EP0466850B1 - Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit - Google Patents

Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit Download PDF

Info

Publication number
EP0466850B1
EP0466850B1 EP91901685A EP91901685A EP0466850B1 EP 0466850 B1 EP0466850 B1 EP 0466850B1 EP 91901685 A EP91901685 A EP 91901685A EP 91901685 A EP91901685 A EP 91901685A EP 0466850 B1 EP0466850 B1 EP 0466850B1
Authority
EP
European Patent Office
Prior art keywords
tank
valve
ventilation
shut
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP91901685A
Other languages
English (en)
French (fr)
Other versions
EP0466850A1 (de
Inventor
Ulrich Steinbrenner
Helmut Denz
Ernst Wild
Wolfgang Wagner
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0466850A1 publication Critical patent/EP0466850A1/de
Application granted granted Critical
Publication of EP0466850B1 publication Critical patent/EP0466850B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M25/00Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture
    • F02M25/08Engine-pertinent apparatus for adding non-fuel substances or small quantities of secondary fuel to combustion-air, main fuel or fuel-air mixture adding fuel vapours drawn from engine fuel reservoir
    • F02M25/0809Judging failure of purge control system
    • F02M25/0818Judging failure of purge control system having means for pressurising the evaporative emission space

Definitions

  • the invention relates to a tank ventilation system for a motor vehicle and a method for checking the functionality of such a system.
  • a tank ventilation system generally has a fuel tank and a tank ventilation valve, which is connected to the intake manifold of an internal combustion engine, so that fuel vapors are drawn off with the aid of the negative pressure in the intake manifold.
  • a tank ventilation valve usually an activated carbon filter, is interposed between the tank and the tank ventilation valve. This activated carbon filter adsorbs fuel in those periods in which there is no suction from the intake manifold, e.g. B. when the internal combustion engine is at a standstill or when the tank ventilation valve is kept closed due to the current operating state.
  • tank ventilation systems There is a risk that tank ventilation systems will leak or that the tank ventilation valve will not work properly. Such systems must therefore be repeatedly checked for functionality during the operation of a motor vehicle.
  • the most important method for checking the functionality of a motor vehicle tank ventilation system is based on a proposal from the California environmental agency CARB. According to this method, when the tank ventilation valve is opened, a check is carried out to determine whether a lambda regulator has to correct its manipulated value. This is always the case when air is drawn in with fuel vapor from the tank ventilation system. However, it is now the case that the adsorption filter can be completely regenerated and that the fuel in the tank is completely degassed. Then, when the tank ventilation valve is opened, no fuel is supplied in addition to that which is supplied to the injection valves of the internal combustion engine in accordance with the manipulated variable of the lambda control. In such a case, in which no fuel is supplied by the tank ventilation system, i.e.
  • the lambda regulator does not have to make a correction, it is unclear whether the tank ventilation system is leaking or whether no fuel is being supplied for the reasons mentioned.
  • the signal from the lambda controller is only evaluated in accordance with the known method when a fuel temperature sensor indicates that a predetermined minimum fuel temperature has been exceeded and a tank level sensor indicates that the vehicle has been refueled. It is assumed that fuel vapor should then be present in the system in any case, which is sucked in when the tank ventilation valve is opened and then leads to a correction of the lambda regulator.
  • wrong decisions always occur with this method, namely when there is outgassed fuel in the tank, such fuel is refilled and the adsorption filter is largely regenerated.
  • the shut-off speed of the ventilation line of the adsorption filter enables the method according to the invention specified below to check the functionality of the system.
  • the processes share the idea that they exploit the shut-off facility of the ventilation line of the adsorption filter.
  • the lockability of the ventilation line makes it possible to set sufficiently large overpressures and underpressures for a particularly reliable check of the functionality of the system.
  • the shut-off element advantageously has overpressure and underpressure protection valves.
  • the functionality of the shut-off device can be checked by releasing the ventilation line if there is negative pressure. If the vacuum is then reduced, this is a sign that the shut-off device is working properly.
  • Fig. 1 shows schematically a tank ventilation system with a fuel tank KT, an adsorption filter AF and a tank ventilation valve TEV.
  • the latter lies in a valve line VL, which connects the adsorption filter AF to the intake manifold SR of an internal combustion engine, not shown.
  • the valve line opens air sucked in the flow direction L behind the throttle valve. This makes it possible to achieve a relatively high negative pressure in the valve line in order to effectively rinse the adsorption filter AF. With the throttle valve largely closed and at higher speeds, the negative pressure drops to a few 100 hPa.
  • the adsorption filter AF is in turn connected to the fuel tank KT via a filter line FL. If the fuel is in the fuel tank, the outgassing fuel is adsorbed by activated carbon in the adsorption filter AF.
  • a ventilation line BL also opens into the adsorption filter AF. Air flows through this ventilation line BL when the adsorption filter AF is sucked off via the valve line with the tank ventilation valve TEV. This regenerates the activated carbon. The activated carbon can then absorb fuel again when the engine is at a standstill or in operating phases in which the tank ventilation valve is closed.
  • the tank ventilation system shown in Fig. 1 has a structure due to components to be described, which can be checked particularly reliably for functionality. These additional components are a differential pressure meter DDM, which measures the differential pressure in the tank relative to atmospheric pressure, and a shut-off valve for controllably shutting off the ventilation line BL.
  • the shut-off valve AV can be opened or closed with the aid of a signal which is output by a control unit SG. The criteria according to which signals are output are explained below with reference to FIG. 3.
  • the line of a protective valve arrangement SVA also opens into the ventilation line BL, which protective valve arrangement has an overpressure and a vacuum protection valve.
  • the pressures in the protective valve arrangement are set in such a way that there is no risk of damage to the tank ventilation system because the pressures are too high or too low.
  • Fig. 2 shows an adsorption filter AF.2, which is equipped with a check valve arrangement.
  • a tank shut-off valve TSV ensures that fuel gas only reaches the adsorption filter AF when a certain excess pressure in the fuel tank KT is exceeded, e.g. B. 30 hPa. Since this tank shut-off valve TSV prevents the tank from being vented under negative pressure, a tank ventilation valve TBV is also available. B. opens at a vacuum of 30 hPa in the tank.
  • a filter shut-off valve FSV is present, which only opens the way into the valve line VL when the vacuum drops below a certain level, e.g. . B. with a pressure drop to less than 50 hPa.
  • FIG. 3 explains how the functionality of the tank ventilation system according to FIG. 1 can be checked.
  • the method also makes it possible to find faults in an absorption filter AF.2 according to FIG. 2, that is to say with check valves.
  • the ventilation line BL is shut off in a step s1, which is done by correspondingly actuating the shutoff valve AV.
  • This process step of shutting off the ventilation valve is a decisive step for all the process variants explained below.
  • a query is made as to whether a test with negative pressure should be carried out in steps s3 to s9.
  • a test can e.g. B. at fixed time intervals. If no vacuum test is to be carried out, step s2 is followed by process steps s10 to s16, which use overpressure in the system. The test with the help of overpressure can also take place at fixed time intervals, or after a test with underpressure.
  • step s3 the tank ventilation valve TEV is opened. Since the ventilation line BL is closed, negative pressure must now build up in the tank ventilation system if it is tight.
  • the pressure measured by the differential pressure meter DDM is first queried in a step s4. It is determined in a step s5 that no negative pressure with an absolute value above a predetermined threshold value (eg 50 hPa (negative pressure)) is obtained, an error message is output in step s6.
  • a predetermined threshold value eg 50 hPa (negative pressure)
  • an evaluation can be excluded, e.g. B. full load, since then there is almost atmospheric pressure in the intake manifold and thus no significant negative pressure can build up in the tank ventilation system.
  • step s6 After the error message has been output in step s6, the end of the method is reached. Otherwise, a step s7 follows in which the ventilation line is released again by opening the shut-off valve AV. In a step s8 it is checked whether the value of the negative pressure measured by the differential pressure meter DDM falls. If this is the case, the end of the procedure is reached. Otherwise, an error message is output in a step s9, which indicates that the shut-off valve AV no longer opens properly. A leakage and thus malfunction of the system can already be fully checked through steps s1-s9.
  • step s2 If, in step s2, after the described check with negative pressure has been switched over to the lambda correction check with positive pressure, the tank ventilation valve is closed in step s10 and the ventilation line BL is blocked by closing the shut-off valve AV.
  • step s11 the differential pressure for the fuel tank KT detected by the differential pressure meter DDM is queried. It is then checked (step s12) whether there is an overpressure that lies above a predetermined threshold, e.g. B. at more than 30 hPa. If this is not the case, steps s11 and s12 are repeated until an overpressure above the specified threshold is reached, or until a step s13 between steps s12 and s11 is determined that an end of test condition has occurred. This can be, for.
  • test B. can be the expiration of a period of time since the start of the check for reaching the predetermined positive pressure.
  • the test end condition can also consist in reaching predetermined operating states. If the test end condition occurs, the end of the Procedure reached. Since an overpressure never builds up under certain circumstances (e.g. with outgassed fuel), it may happen that the pressure threshold is never reached. The following test steps therefore only provide additional information on the vacuum test and are not sufficient as the sole error criterion.
  • step s12 shows that the predetermined overpressure has been exceeded
  • the tank ventilation valve TEV is opened in step s14.
  • fuel is suddenly supplied to the internal combustion engine in addition to that which is injected anyway.
  • the lambda control must then reduce the amount of fuel to be injected.
  • step s15 it is checked whether a lean correction in the lambda control is required when the tank ventilation valve is opened in step s14. If this is the case, it is confirmed again that the tank ventilation system has delivered fuel in the expected manner. The end of the procedure is then reached. Otherwise, an error message is output in step s16. If the previous vacuum test already showed an error, it has now been proven that the connection pipe between the intake manifold and the tank ventilation valve is interrupted.
  • a negative pressure builds up in the tank ventilation system.
  • the realizable negative pressure is usually sufficient to vaporize fuel in the fuel tank KT and thus to deliver fuel through the valve line VL into the intake manifold SR.
  • the vacuum must not fall below a few 10 hPa, otherwise there is a risk of implosion for the KT fuel tank.
  • the negative pressure is accordingly limited by the protective valve arrangement SVA.
  • the test is only carried out if there was previously overpressure in the tank. However, as already mentioned above, this overpressure cannot be guaranteed in all cases despite the blocked ventilation line BL.
  • step s5 the expected negative pressure builds up, this is a sign that the valves TSV and FSV are consistent. If the expected vacuum is not reached, either one of these two valves is blocked or the dance vent valve TEV or the system is leaking. If the pressure in the tank KT rises above a permissible value with the ventilation line BL open, the check valve TSV is clogged. If the pressure in the tank drops when the ventilation line BL is open, this indicates that the tank ventilation valve TBV is clogged. In a corresponding manner, a functional test of the protective valve arrangement SVA is also possible; no negative pressures or overpressures may occur, the absolute values of which exceed the values of the protective pressures.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Supplying Secondary Fuel Or The Like To Fuel, Air Or Fuel-Air Mixtures (AREA)
  • Cooling, Air Intake And Gas Exhaust, And Fuel Tank Arrangements In Propulsion Units (AREA)

Abstract

Eine Tankentlüftungsanlage weist ein en Adsorptionsfilter (AF) mit einer Belüftungsleitung (BL) auf, die durch ein steuerbares Absperrventil (AV) absperrbar ist. Die absperrbare Belüftungsleitung ermöglicht es, gezielt Unter- und Überdrücke in der Anlage einstellen zu können, um dadurch deren Funktionstüchtigkeit zu überprüfen. Dadurch lassen sich besonders sichere Aussagen über die Funktionstüchtigkeit erzielen.

Description

  • Die Erfindung betrifft eine Tankentlüftungsanlage für ein Kraftfahrzeug und Verfahren zum Überprüfen der Funktionstüchtigkeit einer solchen Anlage.
  • Stand der Technik
  • Eine Tankentlüftungsanlage weist generell einen Kraftstofftank und ein Tankentlüftungsventil auf, das mit dem Saugrohr einer Brennkraftmaschine verbunden ist, damit mit Hilfe des Unterdrucks im Saugrohr Kraftstoffdämpfe abgesaugt werden. Üblicherweise wird nicht unmittelbar das über dem Kraftstoff befindliche Volumen im Tank abgesaugt, sondern zwischen den Tank und das Tankentlüftungsventil ist ein Adsorptionsfilter, üblicherweise ein Aktivkohlefilter, zwischengeschaltet. Dieses Aktivkohlefilter adsorbiert Kraftstoff in denjenigen Zeiträumen, in denen kein Absaugen vom Saugrohr her erfolgt, z. B. beim Stillstand der Brennkraftmaschine oder dann, wenn aufgrund des aktuellen Betriebszustandes das Tankentlüftungsventil geschlossen gehalten wird.
  • Es besteht die Gefahr, daß Tankentlüftungsanlagen undicht werden oder daß das Tankentlüftungsventil nicht ordnungsgemäß arbeitet. Derartige Anlagen sind daher während des Betriebs eines Kraftfahrzeugs wiederholt auf Funktionstüchtigkeit zu überprüfen.
  • Das wichtigste Verfahren zum Überprüfen der Funktionstüchtigkeit einer Kraftfahrzeug-Tankentlüftungsanlage beruht auf einem Vorschlag der kalifornischen Umweltbehörde CARB. Nach diesem Verfahren wird beim Öffnen des Tankentlüftungsventiles überprüft, ob ein Lambdaregler eine Korrektur in seinem Stellwert vornehmen muß. Dies ist immer dann der Fall, wenn aus der Tankentlüftungsanlage Luft mit Kraftstoffdampf angesaugt wird. Nun ist es jedoch so, daß das Adsorptionsfilter ganz regeneriert sein kann und daß der Kraftstoff im Tank völlig entgast ist. Dann wird beim Öffnen des Tankentlüftungsventils kein Kraftstoff zusätzlich zu demjenigen geliefert, der gemäß dem Stellwert der Lambdaregelung an die Einspritzventile der Brennkraftmaschine geliefert wird. In einem solchen Fall, in dem also kein Kraftstoff von der Tankentlüftungsanlage geliefert wird, also der Lambdaregler keine Korrektur vornehmen muß, ist unklar, ob die Tankentlüftungsanlage undicht ist oder ob aus den genannten Gründen kein Kraftstoff geliefert wird. Um diese Frage entscheiden zu können, erfolgt gemäß dem bekannten Verfahren eine Auswertung des Signals vom Lambdaregler nur dann, wenn ein Kraftstofftemperaturfühler das Überschreiten einer vorgegebenen Kraftstoffmindesttemperatur anzeigt und ein Tankfüllstandssensor anzeigt, daß das Fahrzeug betankt wurde. Es wird davon ausgegangen, daß dann auf jeden Fall Kraftstoffdampf in der Anlage vorhanden sein müßte, der beim Öffnen des Tankentlüftungsventils angesaugt wird und dann zu einer Korrektur des Lambdareglers führt. Jedoch treten bei diesem Verfahren immer wieder Fehlentscheidungen auf, wenn sich nämlich ausgegaster Kraftstoff im Tank befindet, ebensolcher Kraftstoff nachgetankt wird und das Adsorptionsfilter weitgehend regeneriert ist.
  • Demgemäß bestand weiterhin das Problem, ein Verfahren zum Überprüfen der Funktionstüchtigkeit einer Kraftfahrzeug-Tankentlüftungsanlage anzugeben, das möglichst wenig unberechtigte Fehlermeldungen ausgibt. Außerdem bestand das Problem, eine Tankentlüftungsanlage anzugeben, deren Funktionstüchtigkeit sich besonders zuverlässig überprüfen läßt.
  • Darstellung der Erfindung
  • Die für das erfindungsgemäße Verfahren verwendete Tankentlüftungsanlage für ein Kraftfahrzeug weist folgende Teile auf, wie zum Beispiel aus der US-4 862 856 bekannt:
    • einen Kraftstofftank,
    • ein Adsorptionsfilter, das mit dem Kraftstofftank über eine Filterleitung verbunden ist und das eine Belüftungsleitung mit einem steuerbaren Absperrventil aufweist,
    • und ein Tankentlüftungsventil, das über eine Ventilleitung das Adsorptionsfilter mit dem Saugrohr einer Brennkraftmaschine verbindet.
  • Die Absperrbark Keit der Belüftungsleitung des Adsorptionsfilters ermöglicht die im folgenden angegebenen erfindungsgemäßen Verfahren zum Überprüfen der Funktionstüchtigkeit der Anlage. Den Verfahren ist die Idee gemeinsam, daß sie die Absperrbarkeit der Belüftungsleitung des Adsorptionsfilters ausnutzen.
  • Das erfindungsgemäße Verfahren zum Überprüfen der Funktionstüchtigkeit einer Kraftfahrzeug-Tankentlüftungsänlage arbeitet so, daß
    • die Belüftungsleitung des Adsorptionsfilters der Anlage abgesperrt wird,
    • das Tankentlüftungsventil der Anlage geöffnet wird,
    • und gemessen wird, ob sich im Tank Unterdruck aufbaut und, falls dies der Fall ist, auf Funktionstüchtigkeit der Anlage geschlossen wird.
  • Um nicht nur die Dichtheit der Anlage und die Unterdruck-Funktionsfähigkeit verschiedener Ventile, sondern die volle Funktionsfähigkeit aller Ventile überprüfen zu können, wird vorteilhafterweise zusätzlich so verfahren, daß
    • die Belüftungsleitung des Adsorptionsfilters der Anlage abgesperrt wird,
    • das Tankentlüftungsventil der Anlage erst geöffnet wird, wenn sich im Tank ein Mindestüberdruck aufgebaut hat und die Brennkraftmaschine, an die die Anlage angeschlossen ist, mit kleinen Luftdurchsätzen arbeitet,
    • und überprüft wird, ob eine Lambdaregelung beim Öffnen des Tankentlüftungsventils eine Korrektur in Richtung Abmagerung ausführen muß und, falls dies der Fall ist, auf die Funktionstüchtigkeit der Anlage geschlossen wird.
  • Die Absperrbarkeit der Belüftungsleitung ermöglicht es, ausreichend große Über- und Unterdrücke für ein besonders zuverlässiges Überprüfen der Funktionstüchtigkeit der Anlage einzustellen.
  • Damit sich im Falle eines Fehlers des Absperrorgans für die Belüftungsleitung keine zu großen Drücke aufbauen, weist das Absperrorgan vorteilhafterweise Überdruck- und Unterdruck-Schutzventile auf. Die Funktionstüchtigkeit des Absperrorgans läßt sich dadurch überprüfen, daß beim Vorliegen von Unterdruck die Belüftungsleitung wieder freigegeben wird. Baut sich daraufhin der Unterdruck ab, ist dies ein Zeichen dafür, daß das Absperrorgan ordnungsgemäß arbeitet.
  • Zeichnung
  • Fig. 1
    schematische Darstellung einer Tankentlüftungsanlage mit einem Adsorptionsfilter mit absperrbarer Belüftungsleitung;
    Fig. 2
    schematische Darstellung eines bekannten Adsorptionsfilters mit Rückschlagventilen, zum Erläutern, wie die Funktionstüchtigkeit der Rückschlagventile des Filters überprüft werden kann; und
    Fig. 3
    Flußdiagramm zum Erläutern eines Verfahrens zum Überprüfen der Funktionstüchtigkeit einer Kraftfahrzeug-Tankentlüftungsanlage, das sowohl mit einer Prüfung bei Unterdruck wie auch einer solchen bei Überdruck arbeitet.
    Beschreibung von Ausführungsbeispielen
  • Fig. 1 zeigt schematisch eine Tankentlüftungsanlage mit einem Kraftstofftank KT, einem Adsorptionsfilter AF und einem Tankentlüftungsventil TEV. Letzteres liegt in einer Ventilleitung VL, die das Adsorptionsfilter AF mit dem Saugrohr SR einer nicht dargestellten Brennkraftmaschine verbindet. Die Ventilleitung mündet in Strömungsrichtung L angesaugter Luft hinter der Drosselklappe. Dadurch ist es möglich, einen relativ hohen Unterdruck in der Ventilleitung zu erzielen, um dadurch das Adsorptionsfilter AF wirksam zu spülen. Bei weitgehend geschlossener Drosselklappe und höheren Drehzahlen fällt der Unterdruck bis auf einige wenige 100 hPa.
  • Das Adsorptionsfilter AF wiederum ist mit dem Kraftstofftank KT über eine Filterleitung FL verbunden. Gast der Kraftstoff im Kraftstofftank, wird der ausgasende Kraftstoff von Aktivkohle im Adsorptionsfilter AF adsorbiert. Außer der eben genannten Filterleitung FL und der Ventilleitung VL mündet noch eine Belüftungsleitung BL in das Adsorptionsfilter AF. Durch diese Belüftungsleitung BL strömt Luft, wenn das Adsorptionsfilter AF über die Ventilleitung mit dem Tankentlüftungsventil TEV abgesaugt wird. Dadurch wird die Aktivkohle regeneriert. In Stillstandsphasen des Motors oder in Betriebsphasen, in denen das Tankentlüftungsventil geschlossen ist, kann die Aktivkohle dann wieder Kraftstoff aufnehmen.
  • Die in Fig. 1 dargestellte Tankentlüftungsanlage weist aufgrund noch zu beschreibender Bauteile einen Aufbau auf, der sich besonders sicher auf Funktionstüchtigkeit überprüfen läßt. Diese zusätzlichen Bauteile sind ein Differenzdruckmesser DDM, der den Differenzdruck im Tank gegenüber dem Atmosphärendruck mißt, und ein Absperrventll zum steuerbaren Absperren der Belüftungsleitung BL. Das Absperrventil AV läßt sich mit Hilfe eines Signals öffnen oder schließen, das von einem Steuergerät SG ausgegeben wird. Nach welchen Gesichtspunkten Signale ausgegeben werden, wird weiter unten anhand von Fig. 3 erläutert.
  • Damit sich in der Tankentlüftungsanlage kein zu hoher oder kein zu tiefer Druck aufbauen kann, wenn das Absperrventil AV nicht ordnungsgemäß arbeitet, mündet noch die Leitung einer Schutzventilanordnung SVA in die Belüftungsleitung BL, welche Schutzventilanordnung ein Überdruck- und ein Unterdruck-Schutzventil aufweist. Die Drücke in der Schutzventilanordnung sind so eingestellt, daß keine Beschädigungsgefahr für die Tankentlüftungsanlage wegen zu hoher oder zu niedriger Drücke entsteht.
  • Fig. 2 zeigt ein Adsorptionsfilter AF.2, das mit einer Rückschlagventilanordnung ausgestattet ist. Ein Tanksperrventil TSV sorgt dafür, daß Kraftstoffgas nur dann ins Adsorptionsfilter AF gelangt, wenn ein bestimmter Überdruck im Kraftstofftank KT überschritten wird, z. B. 30 hPa. Da dieses Tanksperrventil TSV das Belüften des Tanks bei Unterdruck verhindert, ist zusätzlich ein Tankbelüftungsventil TBV vorhanden, das z. B. bei einem Unterdruck von 30 hPa im Tank öffnet. Um zu verhindern, daß Kraftstoffdampf aus dem Adsorptionsfilter AF in das Saugrohr SR ausdampfen kann, was insbesondere für Heißstarts einer Brennkraftmaschine nachteilig wäre, ist ein Filtersperrventil FSV vorhanden, das den Weg in die Ventilleitung VL erst bei Unterschreiten eines gewissen Unterdrucks in dieser freigibt, z. B. bei einem Druckabfall auf weniger als 50 hPa.
  • In der Tankentlüftungsanlage gemäß Fig. 1 können verschiedene Fehler auftreten. So ist es bei sämtlichen Bauteilen möglich, daß sie undicht werden. Das Tankentlüftungsventil TEV und das Absperrventil AB können darüber hinaus funktionsuntüchtig werden. Beim Adsorptionsfilter AF.2 gemäß Fig. 2 können die Rückschlagventile funktionsunfähig werden.
  • Anhand von Fig. 3 wird beispielshaft erläutert, wie die Funktionsfähigkeit der Tankentlüftungsanlage gemäß Fig. 1 überprüft werden kann. Das Verfahren ermöglicht es auch, Fehler in einem Absorptionsfilter AF.2 gemäß Fig. 2, also mit Rückschlagventilen, aufzufinden.
  • Nach dem Start des Verfahrens gemäß Fig. 3 wird in einem Schritt s1 die Belüftungsleitung BL abgesperrt, was durch entsprechendes Ansteuern des Absperrventils AV erfolgt. Dieser Verfahrensschritt des Absperrens des Belüftungsventils ist ein entscheidender Schritt für alle im folgenden erläuterten Verfahrensvarianten.
  • In einem Schritt s2 wird abgefragt, ob eine Prüfung mit Unterdruck in den Schritt s3 bis s9 ausgeführt werden soll. Eine solche Prüfung kann z. B. in festen Zeitabständen erfolgen. Soll keine Prüfung mit Unterdruck erfolgen, schließen sich an Schritt s2 Verfahrensschritte s10 bis s16 an, die Überdruck in der Anlage nutzen. Die Prüfung mit Hilfe von Überdruck kann ebenfalls in festen Zeitabständen erfolgen, oder anschließend an eine Prüfung mit Unterdruck.
  • Gemäß Schritt s3 wird das Tankentlüftungsventil TEV geöffnet. Da die Belüftungsleitung BL geschlossen ist, muß sich nun Unterdruck in der Tankentlüftungsanlage aufbauen, sofern diese dicht ist. Um dies feststellen zu können, wird zunächst in einem Schritt s4 der vom Differenzdruckmesser DDM gemessene Druck abgefragt. Ergibt sich in einem Schritt s5, daß kein Unterdruck mit einem Absolutwert über einem vorgegebenen Schwellwert (z.B. 50 hPa (Unterdruck)) erhalten wird, wird in einem Schritt s6 eine Fehlermeldung ausgegeben. Bei gewissen Betriebszuständen kann eine Auswertung ausgeschlossen werden, z. B. Vollast, da dann im Saugrohr fast Atmosphärendruck herrscht und sich somit kein wesentlicher Unterdruck in der Tankentlüftungsanlage aufbauen kann.
  • Nach Ausgeben der Fehlermeldung im Schritt s6 wird das Ende des Verfahrens erreicht. Andernfalls folgt ein Schritt s7, in dem die Belüftungsleitung durch Öffnen des Absperrventils AV wieder freigegeben wird. In einem Schritt s8 wird überprüft, ob der vom Differenzdruckmesser DDM gemessene Wert des Unterdrucks fällt. Ist dies der Fall, wird das Ende des Verfahrens erreicht. Andernfalls wird in einem Schritt s9 eine Fehlermeldung ausgegeben, die anzeigt, daß das Absperrventil AV nicht mehr ordnungsgemäß öffnet. Durch die Schritte s1 - s9 ist eine Undichtheit und somit Fehlfunktion des Systems schon vollständig prüfbar.
  • Wird in Schritt s2 nach Ablauf der beschriebenen Überprüfung mit Unterdruck auf die Lambdakorrekturprüfung mit Überdruck umgeschaltet, wird in einem Schritt s10 das Tankentlüftungsventil geschlossen, und die Belüftungsleitung BL wird durch Schließen des Absperrventils AV gesperrt. In einem Schritt s11 wird der vom Differenzdruckmesser DDM erfaßte Differenzdruck für den Kraftstofftank KT abgefragt. Anschließend wird überprüft (Schritt s12), ob ein Überdruck vorhanden ist, der über einer vorgegebenen Schwelle liegt, z. B. bei mehr als 30 hPa. Ist dies nicht der Fall, schließen sich die Schritte s11 und s12 wiederholt so lange an, bis ein Überdruck über der genannten Schwelle erreicht wird, oder bis in einem Schritt s13 zwischen den Schritten s12 und s11 festgestellt wird, daß eine Prüfendebedingung eingetreten ist. Hierbei kann es sich z. B. um das Ablaufen einer Zeitspanne seit dem Start des Überprüfens auf das Erreichen des vorgegebenen Überdrucks handeln. Die Prüfendebedingung kann jedoch auch im Erreichen vorgegebener Betriebszustände bestehen. Tritt die Prüfendebedingung ein, wird unmittelbar das Ende des Verfahrens erreicht. Da unter Umständen (z. B. bei ausgegastem Kraftstoff) sich nie ein Überdruck aufbaut, kann es sein, daß die Druckschwelle nie erreicht wird. Die folgenden Prüfschritte liefern also nur noch zusätzhliche Aussagen zur Unterdruckprüfung und genügen nicht als alleiniges Fehlerkriterium.
  • Sobald Schritt s12 ergibt, daß der vorgegebene Überdruck überschritten wurde, wird in einem Schritt s14 das Tankentlüftungsventil TEV geöffnet. Dadurch wird der Brennkraftmaschine plötzlich Kraftstoff zusätzlich zu demjenigen zugeführt, der ohnehin eingespritzt wird. Die Lambdaregelung muß dann die einzuspritzende Kraftstoffmenge verringern. In einem Schritt s15 wird überprüft, ob mit dem Öffnen des Tankentlüftungsventils in Schritt s14 eine Mager-Korrektur in der Lambdaregelung erforderlich wird. Ist dies der Fall, ist nochmals bestätigt, daß die Tankentlüftungsanlage in erwarteter Weise Kraftstoff geliefert hat. Es wird dann das Ende des Verfahrens erreicht. Andernfalls wird in einem Schritt s16 eine Fehlermeldung ausgegeben. Wenn die vorausgehende Unterdruckprüfung schon einen Fehler ergab, ist nun nachgewiesen, daß die Verbindungsleitung Saugrohr - Tankentlüftungsventil unterbrochen ist.
  • Wenn in Schritt s14 das Tankentlüftungsventil TEV geöffnet wird, baut sich in der Tankentlüftungsanlage ein Unterdruck auf. Der realisierbare Unterdruck reicht in der Regel aus, Kraftstoff im Kraftstofftank KT zum Verdampfen zu bringen und somit Kraftstoff durch die Ventilleitung VL in das Saugrohr SR zu liefern. Es ist jedoch zu beachten, daß der Unterdruck einige 10 hPa nicht unterschreiten darf, da ansonsten Implosionsgefahr für den Kraftstofftank KT besteht. Der Unterdruck ist dementsprechend durch die Schutzventilanordnung SVA begrenzt. Um dennoch sicherzustellen, daß für die Lambdakorrekturprüfung bei funktionstüchtiger Tankentlüftungsanlage auf jeden Fall Kraftstoffdampf zur Verfügung stehen muß, wird die Prüfung nur ausgeführt, wenn zuvor Überdruck im Tank vorlag. Dieser Überdruck läßt sich jedoch, wie schon oben erwähnt, trotz gesperrter Belüftungsleitung BL nicht in allen Fällen gewährleisten.
  • Die vorgenannten Verfahrensabläufe prüfen zugleich die Funktionsfähigkeit eines Adsorptionsfilters AF.2 mit Rückschlagventilen TSV, TBV und FSV gemäß Fig. 2. Stellt sich in Schritt s5 heraus, daß sich der erwartete Unterdruck aufbaut, ist dies ein Zeichen dafür, daß die Ventile TSV und FSV durchgängig sind. Stellt sich der erwartete Unterdruck nicnt ein, ist entweder eines dieser beiden Ventile verstopft oder das Tänkentlüftungsventil TEV oder die Anlage ist undicht. Steigt der Druck im Tank KT bei geöffneter Belüftungsleitung BL über einen zulässigen Wert, ist das Rückschlagventil TSV verstopft. Sinkt der Druck im Tank bei geöffneter Belüftungsleitung BL, zeigt dies an, daß das Tankbelüftungsventil TBV verstopft ist. In entsprechender Weise ist auch eine Funktionsprüfung der Schutzventilanordnung SVA möglich; es dürfen keine Unterdrücke oder Überdrücke auftreten, deren Absolutwerte die Werte der Schutzdrücke überschreiten.
  • Abschließend sei nochmals darauf hingewiesen, daß für die beschriebene Tankentlüftungsanlage wesentlich ist, daß sie eine absperrbare Belüftungsleitung aufweist und daß mit Hilfe dieser absperrbaren Belüftungsleitung Verfahren zum Überprüfen der Funktionstüchtigkeit der Anlage möglich sind, die insbesondere mit Unterdruck, und eventuell zusätzlich mit überdruck in der Anlage arbeiten. Von Bedeutung ist, daß nach beiden Seiten ausreichend hohe Drücke eingestellt werden und vor allem, daß steuerbar ist, ob Über- oder Unterdruck herrschen soll. Bei einer Tankentlüftungsanlage mit einem Adsorptionsfilter AF.2 gemäß Fig. 2 mit Rückschlagventilen und ohne Absperrventil AV kann zwar ebenfalls Über- oder Unterdruck in einem Kraftstofftank KT herrschen, jedoch können die Drücke nicht zuverlässig eingestellt werden. Basiert die Prüfung nur auf Kontrolle der Mager-Korrektur der Lambdaregelung bei Überdruck, ist z. B. nicht sicher, ob sich der Überdruck gegebenenfalls wegen einer Undichtheit nicht aufbaut oder ob ausgegaster Kraftstoff im Tank ist.

Claims (3)

  1. Verfahren zum Überprüfen der Funktionstüchtigkeit einer Kraftfahrzeug-Tankentlüftungsanlage mit einem Adsorptionsfilter mit Belüftungsleitung, das einen Kraftstofftank über ein Tankentlüftungsventil mit dem Saugrohr einer Brennkraftmaschine verbindet, dadurch gekennzeichnet, daß
    - die Belüftungsleitung des Adsorptionsfilters abgesperrt wird,
    - das Tankentlüftungsventil geöffnet wird,
    - und gemessen wird, ob sich im Tank Unterdruck aufbaut und, falls dies der Fall wird, auf Funktionstüchtigkeit der Anlage geschlossen wird.
  2. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß beim Vorliegen von Unterdruck die Belüftungsleitung wieder freigegeben wird und dann, wenn sich der Unterdruck abbaut, darauf geschlossen wird, daß das Absperrventil für die Belüftungsleitung ordnungsgemäß arbeitet.
  3. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß
    - die Belüftungsleitung des Adsorptionsfilters abgesperrt wird,
    - das Tankentlüftungsventil erst geöffnet wird, wenn sich im Tank ein Mindestüberdruck aufgebaut hat und die Brennkraftmaschine mit kleinen Luftdurchsätzen arbeitet,
    - und überprüft wird, ob eine Lambdaregelung beim Öffnen des Tankentlüftungsventils eine Korrektur in Richtung Abmagerung ausführen muß, und, falls dies der Fall ist, auf Funktionstüchtigkeit der Anlage geschlossen wird.
EP91901685A 1990-02-08 1991-01-09 Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit Expired - Lifetime EP0466850B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4003751 1990-02-08
DE4003751A DE4003751C2 (de) 1990-02-08 1990-02-08 Tankentlüftungsanlage für ein Kraftfahrzeug und Verfahren zum Überprüfen deren Funktionstüchtigkeit
PCT/DE1991/000010 WO1991012426A1 (de) 1990-02-08 1991-01-09 Tankentlüftungsanlage für einen kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit

Publications (2)

Publication Number Publication Date
EP0466850A1 EP0466850A1 (de) 1992-01-22
EP0466850B1 true EP0466850B1 (de) 1996-12-11

Family

ID=6399679

Family Applications (1)

Application Number Title Priority Date Filing Date
EP91901685A Expired - Lifetime EP0466850B1 (de) 1990-02-08 1991-01-09 Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit

Country Status (6)

Country Link
US (1) US5193512A (de)
EP (1) EP0466850B1 (de)
JP (1) JP3036703B2 (de)
KR (1) KR100236136B1 (de)
DE (2) DE4003751C2 (de)
WO (1) WO1991012426A1 (de)

Families Citing this family (123)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4108856C2 (de) * 1991-03-19 1994-12-22 Bosch Gmbh Robert Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Dichtheit derselben
DE4109401A1 (de) * 1991-03-22 1992-09-24 Bosch Gmbh Robert Verfahren und vorrichtung zur tankentlueftung
US5191870A (en) * 1991-03-28 1993-03-09 Siemens Automotive Limited Diagnostic system for canister purge system
GB2254318B (en) * 1991-04-02 1995-08-09 Nippon Denso Co Abnormality detecting apparatus for use in fuel transpiration preventing system
JPH04309816A (ja) * 1991-04-08 1992-11-02 Nippondenso Co Ltd 燃料蒸発ガスの流量検出装置
DE4111361A1 (de) * 1991-04-09 1992-10-15 Bosch Gmbh Robert Tankentlueftungsanlage sowie verfahren und vorrichtung zu deren ueberpruefung
DE4111360A1 (de) * 1991-04-09 1992-10-15 Bosch Gmbh Robert Verfahren und vorrichtung zum pruefen einer tankentluefungsanlage
DE4112481A1 (de) * 1991-04-17 1992-10-22 Bosch Gmbh Robert Verfahren und vorrichtung zum ueberpruefen der funktionsfaehigkeit einer tankentlueftungsanlage
JP2748723B2 (ja) * 1991-06-10 1998-05-13 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
DE4122975A1 (de) * 1991-07-11 1993-01-14 Bosch Gmbh Robert Tankentlueftungsanlage fuer ein kraftfahrzeug sowie verfahren und vorrichtung zum ueberpruefen von deren funktionsfaehigkeit
DE4124465C2 (de) * 1991-07-24 2002-11-14 Bosch Gmbh Robert Tankentlüftungsanlage und Kraftfahrzeug mit einer solchen sowie Verfahren und Vorrichtung zum Prüfen der Funktionsfähigkeit einer solchen
US5275144A (en) * 1991-08-12 1994-01-04 General Motors Corporation Evaporative emission system diagnostic
FR2681098B1 (fr) * 1991-09-10 1995-05-05 Siemens Automotive Sa Procede et dispositif de verification de l'etat de fonctionnement d'un systeme de recuperation de vapeurs issues du reservoir de carburant d'un vehicule automobile a moteur a combustion interne.
US5299545A (en) * 1991-09-13 1994-04-05 Honda Giken Kogyo Kabushiki Kaisha Evaporative fuel-processing system for internal combustion engines
DE4132055A1 (de) * 1991-09-26 1993-04-01 Bosch Gmbh Robert Verfahren und vorrichtung zum pruefen der funktionsfaehigkeit einer tankentlueftungsanlage
DE4140256C2 (de) * 1991-12-06 1994-06-16 Bosch Gmbh Robert Entlüftungsvorrichtung für einen Brennstofftank einer Brennkraftmaschine
DE4140258C1 (de) * 1991-12-06 1993-04-15 Robert Bosch Gmbh, 7000 Stuttgart, De
DE4140255C3 (de) * 1991-12-06 1999-05-20 Bosch Gmbh Robert Entlüftungsvorrichtung für einen Brennstofftank einer Brennkraftmaschine
US5295472A (en) * 1992-01-06 1994-03-22 Toyota Jidosha Kabushiki Kaisha Apparatus for detecting malfunction in evaporated fuel purge system used in internal combustion engine
US5315980A (en) * 1992-01-17 1994-05-31 Toyota Jidosha Kabushiki Kaisha Malfunction detection apparatus for detecting malfunction in evaporative fuel purge system
US5355864A (en) * 1992-01-20 1994-10-18 Honda Giken Kogyo Kabushiki Kaisha Evaporative fuel-processing system for internal combustion engines
JP2688675B2 (ja) * 1992-01-20 1997-12-10 本田技研工業株式会社 内燃エンジンの燃料タンク内圧検出装置
JP2688674B2 (ja) * 1992-01-20 1997-12-10 本田技研工業株式会社 燃料タンク内圧センサの故障検出装置及び故障補償装置
US5425344A (en) * 1992-01-21 1995-06-20 Toyota Jidosha Kabushiki Kaisha Diagnostic apparatus for evaporative fuel purge system
US5253629A (en) * 1992-02-03 1993-10-19 General Motors Corporation Flow sensor for evaporative control system
DE4203099A1 (de) * 1992-02-04 1993-08-05 Bosch Gmbh Robert Verfahren und vorrichtung zur tankfuellstandserkennung
DE4203100A1 (de) * 1992-02-04 1993-08-05 Bosch Gmbh Robert Verfahren und vorrichtung zum pruefen der funktionsfaehigkeit einer tankentlueftungsanlage
JP2686875B2 (ja) * 1992-02-28 1997-12-08 本田技研工業株式会社 内燃機関の蒸発燃料制御装置
JPH05240117A (ja) * 1992-03-02 1993-09-17 Honda Motor Co Ltd 内燃エンジンの蒸発燃料処理装置
SE500543C2 (sv) * 1992-05-12 1994-07-11 Volvo Ab Bränslesystem för motorfordon
DE4216067C2 (de) * 1992-05-15 2002-12-05 Bosch Gmbh Robert Verfahren und Vorrichtung zur Tankentlüftungs-Diagnose bei einem Kraftfahrzeug
DE4316392A1 (de) * 1992-05-23 1993-12-02 Atlas Fahrzeugtechnik Gmbh Zudosierung von flüchtigen Kraftstoffkomponenten an einem Ottomotor
JP3116556B2 (ja) * 1992-06-08 2000-12-11 株式会社デンソー 内燃機関の燃料タンク系の気密チェック装置
AU671834B2 (en) * 1992-06-26 1996-09-12 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Method of detecting faults for fuel evaporative emission treatment system
JP3286348B2 (ja) * 1992-07-22 2002-05-27 愛三工業株式会社 内燃機関の蒸発ガス処理装置における異常検出装置
US5490414A (en) * 1992-08-21 1996-02-13 Mercedes-Benz Ag. Method for detecting leaks in a motor vehicle tank ventilation system
JP2825399B2 (ja) * 1992-08-21 1998-11-18 三菱電機株式会社 蒸発燃料制御装置
DE4227698C2 (de) * 1992-08-21 1996-08-01 Daimler Benz Ag Verfahren zur Ermittlung von Undichtheiten in einer Kraftfahrzeug-Tankentlüftungsanlage
JP2635270B2 (ja) * 1992-08-27 1997-07-30 三菱電機株式会社 蒸発燃料制御装置の故障検出装置
DE4232148A1 (de) * 1992-09-25 1994-03-31 Bayerische Motoren Werke Ag Verfahren zur Dichtheitsprüfung einer Tankanlage für Kraftfahrzeuge
US5263462A (en) * 1992-10-29 1993-11-23 General Motors Corporation System and method for detecting leaks in a vapor handling system
JP3252494B2 (ja) * 1992-11-30 2002-02-04 株式会社デンソー 燃料蒸発ガス拡散防止装置の自己診断装置
JP2741702B2 (ja) * 1992-12-02 1998-04-22 本田技研工業株式会社 内燃エンジンの蒸発燃料処理装置
DE4241274C2 (de) * 1992-12-08 1999-02-11 Freudenberg Carl Fa Vorrichtung zum Einspeisen der im Freiraum eines Kraftstoffbehälters befindlichen Dämpfe in das Ansaugrohr einer Verbrennungskraftmaschine
US5448980A (en) * 1992-12-17 1995-09-12 Nissan Motor Co., Ltd. Leak diagnosis system for evaporative emission control system
US5396873A (en) * 1992-12-18 1995-03-14 Honda Giken Kogyo Kabushiki Kaisha Evaporative fuel-processing system for internal combustion engines
US5383437A (en) * 1992-12-23 1995-01-24 Siemens Automotive Limited Integrity confirmation of evaporative emission control system against leakage
FR2700506B1 (fr) * 1993-01-19 1995-03-10 Siemens Automotive Sa Dispositif de récupération de vapeurs issues d'un réservoir de carburant de véhicule automobile.
US5297529A (en) * 1993-01-27 1994-03-29 Siemens Automotive Limited Positive pressure canister purge system integrity confirmation
DE4303309A1 (de) * 1993-02-05 1994-08-11 Bosch Gmbh Robert Tankentlüftungsanlage für eine Brennkraftmaschine
DE4303997B4 (de) * 1993-02-11 2006-04-20 Robert Bosch Gmbh Verfahren und Vorrichtung zur Tankentlüftungsdiagnose bei einem Kraftfahrzeug
GB9302958D0 (en) * 1993-02-13 1993-03-31 Lucas Ind Plc Method of and apparatus for detecting fuel system leak
DE4307100C2 (de) * 1993-03-06 1997-08-07 Daimler Benz Ag Verfahren zur Funktionsüberprüfung eines Regenerierventils in einer Tankentlüftungsanlage
DE4312721A1 (de) * 1993-04-20 1994-10-27 Bosch Gmbh Robert Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Funktionsfähigkeit eines Tankentlüftungsventils
US5333590A (en) * 1993-04-26 1994-08-02 Pilot Industries, Inc. Diagnostic system for canister purge system
US5495749A (en) * 1993-05-14 1996-03-05 Chrysler Corporation Leak detection assembly
WO1994027131A1 (en) * 1993-05-14 1994-11-24 Chrysler Corporation Leak detection assembly
JP3096377B2 (ja) * 1993-06-28 2000-10-10 本田技研工業株式会社 内燃エンジンの蒸発燃料処理装置
DE4321694A1 (de) * 1993-06-30 1995-01-12 Bosch Gmbh Robert Verfahren zur Tankentlüftung
EP0635633B1 (de) * 1993-07-21 1997-09-24 Siemens Aktiengesellschaft Verfahren zum Überwachen einer Kraftstoffdämpfe auffangenden und einer Brennkraftmaschine zuleitenden Tankentlüftungsanlage
JP3223480B2 (ja) * 1993-09-10 2001-10-29 本田技研工業株式会社 内燃エンジンの蒸発燃料処理装置
KR0142896B1 (ko) * 1993-09-28 1998-08-17 요시후미 쓰지 내연기관의 증발연료 증산방지장치의 고장진단장치 및 증발연료 공급계의 보호장치
JP3235296B2 (ja) * 1993-09-30 2001-12-04 スズキ株式会社 内燃機関の蒸発燃料制御装置
DE4335126B4 (de) * 1993-10-15 2006-07-06 Robert Bosch Gmbh Vorrichtung zur Dichtheitsprüfung eines Tankentlüftungssystems
JPH0725263U (ja) * 1993-10-22 1995-05-12 本田技研工業株式会社 車輛用内燃機関の蒸発燃料処理装置
DE4341777A1 (de) * 1993-12-08 1995-06-14 Bosch Gmbh Robert Entlüftungsvorrichtung für einen Brennstofftank und Verfahren zum Überprüfen deren Funktionstüchtigkeit
JP3319125B2 (ja) * 1994-02-02 2002-08-26 株式会社デンソー 内燃機関の蒸発燃料処理装置
US5437257A (en) * 1994-02-28 1995-08-01 General Motors Corporation Evaporative emission control system with vent valve
US5644072A (en) * 1994-03-28 1997-07-01 K-Line Industries, Inc. Evaporative emissions test apparatus and method
US5507176A (en) * 1994-03-28 1996-04-16 K-Line Industries, Inc. Evaporative emissions test apparatus and method
DE4412275A1 (de) * 1994-04-09 1995-10-12 Bosch Gmbh Robert Verfahren zum Entlüften einer Brennstoffanlage für eine Brennkraftmaschine
JPH07293359A (ja) * 1994-04-27 1995-11-07 Nippondenso Co Ltd 蒸発燃料蒸散防止装置
US5408976A (en) * 1994-05-02 1995-04-25 General Motors Corporation Swellable adsorbent diagnostic for fuel vapor handling system
US5560347A (en) * 1994-05-02 1996-10-01 General Motors Corporation Conductive foam vapor sensing
GB9413164D0 (en) 1994-06-30 1994-08-24 Rover Group A method of and apparatus for determining whether a leak is present in a fuel system
JPH0835452A (ja) * 1994-07-26 1996-02-06 Hitachi Ltd エバポパージシステムの診断方法
DE4427688C2 (de) * 1994-08-04 1998-07-23 Siemens Ag Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
US5575267A (en) * 1994-09-30 1996-11-19 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fault diagnosis apparatus for a fuel evaporative emission suppressing system
US5499614A (en) * 1994-11-03 1996-03-19 Siemens Electric Limited Means and method for operating evaporative emission system leak detection pump
US5850819A (en) * 1994-12-09 1998-12-22 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Fuel evaporative emission treatment system
US5474050A (en) * 1995-01-13 1995-12-12 Siemens Electric Limited Leak detection pump with integral vent seal
JP3267088B2 (ja) * 1995-02-17 2002-03-18 トヨタ自動車株式会社 内燃機関の蒸発燃料処理装置
JP3264129B2 (ja) * 1995-02-22 2002-03-11 スズキ株式会社 内燃機関の蒸発燃料制御装置
JP3132344B2 (ja) * 1995-07-21 2001-02-05 三菱自動車工業株式会社 燃料蒸発ガス排出抑止システムの故障診断装置
JP3516223B2 (ja) * 1995-08-04 2004-04-05 本田技研工業株式会社 車輌用内燃機関の蒸発燃料処理装置
DE19536646B4 (de) 1995-09-30 2004-03-04 Robert Bosch Gmbh Verfahren zur Erkennung von Betankungsvorgängen an einem Kraftstofftank eines Fahrzeugs
JP3500865B2 (ja) * 1995-12-19 2004-02-23 日産自動車株式会社 自動車のキャニスター構造
DE19607772B4 (de) * 1996-03-01 2007-12-20 Robert Bosch Gmbh Verfahren zur Überwachung des Öffnungszustands eines Kraftstofftanks
US5651350A (en) * 1996-03-05 1997-07-29 Chrysler Corporation Method of leak detection for an evaporative emission control system
US5616836A (en) * 1996-03-05 1997-04-01 Chrysler Corporation Method of pinched line detection for an evaporative emission control system
US5606121A (en) * 1996-03-05 1997-02-25 Chrysler Corporation Method of testing an evaporative emission control system
US5641899A (en) * 1996-03-05 1997-06-24 Chrysler Corporation Method of checking for purge flow in an evaporative emission control system
US5682869A (en) * 1996-04-29 1997-11-04 Chrysler Corporation Method of controlling a vapor storage canister for a purge control system
JP3269407B2 (ja) * 1996-10-21 2002-03-25 トヨタ自動車株式会社 エバポパージシステムの故障診断装置
FR2756517B1 (fr) * 1996-11-29 1999-02-19 Peugeot Methode pour maintenir un volume d'expansion dans un reservoir de carburant lors de son remplissage, dispositif pour sa mise en oeuvre et vehicule automobile equipe de ce dispositif
US5957115A (en) * 1997-02-12 1999-09-28 Siemens Canada Limited Pulse interval leak detection system
SE509087C2 (sv) * 1997-04-30 1998-12-07 Volvo Ab Förfarande och anordning för täthetsmätning i ett tanksystem
DE19831188C2 (de) * 1998-07-11 2003-05-08 Freudenberg Carl Kg Tankentlüftungseinrichtung für Kraftfahrzeuge
US6474314B1 (en) * 1999-11-19 2002-11-05 Siemens Canada Limited Fuel system with intergrated pressure management
US6450153B1 (en) * 1999-11-19 2002-09-17 Siemens Canada Limited Integrated pressure management apparatus providing an on-board diagnostic
US6453942B1 (en) * 1999-11-19 2002-09-24 Siemens Canada Limited Housing for integrated pressure management apparatus
US6478045B1 (en) * 1999-11-19 2002-11-12 Siemens Canada Limited Solenoid for an integrated pressure management apparatus
US6470908B1 (en) * 1999-11-19 2002-10-29 Siemens Canada Limited Pressure operable device for an integrated pressure management apparatus
US6502560B1 (en) * 1999-11-19 2003-01-07 Siemens Canada Limited Integrated pressure management apparatus having electronic control circuit
US6474313B1 (en) * 1999-11-19 2002-11-05 Siemens Canada Limited Connection between an integrated pressure management apparatus and a vapor collection canister
US6460566B1 (en) * 1999-11-19 2002-10-08 Siemens Canada Limited Integrated pressure management system for a fuel system
US6470861B1 (en) 1999-11-19 2002-10-29 Siemens Canada Limited Fluid flow through an integrated pressure management apparatus
DE10013347A1 (de) * 2000-03-17 2001-10-11 Bosch Gmbh Robert Verfahren und Vorrichtung zur Dichtheitsprüfung eines Tanksystems eines Fahrzeugs
DE10014739A1 (de) 2000-03-24 2001-10-11 Bosch Gmbh Robert Tankentlüftungsanlage für ein Kraftfahrzeug und Verfahren zum Betreiben einer solchen
JP3664074B2 (ja) 2000-11-27 2005-06-22 株式会社デンソー エバポガスパージシステムの異常診断装置
EP1395742B1 (de) 2001-06-14 2007-09-19 Siemens VDO Automotive Inc. Vorrichtung und verfahren zur kraftstoffdampfdruckverwaltung
US6948355B1 (en) 2002-09-23 2005-09-27 Siemens Vdo Automotive, Incorporated In-use rate based calculation for a fuel vapor pressure management apparatus
US7028722B2 (en) 2002-09-23 2006-04-18 Siemens Vdo Automotive, Inc. Rationality testing for a fuel vapor pressure management apparatus
US7004014B2 (en) 2002-12-17 2006-02-28 Siemens Vdo Automotive Inc Apparatus, system and method of establishing a test threshold for a fuel vapor leak detection system
US7028674B2 (en) 2003-01-17 2006-04-18 Siemens Vdo Automotive Inc. Flow sensor integrated with leak detection for purge valve diagnostic
US7201154B2 (en) 2003-01-17 2007-04-10 Siemens Canada Limited Flow sensor for purge valve diagnostic
WO2004079467A1 (en) * 2003-03-07 2004-09-16 Siemens Vdo Automotive Inc. An improved integrated pressure management apparatus
US7438059B2 (en) * 2005-03-04 2008-10-21 Eaton Corporation Evaporative emission control system and method for small engines
DE102006045678B4 (de) 2006-09-27 2012-08-09 Continental Automotive Gmbh Verfahren zur Überprüfung einer Tankentlüftungsvorrichtung, Steuervorrichtung und Brennkraftmaschine
DE102007008119B4 (de) * 2007-02-19 2008-11-13 Continental Automotive Gmbh Verfahren zum Steuern einer Brennkraftmaschine und Brennkraftmaschine
DE102009010418B4 (de) * 2008-05-29 2021-07-29 A. Kayser Automotive Systems Gmbh Aktivkohlefiltereinheit für ein Tanksystem
DE102014009634A1 (de) * 2014-06-27 2015-12-31 Audi Ag Kraftstofftank mit einem Aktivkohlefilter und Verfahren zum Anzeigen des Kraftstofffüllstands im Kraftstofftank mit Signalunterdrückung bei einem kritischen Unterdruck während der Regeneration des Aktivkohlefilters
DE102021126600A1 (de) * 2021-10-14 2023-04-20 Bayerische Motoren Werke Aktiengesellschaft Verfahren zur Überprüfung eines Tanksystems eines Fahrzeugs mit Verbrennungskraftmaschine, insbesondere eines Motorrads, und Motorrad

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016216A1 (de) * 1990-04-14 1991-10-31 Audi Ag Einrichtung zum überwachen eines kraftstoffdämpfe auffangenden und einer brennkraftmaschine zuleitenden systems

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4173207A (en) * 1976-01-14 1979-11-06 Toyota Jidosha Kogyo Kabushiki Kaisha Canister
JPS5455226A (en) * 1977-10-12 1979-05-02 Hitachi Ltd Evaporated fuel catcher for internal combustion engine
US4175526A (en) * 1977-11-07 1979-11-27 Acf Industries, Incorporated Apparatus for venting fuel vapors from a carburetor fuel bowl
JPS56544A (en) * 1979-06-15 1981-01-07 Nippon Soken Inc Preventing device for evaporation of fuel for automobile
JPS6055706B2 (ja) * 1979-11-09 1985-12-06 株式会社日本自動車部品総合研究所 車両用燃料蒸発防止装置
CA1156887A (en) * 1980-06-18 1983-11-15 Syozo Yanagisawa Vaporized fuel adsorbing canister
JPS6176734A (ja) * 1984-09-19 1986-04-19 Mazda Motor Corp エンジンの大気汚染防止装置
JPH03509Y2 (de) * 1985-11-08 1991-01-10
DE3624441A1 (de) * 1986-07-19 1988-01-28 Bosch Gmbh Robert Diagnoseverfahren zur quantitativen ueberpruefung von stellgliedern bei brennkraftmaschinen
US4862856A (en) * 1986-11-29 1989-09-05 Isuzu Motors Limited Control system of evaporated fuel
JPS63138150A (ja) * 1986-11-29 1988-06-10 Isuzu Motors Ltd 蒸発燃料制御装置
JPH0726599B2 (ja) * 1986-12-05 1995-03-29 日本電装株式会社 内燃機関用蒸発燃料制御装置
US4872439A (en) * 1987-02-02 1989-10-10 Toyota Jidosha Kabushiki Kaisha Device for preventing outflow of a fuel vapor from a fuel tank
JPS6460423A (en) * 1987-08-31 1989-03-07 Mazda Motor Fuel tank device for vehicle
DE3734414C1 (de) * 1987-10-12 1989-05-18 Audi Ag Entlueftungseinrichtung fuer den Kraftstofftank eines Kraftfahrzeuges
JPH01142258A (ja) * 1987-11-27 1989-06-05 Nippon Denso Co Ltd 車両用蒸発燃料処理装置
JPH0623736Y2 (ja) * 1988-08-10 1994-06-22 トヨタ自動車株式会社 内燃機関のエバポパージ異常検出装置
DE3830722A1 (de) * 1988-09-09 1990-03-15 Freudenberg Carl Fa Vorrichtung zum dosierten einspeisen fluechtiger kraftstoffbestandteile in das ansaugrohr einer brennkraftmaschine
DE58903128D1 (de) * 1989-07-31 1993-02-04 Siemens Ag Anordnung und verfahren zur fehlererkennung bei einem tankentlueftungssystem.
US5021071A (en) * 1990-03-14 1991-06-04 General Motors Corporation Vehicle fuel tank pressure control method

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016216A1 (de) * 1990-04-14 1991-10-31 Audi Ag Einrichtung zum überwachen eines kraftstoffdämpfe auffangenden und einer brennkraftmaschine zuleitenden systems

Also Published As

Publication number Publication date
KR920701651A (ko) 1992-08-12
KR100236136B1 (ko) 2000-01-15
EP0466850A1 (de) 1992-01-22
US5193512A (en) 1993-03-16
DE59108403D1 (de) 1997-01-23
DE4003751A1 (de) 1991-08-14
DE4003751C2 (de) 1999-12-02
JP3036703B2 (ja) 2000-04-24
JPH04505491A (ja) 1992-09-24
WO1991012426A1 (de) 1991-08-22

Similar Documents

Publication Publication Date Title
EP0466850B1 (de) Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit
EP0474803B1 (de) Tankentlüftungsanlage für ein kraftfahrzeug und verfahren zum überprüfen deren funktionstüchtigkeit
DE4427688C2 (de) Verfahren zum Überprüfen der Funktionstüchtigkeit einer Tankentlüftungsanlage für ein Kraftfahrzeug
DE4124465C2 (de) Tankentlüftungsanlage und Kraftfahrzeug mit einer solchen sowie Verfahren und Vorrichtung zum Prüfen der Funktionsfähigkeit einer solchen
DE69906487T2 (de) Fahrzeugverdampfungsleckerkennungssystem und methode
DE19702584C2 (de) Verdampfersystem und Verfahren für dessen Diagnose
DE4040895C2 (de) Tankentlüftungsanlage und Verfahren zum Betreiben einer solchen
DE102013223067B4 (de) Kraftstoffsystem-diagnose
DE102006045678B4 (de) Verfahren zur Überprüfung einer Tankentlüftungsvorrichtung, Steuervorrichtung und Brennkraftmaschine
DE102010064240A1 (de) Vorrichtung zum wahlweisen Regenerieren oder Durchführen einer Tankleckdiagnose eines Tankentlüftungssystems
DE102016210579A1 (de) Verfahren zur diagnose von leckagen nach der entlüftungsdurchfluss-steuerblende
DE102006006842A1 (de) Dynamische Druckkorrektur in einem System mit natürlichem Vakuum bei ausgeschaltetem Motor
DE19518292C2 (de) Verfahren zur Diagnose eines Tankentlüftungssystems
WO2013034380A1 (de) Verfahren zur diagnose eines tankentlüftungssystems
EP0952332B1 (de) Verfahren zur Bestimmung von Leckagen im Kraftstoffversorgungssystem eines Kraftfahrzeuges
EP2411653B1 (de) Tankentlüftungsvorrichtung für eine aufgeladene brennkraftmaschine und zugehöriges steuerverfahren
EP0635633B1 (de) Verfahren zum Überwachen einer Kraftstoffdämpfe auffangenden und einer Brennkraftmaschine zuleitenden Tankentlüftungsanlage
DE19536646B4 (de) Verfahren zur Erkennung von Betankungsvorgängen an einem Kraftstofftank eines Fahrzeugs
EP1269005A1 (de) Verfahren und vorrichtung zur dichtheitsprüfung eines tanksystems eines fahrzeugs
DE102014009634A1 (de) Kraftstofftank mit einem Aktivkohlefilter und Verfahren zum Anzeigen des Kraftstofffüllstands im Kraftstofftank mit Signalunterdrückung bei einem kritischen Unterdruck während der Regeneration des Aktivkohlefilters
DE4312721A1 (de) Tankentlüftungsanlage sowie Verfahren und Vorrichtung zum Überprüfen der Funktionsfähigkeit eines Tankentlüftungsventils
EP3368362B1 (de) Verfahren zum überprüfen der dichtheit einer kraftstoffversorgungsanlage
DE10323869B4 (de) Verfahren zum Ansteuern eines Regenerierventils eines Kraftstoffdampf-Rückhaltesystems
WO2020078789A1 (de) Tankentlüftungsventileinheit
DE102022109165A1 (de) Systeme und verfahren zum identifizieren einer beeinträchtigung in verdunstungsemissionssteuersystemen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19910829

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ROBERT BOSCH GMBH

17Q First examination report despatched

Effective date: 19920415

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19961211

REF Corresponds to:

Ref document number: 59108403

Country of ref document: DE

Date of ref document: 19970123

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: 0403;07MIFSTUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021218

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20030117

Year of fee payment: 13

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040109

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20040109

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040930

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100324

Year of fee payment: 20

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20110109