EP1144724B1 - Heat exchanger with a reduced tendency to produce deposits and method for producing same - Google Patents

Heat exchanger with a reduced tendency to produce deposits and method for producing same Download PDF

Info

Publication number
EP1144724B1
EP1144724B1 EP99964672A EP99964672A EP1144724B1 EP 1144724 B1 EP1144724 B1 EP 1144724B1 EP 99964672 A EP99964672 A EP 99964672A EP 99964672 A EP99964672 A EP 99964672A EP 1144724 B1 EP1144724 B1 EP 1144724B1
Authority
EP
European Patent Office
Prior art keywords
metal
polymer
phosphorus
layer
polymer dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP99964672A
Other languages
German (de)
French (fr)
Other versions
EP1144724A2 (en
Inventor
Stephan Hüffer
Axel Franke
Stephan Scholl
Hans Mueller-Steinhagen
Qi Zhao
Bernd Diebold
Peter Dillmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP1144724A2 publication Critical patent/EP1144724A2/en
Application granted granted Critical
Publication of EP1144724B1 publication Critical patent/EP1144724B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F19/00Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers
    • F28F19/02Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings
    • F28F19/06Preventing the formation of deposits or corrosion, e.g. by using filters or scrapers by using coatings, e.g. vitreous or enamel coatings of metal
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1603Process or apparatus coating on selected surface areas
    • C23C18/1614Process or apparatus coating on selected surface areas plating on one side
    • C23C18/1616Process or apparatus coating on selected surface areas plating on one side interior or inner surface
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/1601Process or apparatus
    • C23C18/1633Process of electroless plating
    • C23C18/1655Process features
    • C23C18/1662Use of incorporated material in the solution or dispersion, e.g. particles, whiskers, wires
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/32Coating with nickel, cobalt or mixtures thereof with phosphorus or boron
    • C23C18/34Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents
    • C23C18/36Coating with nickel, cobalt or mixtures thereof with phosphorus or boron using reducing agents using hypophosphites
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F2245/00Coatings; Surface treatments
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12535Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.] with additional, spatially distinct nonmetal component
    • Y10T428/12556Organic component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/12All metal or with adjacent metals
    • Y10T428/12493Composite; i.e., plural, adjacent, spatially distinct metal components [e.g., layers, joint, etc.]
    • Y10T428/12771Transition metal-base component
    • Y10T428/12861Group VIII or IB metal-base component
    • Y10T428/12944Ni-base component
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/31504Composite [nonstructural laminate]
    • Y10T428/31678Of metal

Definitions

  • the invention relates to a method for producing Heat exchangers, the electroless chemical deposition of a metal-polymer dispersion layer includes.
  • the invention further relates to heat exchanger according to the invention.
  • the invention further relates to the Use of a metal-polymer dispersion layer as a permanent incrustation inhibitor.
  • the deposits whose formation is to be prevented are inorganic salts such as calcium and barium sulfate, calcium and Magnesium carbonate, inorganic phosphates, silicas and silicates, Corrosion products, particulate deposits, for example alluvial sand (River and sea water), as well as organic deposits such as bacteria, algae, Proteins, mussels or mussel larvae, polymers, oils and resins as well as the biomineralized composites consisting of the aforementioned substances.
  • inorganic salts such as calcium and barium sulfate, calcium and Magnesium carbonate, inorganic phosphates, silicas and silicates, Corrosion products, particulate deposits, for example alluvial sand (River and sea water), as well as organic deposits such as bacteria, algae, Proteins, mussels or mussel larvae, polymers, oils and resins as well as the biomineralized composites consisting of the aforementioned substances.
  • the object of the present invention is to provide a method for producing a Specify heat exchanger, on the one hand, the inclination of the reduces heat transfer surfaces, solids to form Deposits and on the other hand with high durability (e.g. against heat, corrosion and undermining) to a negligible Thermal resistance leads.
  • the process should treated surfaces have a satisfactory durability.
  • the procedure is supposed to be cost-effective to use even on hard-to-reach areas.
  • a heat exchanger is a device which has surfaces designed for heat exchange (heat transfer surfaces). Heat exchangers which exchange heat with fluids, in particular with liquids, are preferred. Heating elements and heat exchangers, in particular plate heat exchangers and spiral heat exchangers, are preferred versions of heat exchangers.
  • a halogenated polymer is a fluorinated or a chlorinated polymer; fluorinated polymers, in particular perfluorinated, are preferred. Examples of perfluorinated polymers are polytetrafluoroethylene (PTFE) and perfluoroalkoxy polymers (PFA, according to DIN 7728, Part 1, January 1988).
  • This object of the invention is a method for Electroless chemical deposition of metal-polymer dispersion phases which is known per se (W. Riedel: Functional nickel plating, publisher Eugen Leize, Saulgau, 1989 pages 231 to 236, ISBN 3-750480-044-x).
  • a Metal-polymer dispersion phase comprises a polymer, in the context of the invention a halogenated polymer dispersed in a metal alloy.
  • the Metal alloy is preferably a metal-phosphor alloy.
  • the surfaces treated according to the invention allow good heat transfer, although the coatings have a can have a not inconsiderable thickness of 1 to 100 ⁇ m.
  • the Surfaces treated according to the invention also have a satisfactory Shelf life, which also appear useful from 1 to 100 ⁇ m leaves; 3 to 20 ⁇ m, in particular 5 to 16 ⁇ m, are preferred.
  • the polymer content the dispersion coating is 5 to 30% by volume, preferably 15 to 25% by volume, especially 19 to 21 vol.%.
  • coatings are relatively inexpensive and can also be opened Apply hard-to-reach areas. These areas can be any heat transfer surfaces such as inner pipe surfaces, surfaces of electrical heating elements and surfaces of plate heat exchangers etc. act for the heating or cooling of fluids in industrial plants, in Private households, in food processing or in plants for Electricity production or water treatment can be used.
  • Heat transfer means the heat transfer from the inside of the Heat exchanger to a possibly existing, facing the fluid Coating, the heat conduction within the coating layer and the Heat transfer from the coating layer to a fluid (e.g. a saline solution).
  • a fluid e.g. a saline solution
  • the metal-phosphorus alloy of the metal-polymer dispersion layer around copper phosphorus or nickel phosphorus is preferred Nickel-phosphorus.
  • the nickel polymer dispersion layer is a dispersion layer Nickel-phosphorus polytetrafluoroethylene.
  • Suitable polymers such as perfluoro-alkoxy polymers (PFA, copolymers of Tetrafluoroethylene and perfluoroalkoxy vinyl ether e.g. Perfluorovinyl propyl ether). Should the heat exchanger be operated at a comparatively low temperature then the use of chlorinated polymers is also conceivable.
  • the Metal-polymer dispersion layer with a spherical polymer particle average diameter (number average) from 0.1 ⁇ m to 1.0 ⁇ m, especially from 0.1 ⁇ m to 0.3 ⁇ m.
  • the coating is done by immersing the workpiece in a metal electrolyte solution that has been mixed with a stabilized polymer dispersion beforehand.
  • the tempering period is generally 5 minutes to 3 hours, preferably 35 to 45 minutes.
  • Ni II , hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ can be used as metal solutions.
  • metal solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech GmbH, Berlin.
  • PTFE dispersions polytetrafluoroethylene dispersions
  • PTFE dispersions with a solids content of 35 to 60% by weight and an average particle diameter (number average) of 0.1 ⁇ m to 1 ⁇ m, in particular of 0.1 ⁇ m to 0.3 ⁇ m, are preferred, the particles of which have a spherical morphology and which have a neutral detergent (for example polyglycols, alkylphenol ethoxylate or possibly mixtures of the substances mentioned, 80 to 120 g of neutral detergent per liter) and an ionic detergent (for example alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, tetraalkylammonium salts or optionally Mixtures of the substances mentioned, 15 to 60 g of ionic detergent per liter).
  • a neutral detergent for example polyglycols, alkylphenol ethoxylate or possibly mixtures of the substances mentioned, 80 to 120 g of neutral detergent per liter
  • Dip baths with a pH of around 5 and about 27 g / l NiSO 4 x 6 H 2 O and about 21 g / l NaH 2 PO 2 x H 2 O with a PTFE content of 1 to 25 g are typical / l included.
  • the polymer content of the dispersion coating is mainly influenced by the amount of polymer dispersion added and the choice of detergents.
  • Another object of the invention is a method for producing a heat exchanger, which has a particularly adhesive, durable and heat-resistant coating and therefore solves the problem of the invention in a special way.
  • This method is based on a method for producing a heat exchanger, characterized by the electroless chemical deposition of a metal-polymer dispersion coating, in which the polymer is halogenated, on a heat transfer surface.
  • This method is additionally characterized in that a 1 to 15 ⁇ m thick metal-phosphor layer is applied by electroless chemical deposition before the metal-polymer dispersion layer is applied
  • Electroless chemical application of a 1 to 15 ⁇ m thick metal-phosphor layer to improve adhesion takes place through the already described metal electrolyte baths, but in this case no stabilized polymer dispersion is added.
  • On tempering at this time preferably dispensed with, since this adversely affects the adhesion of the subsequent metal-polymer dispersion layer generally adversely affected.
  • To Deposition of the metal-phosphor layer will place the workpiece in the top brought immersion bath, which in addition to the metal electrolyte also a stabilized polymer dispersion. This forms the metal-polymer dispersion layer.
  • an annealing at 200 to 400 °, in particular at 315 to 325 ° C performed.
  • the tempering period is generally 5 minutes to 3 hours, preferably 35 to 45 minutes.
  • the Metal-phosphor layer on a thickness of 1 to 5 microns.
  • it is the metal-phosphor alloy of the metal-polymer dispersion layer and the metal-phosphor layer around nickel-phosphorus or copper-phosphorus.
  • the metal-polymer dispersion layer is a dispersion layer Nickel-phosphorus polytetrafluoroethylene.
  • Another object of the invention is one by an inventive Method of producing heat exchangers. Production is preferably carried out of the heat exchanger according to the invention by using a inventive method.
  • the aforementioned is according to the invention Heat exchangers for transferring heat to fluids, in particular to Liquids, designed. All heating elements come into question here Transfer heat to fluids. Furthermore, heat exchangers, in particular Plate heat exchangers and spiral heat exchangers, preferred examples of such Heat exchangers.
  • Another object of the invention is the use of a coating, produced by electroless chemical deposition of a metal-polymer dispersion layer, where the polymer is halogenated to reduce the Inclination of the coated surfaces, solids from fluids to form To deposit deposits.
  • the fluids are preferably Liquids.
  • Fig. 1 shows the decrease in the heat transfer coefficient ( ⁇ [W / m 2 K]) due to CaSO 4 deposits as a function of time (t [min], abscissa) for different heat exchangers, which differ in the nature of their surfaces.
  • Reference number 1 refers to the measured values of the coating according to the invention of example (* 7).
  • Reference number 2 denotes the measured values for an electropolished steel surface.
  • the area-related output is 200 kW / m 2
  • the concentration of the CaSO 4 solution is 1.6 g / l and has a temperature that corresponds to the boiling point.
  • Fig. 2 shows the measured decrease in the heat transfer coefficient ( ⁇ [W / m 2 K]) due to CaSO 4 deposits as a function of time (t [min], abscissa) for different heat exchangers, which differ in the nature of their surfaces.
  • Reference number 1 is the coating according to the invention of example (* 7).
  • the reference number 3 indicates an untreated steel surface.
  • the power based on the area of the heat exchanger is 100 kW / m 2 .
  • a CaSO 4 solution with a concentration of 2.5 g / l flows past the heat exchanger at a speed of 80 cm / s and a temperature of 80 ° C.
  • Table 1 contains a comparison of the measured values of surface roughness, surface energy and wetting angle of the examined heating surfaces, as well as the relative decrease in the measured heat transfer coefficients within the first 100 hours of the test. It can be seen that the heat exchangers according to the invention provide a very low surface energy, a very large contact angle and very good heat transfer behavior.
  • Table 2 compares surface energy, contact angle and bacteria deposited per area (Streptococcus Thermophilus) of the heat exchangers according to the invention with the heat exchangers of the prior art.
  • Surface energy [mJ / m 2 ]
  • Contact angle [°]
  • Log10 cells / cm 2 * 9 untreated (steel) 84 65 5.7
  • Electropolished steel 86 62 5.5 Steel implanted with Si ions 39 80 4.9 F-ion implanted steel 37 82 5.5 Steel DLC sputtered 36 85 5.0 Steel CrC sputtered 34 87 4.1 Steel / Ni-PTFE 25 100 3.9
  • Concentration [g / l] pH NiSO 4 x6H 2 O 27 4.8 NaH 2 PO 2 xH 2 O 21 CH 3 CHOHCOOH 20 C 2 H 5 COOH 3 Na citrate; 5 NaF 1 PTFE (50%) 2-50

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemically Coating (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Application Of Or Painting With Fluid Materials (AREA)
  • Polymerisation Methods In General (AREA)
  • Physical Or Chemical Processes And Apparatus (AREA)
  • Separation By Low-Temperature Treatments (AREA)
  • Vaporization, Distillation, Condensation, Sublimation, And Cold Traps (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Laminated Bodies (AREA)
  • Pretreatment Of Seeds And Plants (AREA)
  • Processes Of Treating Macromolecular Substances (AREA)
  • Paints Or Removers (AREA)
  • Processing And Handling Of Plastics And Other Materials For Molding In General (AREA)

Abstract

The present invention relates to a process for coating apparatuses and apparatus parts for chemical plant construction-which are taken to mean, for example, apparatus, tank and reactor walls, discharge devices, valves, pumps, filters, compressors, centrifuges, columns, dryers, comminution machines, internals, packing elements and mixing elements-wherein a metal layer or a metal/polymer dispersion layer is deposited in an electroless manner on the apparatus(es) or apparatus part(s) to be coated by bringing the parts into contact with a metal electrolyte solution which, in addition to the metal electrolyte, comprises a reducing agent and optionally the polymer or polymer mixture to be deposited in dispersed form, where at least one polymer is halogenated.

Description

Die Erfindung bezieht sich auf ein Verfahren zur Herstellung von Wärmeübertragern, das das stromlose chemische Abscheiden einer Metall-Polymer-Dispersionschicht umfaßt. Die Erfindung bezieht sich ferner auf erfindungsgemäße Wärmeüberträger. Ferner betrifft die Erfindung die Verwendung einer Metall-Polymer-Dispersionschicht als Permanent-Inkrustierungsinhibitor.The invention relates to a method for producing Heat exchangers, the electroless chemical deposition of a metal-polymer dispersion layer includes. The invention further relates to heat exchanger according to the invention. The invention further relates to the Use of a metal-polymer dispersion layer as a permanent incrustation inhibitor.

Während der letzten Jahrzehnte litten faßt alle Industriezweige unter Ablagerung in Wärmetauschern (Steinhagen et al. (1982), Problems and Costs Due to Heat Exchanger Fouling in New Zealand Industies, Heat Transfer Eng., 14(1), Seiten 19-30). Bei der Berechnung von Wärmetauschern muß ein aufgrund von Ablagerungen (Fouling) ansteigender Reibungsdruckverlust und Wärmeübertragungswiderstand mit einbezogen werden. Dies führt zur Überdimensionierung von Wärmeüberträgern um 10 bis 200 %.Over the past few decades, all industries have suffered from deposition in heat exchangers (Steinhagen et al. (1982), Problems and Costs Due to Heat Exchanger Fouling in New Zealand Industries, Heat Transfer Eng., 14 (1), pages 19-30). When calculating heat exchangers, a due to Deposits (fouling) increasing friction pressure loss and Heat transfer resistance should be included. This leads to Oversizing heat exchangers by 10 to 200%.

Die Entwicklung von Anti-Fouling-Verfahren hat deswegen einen hohen Stellenwert eingenommen.
Mechanische Lösungen haben den Nachteil, daß sie auf relativ große Wärmetauscher beschränkt sind und zudem erhebliche Mehrkosten verursachen. Chemische Additive können zu einer unerwünschten Kontamination des Produktes führen und belasten zum Teil die Umwelt.
Aus diesen Gründen wird in letzter Zeit nach Möglichkeiten gesucht, die Fouling-Neigung durch Modifizierung der Wärmeübertragungsflächen zu reduzieren. Oberflächenbeschichtungen mit organischen Polymeren wie Polytetrafluorethylen (PTFE) reduzieren zwar die Neigung, Ablagerung zu bilden, jedoch führen die bekannten Beschichtungen selbst zu einem bemerkenswerten zusätzlichen Wärmedurchgangswiderstand. Zugleich ist aus Gründen der Haltbarkeit der Schichtdicke eine untere Grenze gesetzt. Ähnliche Probleme werden auch bei Verfahren beobachtet, die die Aufbringung von Monolayer-Silanschichten auf die zu schützende Oberfläche umfassen (Polym. Mater. Sci. and Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering (1990), Band 62, Seiten 259 bis 263).
The development of anti-fouling processes has therefore taken on a high priority.
Mechanical solutions have the disadvantage that they are limited to relatively large heat exchangers and also cause considerable additional costs. Chemical additives can lead to an undesirable contamination of the product and sometimes pollute the environment.
For these reasons, possibilities have recently been sought to reduce the tendency to fouling by modifying the heat transfer surfaces. Surface coatings with organic polymers such as polytetrafluoroethylene (PTFE) reduce the tendency to form deposits, but the known coatings themselves lead to a remarkable additional thermal resistance. At the same time, a lower limit is set for reasons of durability of the layer thickness. Similar problems are also observed in processes which involve the application of monolayer silane layers to the surface to be protected (Polym. Mater. Sci. And Engineering, Proceedings of the ACS Division of Polymeric Materials Science and Engineering (1990), volume 62, pages 259 to 263).

Die mit der Verwendung von Polymerbeschichtungen einhergehenden Probleme treten bei einem in WO 97/16692 beschriebenen Verfahren nicht auf. Bei diesem Verfahren wird durch Ionenimplantation oder durch Sputter-Techniken die Hydrophobizität der Oberfläche erhöht. Dies führt zwar zu einer Verringerung der Fouling-Neigung, jedoch ist die Anwendung dieser stets Vakuumtechniken erfordernden Verfahren sehr teuer. Zudem sind die beschriebenen Verfahren nicht geeignet, um schwer zugängliche oder komplex geformte Flächen oder Bauteile mit einer gleichmäßigen Schicht zu vergüten.The problems associated with the use of polymer coatings do not occur in a method described in WO 97/16692. With this The procedure is carried out by ion implantation or by sputtering techniques Surface hydrophobicity increased. This leads to a reduction in A tendency to foul, but the use of these is always vacuum techniques required procedures very expensive. In addition, the methods described are not Suitable for difficult to access or complex shaped surfaces or components to be coated with an even layer.

Bei den Ablagerungen, deren Bildung verhindert werden soll, handelt es sich um anorganische Salze wie Calcium- und Bariumsulfat, Calcium- und Magnesiumcarbonat, anorganische Phosphate, Kieselsäuren und Silicate, Korrosionsprodukte, partikelförmige Ablagerungen, zum Beispiel Schwemmsand (Fluß- und Meerwasser), sowie organische Ablagerungen wie Bakterien, Algen, Proteine, Muscheln bzw. Muschellarven, Polymere, Öle und Harze sowie die biomineralisierten Komposite, die aus den vorgenannten Substanzen bestehen.The deposits whose formation is to be prevented are inorganic salts such as calcium and barium sulfate, calcium and Magnesium carbonate, inorganic phosphates, silicas and silicates, Corrosion products, particulate deposits, for example alluvial sand (River and sea water), as well as organic deposits such as bacteria, algae, Proteins, mussels or mussel larvae, polymers, oils and resins as well as the biomineralized composites consisting of the aforementioned substances.

Aufgabe der vorliegenden Erfindung ist es, ein Verfahren zur Herstellung eines Wärmeüberträgers anzugeben, das einerseits die Neigung der wärmeübertragenden Flächen herabsetzt, Feststoffe unter Bildung von Ablagerungen anzulagern und das andererseits bei hoher Beständigkeit (z.B. gegenüber Wärme, Korrosion und Unterspülung) zu einem vernachlässigbaren Wärmedurchgangswiderstand führt. Dabei sollen die verfahrensgemäß behandelten Flächen eine befriedigende Haltbarkeit aufweisen. Das Verfahren soll auch auf schwer zugängliche Flächen kostengünstig anwendbar sein.The object of the present invention is to provide a method for producing a Specify heat exchanger, on the one hand, the inclination of the reduces heat transfer surfaces, solids to form Deposits and on the other hand with high durability (e.g. against heat, corrosion and undermining) to a negligible Thermal resistance leads. The process should treated surfaces have a satisfactory durability. The procedure is supposed to be cost-effective to use even on hard-to-reach areas.

Die erfindungsgemäße Aufgabe wird gelöst durch ein Verfahren zur Herstellung eines Wärmeüberträgers, gekennzeichnet durch das stromlose chemische Abscheiden einer Metall-Polymer-Dispersionsschicht, bei der das Polymer halogeniert ist, auf einer Wärmeübertragungsoberfläche.
Ein Wärmeüberträger ist im Rahmen der Erfindung eine Vorrichtung, die für den Wärmeaustausch ausgestaltete Flächen (Wärmeübertragungsoberflächen) aufweist. Bevorzugt sind Wärmeüberträger, die Wärme mit Fluiden, insbesondere mit Flüssigkeiten, austauschen.
Heizelemente und Wärmetauscher, insbesondere Plattenwärmetauscher und Spiralwärmetauscher, sind bevorzugte Ausführungen von Wärmeüberträgern.
Ein halogeniertes Polymer ist ein fluoriertes oder ein chloriertes Polymer; bevorzugt sind fluorierte Polymere, insbesondere perfluorierte. Beispiele für perfluorierte Polymere sind Polytetrafluorethylen (PTFE) und Perfluor-Alkoxy-Polymere (PFA, nach DIN 7728, Tl. 1, Jan. 1988).
The object of the invention is achieved by a method for producing a heat exchanger, characterized by the electroless chemical deposition of a metal-polymer dispersion layer, in which the polymer is halogenated, on a heat transfer surface.
In the context of the invention, a heat exchanger is a device which has surfaces designed for heat exchange (heat transfer surfaces). Heat exchangers which exchange heat with fluids, in particular with liquids, are preferred.
Heating elements and heat exchangers, in particular plate heat exchangers and spiral heat exchangers, are preferred versions of heat exchangers.
A halogenated polymer is a fluorinated or a chlorinated polymer; fluorinated polymers, in particular perfluorinated, are preferred. Examples of perfluorinated polymers are polytetrafluoroethylene (PTFE) and perfluoroalkoxy polymers (PFA, according to DIN 7728, Part 1, January 1988).

Dieser erfindungsgemäßen Lösung der Aufgabe liegt ein Verfahren zur stromlosen chemischen Abscheidung von Metall-Polymer-Dispersionsphasen zugrunde, das an sich bekannt ist (W. Riedel: Funktionelle Vernickelung, Verlag Eugen Leize, Saulgau, 1989 Seite 231 bis 236, ISBN 3-750480-044-x). Eine Metall-Polymer-Dispersionsphase umfaßt ein Polymer, im Rahmen der Erfindung ein halogeniertes Polymer, das in einer Metall-Legierung dispergiert ist. Bei der Metall-Legierung handelt es sich bevorzugt um eine Metall-Phosphor-Legierung.This object of the invention is a method for Electroless chemical deposition of metal-polymer dispersion phases which is known per se (W. Riedel: Functional nickel plating, publisher Eugen Leize, Saulgau, 1989 pages 231 to 236, ISBN 3-750480-044-x). A Metal-polymer dispersion phase comprises a polymer, in the context of the invention a halogenated polymer dispersed in a metal alloy. In the Metal alloy is preferably a metal-phosphor alloy.

Die bisher zur Verminderung der Inkrustierungsneigung eingesetzten Verfahren führten zu Oberflächen, die größere Rauhigkeit aufwiesen als elektropolierter Stahl (siehe Tabelle 1). Es wurde nun gefunden, daß eine mit einer Verminderung der Rauhigkeit einhergehende Beschichtung den gleichen Zweck erfüllt. The methods previously used to reduce the tendency towards incrustation resulted in surfaces that had greater roughness than electropolished ones Steel (see table 1). It has now been found that one with a diminution the roughness associated coating serves the same purpose.

Außerdem wurde gefunden, daß der Einfluß des Polymeranteils bei der Verminderung der Inkrustierungsneigung entscheidend ist, obwohl der Polymeranteil in der Dispersionsschicht mit 5 bis 30 Vol.% eher gering ist.It was also found that the influence of the polymer content in the Decreasing the incrustation tendency is crucial, though Polymer content in the dispersion layer with 5 to 30 vol.% Is rather low.

Außerdem wurde festgestellt, daß die erfindungsgemäß behandelten Oberflächen einen guten Wärmedurchgang ermöglichen, obwohl die Beschichtungen eine nicht unerhebliche Dicke von 1 bis 100 µm aufweisen können. Die erfindungsgemäß behandelten Oberflächen weisen ferner eine befriedigende Haltbarkeit auf, die auch Schichtdicken von 1 bis 100 µm sinnvoll erscheinen läßt; bevorzugt sind 3 bis 20 µm, insbesondere 5 bis 16 µm. Der Polymeranteil der Dispersionsbeschichtung beträgt 5 bis 30 Vol.%, bevorzugt 15 bis 25 Vol.%, vor allem 19 bis 21 Vol.%. Ferner sind die erfindungsgemäß verwendeten Beschichtungen verfahrensbedingt relativ preiswert und lassen sich auch auf schwer zugängliche Flächen aufbringen. Bei diesen Flächen kann es sich um beliebige Wärmeübertragungsflächen wie Rohrinnenflächen, Oberflächen von elektrischen Heizelementen und Oberflächen von Plattenwärmetauschern etc. handeln, die zur Beheizung oder Kühlung von Fluiden in industriellen Anlagen, in Privathaushalten, bei der Lebensmittelverarbeitung oder in Anlagen zur Stromherstellung bzw. Wasseraufbereitung verwendet werden.It was also found that the surfaces treated according to the invention allow good heat transfer, although the coatings have a can have a not inconsiderable thickness of 1 to 100 µm. The Surfaces treated according to the invention also have a satisfactory Shelf life, which also appear useful from 1 to 100 µm leaves; 3 to 20 μm, in particular 5 to 16 μm, are preferred. The polymer content the dispersion coating is 5 to 30% by volume, preferably 15 to 25% by volume, especially 19 to 21 vol.%. Furthermore, those used according to the invention Due to the process, coatings are relatively inexpensive and can also be opened Apply hard-to-reach areas. These areas can be any heat transfer surfaces such as inner pipe surfaces, surfaces of electrical heating elements and surfaces of plate heat exchangers etc. act for the heating or cooling of fluids in industrial plants, in Private households, in food processing or in plants for Electricity production or water treatment can be used.

"Wärmedurchgang" bezeichnet den Wärmeübergang von dem Inneren des Wärmeüberträgers auf eine ggf. vorhandene, dem Fluid zugewandte Beschichtung, die Wärmeleitung innerhalb der Beschichtungsschicht und den Wärmeübergang von Beschichtungsschicht auf ein Fluid (z.B. eine Salzlösung)."Heat transfer" means the heat transfer from the inside of the Heat exchanger to a possibly existing, facing the fluid Coating, the heat conduction within the coating layer and the Heat transfer from the coating layer to a fluid (e.g. a saline solution).

In einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei der Metall-Phosphor-Legierung der Metall-Polymer-Dispersionsschicht um Kupfer-Phosphor oder Nickel-Phosphor; bevorzugt ist Nickel-Phosphor. In a preferred embodiment of the method according to the invention it is the metal-phosphorus alloy of the metal-polymer dispersion layer around copper phosphorus or nickel phosphorus; is preferred Nickel-phosphorus.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei der Nickel-Polymer-Dispersionsschicht um eine Dispersionsschicht aus Nickel-Phosphor-Polytetrafluorethylen. Es sind aber auch andere fluorierte Polymere geeignet wie Perfluor-Alkoxy-Polymere (PFA, Copolymerisate von Tetrafluorethylen und Perfluoralkoxyvinylether z.B. Perfluorvinylpropylether). Soll der Wärmeüberträger bei vergleichsweise geringer Temperatur betrieben werden, dann ist der Einsatz von chlorierten Polymeren ebenfalls denkbar.In a further embodiment of the method according to the invention the nickel polymer dispersion layer is a dispersion layer Nickel-phosphorus polytetrafluoroethylene. But there are also other fluorinated ones Suitable polymers such as perfluoro-alkoxy polymers (PFA, copolymers of Tetrafluoroethylene and perfluoroalkoxy vinyl ether e.g. Perfluorovinyl propyl ether). Should the heat exchanger be operated at a comparatively low temperature then the use of chlorinated polymers is also conceivable.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens weist die Metall-Polymer-Dispersionsschicht sphärische Polymerpartikel mit einem mittleren Durchmesser (Zahlenmittel) von 0,1 µm bis 1,0 µm, insbesondere von 0,1 µm bis 0,3 µm, auf.In a further embodiment of the method according to the invention, the Metal-polymer dispersion layer with a spherical polymer particle average diameter (number average) from 0.1 µm to 1.0 µm, especially from 0.1 µm to 0.3 µm.

Im Gegensatz zur galvanischen Abscheidung werden bei der chemischen oder autokatalytischen Abscheidung des Nickel-Phosphors die dazu nötigen Elektronen nicht durch eine äußere Stromquelle zur Verfügung gestellt, sondern durch chemische Umsetzung im Elektrolyten selbst erzeugt (Oxidation eines Reduktionsmittels). Die Beschichtung erfolgt durch Eintauchen des Werkstückes in eine Metall-Elektrolytlösung, die mit einer stabilisierten Polymerdispersion zuvor gemischt wurde. Vorzugsweise wird im Anschluß an den Tauchvorgang eine Temperung bei 200 bis 400°, vor allem bei 315 bis 325 °C, durchgeführt. Die Temperierungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 45 Minuten. Als Metallösungen können z.B. handelsübliche Nickelelektrolytlösungen eingesetzt werden, die NiII, Hypophosphit, Carbonsäuren und Fluorid und ggf. Abscheidungsmoderatoren wie Pb2+ enthalten. Solche Lösungen werden zum Beispiel von der Riedel, Galvano- und Filtertechnik GmbH, Halle, Westfalen und der Atotech Deutschland GmbH, Berlin vertrieben. Als Polymer können z.B. handelsübliche Polytetrafluorethylen-Dispersionen (PTFE-Dispersionen) verwandt werden. Bevorzugt werden PTFE-Dispersionen mit einem Feststoffanteil von 35 bis 60 Gew.% und einem mittleren Partikeldurchmesser (Zahlenmittel) von 0,1 µm bis 1 µm, insbesondere von 0,1 µm bis 0,3 µm, eingesetzt, deren Partikel eine sphärische Morphologie aufweisen und die ein neutrales Detergens (zum Beispiel Polyglykole, Alkylphenolethoxylat oder ggf. Gemische aus den genannten Stoffen, 80 bis 120 g neutrales Detergens pro Liter) und ein ionischen Detergens (zum Beispiel Alkyl- und Haloalkylsulfonate, Alkylbenzolsulfonate, Alkylphenolethersulfate, Tetraalkylammoniumsalze oder ggf. Gemische aus den genannten Stoffen, 15 bis 60 g ionisches Detergens pro Liter) enthalten. Typisch sind Tauch-Bäder die einen pH-Wert um 5 aufweisen und etwa 27 g/l NiSO4 x 6 H2O und etwa 21 g/l NaH2PO2 x H2O bei einem PTFE-Gehalt von 1 bis 25 g/l enthalten.
Der Polymeranteil der Dispersionsbeschichtung wird hauptsächlich durch die Menge der zugesetzten Polymerdispersion und die Wahl der Detergentien beeinflußt.
In contrast to electrodeposition, chemical or autocatalytic deposition of nickel phosphorus does not provide the electrons required for this through an external power source, but rather through chemical conversion in the electrolyte itself (oxidation of a reducing agent). The coating is done by immersing the workpiece in a metal electrolyte solution that has been mixed with a stabilized polymer dispersion beforehand. An annealing at 200 to 400 °, especially at 315 to 325 ° C, is preferably carried out after the dipping process. The tempering period is generally 5 minutes to 3 hours, preferably 35 to 45 minutes. For example, commercially available nickel electrolyte solutions which contain Ni II , hypophosphite, carboxylic acids and fluoride and optionally deposition moderators such as Pb 2+ can be used as metal solutions. Such solutions are sold, for example, by Riedel, Galvano- und Filtertechnik GmbH, Halle, Westphalia and Atotech Deutschland GmbH, Berlin. For example, commercially available polytetrafluoroethylene dispersions (PTFE dispersions) can be used as the polymer. PTFE dispersions with a solids content of 35 to 60% by weight and an average particle diameter (number average) of 0.1 μm to 1 μm, in particular of 0.1 μm to 0.3 μm, are preferred, the particles of which have a spherical morphology and which have a neutral detergent (for example polyglycols, alkylphenol ethoxylate or possibly mixtures of the substances mentioned, 80 to 120 g of neutral detergent per liter) and an ionic detergent (for example alkyl and haloalkyl sulfonates, alkylbenzenesulfonates, alkylphenol ether sulfates, tetraalkylammonium salts or optionally Mixtures of the substances mentioned, 15 to 60 g of ionic detergent per liter). Dip baths with a pH of around 5 and about 27 g / l NiSO 4 x 6 H 2 O and about 21 g / l NaH 2 PO 2 x H 2 O with a PTFE content of 1 to 25 g are typical / l included.
The polymer content of the dispersion coating is mainly influenced by the amount of polymer dispersion added and the choice of detergents.

Ein weiterer Gegenstand der Erfindung ist ein Verfahren zur Herstellung eines Wärmeüberträgers, der eine besonders haftfeste, haltbare und wärmebeständige Beschichtung aufweist und deshalb die erfindungsgemäße Aufgabe in besonderer Weise löst.
Dieses Verfahren geht aus von einem Verfahren zur Herstellung eines Wärmeüberträgers, gekennzeichnet durch das stromlose chemische Abscheiden einer Metall-Polymer-Dispersions-Beschichtung, bei der das Polymer halogeniert ist, auf eine Wärmeübertragungsoberfläche.
Dieses Verfahren ist zusätzlich dadurch gekennzeichnet, daß vor dem Aufbringen der Metall-Polymer-Dispersionsschicht eine 1 bis 15 µm dicke Metall-Phosphor-Schicht durch stromloses chemisches Abscheiden aufgebracht wird
Another object of the invention is a method for producing a heat exchanger, which has a particularly adhesive, durable and heat-resistant coating and therefore solves the problem of the invention in a special way.
This method is based on a method for producing a heat exchanger, characterized by the electroless chemical deposition of a metal-polymer dispersion coating, in which the polymer is halogenated, on a heat transfer surface.
This method is additionally characterized in that a 1 to 15 µm thick metal-phosphor layer is applied by electroless chemical deposition before the metal-polymer dispersion layer is applied

Das stromlose chemische Aufbringen einer 1 bis 15 µm dicken Metall-Phosphor-Schicht zur Haftverbesserung erfolgt durch die schon beschriebenen Metall-Elektrolytbäder, denen jedoch in diesem Fall keine stabilisierte Polymer-Dispersion zugesetzt wird. Auf eine Temperung wird zu diesem Zeitpunkt vorzugsweise verzichtet, da diese die Haftfähigkeit der nachfolgenden Metall-Polymer-Dispersionsschicht im allgemeinen negativ beeinflußt. Nach Abscheidung der Metall-Phosphor-Schicht wird das Werkstück in das oben beschriebene Tauchbad gebracht, das neben dem Metall-Elektrolyt auch eine stabilisierte Polymer-Dispersion umfaßt. Hierbei bildet sich die Metall-Polymer-Dispersionsschicht. Vorzugsweise wird anschließend eine Temperung bei 200 bis 400°, insbesondere bei 315 bis 325 °C, durchgeführt. Die Temperierungsdauer beträgt im allgemeinen 5 Minuten bis 3 Stunden, bevorzugt 35 bis 45 Minuten.Electroless chemical application of a 1 to 15 µm thick metal-phosphor layer to improve adhesion takes place through the already described metal electrolyte baths, but in this case no stabilized polymer dispersion is added. On tempering at this time preferably dispensed with, since this adversely affects the adhesion of the subsequent metal-polymer dispersion layer generally adversely affected. To Deposition of the metal-phosphor layer will place the workpiece in the top brought immersion bath, which in addition to the metal electrolyte also a stabilized polymer dispersion. This forms the metal-polymer dispersion layer. Subsequently, an annealing at 200 to 400 °, in particular at 315 to 325 ° C, performed. The tempering period is generally 5 minutes to 3 hours, preferably 35 to 45 minutes.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens weist die Metall-Phosphor-Schicht eine Dicke von 1 bis 5 µm auf.In a further embodiment of the method according to the invention, the Metal-phosphor layer on a thickness of 1 to 5 microns.

In einer weiteren Ausführungsform der erfindungsgemäßen Verfahren handelt es sich bei der Metall-Phosphor-Legierung der Metall-Polymer-Dispersionsschicht und der Metall-Phosphor-Schicht um Nickel-Phosphor oder Kupfer-Phosphor.In a further embodiment of the method according to the invention, it is the metal-phosphor alloy of the metal-polymer dispersion layer and the metal-phosphor layer around nickel-phosphorus or copper-phosphorus.

In einer weiteren Ausführungsform des erfindungsgemäßen Verfahrens handelt es sich bei der Metall-Polymer-Dispersionsschicht um eine Dispersionsschicht aus Nickel-Phosphor-Polytetrafluorethylen.In a further embodiment of the method according to the invention the metal-polymer dispersion layer is a dispersion layer Nickel-phosphorus polytetrafluoroethylene.

Ein weiterer Gegenstand der Erfindung ist ein durch ein erfindungsgemäßes Verfahren herstellbarer Wärmeüberträger. Vorzugsweise erfolgt die Herstellung des erfindungsgemäßen Wärmeüberträgers durch Anwendung eines erfindungsgemäßen Verfahrens.Another object of the invention is one by an inventive Method of producing heat exchangers. Production is preferably carried out of the heat exchanger according to the invention by using a inventive method.

In einer weiteren Ausführungsform ist der vorgenannte erfindungsgemäße Wärmeüberträger zur Übertragung von Wärme auf Fluide, insbesondere auf Flüssigkeiten, ausgestaltet. Hierbei kommen alle Heizelemente in Frage, die Wärme auf Fluide übertragen. Ferner sind Wärmetauscher, insbesondere Plattenwärmetauscher und Spiralwärmetauscher, bevorzugte Beispiele solcher Wärmeüberträger. In a further embodiment, the aforementioned is according to the invention Heat exchangers for transferring heat to fluids, in particular to Liquids, designed. All heating elements come into question here Transfer heat to fluids. Furthermore, heat exchangers, in particular Plate heat exchangers and spiral heat exchangers, preferred examples of such Heat exchangers.

Ein weiterer Gegenstand der Erfindung ist die Verwendung einer Beschichtung, hergestellt durch das stromlose chemische Abscheiden einer Metall-Polymer-Dispersionsschicht, bei der das Polymer halogeniert ist, zur Verringerung der Neigung der beschichteten Flächen, Feststoffe aus Fluiden unter Bildung von Ablagerungen anzulagern. Bei den Fluiden handelt es sich bevorzugt um Flüssigkeiten. Die Ablagerungen, deren Bildung erfindungsgemäß verhindert wird, sind bereits beschrieben worden.Another object of the invention is the use of a coating, produced by electroless chemical deposition of a metal-polymer dispersion layer, where the polymer is halogenated to reduce the Inclination of the coated surfaces, solids from fluids to form To deposit deposits. The fluids are preferably Liquids. The deposits, the formation of which prevents according to the invention have already been described.

Einige Vorteile der erfindungsgemäßen Wärmeüberträger bzw. deren Beschichtungen werden durch die anliegende Zeichnung aufgezeigt. Es zeigt

Fig. 1
die zeitliche Veränderung des Wärmedurchgangskoeffizienten durch die Grenzschicht unter Einbeziehung einer ggf. vorhandenen Beschichtungsschicht bei Kontakt von verschiedenen Wärmetauscherflächen mit einer siedenden Salzlösung.
Fig. 2
die zeitliche Veränderung des Wärmedurchgangskoeffizienten durch die Grenzschicht unter Einbeziehung einer ggf. vorhandenen Beschichtungsschicht bei Kontakt von verschiedenen Wärmetauscherflächen mit einer vorbeiströmenden warmen Salzlösung.
Some advantages of the heat exchangers according to the invention or their coatings are shown by the attached drawing. It shows
Fig. 1
the change over time of the heat transfer coefficient through the boundary layer, including any coating layer that may be present when different heat exchanger surfaces come into contact with a boiling salt solution.
Fig. 2
the change over time of the heat transfer coefficient through the boundary layer, including any coating layer that may be present when different heat exchanger surfaces come into contact with a warm saline solution flowing past.

Fig. 1 zeigt die Abnahme des Wärmedurchgangskoeffizienten (α [W/m2K]) infolge von CaSO4-Ablagerungen als Funktion der Zeit (t [min], Abszisse) für verschiedene Wärmeüberträger, die sich in der Beschaffenheit ihrer Oberflächen unterscheiden. Die Bezugsziffer 1 verweist auf die Meßwerte der erfindungsgemäßen Beschichtung des Beispiels (*7), Die Bezugsziffer 2 bezeichnet die Meßwerte für eine elektropolierte Stahloberfläche. Die flächenbezogene Leistung beträgt 200 kW/m2, die Konzentration der CaSO4-Lösung beträgt 1,6 g/l und weist eine Temperatur auf, die dem Siedepunkt entspricht.Fig. 1 shows the decrease in the heat transfer coefficient (α [W / m 2 K]) due to CaSO 4 deposits as a function of time (t [min], abscissa) for different heat exchangers, which differ in the nature of their surfaces. Reference number 1 refers to the measured values of the coating according to the invention of example (* 7). Reference number 2 denotes the measured values for an electropolished steel surface. The area-related output is 200 kW / m 2 , the concentration of the CaSO 4 solution is 1.6 g / l and has a temperature that corresponds to the boiling point.

Fig. 2 zeigt die gemessene Abnahme des Wärmedurchgangskoeffizienten (α [W/m2K]) infolge von CaSO4-Ablagerungen als Funktion der Zeit (t [min], Abszisse) für verschiedene Wärmeüberträger, die sich in der Beschaffenheit ihrer Oberflächen unterscheiden. Bei der Bezugsziffer 1 handelt es sich um die erfindungsgemäße Beschichtung des Beispiels (*7). Die Bezugsziffer 3 verweist auf eine unbehandelte Stahloberfläche. Die auf die Fläche des Wärmeüberträgers bezogene Leistung beträgt 100 kW/m2. Eine CaSO4-Lösung einer Konzentration von 2,5 g/l strömt mit einer Geschwindigkeit von 80 cm/s und einer Temperatur von 80°C an dem Wärmeüberträger vorbei.Fig. 2 shows the measured decrease in the heat transfer coefficient (α [W / m 2 K]) due to CaSO 4 deposits as a function of time (t [min], abscissa) for different heat exchangers, which differ in the nature of their surfaces. Reference number 1 is the coating according to the invention of example (* 7). The reference number 3 indicates an untreated steel surface. The power based on the area of the heat exchanger is 100 kW / m 2 . A CaSO 4 solution with a concentration of 2.5 g / l flows past the heat exchanger at a speed of 80 cm / s and a temperature of 80 ° C.

Beispielexample

In Laboruntersuchungen wurden die Vorteile der erfindungsgemäß beschichteten Heizflächen gegenüber entsprechend unbeschichteten Heizflächen, elektropolierten Flächen und ionen-implantierten bzw. gesputterten Flächen ermittelt. Tabelle 1 enthält einen Vergleich der Meßwerte von Oberflächenrauhigkeit, Oberflächenenergie und Benetzungswinkel der untersuchten Heizflächen, sowie die relative Abnahme der gemessenen Wärmedurchgangskoeffizienten innerhalb der ersten 100 Stunden Versuchsdauer. Es zeigt sich, daß die erfindungsgemäßen Wärmeüberträger eine sehr geringen Oberflächenenergie, einen sehr großen Randwinkel und ein sehr gutes Wärmeübertragungsverhalten liefert. Oberflächenenergie [mJ/m2] * Randwinkel [°] ** Rauhigkeit, µm **** α1000 *** unbehandelt (Stahl) 84 65 0,14 0,4 Stahl elektropoliert 86 62 0,08 0,65 Stahl Si-Ionenimplantiert *5 39 80 0,14 0,75 Stahl F-Ionenimplantiert *5 37 82 0,14 0,9 Stahl DLC―gesputtert *6 36 85 0,13 0,85 Stahl TiNF―gesputtert *6 34 87 0,14 0,9 Stahl / Ni-PTFE *7 25 100 0,1 0,9 The advantages of the heating surfaces coated according to the invention compared to correspondingly uncoated heating surfaces, electropolished surfaces and ion-implanted or sputtered surfaces were determined in laboratory tests. Table 1 contains a comparison of the measured values of surface roughness, surface energy and wetting angle of the examined heating surfaces, as well as the relative decrease in the measured heat transfer coefficients within the first 100 hours of the test. It can be seen that the heat exchangers according to the invention provide a very low surface energy, a very large contact angle and very good heat transfer behavior. Surface energy [mJ / m 2 ] * Contact angle [°] ** Roughness, µm **** α 100 / α 0 *** untreated (steel) 84 65 0.14 0.4 Electropolished steel 86 62 0.08 0.65 Steel Si ion implanted * 5 39 80 0.14 0.75 Steel F-ion implanted * 5 37 82 0.14 0.9 Steel DLC ― sputtered * 6 36 85 0.13 0.85 Steel TiNF ― sputtered * 6 34 87 0.14 0.9 Steel / Ni-PTFE * 7 25 100 0.1 0.9

In Tabelle 2 werden Oberflächenenergie, Randwinkel und pro Fläche abgelagerte Bakterien (Streptococcus Thermophilus) der erfindungsgemäßen Wärmeüberträger mit den Wärmeüberträgern des Standes der Technik verglichen. Oberflächenenergie [mJ/m2] Randwinkel [°] Log10 Zellen/cm2 *9 unbehandelt (Stahl) 84 65 5,7 Stahl elektropoliert 86 62 5,5 Stahl Si-Ionenimplantiert 39 80 4,9 Stahl F-Ionen-implantiert 37 82 5,5 Stahl DLC -gesputtert 36 85 5,0 Stahl CrC-gesputtert 34 87 4,1 Stahl / Ni-PTFE 25 100 3,9 Konzentration [g/l] pH NiSO4x6H2O 27 4,8 NaH2PO2xH2O 21 CH3CHOHCOOH 20 C2H5COOH 3 NaCitrat; 5 NaF 1 PTFE (50%) 2-50 Table 2 compares surface energy, contact angle and bacteria deposited per area (Streptococcus Thermophilus) of the heat exchangers according to the invention with the heat exchangers of the prior art. Surface energy [mJ / m 2 ] Contact angle [°] Log10 cells / cm 2 * 9 untreated (steel) 84 65 5.7 Electropolished steel 86 62 5.5 Steel implanted with Si ions 39 80 4.9 F-ion implanted steel 37 82 5.5 Steel DLC sputtered 36 85 5.0 Steel CrC sputtered 34 87 4.1 Steel / Ni-PTFE 25 100 3.9 Concentration [g / l] pH NiSO 4 x6H 2 O 27 4.8 NaH 2 PO 2 xH 2 O 21 CH 3 CHOHCOOH 20 C 2 H 5 COOH 3 Na citrate; 5 NaF 1 PTFE (50%) 2-50

Claims (7)

  1. A process for the production of a heat transfer device for exchange of heat with fluids, characterized in that
    a) a metal/phosphorus layer with a thickness of from 1 to 5 µm is applied to a heat transfer surface by electroless chemical deposition, and
    b) a metal/polymer dispersion layer in which the polymer is halogenated is subsequently applied by electroless chemical deposition atop the metal/phosphorus layer produced under a), the polymer content in the metal/polymer dispersion layer being from 5 to 30% by volume.
  2. A process as claimed in claim 1, characterized in that the metal/phosphorus alloy of the metal/polymer dispersion layer and of the metal/phosphorus layer is nickel/phosphorus or copper/phosphorus, preferably nickel/phosphorus.
  3. A process as claimed in claim 1 or 2, characterized in that the metal/polymer dispersion layer is a dispersion layer of nickel/phosphorus/polytetrafluoroethylene.
  4. A process as claimed in any of claims 1 to 3, characterized in that the polymer content in the metal/polymer dispersion layer is from 15 to 25% by volume and especially from 19 to 21% by volume.
  5. A process as claimed in any of claims 1 to 4, characterized in that the metal/polymer dispersion layer comprises spherical polymer particles having a mean diameter of from 0.1 µm to 0.3 µm.
  6. A heat transfer device which is produced by the process of any of claims 1 to 5.
  7. The use of a coating produced by the process of any of claims 1 to 5, for reducing the tendency of the coated surfaces to accumulate solids from fluids, causing fouling.
EP99964672A 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same Expired - Lifetime EP1144724B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19860526A DE19860526A1 (en) 1998-12-30 1998-12-30 Heat exchangers with reduced tendency to form deposits and processes for their production
DE19860526 1998-12-30
PCT/EP1999/010368 WO2000040773A2 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same

Publications (2)

Publication Number Publication Date
EP1144724A2 EP1144724A2 (en) 2001-10-17
EP1144724B1 true EP1144724B1 (en) 2002-11-06

Family

ID=7892984

Family Applications (3)

Application Number Title Priority Date Filing Date
EP99965554A Expired - Lifetime EP1144725B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins
EP99964672A Expired - Lifetime EP1144724B1 (en) 1998-12-30 1999-12-24 Heat exchanger with a reduced tendency to produce deposits and method for producing same
EP99967007A Expired - Lifetime EP1144723B1 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

Family Applications Before (1)

Application Number Title Priority Date Filing Date
EP99965554A Expired - Lifetime EP1144725B1 (en) 1998-12-30 1999-12-24 Method for coating reactors for high pressure polymerisation of 1-olefins

Family Applications After (1)

Application Number Title Priority Date Filing Date
EP99967007A Expired - Lifetime EP1144723B1 (en) 1998-12-30 1999-12-24 Method for coating apparatuses and parts of apparatuses used in chemical manufacturing

Country Status (10)

Country Link
US (3) US6617047B1 (en)
EP (3) EP1144725B1 (en)
JP (3) JP2002534606A (en)
KR (3) KR20010100013A (en)
CN (3) CN1636305A (en)
AT (3) ATE227360T1 (en)
CA (2) CA2358099A1 (en)
DE (4) DE19860526A1 (en)
ES (2) ES2204184T3 (en)
WO (3) WO2000040773A2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108533A1 (en) 2022-04-08 2023-10-12 CSB Chemische Spezialbeschichtungen GmbH Process for producing a chemical NiP electrolyte dispersion with solid particles to be incorporated

Families Citing this family (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10049338A1 (en) * 2000-10-05 2002-04-11 Basf Ag Micro-structured, self-cleaning catalytically-active surface comprises catalytically-active material in the hollows of the micro-structure, used for the production of hydrogenation catalysts in the form of metal foil
JP2004525754A (en) * 2001-01-12 2004-08-26 ビーエーエスエフ アクチェンゲゼルシャフト Surface dirt prevention treatment method
US6887955B2 (en) 2001-08-20 2005-05-03 Basell Polyolefine Gmbh Method for high pressure polymerization of ethylene
DE10241947A1 (en) * 2001-09-14 2003-04-03 Magna Steyr Powertrain Ag & Co Process for surface treating a weakly loaded machine element comprises mechanically working the workpiece and coating the contact zones with a nickel layer having embedded particles of an oscillating damping non-metal
DE10146027B4 (en) * 2001-09-18 2006-07-13 Huppmann Ag Component for a brewery plant and method for producing such components
US20030066632A1 (en) 2001-10-09 2003-04-10 Charles J. Bishop Corrosion-resistant heat exchanger
DE10205442A1 (en) * 2002-02-08 2003-08-21 Basf Ag Hydrophilic composite material
US6887348B2 (en) * 2002-11-27 2005-05-03 Kimberly-Clark Worldwide, Inc. Rolled single ply tissue product having high bulk, softness, and firmness
US6837923B2 (en) * 2003-05-07 2005-01-04 David Crotty Polytetrafluoroethylene dispersion for electroless nickel plating applications
DE10344845A1 (en) * 2003-09-26 2005-04-14 Basf Ag Apparatus for mixing, drying and coating powdered, granular or formed bulk material in a fluidized bed and process for the preparation of supported catalysts using such apparatus
ATE368137T1 (en) * 2004-09-17 2007-08-15 Bernd Terstegen METHOD FOR COATING APPARATUS AND APPARATUS PARTS FOR CHEMICAL PLANT ENGINEERING
KR100753476B1 (en) * 2004-12-10 2007-08-31 주식회사 엘지화학 Coating film for inhibiting cokes formation in ethylene dichloride cracker and method for producing the same
DE102005017327B4 (en) * 2005-04-14 2007-08-30 EKATO Rühr- und Mischtechnik GmbH processing plant
US20080271712A1 (en) * 2005-05-18 2008-11-06 Caterpillar Inc. Carbon deposit resistant component
US20070031639A1 (en) * 2005-08-03 2007-02-08 General Electric Company Articles having low wettability and methods for making
US20070028588A1 (en) * 2005-08-03 2007-02-08 General Electric Company Heat transfer apparatus and systems including the apparatus
JP4495054B2 (en) * 2005-09-02 2010-06-30 三菱重工業株式会社 Rotary machine parts and rotary machines
JP4644814B2 (en) * 2006-03-30 2011-03-09 山形県 Method for forming a functional metal film on a metal product having a temperature control function
JP5176337B2 (en) * 2006-05-12 2013-04-03 株式会社デンソー Film structure and method for forming the same
JP5225978B2 (en) * 2007-03-23 2013-07-03 イーグル工業株式会社 Solenoid valve and manufacturing method thereof
DE102008014272A1 (en) * 2008-03-04 2009-09-10 Deutsches Zentrum für Luft- und Raumfahrt e.V. Coating for a heat transfer element of a heat transfer device at a side that is turned to a media space with vapor-liquid-phase change, comprises a matrix made of a metallic material, and hydrophobic polymer islands arranged at the matrix
AU2009296789A1 (en) * 2008-09-24 2010-04-01 Earth To Air Systems, Llc Heat transfer refrigerant transport tubing coatings and insulation for a direct exchange geothermal heating/cooling system and tubing spool core size
JP5616764B2 (en) * 2010-11-26 2014-10-29 本田技研工業株式会社 Internal heat exchange type distillation equipment
EP2458030A1 (en) 2010-11-30 2012-05-30 Alfa Laval Corporate AB Method of coating a part of a heat exchanger and heat exchanger
AT511572B1 (en) * 2011-06-01 2013-02-15 Ke Kelit Kunststoffwerk Gmbh COATING INCLUDING NI-P-PTFE IN COMBINATION WITH A POLYMERIC POLYMER
FR3011308B1 (en) * 2013-10-02 2017-01-13 Vallourec Oil & Gas France CONNECTING ELEMENT OF A TUBULAR COMPONENT COATED WITH A COMPOSITE METAL DEPOSITION
GB2551107A (en) * 2016-04-27 2017-12-13 Edwards Ltd Vacuum pump component
US11054199B2 (en) 2019-04-12 2021-07-06 Rheem Manufacturing Company Applying coatings to the interior surfaces of heat exchangers
CN113846318A (en) * 2021-09-16 2021-12-28 一汽解放汽车有限公司 Venturi tube surface treatment method

Family Cites Families (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3753757A (en) * 1970-05-15 1973-08-21 Union Carbide Corp Two step porous boiling surface formation
US4064914A (en) * 1974-05-08 1977-12-27 Union Carbide Corporation Porous metallic layer and formation
CH623851A5 (en) 1975-10-04 1981-06-30 Akzo Nv
JPS52133321U (en) * 1976-04-06 1977-10-11
CH633586A5 (en) * 1979-09-25 1982-12-15 Fonte Electr Sa Chemical metallising or metal recovery - by contacting hot surface with soln. of metal salt and reducing agent
US4344993A (en) * 1980-09-02 1982-08-17 The Dow Chemical Company Perfluorocarbon-polymeric coatings having low critical surface tensions
DE3114875A1 (en) 1981-04-13 1982-11-04 Basf Ag, 6700 Ludwigshafen METHOD FOR PRODUCING IMPACT-RESISTANT THERMOPLASTIC MOLDING MATERIALS
IT1152230B (en) * 1982-05-31 1986-12-31 Montedison Spa PROCEDURE FOR THE PREPARATION OF LUBRICANT FATS BASED ON POLYTETRAFLUOROETHYLENE AND PERFLUOROPOLYETERS
US4483711A (en) * 1983-06-17 1984-11-20 Omi International Corporation Aqueous electroless nickel plating bath and process
JPS60174454A (en) * 1984-02-21 1985-09-07 Matsushita Electric Ind Co Ltd Heat exchanger for water heating
JPS63280775A (en) * 1987-05-14 1988-11-17 Nippon Paint Co Ltd Coating composition and heat exchanger coated therewith
JPS63293169A (en) * 1987-05-25 1988-11-30 Kurose:Kk Surface treatment of tube sheet of heat exchanger
SU1671740A1 (en) * 1989-10-23 1991-08-23 Казахский Химико-Технологический Институт Electrolyte for depositing composite nickel-fluoropolymer coats
DE4010271A1 (en) 1990-03-30 1991-10-02 Basf Ag METHOD FOR PRODUCING ETHYLENE POLYMERISATS AT PRESSURES ABOVE 500 BAR IN A PIPE REACTOR WITH INJECTION FINGER
JPH04328146A (en) * 1991-04-30 1992-11-17 Kunio Mori Conductive anisotropic pvc material
JPH0517649A (en) * 1991-07-11 1993-01-26 Kunio Mori Conductive, anisotropic pvc material
DE4214173A1 (en) 1992-04-30 1993-11-04 Basf Ag METHOD FOR REMOVING LOW MOLECULAR TOE PRODUCTS IN THE HIGH PRESSURE POLYMERIZATION OF ETHYLENE
DE4220225A1 (en) 1992-06-20 1993-12-23 Basf Ag Process for the production of pearl-shaped expandable styrene polymers
JPH0626786A (en) 1992-07-09 1994-02-04 Nippon Hanetsuku:Kk Heat exchange plate
JPH06108287A (en) 1992-09-30 1994-04-19 Nippon Zeon Co Ltd Heat exchanger
JP2936129B2 (en) * 1995-04-12 1999-08-23 セイコー精機株式会社 Anti-corrosion structure
GB2306510B (en) 1995-11-02 1999-06-23 Univ Surrey Modification of metal surfaces
FI104823B (en) 1996-06-24 2000-04-14 Borealis Polymers Oy Anti-fouling coating
US5930581A (en) * 1996-12-24 1999-07-27 The Dow Chemical Company Method of preparing complex-shaped ceramic-metal composite articles and the products produced thereby
DE19708472C2 (en) 1997-02-20 1999-02-18 Atotech Deutschland Gmbh Manufacturing process for chemical microreactors
DE19728629A1 (en) 1997-07-04 1999-01-07 Basf Ag Thermoplastic molding compounds with low intrinsic color
DE19835467A1 (en) * 1998-08-06 2000-02-17 Elenac Gmbh Solid reactor with antistatic coating for carrying out reactions in the gas phase
US6230498B1 (en) * 1998-10-22 2001-05-15 Inframetrics Inc. Integrated cryocooler assembly with improved compressor performance

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102022108533A1 (en) 2022-04-08 2023-10-12 CSB Chemische Spezialbeschichtungen GmbH Process for producing a chemical NiP electrolyte dispersion with solid particles to be incorporated
DE102022108533B4 (en) 2022-04-08 2024-06-20 CSB Chemische Spezialbeschichtungen GmbH Process for the preparation of a chemical NiP electrolyte dispersion with solid particles to be incorporated

Also Published As

Publication number Publication date
EP1144725B1 (en) 2003-07-16
DE59906313D1 (en) 2003-08-21
JP2002534605A (en) 2002-10-15
DE59903362D1 (en) 2002-12-12
WO2000040775A3 (en) 2000-11-09
JP2002534606A (en) 2002-10-15
ATE237006T1 (en) 2003-04-15
WO2000040773A3 (en) 2000-11-09
EP1144723B1 (en) 2003-04-09
US6513581B1 (en) 2003-02-04
CA2358097A1 (en) 2000-07-13
KR20010100013A (en) 2001-11-09
KR20010103724A (en) 2001-11-23
WO2000040774A3 (en) 2002-09-26
DE59905005D1 (en) 2003-05-15
DE19860526A1 (en) 2000-07-06
WO2000040773A2 (en) 2000-07-13
ATE227360T1 (en) 2002-11-15
JP2003511551A (en) 2003-03-25
KR20010100009A (en) 2001-11-09
CN1338008A (en) 2002-02-27
ES2197710T3 (en) 2004-01-01
US6617047B1 (en) 2003-09-09
EP1144725A2 (en) 2001-10-17
ES2204184T3 (en) 2004-04-16
CA2358099A1 (en) 2000-07-13
CN1332810A (en) 2002-01-23
US6509103B1 (en) 2003-01-21
CN1636305A (en) 2005-07-06
EP1144723A3 (en) 2002-11-13
EP1144723A2 (en) 2001-10-17
WO2000040774A2 (en) 2000-07-13
EP1144724A2 (en) 2001-10-17
ATE245210T1 (en) 2003-08-15
WO2000040775A2 (en) 2000-07-13

Similar Documents

Publication Publication Date Title
EP1144724B1 (en) Heat exchanger with a reduced tendency to produce deposits and method for producing same
DE10016215A1 (en) Process for coating apparatus and apparatus parts for chemical plant construction
DE102006009116A1 (en) Corrosion-resistant substrate and method for its production
EP1894816A2 (en) Pivot bearing for automobile front wheel suspension
Chen et al. A novel antiscaling and anti-corrosive polymer-based functional coating
CN101054665A (en) Electrolytic zinc plating and zinc-iron alloy silicate cleaning deactivation liquid
WO2009068523A1 (en) Zirconium phosphating of metal components, in particular iron
EP3574054B1 (en) Use of sio2 coatings in water-carrying cooling systems
WO2004104268A1 (en) Method for producing plain bearing bushes
EP1630251B1 (en) Process for coating apparatus and parts of apparatus used to make chemical plants
DE102007053345A1 (en) Two-layer steel pipe welded with copper, coated on the outside with zinc and PVF, inside with nickel
DE4012086A1 (en) Surface treating metals before cathodic electro-dip lacquering
DE2046449A1 (en) Process for applying protective coatings to metal objects
DE102009017702B4 (en) Process for the formation of corrosion protection layers on metal surfaces
Zhang et al. Study of the corrosion resistance of a superhydrophobic Ni-P-Al2O3 composite coating based on electrochemical machining
DE102008020037A1 (en) Coating method comprises treating surface with activator, followed by electroless plating with nickel-phosphorus alloy, activator containing hydrochloric acid, nickel chloride, acetic acid, citric acid, lactic acid, succinic acid and water
CH705093B1 (en) A method for forming an oxide coating, which reduces the accumulation of radioactive particle types on a metal surface.
DE4441883C2 (en) Coating compositions
DE102009042743A1 (en) Mold or crucible and method for coating heat exchanger surfaces of a mold or crucible
DE102020123633A1 (en) Process for the electroless deposition of a metal layer on a substrate
CN117535745A (en) Workpiece surface superhydrophobic treatment method by utilizing electroplating and chemical plating cooperative deposition and product thereof
Hyun-Tae Kim The property of antibiotic antifinger–resin on zinc coated steel sheet
WO2010015489A2 (en) Method for depositing nickel and noble metal from the same bath
WO2010060930A1 (en) Method for preventing deposits
JPH04191396A (en) Formation of base film for coating by electrodeposition

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010704

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020131

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021106

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021106

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021106

REF Corresponds to:

Ref document number: 227360

Country of ref document: AT

Date of ref document: 20021115

Kind code of ref document: T

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021120

Year of fee payment: 4

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021209

Year of fee payment: 4

REF Corresponds to:

Ref document number: 59903362

Country of ref document: DE

Date of ref document: 20021212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20021123

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20021231

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20021231

Year of fee payment: 4

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030206

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030206

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030206

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030529

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030701

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1144724E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030807

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031231

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101229

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20101222

Year of fee payment: 12

Ref country code: GB

Payment date: 20101230

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20110225

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20111229

Year of fee payment: 13

Ref country code: FR

Payment date: 20120105

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20120126

Year of fee payment: 13

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111224

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59903362

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111224

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20121231

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20130701

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 227360

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121224

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20130830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130701

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130102

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121224