirrer Baffles without PE Stroner with PE 1 300 nb 4.21 0.43 2 350 nb 5.01 0.87 3a / 3b 375 4.20 - 3.38 2.89 - 1.02 0.48 0.53 0.21 4a / 4b 275 7.26 - 6.31 5.22 - 1.87 0.98 0.68 0.59 5 300 nb 2.14 0.20 6a / 6b 325 4.87 - 3.20 4.25 - 1.72 0.51 0.57 0.32 nb: not determined

    Ebenfalls wurden bei grundlegenden Versuchen zur Verfahrensoptimierung der Terluran-Herstellung im Labormaßstab (41-Autoklav) parallel zu V2A-Stählen Stähle mit einer modifizierten Oberfläche durch eine erfindungsgemäße Beschichtung verwendet. Likewise, basic experiments were carried out to optimize processes Terluran production on a laboratory scale (41-autoclave) parallel to V2A steels steels with a modified surface used by a coating according to the invention.

    Die Polymerisationsbeispiele wurden in Anlehnung an DE-A 197 28 629 und EP-A 0 062 901, jeweils Beispiel 1, durchgeführt, jedoch wurden die Mengenverhältnisse an den 2-Liter-Autoklaven angepasst und die Rührerdrehzahl gemäß Tabelle 2 variiert.The polymerization examples were based on DE-A 197 28 629 and EP-A 0 062 901, each Example 1, carried out, however the proportions of the 2 liter autoclave were adjusted and the stirrer speed varies according to Table 2.

    Ausgehend von insgesamt 661,61 g Butadien wurde in Gegenwart von 6,59 g tert.-Dodecylmercaptan ("TDM"), 4,6 g Kaliumstearat, 1,23 g Kaliumpersulfat, 1,99 g Natriumhydrogencarbonat und 824 g Wasser bei 67°C polymerisiert. Anschließend wurde der Reaktor entleert und inspiziert.Starting from a total of 661.61 g of butadiene, in the presence of 6.59 g tert-dodecyl mercaptan ("TDM"), 4.6 g potassium stearate, 1.23 g of potassium persulfate, 1.99 g of sodium hydrogen carbonate and 824 g Polymerized water at 67 ° C. The reactor was then drained and inspected.

    Beschichtet wurde der Rührer. Wieder konnte beobachtet werden, dass Beläge an nach dem erfindungsgemäßen Verfahren beschichteten Stellen deutlich reduziert auftraten und sich einfacher entfernen ließen als an unbeschichteten Stellen.The stirrer was coated. Again it could be observed that coatings on coated by the inventive method Places appeared significantly reduced and easier to remove left as in uncoated areas.

    Ausgewogen wurden Beläge an den Rührern.

    3
    Versuche wurden reproduziert, jeweils
    1
    Versuch mit einem Rührer unbeschichtet und
    1
    Versuch mit einem Rührer Ni-P-PTFE beschichtet
       Leergewicht: 376,53g unbeschichtet
       Leergewicht: 378,49g beschichtet
    mit sonst gleichen Reaktions- und Verfahrensbedingungen. Versuch Rührerdrehzahl U/min Belag an Stellen ohne Beschichtung [g] Belag an Stellen mit einer erfindungsgemäßen Beschichtung beschichteten [g] Rührer Rührer 1 400 4,89 1,21 2 350 5,72 1,33 3 300 3,51 0,89 Pads on the stirrers were weighed out.
    3
    Trials have been reproduced, each
    1
    Experiment with an uncoated stirrer and
    1
    Experiment coated with a Ni-P-PTFE stirrer
    Empty weight: 376.53g uncoated
    Empty weight: 378.49g coated
    with otherwise identical reaction and process conditions. attempt Stirrer speed U / min Covering in places without coating [g] Covering in places with a coating according to the invention [g] stirrer stirrer 1 400 4.89 1.21 2 350 5.72 1.33 3 300 3.51 0.89

    Claims (14)

    1. A process for coating apparatuses and apparatus parts for chemical plant construction, which comprises a metal layer and thereafter a metal/polymer dispersion layer being deposited in an electroless manner on the apparatus(es) or apparatus part(s) to be coated by firstly depositing a metal/phosphorus layer having a thickness of from 1 to 15 µm in an electroless manner on the apparatuses or apparatus parts and then bringing them into contact with a metal electrolyte solution which, in addition to the metal electrolyte, comprises a reducing agent and the polymer or polymer mixture to be deposited in dispersed form, wherein at least one polymer is halogenated and comprises spherical particles having a mean diameter of from 0.1 to 1.0 µm.
    2. A process as claimed in claim 1, wherein the apparatuses and apparatus parts for chemical plant construction are apparatus, tank and reactor internal walls, discharge devices, valves, line systems, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, packing elements and mixing elements which consist of a metallic material.
    3. A process as claimed in claim 1 or 2, wherein the metal electrolyte used is a nickel or copper electrolyte solution, and the reducing agent used is a hypophosphite or a borohydride.
    4. A process as claimed in claims 1 to 3, wherein a dispersion of a halogenated polymer is added to the metal electrolyte solution.
    5. A process as claimed in claims 1 to 4, wherein the metal electrolyte employed is a nickel salt solution, which is reduced in situ using an alkali metal hypophosphite and to which a polytetrafluoroethylene dispersion is added as halogenated polymer.
    6. A process as claimed in claims 1 to 5, wherein a nickel/phosphorus/polytetrafluoroethylene layer having a thickness of from 1 to 100 µm is deposited.
    7. A process as claimed in claims 1 to 6, wherein a nickel/phosphorus/polytetrafluoroethylene layer having a thickness of from 3 to 50 µm is deposited.
    8. A process as claimed in claims 1 to 7, wherein a nickel/phosphorus/polytetrafluoroethylene layer having a thickness of from 5 to 25 µm is deposited.
    9. A process as claimed in claims 1 to 8, wherein a further dispersion of a halogenated or non-halogenated polymer is added to the metal electrolyte solution.
    10. A process as claimed in claim 9, wherein the additional polymer used is a polytetrafluoroethylene or polyethylene or polypropylene.
    11. A process as claimed in claims 9 and 10, wherein the additional polymer used is a polytetrafluoroethylene or polyethylene or polypropylene comprising particles having a mean diameter of from 5 to 50 µm.
    12. An apparatus or apparatus part for chemical plant construction, obtainable by a process as claimed in claims 1 to 11.
    13. An apparatus, tank or reactor wall, discharge device, valve, line system, pump, filter, compressor, centrifuge, column, dryer, comminution machine, internal, packing element or mixing element obtainable by a process as claimed in claims 1 to 12.
    14. The use of an apparatus, tank or reactor wall, discharge device, valve, line system, pump, filter, compressor, centrifuge, column, dryer, comminution machine, internal, packing element or mixing element as claimed in claim 12 or 13 for preventing or reducing deposits from fluids.
    EP99967007A 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing Expired - Lifetime EP1144723B1 (en)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE19860526A DE19860526A1 (en) 1998-12-30 1998-12-30 Heat exchangers with reduced tendency to form deposits and processes for their production
    DE19860526 1998-12-30
    PCT/EP1999/010371 WO2000040774A2 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

    Publications (3)

    Publication Number Publication Date
    EP1144723A2 EP1144723A2 (en) 2001-10-17
    EP1144723A3 EP1144723A3 (en) 2002-11-13
    EP1144723B1 true EP1144723B1 (en) 2003-04-09

    Family

    ID=7892984

    Family Applications (3)

    Application Number Title Priority Date Filing Date
    EP99965554A Expired - Lifetime EP1144725B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins
    EP99964672A Expired - Lifetime EP1144724B1 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same
    EP99967007A Expired - Lifetime EP1144723B1 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

    Family Applications Before (2)

    Application Number Title Priority Date Filing Date
    EP99965554A Expired - Lifetime EP1144725B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins
    EP99964672A Expired - Lifetime EP1144724B1 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same

    Country Status (10)

    Country Link
    US (3) US6617047B1 (en)
    EP (3) EP1144725B1 (en)
    JP (3) JP2002534606A (en)
    KR (3) KR20010100013A (en)
    CN (3) CN1636305A (en)
    AT (3) ATE227360T1 (en)
    CA (2) CA2358099A1 (en)
    DE (4) DE19860526A1 (en)
    ES (2) ES2204184T3 (en)
    WO (3) WO2000040773A2 (en)

    Families Citing this family (30)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE10049338A1 (en) * 2000-10-05 2002-04-11 Basf Ag Micro-structured, self-cleaning catalytically-active surface comprises catalytically-active material in the hollows of the micro-structure, used for the production of hydrogenation catalysts in the form of metal foil
    JP2004525754A (en) * 2001-01-12 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Surface dirt prevention treatment method
    US6887955B2 (en) 2001-08-20 2005-05-03 Basell Polyolefine Gmbh Method for high pressure polymerization of ethylene
    DE10241947A1 (en) * 2001-09-14 2003-04-03 Magna Steyr Powertrain Ag & Co Process for surface treating a weakly loaded machine element comprises mechanically working the workpiece and coating the contact zones with a nickel layer having embedded particles of an oscillating damping non-metal
    DE10146027B4 (en) * 2001-09-18 2006-07-13 Huppmann Ag Component for a brewery plant and method for producing such components
    US20030066632A1 (en) 2001-10-09 2003-04-10 Charles J. Bishop Corrosion-resistant heat exchanger
    DE10205442A1 (en) * 2002-02-08 2003-08-21 Basf Ag Hydrophilic composite material
    US6887348B2 (en) * 2002-11-27 2005-05-03 Kimberly-Clark Worldwide, Inc. Rolled single ply tissue product having high bulk, softness, and firmness
    US6837923B2 (en) * 2003-05-07 2005-01-04 David Crotty Polytetrafluoroethylene dispersion for electroless nickel plating applications
    DE10344845A1 (en) * 2003-09-26 2005-04-14 Basf Ag Apparatus for mixing, drying and coating powdered, granular or formed bulk material in a fluidized bed and process for the preparation of supported catalysts using such apparatus
    ATE368137T1 (en) * 2004-09-17 2007-08-15 Bernd Terstegen METHOD FOR COATING APPARATUS AND APPARATUS PARTS FOR CHEMICAL PLANT ENGINEERING
    KR100753476B1 (en) * 2004-12-10 2007-08-31 주식회사 엘지화학 Coating film for inhibiting cokes formation in ethylene dichloride cracker and method for producing the same
    DE102005017327B4 (en) * 2005-04-14 2007-08-30 EKATO Rühr- und Mischtechnik GmbH processing plant
    US20080271712A1 (en) * 2005-05-18 2008-11-06 Caterpillar Inc. Carbon deposit resistant component
    US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
    US20070028588A1 (en) * 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
    JP4495054B2 (en) * 2005-09-02 2010-06-30 三菱重工業株式会社 Rotary machine parts and rotary machines
    JP4644814B2 (en) * 2006-03-30 2011-03-09 山形県 Method for forming a functional metal film on a metal product having a temperature control function
    JP5176337B2 (en) * 2006-05-12 2013-04-03 株式会社デンソー Film structure and method for forming the same
    JP5225978B2 (en) * 2007-03-23 2013-07-03 イーグル工業株式会社 Solenoid valve and manufacturing method thereof
    DE102008014272A1 (en) * 2008-03-04 2009-09-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Coating for a heat transfer element of a heat transfer device at a side that is turned to a media space with vapor-liquid-phase change, comprises a matrix made of a metallic material, and hydrophobic polymer islands arranged at the matrix
    AU2009296789A1 (en) * 2008-09-24 2010-04-01 Earth To Air Systems, Llc Heat transfer refrigerant transport tubing coatings and insulation for a direct exchange geothermal heating/cooling system and tubing spool core size
    JP5616764B2 (en) * 2010-11-26 2014-10-29 本田技研工業株式会社 Internal heat exchange type distillation equipment
    EP2458030A1 (en) 2010-11-30 2012-05-30 Alfa Laval Corporate AB Method of coating a part of a heat exchanger and heat exchanger
    AT511572B1 (en) * 2011-06-01 2013-02-15 Ke Kelit Kunststoffwerk Gmbh COATING INCLUDING NI-P-PTFE IN COMBINATION WITH A POLYMERIC POLYMER
    FR3011308B1 (en) * 2013-10-02 2017-01-13 Vallourec Oil & Gas France CONNECTING ELEMENT OF A TUBULAR COMPONENT COATED WITH A COMPOSITE METAL DEPOSITION
    GB2551107A (en) * 2016-04-27 2017-12-13 Edwards Ltd Vacuum pump component
    US11054199B2 (en) 2019-04-12 2021-07-06 Rheem Manufacturing Company Applying coatings to the interior surfaces of heat exchangers
    CN113846318A (en) * 2021-09-16 2021-12-28 一汽解放汽车有限公司 Venturi tube surface treatment method
    DE102022108533B4 (en) 2022-04-08 2024-06-20 CSB Chemische Spezialbeschichtungen GmbH Process for the preparation of a chemical NiP electrolyte dispersion with solid particles to be incorporated

    Family Cites Families (28)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    US3753757A (en) * 1970-05-15 1973-08-21 Union Carbide Corp Two step porous boiling surface formation
    US4064914A (en) * 1974-05-08 1977-12-27 Union Carbide Corporation Porous metallic layer and formation
    CH623851A5 (en) 1975-10-04 1981-06-30 Akzo Nv
    JPS52133321U (en) * 1976-04-06 1977-10-11
    CH633586A5 (en) * 1979-09-25 1982-12-15 Fonte Electr Sa Chemical metallising or metal recovery - by contacting hot surface with soln. of metal salt and reducing agent
    US4344993A (en) * 1980-09-02 1982-08-17 The Dow Chemical Company Perfluorocarbon-polymeric coatings having low critical surface tensions
    DE3114875A1 (en) 1981-04-13 1982-11-04 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING IMPACT-RESISTANT THERMOPLASTIC MOLDING MATERIALS
    IT1152230B (en) * 1982-05-31 1986-12-31 Montedison Spa PROCEDURE FOR THE PREPARATION OF LUBRICANT FATS BASED ON POLYTETRAFLUOROETHYLENE AND PERFLUOROPOLYETERS
    US4483711A (en) * 1983-06-17 1984-11-20 Omi International Corporation Aqueous electroless nickel plating bath and process
    JPS60174454A (en) * 1984-02-21 1985-09-07 Matsushita Electric Ind Co Ltd Heat exchanger for water heating
    JPS63280775A (en) * 1987-05-14 1988-11-17 Nippon Paint Co Ltd Coating composition and heat exchanger coated therewith
    JPS63293169A (en) * 1987-05-25 1988-11-30 Kurose:Kk Surface treatment of tube sheet of heat exchanger
    SU1671740A1 (en) * 1989-10-23 1991-08-23 Казахский Химико-Технологический Институт Electrolyte for depositing composite nickel-fluoropolymer coats
    DE4010271A1 (en) 1990-03-30 1991-10-02 Basf Ag METHOD FOR PRODUCING ETHYLENE POLYMERISATS AT PRESSURES ABOVE 500 BAR IN A PIPE REACTOR WITH INJECTION FINGER
    JPH04328146A (en) * 1991-04-30 1992-11-17 Kunio Mori Conductive anisotropic pvc material
    JPH0517649A (en) * 1991-07-11 1993-01-26 Kunio Mori Conductive, anisotropic pvc material
    DE4214173A1 (en) 1992-04-30 1993-11-04 Basf Ag METHOD FOR REMOVING LOW MOLECULAR TOE PRODUCTS IN THE HIGH PRESSURE POLYMERIZATION OF ETHYLENE
    DE4220225A1 (en) 1992-06-20 1993-12-23 Basf Ag Process for the production of pearl-shaped expandable styrene polymers
    JPH0626786A (en) 1992-07-09 1994-02-04 Nippon Hanetsuku:Kk Heat exchange plate
    JPH06108287A (en) 1992-09-30 1994-04-19 Nippon Zeon Co Ltd Heat exchanger
    JP2936129B2 (en) * 1995-04-12 1999-08-23 セイコー精機株式会社 Anti-corrosion structure
    GB2306510B (en) 1995-11-02 1999-06-23 Univ Surrey Modification of metal surfaces
    FI104823B (en) 1996-06-24 2000-04-14 Borealis Polymers Oy Anti-fouling coating
    US5930581A (en) * 1996-12-24 1999-07-27 The Dow Chemical Company Method of preparing complex-shaped ceramic-metal composite articles and the products produced thereby
    DE19708472C2 (en) 1997-02-20 1999-02-18 Atotech Deutschland Gmbh Manufacturing process for chemical microreactors
    DE19728629A1 (en) 1997-07-04 1999-01-07 Basf Ag Thermoplastic molding compounds with low intrinsic color
    DE19835467A1 (en) * 1998-08-06 2000-02-17 Elenac Gmbh Solid reactor with antistatic coating for carrying out reactions in the gas phase
    US6230498B1 (en) * 1998-10-22 2001-05-15 Inframetrics Inc. Integrated cryocooler assembly with improved compressor performance

    Also Published As

    Publication number Publication date
    EP1144725B1 (en) 2003-07-16
    DE59906313D1 (en) 2003-08-21
    JP2002534605A (en) 2002-10-15
    DE59903362D1 (en) 2002-12-12
    WO2000040775A3 (en) 2000-11-09
    JP2002534606A (en) 2002-10-15
    ATE237006T1 (en) 2003-04-15
    WO2000040773A3 (en) 2000-11-09
    US6513581B1 (en) 2003-02-04
    CA2358097A1 (en) 2000-07-13
    KR20010100013A (en) 2001-11-09
    KR20010103724A (en) 2001-11-23
    WO2000040774A3 (en) 2002-09-26
    DE59905005D1 (en) 2003-05-15
    EP1144724B1 (en) 2002-11-06
    DE19860526A1 (en) 2000-07-06
    WO2000040773A2 (en) 2000-07-13
    ATE227360T1 (en) 2002-11-15
    JP2003511551A (en) 2003-03-25
    KR20010100009A (en) 2001-11-09
    CN1338008A (en) 2002-02-27
    ES2197710T3 (en) 2004-01-01
    US6617047B1 (en) 2003-09-09
    EP1144725A2 (en) 2001-10-17
    ES2204184T3 (en) 2004-04-16
    CA2358099A1 (en) 2000-07-13
    CN1332810A (en) 2002-01-23
    US6509103B1 (en) 2003-01-21
    CN1636305A (en) 2005-07-06
    EP1144723A3 (en) 2002-11-13
    EP1144723A2 (en) 2001-10-17
    WO2000040774A2 (en) 2000-07-13
    EP1144724A2 (en) 2001-10-17
    ATE245210T1 (en) 2003-08-15
    WO2000040775A2 (en) 2000-07-13

    Similar Documents

    Publication Publication Date Title
    EP1144723B1 (en) Method for coating apparatuses and parts of apparatuses used in chemical manufacturing
    EP1272686A2 (en) Method for coating apparatuses and parts of apparatuses for the construction of chemical installations
    EP0074096B1 (en) Continuous process for agglomerating ptfe powders in liquid medium and the modified ptfe powder obtained
    EP0657514B1 (en) Aqueous dispersion of fluoropolymers, its manufacture and utilisation for coatings
    DE2625149B2 (en) Process and device for the continuous production of vinyl chloride polymers in aqueous emulsion
    DD200117A5 (en) CONTINUOUS METHOD AND DEVICE FOR PREPARING A VINYL CHLORIDE POLYMERISATE IN WAFER SUSPENSION
    DE102006008465A1 (en) Rotatable machine and parts thereof
    DE60209224T2 (en) Use of powder paint
    EP1767673A2 (en) Process for the reduction of the friction coefficient of coated metal strips and apparatus for applying a metallic coating to a steel strip.
    DE1494261A1 (en) Film-forming chemical coating compositions and processes for the production of films and coatings from such compositions
    DE69630459T2 (en) GRANULATED MOLD POWDER FROM POLYTETRAFLUOROETHYLENE AND METHOD FOR PRODUCING THE SAME
    CH635130A5 (en) METHOD FOR PRODUCING A CARBIDE LAYER ON THE SURFACE OF AN OBJECT FROM AN IRON ALLOY.
    EP1412104A1 (en) Method for removing deposits from chemical reactors
    DE2832617A1 (en) APPARATUS AND METHOD FOR POLYMERIZATION OF VINYL CHLORIDE MONOMERS
    DE10057319A1 (en) Use of apparatus with surfaces that are difficult to wet
    DE1520594B1 (en) Process for the polymerization of vinyl chloride
    DE2527600A1 (en) METHODS FOR TREATMENT OF SURFACES
    EP1207189A2 (en) Method for coating apparatus or parts of apparatus
    DE19700532A1 (en) Homogeneous dispersion of very fine particles
    CH705093B1 (en) A method for forming an oxide coating, which reduces the accumulation of radioactive particle types on a metal surface.
    DE10047162A1 (en) Crystallisation or precipitation apparatus with reduced deposition of crystals on its surfaces has microstructure of ribs and grooves on surfaces which contact crystallisate, solutions or mother liquors, so that they are self-cleaning
    DE168224C (en)
    DE1495515B2 (en) Process for the preparation of aqueous polyvinyl fluoride dispersions
    MXPA01006623A (en) Method for coating apparatuses and parts of apparatuses used in chemical manufacturing
    DE1521075B2 (en) Process for the electrodeposition of firmly adhering nickel layers on titanium

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    AK Designated contracting states

    Kind code of ref document: A2

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    XX Miscellaneous (additional remarks)

    Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

    17Q First examination report despatched

    Effective date: 20020128

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    PUAK Availability of information related to the publication of the international search report

    Free format text: ORIGINAL CODE: 0009015

    AK Designated contracting states

    Kind code of ref document: A3

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030409

    Ref country code: FI

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030409

    REG Reference to a national code

    Ref country code: GB

    Ref legal event code: FG4D

    Free format text: NOT ENGLISH

    XX Miscellaneous (additional remarks)

    Free format text: DERZEIT SIND DIE WIPO-PUBLIKATIONSDATEN A3 NICHT VERFUEGBAR.

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: EP

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: NV

    Representative=s name: SCHMAUDER & PARTNER AG PATENTANWALTSBUERO

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FG4D

    Free format text: GERMAN

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: SE

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030709

    Ref country code: GR

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030709

    Ref country code: DK

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20030709

    REG Reference to a national code

    Ref country code: IE

    Ref legal event code: FD4D

    Ref document number: 1144723E

    Country of ref document: IE

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: LU

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031224

    Ref country code: CY

    Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

    Effective date: 20031224

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: MC

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20031231

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FG2A

    Ref document number: 2197710

    Country of ref document: ES

    Kind code of ref document: T3

    ET Fr: translation filed
    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed

    Effective date: 20040112

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: PT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20030909

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PCAR

    Free format text: SCHMAUDER & PARTNER AG PATENT- UND MARKENANWAELTE VSP;ZWAENGIWEG 7;8038 ZUERICH (CH)

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: AT

    Payment date: 20101229

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: CH

    Payment date: 20101231

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: GB

    Payment date: 20101230

    Year of fee payment: 12

    Ref country code: IT

    Payment date: 20101222

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: DE

    Payment date: 20110225

    Year of fee payment: 12

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: NL

    Payment date: 20111229

    Year of fee payment: 13

    Ref country code: FR

    Payment date: 20120105

    Year of fee payment: 13

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: BE

    Payment date: 20120126

    Year of fee payment: 13

    REG Reference to a national code

    Ref country code: CH

    Ref legal event code: PL

    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 20111224

    REG Reference to a national code

    Ref country code: DE

    Ref legal event code: R119

    Ref document number: 59905005

    Country of ref document: DE

    Effective date: 20120703

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111224

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20120703

    Ref country code: CH

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111231

    Ref country code: LI

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20111231

    PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

    Ref country code: ES

    Payment date: 20120127

    Year of fee payment: 13

    BERE Be: lapsed

    Owner name: *BASF A.G.

    Effective date: 20121231

    REG Reference to a national code

    Ref country code: NL

    Ref legal event code: V1

    Effective date: 20130701

    REG Reference to a national code

    Ref country code: AT

    Ref legal event code: MM01

    Ref document number: 237006

    Country of ref document: AT

    Kind code of ref document: T

    Effective date: 20121224

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST

    Effective date: 20130830

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: BE

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121231

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: NL

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130701

    Ref country code: AT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121224

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20130102

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: IT

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121224

    REG Reference to a national code

    Ref country code: ES

    Ref legal event code: FD2A

    Effective date: 20140307

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: ES

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 20121225