CN1211844C - 功率mosfet及利用自对准体注入制作其的方法 - Google Patents

功率mosfet及利用自对准体注入制作其的方法 Download PDF

Info

Publication number
CN1211844C
CN1211844C CNB018143776A CN01814377A CN1211844C CN 1211844 C CN1211844 C CN 1211844C CN B018143776 A CNB018143776 A CN B018143776A CN 01814377 A CN01814377 A CN 01814377A CN 1211844 C CN1211844 C CN 1211844C
Authority
CN
China
Prior art keywords
groove
source
semiconductor layer
dielectric layer
contact area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB018143776A
Other languages
English (en)
Other versions
CN1447982A (zh
Inventor
曾军
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Semiconductor Corp
Original Assignee
Fairchild Semiconductor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fairchild Semiconductor Corp filed Critical Fairchild Semiconductor Corp
Publication of CN1447982A publication Critical patent/CN1447982A/zh
Application granted granted Critical
Publication of CN1211844C publication Critical patent/CN1211844C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1095Body region, i.e. base region, of DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66727Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the source electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66674DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/66712Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/66734Vertical DMOS transistors, i.e. VDMOS transistors with a step of recessing the gate electrode, e.g. to form a trench gate electrode
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • H01L29/7813Vertical DMOS transistors, i.e. VDMOS transistors with trench gate electrode, e.g. UMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41741Source or drain electrodes for field effect devices for vertical or pseudo-vertical devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/417Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions carrying the current to be rectified, amplified or switched
    • H01L29/41725Source or drain electrodes for field effect devices
    • H01L29/41766Source or drain electrodes for field effect devices with at least part of the source or drain electrode having contact below the semiconductor surface, e.g. the source or drain electrode formed at least partially in a groove or with inclusions of conductor inside the semiconductor
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/4238Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/0001Technical content checked by a classifier
    • H01L2924/0002Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S257/00Active solid-state devices, e.g. transistors, solid-state diodes
    • Y10S257/905Plural dram cells share common contact or common trench

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Electrodes Of Semiconductors (AREA)

Abstract

一种制造功率MOSFET的方法,该方法包括:在半导体层内制作一个沟槽,制作用于排列沟槽的栅极绝缘层,在沟槽的下部制作一个栅极导电层,然后制作用于填充沟槽之上部的绝缘层。去除绝缘层侧面附近的半导体层部分,从而其上部从半导体层向外延伸。在向外延伸的绝缘层上部的侧面附近制作隔层,使用隔层作为用于限定源/体接触区域的自对准掩模。

Description

功率MOSFET及利用 自对准体注入制作其的方法
有关申请
本申请基于申请日期为2000年7月20日,申请号为60/219,858的在先未决临时申请,这里全文引用其公开作为参考。
技术领域
本发明涉及半导体领域,更确切地说,涉及利用沟槽作为栅极(以沟槽作为栅极的)功率MOSFET。
背景技术
电子行业已经表现出对具有低接通电阻(RDSon)、大旁路电压(VDSBR)、低栅极电荷和足够强度的小型离散功率MOSFET的大量需求。强度限定设备的安全工作区域(SOA)和松开电感转换(UIS)。通过最优组合以上特性,能够获得非常低的开态功率损耗以及开关损耗,导致诸如DC-DC转换器之类的***中高功率转换效率。
为了满足以上需求,人们开发出超密度利用沟槽作为栅极功率MOSFET技术。通过减少元件节距,即,通过减少功率MOSFET的尺寸,在每平方面积的硅片上制作更多功率MOSFET,实现比较低的接通电阻。但是通常会降低设备强度。为了解决负面影响,必须设计具有缩减元件节距的设备,以便在灾难故障出现前承受更多能量(包括DC和动态耗散功率)。
以下参照图1-3说明利用沟槽作为栅极功率MOSFET技术的基本概念。图1表示常规利用沟槽作为栅极功率MOSFET 10。栅极12位于沟槽14内,在P阱16内制作沟槽14。至于制作源/体接触区域18,对应蚀刻掩模必须对准沟槽14。源电极22和栅极氧化层24之间的介电层20覆盖N+源区域26的平面的一部分。根据最大栅极-源额定值,确定覆盖N+源区域26的介电层20的尺寸。因此,常规结构的最小元件节距受源/体接触掩模非准直公差和表面介电层20占据的间隔的限制。
通过使用图2和图3所示的沟槽技术,消除以上限制。在由此生成的设备结构28中,将栅极12凹下到沟槽14内,从而保留对介电层20足够大的凹槽区域。根据最大栅极-源额定值,确定凹槽区域的深度,其深度确定介电层20的最终厚度。在淀积介电层20后,通过使用硅平面32作为终点进行深蚀刻。
与图1所示的常规利用沟槽作为栅极功率MOSFET 10相比,设备28提供更高的通道密度。图3a和3b分别表示图2中3a和3b标记的不同位置的设备28的截面图。为了在不需要源/体接触蚀刻掩模工序的情况下制作具有超小元件节距的设备28,截断P+源/体接触区域18,并且沿N+条周期放置P+源/体接触区域18,其中完全去除N+源区域26。
不幸的是,周期放置P+源/体接触区域18将增加设备28的接通电阻,以及基极电阻和寄生BJT的共基极电流增益。寄生BJT是由N+源区域26、P阱16和N外延层9组成的。因此,将以非常低的电流打开寄生BJT,导致较差的SOA和较低的UIS能力。
发明内容
考虑到上述背景,本发明的目的在于提供一种具有较低接通电阻的利用沟槽作为栅极功率MOSFET,以及制作此类MOSFET的方法。
本发明的另一目的在于,在不降低设备强度的情况下提供利用沟槽作为栅极功率MOSFET。
本发明提供一种形成MOSFET的方法,包括:在半导体层中形成一个沟槽;形成衬在该沟槽上的栅极介电层;在沟槽的下部形成一个栅极导电层;形成用于填充沟槽的上部的一个介电层;去除与介电层横向相邻的半导体层部分,从而使其上部从半导体层向外延伸,并且介电层的向外延伸的上部的侧壁与沟槽的侧壁对准;形成与介电层向外延伸的上部横向相邻的隔层;使用该隔层作为限定源/体接触区域的自对准掩模;去除该隔层;在源区域和介电层上形成源电极;以及在源电极和源/体接触区域之间形成至少一个导电通路。
在不降低设备强度的情况下,利用较低的接通电阻,制作由此合成的利用沟槽作为栅极功率MOSFET。由于每个MOSFET均具有一个源/体接触区域,所以能够降低接通电阻。源/体接触区域提供MOSFET之源和体区域之间的有效短路。因此,能够增加设备强度。
另外,通过把绝缘层完全做在沟槽内来降低功率MOSFET的元件节距,所以能够降低接通电阻。换句话说,绝缘层不在源区域的表面上,从而能够将源区域和源电极之间的接触区域减到最小程度。
降低功率MOSFET之接通电阻和元件节距的另一个因素是使用隔层作为自对准掩模的结果,其中自对准掩模用于将掺杂物注入体区域,以便限定源/体接触区域。由于隔层利用向外延伸的绝缘层进行自对准,所以能够避免源/体接触掩模的非准直公差。
本发明的另一种实施方式使用隔层作为自对准掩模,以便在限定源/体接触区域前,去除未被隔层覆盖的半导体层的一部分。通过去除一部分半导体层,只需较低能级注入制作源/体接触区域的掺杂物。
另外,由于去除了一部分半导体层,所以可以在半导体层内的更深位置制作源/体接触区域。这能降低基极电阻以及寄生BJT的共基极电流增益,从而提高设备强度,即,增加安全工作范围(SOA)和功率MOSFET的松开电感转换(UIS)。
半导体层的去除部分的厚度小于或等于1微米。栅极导电层凹下在沟槽内,距其开口约0.2至0.8微米。例如,制作的功率MOSFET的元件节距约为0.5微米。利用沟槽作为栅极功率MOSFET或者为n通道或者为p通道功率MOSFET。
本发明的另一方面在于一种MOSFET,包括:其中具有沟槽的半导体层;衬在沟槽上的栅极介电层;沟槽下部中的栅极导电层;沟槽上部中并从所述半导体层向外延伸的介电层,并且介电层的向外延伸的上部的侧壁与沟槽的侧壁对准;与向外延伸的介电层相邻的源区域;与所述栅极导电层横向隔开的源/体接触区域;所述源区域和所述介电层上的源电极;所述源电极和所述源/体接触区域之间的至少一个导电通路。
功率MOSFET的另一种实施方式与源区域有关,其中源区域的一部分包括位于源/体接触区域之上的凹槽。在另一种实施方式中,源区域包括用于暴露体区域的一个开口,从而源电极与源/体接触区域之间相连。
附图说明
图1表示根据现有技术的常规利用沟槽作为栅极功率MOSFET。
图2表示利用根据现有技术之沟槽技术制作的利用沟槽作为栅极功率MOSFET的上平面视图。
图3a和3b表示分别沿线段3a和3b拍摄的图2所示的利用沟槽作为栅极功率MOSFET的截面图。
图4是一个流程图,表示根据本发明制作利用沟槽作为栅极功率MOSFET的方法。
图5-13为表示根据本发明之工序的利用沟槽作为栅极功率MOSFET的一部分的截面图。
图14-15为相邻利用沟槽作为栅极功率MOSFET的之一部分的截面图,表示基于根据本发明之源/体接触区域之深度的雪崩击穿电流的通路。
具体实施方式
以下参照表示本发明之最佳实施方式的附图,更彻底地说明本发明。然而,可以采用多种不同方式实现本发明,并且本发明并不限于本文阐述的实施方式。提供各种实施方式的目的是使得本公开既详尽又完整,并向熟练技术人员完整表达本发明的范围。相同参考号数指相同元件。为了更加清晰,可以放大附图中各层以及各区域的尺寸。
现在参照图4,该图表示用于制造根据本发明之利用沟槽作为栅极功率MOSFET的方法。开始时(块40),在块42中,在半导体层上形成一个沟槽,在块44中,形成一个栅极绝缘层,以排列沟槽。在块46中,在沟槽的下部形成一个栅极导电层。在块48中,形成一个绝缘层,以填充沟槽的上部。
该方法还包括:在块50中,去除绝缘层侧面附近的半导体层部分,从而其上部从半导体层开始向外延伸。在块52中,在向外延伸的绝缘层上部的侧面附近,形成隔层,并且在块54中,利用隔层作为限定源/体接触区域的自对准掩模。
根据本发明之方法能够提供高密度功率MOSFET,其中源/体接触区域是采用使用隔层的自对准方式形成的。由于隔层与向外延伸的绝缘层是自对准的,所以功率MOSFET的最小元件节距不受源/体接触掩模非准直公差的限制。
另外,由于各MOSFET均具有源/体接触区域,所以能够降低接通电阻。这有助于降低基极电阻和寄生BJT的共基极电流增益。将以较高电流接通寄生BJT,导致经过改良的SOA和更高的UIS能力。
另外,通过把绝缘层完全做在沟槽内来降低功率MOSFET的元件节距,所以能够降低接通电阻。换句话说,绝缘层不在源区域的表面上,从而能够将源区域和源电极之间的接触区域减到最小程度。
以下参照图5-13说明用于制造根据本发明之利用沟槽作为栅极功率MOSFET的工序。正如熟练技术人员能够理解的那样,尽管在附图中举例说明n通道MOSFET 70,但是该工序同样适用于制造p通道功率MOSFET。
在半导体基底8上制造n型外延层9。半导体基底8也是n型,并且最好为硅。正如熟练技术人员理解的那样,外延层承受功率MOSFET70之漏极到源的击穿电压。
焊盘氧化层72被生长在外延层9上,然后是p型掺杂物注入,以构成功率MOSFET 70的p阱或体区域16。例如,利用1E13/cm2至5E14/cm2范围内的剂量,以及40至200keV范围内的能级,注入p型掺杂物,如硼。
在焊盘氧化层72的表面上制作掩模74,以限定沟槽14。例如,掩模74可以为低温氧化层。正如图5所示,对体区域16和外延层9进行蚀刻,以形成沟槽14。然后去掉掩模74。
栅极绝缘层24被生长在沟槽14的侧壁和底面上,以及体区域16的表面上。栅极绝缘层24的厚度在10至100nm的范围内。正如图6所示,在沟槽14内部和栅极绝缘层24的表面上,淀积诸如多晶硅之类的导电材料25。
现在参照图7,去掉p阱16表面的多晶硅25,并在沟槽14内进行深蚀刻,以便在功率MOSFET 70之沟槽14的下部限定凹下栅极12。凹下在沟槽14内的栅极12的深度在距离沟槽开口0.2至0.8微米的范围内。
在栅极绝缘层24的表面和栅极12的表面上,淀积绝缘层76。绝缘层76用于隔离栅极12。正如图8所示,去掉表面绝缘层76,并且平整体区域16的上表面以及沟槽14内的介电层20的上表面。
在平整体区域16的上表面以及沟槽14内的介电层20的上表面之后,将n型掺杂物注入到绝缘层附近的体区域16中,以限定功率MOSFET 70的源区域26。例如,利用2E15/cm2至2E16/cm2范围内的剂量,以及40至200keV范围内的能级,注入诸如砷或磷之类的n型掺杂物。然后在900至1,100℃的温度范围内进行退火。
正如图9所示,去掉绝缘层侧面附近的表面部分,从而介电层20的一部分向外延伸。被去掉的表面部分的厚度在0.1至1微米的范围内。正如下面详细说明的那样,向外延伸的介电层20能够制作自对准隔层。
由于在蚀刻表面层时能够减少源区域26的掺杂物浓度,所以可以执行另一个源注入,以增强源区域的掺杂浓度。可以利用上面讨论的相同剂量和能级,实现这种增强。作为所公开工序的一种选择,也可以在去掉绝缘层侧面附近的表面部分后,注入限定源区域26的n型掺杂物,以限定向外延伸的介电层20。此时,限定源区域26只需要进行一次注入。
然后在介电层20和源区域26上进行氮化物淀积。正如图10所示,蚀刻氮化物淀积,以制作隔层80。
通过使用隔层80作为自对准掩模,将p型掺杂物注入到体区域16中,以限定源/体接触区域82。以高能级注入诸如硼之类的掺杂物,以穿透源区域26。例如,利用2E15/cm2至2E16/cm2范围内的剂量,以及120至400keV范围内的能级,注入硼。然后在900至1100℃的温度范围内进行退火。
去掉隔层80,然后在源区域26上制作源电极84。该方法还包括:在源电极84和源/体接触区域82之间形成至少一个导电通路86。漏极在基底8的下面。
源/体接触区域82在体区域16和源区域26之间保持连续接触。换句话说,每个功率MOSFET均包括一个源/体接触区域82。这有助于降低功率MOSFET 70的接通电阻。也有助于降低基极电阻以及寄生BJT的共基极电流增益。以较高电流接通寄生BJT,导致经过改良的SOA以及更高的UIS能力。
另外,通过把介电层20完全做在沟槽14内,来降低功率MOSFET70的元件节距,所以能够降低接通电阻。换句话说,介电层20不在源区域26的表面上,从而能够将源区域和源电极84之间的接触区域减到最小程度。因此,体区域16、栅极12、源区域26和源/体接触区域82限定了约为0.5微米的元件节距。
假如使用隔层80作为去除未被该隔层覆盖的源区域26之一部分的自对准掩模,则可以使用低能级而不是高能级来注入限定源/体接触区域82的掺杂物。正如图12说明的那样,已经去除了未被隔层80覆盖的源区域26的一部分。利用参考号数70′表示该功率MOSFET 70。
去除源区域26之一部分的优点在于,能够利用低能级限定源/体接触区域82。例如,利用2E15/cm2至2E16/cm2范围内的剂量,以及40至120keV范围内的能级,注入诸如硼之类的p型掺杂物。正如上面说明的那样,在900至1,100℃的温度范围内进行退火。在图12中,利用参考号数70′表示该功率MOSFET。
作为另一种实施方式,完全去除未被隔层80覆盖的源区域26的所有部分。在利用低能级限定源/体接触区域82之后,源电极84与接触区域直接相连。在图13中,利用参考号数70″表示该功率MOSFET。
去除未被隔层80覆盖的源区域26的所有部分,以及体区域16下面之部分区域的优点在于,可以在体区域16内的更深位置制作源/体接触区域82。从而能够降低寄生BJT的共基极电流增益,这有助于提高设备强度,即,增加安全工作范围(SOA)并提高功率MOSFET的未钳位电感切换(UIS)。
正如图14和15所示,源/体接触区域82的深度还影响雪崩击穿电流的通道。例如,正如图14所示,当利用隔层80蚀刻源区域26,从而进入深度为0.5微米的体区域16时,模拟雪崩击穿电流90在到达源/体接触区域82之前,流动到沟槽14的下部。这相当于39.67V的旁路电压(VDSBR)。
然而,正如图15所示,通过将蚀刻深度提高到0.8微米,模拟雪崩击穿电流90具有较短的流动通道,由于该电流不会流动到沟槽14的下部。这相当于36.75V的旁路电压(VDSBR)。因此,图15所示的利用沟槽作为栅极功率MOSFET设备比图14所示的设备更坚固。
本发明的另一方面在于按照以上公开的工序结果制作的功率MOSFET 70。功率MOSFET 70包括其内具有沟槽14的半导体层8、9,衬在沟槽上的栅极绝缘层24,以及沟槽下部的栅极导电层12。
介电层20位于沟槽14的上部,并且从半导体层8、9向外延伸。源区域26与向外延伸的介电层20相邻,并且源/体接触区域82从侧面与栅极导电层12隔离。
正如图12表示的那样,功率MOSFET 70′的另一种实施方式与源区域26有关,其中源区域的一部分包括位于源/体接触区域上面的一个凹槽。正如图13表示的那样,在功率MOSFET 70″的另一种实施方式中,源区域26包括用于暴露体区域16的一个开口,从而源电极84与源/体接触区域82直接相连。
根据上述说明以及关联附图中展示的教导,本领域的技术人员可以对本发明做出许多修改和其他实施方式。因此,可以理解,本发明并不限于所公开的特定实施方式,并且所附的权利要求书也包括上述修改和其他实施方式。

Claims (13)

1.一种形成MOSFET的方法,包括:
在半导体层中形成一个沟槽;
形成衬在该沟槽上的栅极介电层;
在沟槽的下部形成一个栅极导电层;
形成用于填充沟槽的上部的一个介电层;
去除与介电层横向相邻的半导体层部分,从而使其上部从半导体层向外延伸,并且介电层向外延伸的上部的侧壁与沟槽的侧壁对准;
在半导体层中邻近向外延伸的介电层形成源区域;
形成与介电层向外延伸的上部横向相邻的隔层;
使用该隔层作为限定源/体接触区域的自对准掩模;
去除该隔层;
在源区域和介电层上形成源电极;以及
在源电极和源/体接触区域之间形成至少一个导电通路。
2.根据权利要求1的方法,其中使用隔层作为自对准掩模包括注入用于限定源/体接触区域的掺杂物。
3.根据权利要求1的方法,其中使用隔层作为自对准掩模包括蚀刻未被隔层覆盖的半导体层。
4.根据权利要求3的方法,其中蚀刻被进行到距半导体层表面小于或等于1微米的深度。
5.根据权利要求1的方法,其中去除半导体层的部分的处理被进行到距其表面小于或等于1微米的深度。
6.根据权利要求1的方法,其中栅极导电层在沟槽内凹进距其开口0.2至0.8微米的范围内。
7.根据权利要求1的方法,还包括:在沟槽附近的半导体层中形成一个体区域。
8.一种MOSFET,包括:
其中具有沟槽的半导体层;
衬在沟槽上的栅极介电层;
位于沟槽下部中的栅极导电层;
位于沟槽上部中并从所述半导体层向外延伸的介电层,并且介电层向外延伸的上部的侧壁与沟槽的侧壁对准;
与向外延伸的介电层相邻的源区域;
与所述栅极导电层横向隔开的源/体接触区域;
位于所述源区域和所述介电层上的源电极;
位于所述源电极和所述源/体接触区域之间的至少一个导电通路。
9.根据权利要求8的MOSFET,其中所述源区域的一部分包括所述源/体接触区域上的一个凹槽。
10.根据权利要求8的MOSFET,其中所述向外延伸的介电层从所述源区域延伸小于或等于1微米的距离。
11.根据权利要求8的MOSFET,其中栅极在沟槽内凹进距其开口0.2至0.8微米的范围内。
12.根据权利要求8的MOSFET,其中所述源/体接触区域在所述源区域附近的所述半导体层中形成凹槽。
13.根据权利要求12的MOSFET,其中所述凹槽的上表面距半导体层的上表面小于或等于1微米的深度。
CNB018143776A 2000-07-20 2001-07-18 功率mosfet及利用自对准体注入制作其的方法 Expired - Lifetime CN1211844C (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
US21985800P 2000-07-20 2000-07-20
US60/219,858 2000-07-20
US09/844,347 US6921939B2 (en) 2000-07-20 2001-04-27 Power MOSFET and method for forming same using a self-aligned body implant
US09/844,347 2001-04-27

Publications (2)

Publication Number Publication Date
CN1447982A CN1447982A (zh) 2003-10-08
CN1211844C true CN1211844C (zh) 2005-07-20

Family

ID=26914325

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB018143776A Expired - Lifetime CN1211844C (zh) 2000-07-20 2001-07-18 功率mosfet及利用自对准体注入制作其的方法

Country Status (7)

Country Link
US (2) US6921939B2 (zh)
JP (1) JP3954493B2 (zh)
CN (1) CN1211844C (zh)
AU (1) AU2001276969A1 (zh)
DE (1) DE10196441B4 (zh)
TW (1) TW498429B (zh)
WO (1) WO2002009177A2 (zh)

Families Citing this family (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7345342B2 (en) * 2001-01-30 2008-03-18 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US6916745B2 (en) 2003-05-20 2005-07-12 Fairchild Semiconductor Corporation Structure and method for forming a trench MOSFET having self-aligned features
FI120310B (fi) * 2001-02-13 2009-09-15 Valtion Teknillinen Parannettu menetelmä erittyvien proteiinien tuottamiseksi sienissä
KR100859701B1 (ko) * 2002-02-23 2008-09-23 페어차일드코리아반도체 주식회사 고전압 수평형 디모스 트랜지스터 및 그 제조 방법
US7576388B1 (en) * 2002-10-03 2009-08-18 Fairchild Semiconductor Corporation Trench-gate LDMOS structures
US7652326B2 (en) 2003-05-20 2010-01-26 Fairchild Semiconductor Corporation Power semiconductor devices and methods of manufacture
US7368777B2 (en) 2003-12-30 2008-05-06 Fairchild Semiconductor Corporation Accumulation device with charge balance structure and method of forming the same
JP2007531988A (ja) * 2004-03-01 2007-11-08 インターナショナル レクティファイアー コーポレイション トレンチデバイスのための自動整合された接点構造体
US7352036B2 (en) 2004-08-03 2008-04-01 Fairchild Semiconductor Corporation Semiconductor power device having a top-side drain using a sinker trench
DE102004057237B4 (de) * 2004-11-26 2007-02-08 Infineon Technologies Ag Verfahren zum Herstellen von Kontaktlöchern in einem Halbleiterkörper sowie Transistor mit vertikalem Aufbau
JP2006202931A (ja) * 2005-01-20 2006-08-03 Renesas Technology Corp 半導体装置およびその製造方法
US7395405B2 (en) * 2005-01-28 2008-07-01 Intel Corporation Method and apparatus for supporting address translation in a virtual machine environment
CN101882583A (zh) * 2005-04-06 2010-11-10 飞兆半导体公司 沟栅场效应晶体管及其形成方法
DE112006001516T5 (de) 2005-06-10 2008-04-17 Fairchild Semiconductor Corp. Feldeffekttransistor mit Ladungsgleichgewicht
US7385248B2 (en) * 2005-08-09 2008-06-10 Fairchild Semiconductor Corporation Shielded gate field effect transistor with improved inter-poly dielectric
DE102005055838B4 (de) * 2005-11-23 2007-10-04 Infineon Technologies Ag Verfahren und Vorrichtung zum ermöglichen tiefliegender Halbleiterkontakte
US7667265B2 (en) * 2006-01-30 2010-02-23 Fairchild Semiconductor Corporation Varying mesa dimensions in high cell density trench MOSFET
US7446374B2 (en) 2006-03-24 2008-11-04 Fairchild Semiconductor Corporation High density trench FET with integrated Schottky diode and method of manufacture
US7319256B1 (en) 2006-06-19 2008-01-15 Fairchild Semiconductor Corporation Shielded gate trench FET with the shield and gate electrodes being connected together
DE102006029750B4 (de) * 2006-06-28 2010-12-02 Infineon Technologies Austria Ag Trenchtransistor und Verfahren zur Herstellung
DE102006049354B3 (de) * 2006-10-19 2008-06-05 Infineon Technologies Ag Verfahren zur Herstellung eines Anschlusskontakts auf einem Halbleiterkörper
US7989882B2 (en) 2007-12-07 2011-08-02 Cree, Inc. Transistor with A-face conductive channel and trench protecting well region
US7772668B2 (en) 2007-12-26 2010-08-10 Fairchild Semiconductor Corporation Shielded gate trench FET with multiple channels
US7910439B2 (en) * 2008-06-11 2011-03-22 Maxpower Semiconductor Inc. Super self-aligned trench MOSFET devices, methods, and systems
WO2010008617A1 (en) * 2008-07-15 2010-01-21 Maxpower Semiconductor Inc. Mosfet switch with embedded electrostatic charge
TWI380448B (en) * 2009-09-16 2012-12-21 Anpec Electronics Corp Overlapping trench gate semiconductor device and manufacturing method thereof
JP2011134985A (ja) 2009-12-25 2011-07-07 Fuji Electric Co Ltd トレンチゲート型半導体装置とその製造方法
US8432000B2 (en) 2010-06-18 2013-04-30 Fairchild Semiconductor Corporation Trench MOS barrier schottky rectifier with a planar surface using CMP techniques
JP5562917B2 (ja) 2011-09-16 2014-07-30 株式会社東芝 半導体装置及びその製造方法
US9082746B2 (en) * 2012-01-16 2015-07-14 Infineon Technologies Austria Ag Method for forming self-aligned trench contacts of semiconductor components and a semiconductor component
JP6170812B2 (ja) 2013-03-19 2017-07-26 株式会社東芝 半導体装置の製造方法
CN105097543A (zh) * 2014-05-23 2015-11-25 北大方正集团有限公司 一种沟槽型vdmos器件及其制造方法
JP2016058679A (ja) * 2014-09-12 2016-04-21 株式会社東芝 半導体装置およびその製造方法
DE102014115321B4 (de) * 2014-10-21 2018-03-29 Infineon Technologies Austria Ag Halbleitervorrichtung und Verfahren zum Herstellen einer Halbleitervorrichtung mittels einer Ausrichtungsschicht
CN104576743B (zh) * 2015-01-28 2017-10-20 无锡新洁能股份有限公司 沟槽功率mos器件及其制造方法
CN106898549A (zh) * 2015-12-21 2017-06-27 株洲南车时代电气股份有限公司 沟槽栅igbt及沟槽栅igbt制作方法
JP6784164B2 (ja) * 2016-12-15 2020-11-11 株式会社豊田中央研究所 半導体装置
CN110047759A (zh) * 2019-04-28 2019-07-23 矽力杰半导体技术(杭州)有限公司 沟槽型mosfet器件制造方法
CN112447844A (zh) * 2019-09-03 2021-03-05 南通尚阳通集成电路有限公司 半导体器件的制造方法

Family Cites Families (39)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4694313A (en) * 1985-02-19 1987-09-15 Harris Corporation Conductivity modulated semiconductor structure
US5283201A (en) 1988-05-17 1994-02-01 Advanced Power Technology, Inc. High density power device fabrication process
KR940002400B1 (ko) * 1991-05-15 1994-03-24 금성일렉트론 주식회사 리세스 게이트를 갖는 반도체장치의 제조방법
JPH05304297A (ja) 1992-01-29 1993-11-16 Nec Corp 電力用半導体装置およびその製造方法
US5283452A (en) * 1992-02-14 1994-02-01 Hughes Aircraft Company Distributed cell monolithic mircowave integrated circuit (MMIC) field-effect transistor (FET) amplifier
GB9306895D0 (en) * 1993-04-01 1993-05-26 Philips Electronics Uk Ltd A method of manufacturing a semiconductor device comprising an insulated gate field effect device
US5349224A (en) * 1993-06-30 1994-09-20 Purdue Research Foundation Integrable MOS and IGBT devices having trench gate structure
JP3708998B2 (ja) 1994-11-04 2005-10-19 シーメンス アクチエンゲゼルシヤフト 電界効果により制御可能の半導体デバイスの製造方法
US6008520A (en) * 1994-12-30 1999-12-28 Siliconix Incorporated Trench MOSFET with heavily doped delta layer to provide low on- resistance
US5592005A (en) * 1995-03-31 1997-01-07 Siliconix Incorporated Punch-through field effect transistor
US5567634A (en) * 1995-05-01 1996-10-22 National Semiconductor Corporation Method of fabricating self-aligned contact trench DMOS transistors
KR0143459B1 (ko) * 1995-05-22 1998-07-01 한민구 모오스 게이트형 전력 트랜지스터
US6140678A (en) * 1995-06-02 2000-10-31 Siliconix Incorporated Trench-gated power MOSFET with protective diode
US5629543A (en) * 1995-08-21 1997-05-13 Siliconix Incorporated Trenched DMOS transistor with buried layer for reduced on-resistance and ruggedness
WO1997007548A1 (en) * 1995-08-21 1997-02-27 Siliconix Incorporated Low voltage short channel trench dmos transistor
US5847464A (en) * 1995-09-27 1998-12-08 Sgs-Thomson Microelectronics, Inc. Method for forming controlled voids in interlevel dielectric
US5721148A (en) * 1995-12-07 1998-02-24 Fuji Electric Co. Method for manufacturing MOS type semiconductor device
US5770878A (en) * 1996-04-10 1998-06-23 Harris Corporation Trench MOS gate device
US5981354A (en) * 1997-03-12 1999-11-09 Advanced Micro Devices, Inc. Semiconductor fabrication employing a flowable oxide to enhance planarization in a shallow trench isolation process
KR100225409B1 (ko) * 1997-03-27 1999-10-15 김덕중 트렌치 디-모오스 및 그의 제조 방법
US6037628A (en) 1997-06-30 2000-03-14 Intersil Corporation Semiconductor structures with trench contacts
US5801082A (en) * 1997-08-18 1998-09-01 Vanguard International Semiconductor Corporation Method for making improved shallow trench isolation with dielectric studs for semiconductor integrated circuits
US6121089A (en) 1997-10-17 2000-09-19 Intersil Corporation Methods of forming power semiconductor devices having merged split-well body regions therein
US6429481B1 (en) * 1997-11-14 2002-08-06 Fairchild Semiconductor Corporation Field effect transistor and method of its manufacture
US6396102B1 (en) * 1998-01-27 2002-05-28 Fairchild Semiconductor Corporation Field coupled power MOSFET bus architecture using trench technology
JP3641547B2 (ja) * 1998-03-25 2005-04-20 株式会社豊田中央研究所 横型mos素子を含む半導体装置
US6262453B1 (en) * 1998-04-24 2001-07-17 Magepower Semiconductor Corp. Double gate-oxide for reducing gate-drain capacitance in trenched DMOS with high-dopant concentration buried-region under trenched gate
US6054365A (en) * 1998-07-13 2000-04-25 International Rectifier Corp. Process for filling deep trenches with polysilicon and oxide
US6351018B1 (en) * 1999-02-26 2002-02-26 Fairchild Semiconductor Corporation Monolithically integrated trench MOSFET and Schottky diode
US6351009B1 (en) * 1999-03-01 2002-02-26 Fairchild Semiconductor Corporation MOS-gated device having a buried gate and process for forming same
US6316806B1 (en) * 1999-03-31 2001-11-13 Fairfield Semiconductor Corporation Trench transistor with a self-aligned source
US6188105B1 (en) * 1999-04-01 2001-02-13 Intersil Corporation High density MOS-gated power device and process for forming same
US6413822B2 (en) * 1999-04-22 2002-07-02 Advanced Analogic Technologies, Inc. Super-self-aligned fabrication process of trench-gate DMOS with overlying device layer
US6373098B1 (en) * 1999-05-25 2002-04-16 Fairchild Semiconductor Corporation Trench-gated device having trench walls formed by selective epitaxial growth and process for forming device
US20030060013A1 (en) * 1999-09-24 2003-03-27 Bruce D. Marchant Method of manufacturing trench field effect transistors with trenched heavy body
US6184092B1 (en) * 1999-11-23 2001-02-06 Mosel Vitelic Inc. Self-aligned contact for trench DMOS transistors
US6246090B1 (en) * 2000-03-14 2001-06-12 Intersil Corporation Power trench transistor device source region formation using silicon spacer
JP3773755B2 (ja) * 2000-06-02 2006-05-10 セイコーインスツル株式会社 縦形mosトランジスタ及びその製造方法
US6781195B2 (en) * 2001-01-23 2004-08-24 Semiconductor Components Industries, L.L.C. Semiconductor bidirectional switching device and method

Also Published As

Publication number Publication date
JP2004515907A (ja) 2004-05-27
US6921939B2 (en) 2005-07-26
TW498429B (en) 2002-08-11
CN1447982A (zh) 2003-10-08
US20050184318A1 (en) 2005-08-25
WO2002009177A2 (en) 2002-01-31
US7501323B2 (en) 2009-03-10
US20020008284A1 (en) 2002-01-24
DE10196441B4 (de) 2009-10-22
JP3954493B2 (ja) 2007-08-08
AU2001276969A1 (en) 2002-02-05
DE10196441T1 (de) 2003-07-17
WO2002009177A3 (en) 2002-06-13

Similar Documents

Publication Publication Date Title
CN1211844C (zh) 功率mosfet及利用自对准体注入制作其的方法
CN1209822C (zh) 沟槽金属氧化物半导体器件和端子结构
CN1040814C (zh) 一种用于半导体器件的表面耐压区
CN1211843C (zh) 形成沟槽金属氧化物半导体器件和端子结构的方法
CN1104043C (zh) 带有自对准单元的mos栅极器件及其制造方法
CN100342545C (zh) 具有改良的漏极触点的沟槽双扩散金属氧化半导体器件
CN100338778C (zh) 场效应晶体管及其制造方法
US6501129B2 (en) Semiconductor device
CN1215570C (zh) Mos晶体管组件
CN1552102A (zh) 带有自对准源极和接触的沟槽型场效应晶体管
CN1950948A (zh) 绝缘栅半导体器件
CN1228857C (zh) 具有绝缘栅型双极晶体管的半导体器件及其制造方法
CN1468449A (zh) 内含沟道型肖特基整流器的沟道型dmos晶体管
CN1589499A (zh) 具有多晶硅源极接触结构的沟槽mosfet器件
CN1738057A (zh) 具有增强的屏蔽结构的金属氧化物半导体器件
CN1799145A (zh) 具有边缘终止结构的半导体器件及其制造方法
CN1586009A (zh) 场效应晶体管半导体器件
CN1695251A (zh) 具有伸入较深的以沟槽为基础的源电极的以沟槽为基础的交叉栅电极的垂直mosfet及其制造方法
CN103650148A (zh) 绝缘栅双极晶体管
CN1707809A (zh) 半导体器件
CN1308774A (zh) 碳化硅水平沟道缓冲栅极半导体器件
CN1992342A (zh) 半导体器件及其制造方法
CN1708859A (zh) 具源极穿孔绝缘体硅基板上金氧半导体晶体管
CN1755941A (zh) 具有沟槽扩散区的mos器件及其形成方法
CN1663050A (zh) 具有边缘结构的半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CX01 Expiry of patent term
CX01 Expiry of patent term

Granted publication date: 20050720