CN112159220B - 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法 - Google Patents

一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN112159220B
CN112159220B CN202011015514.6A CN202011015514A CN112159220B CN 112159220 B CN112159220 B CN 112159220B CN 202011015514 A CN202011015514 A CN 202011015514A CN 112159220 B CN112159220 B CN 112159220B
Authority
CN
China
Prior art keywords
fluorescent ceramic
ceramic
sintering
quantum efficiency
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202011015514.6A
Other languages
English (en)
Other versions
CN112159220A (zh
Inventor
张乐
马跃龙
孙炳恒
康健
邵岑
陈东顺
周天元
黄国灿
李明
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Attapulgite Photoelectric Technology Co ltd
Original Assignee
Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Attapulgite Photoelectric Technology Co ltd filed Critical Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority to CN202011015514.6A priority Critical patent/CN112159220B/zh
Publication of CN112159220A publication Critical patent/CN112159220A/zh
Application granted granted Critical
Publication of CN112159220B publication Critical patent/CN112159220B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • C04B2235/663Oxidative annealing
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种白光LED/LD用高热稳定性高量子效率荧光陶瓷及其制备方法,该荧光陶瓷化学式为:(Y y CezLu1‑z‑y)3(Sc x Al1‑x)2Al3O12,其中,x为Sc3+掺杂八面体Al3+位的摩尔百分数,y为Y3+掺杂Lu3+位的摩尔百分数,z为Ce3+掺杂Lu3+位的摩尔百分数,0.5<x≤0.8,0.4≤y≤0.6,y:x=2:3~3:4,0<z≤0.015,采用固相反应法烧结制得。本发明荧光陶瓷实现青绿光到绿黄光发射,色温4000~10000K,在150℃下发光强度衰减2%~5%,内量子效率在82%~88%之间。所制备陶瓷的工艺简单,易于工业化生产。

Description

一种白光LED/LD用高热稳定性高量子效率荧光陶瓷及其制备 方法
技术领域
本发明涉及荧光陶瓷技术领域,具体涉及一种白光LED/LD用高热稳定性高量子效率荧光陶瓷及其制备方法。
背景技术
荧光转换型白光发光二极管和激光二极管(简称:LED/LD)作为新一代固态照明光源,因其发光效率高、鲁棒性好,器件体积小和使用寿命长等诸多优点,所以他们被广泛的关注和研究。随着技术的更新换代,将荧光粉Ce3+:Y3Al5O12 (简称:Ce:YAG)与有机硅胶混合的传统方式正逐步被激发源与Ce:YAG荧光陶瓷的远程激发封装方式所取代。作为颜色转化的核心材料,Ce:YAG荧光陶瓷以其导热系数高、机械性能好、物理和化学性能稳定,易实现高掺杂浓度等优点已经成为国内外研究的热点。然而,在蓝光LED/LD激发下,Ce:YAG荧光陶瓷具有明显的缺点,例如:发射出的光颜色比例失调、改良后的热猝灭温度低和量子效率低等缺点,从而导致制备的封装后器件的显色指数低、相对色温高和光效低等缺陷,难以满足高功率的使用要求。
目前已有文献报道对Ce:YAG荧光陶瓷进行发光行为和光谱发射峰的调节。但是,在进行调控发射光谱的性能时,荧光陶瓷的热稳定性和量子效率都会随之下降。量子效率会远小于原基质,在正常服役温度环境下,发光强度大都下降至 50%以下。目前国内外调控荧光陶瓷光谱的方法主要分为用Mg2+-Si4+离子对进行替换(J.Mater.Chem.C,2018,6,12200-12205.J.Mater.Chem.C,2016,4, 2359-2366.),添加红光离子(J.Eur.Ceram.Soc.,2017,37(10),3403–3409.),通过调控能级来增加发射光谱半高宽(ACSAppl.Mater.Interfaces,2019,11(2), 2130–2139.),复合结构实现红、绿、黄三色耦合发光(CN110218085A)。上述方法尽管能提高单个发光性能。但是,缺点也比较明显,生成纯石榴石相的加入外加离子的浓度很难精确控制,往往会产生杂相,那么相应荧光陶瓷的热稳定性和量子效率都有显著下降。
发明内容
本发明的目的之一是提供一种白光LED/LD用高热稳定性高量子效率荧光陶瓷,热稳定性高,量子效率高。
本发明的目的之二是提供上述白光LED/LD用高热稳定性量子效率荧光陶瓷的制备方法,易于工业化生产。
为实现上述目的,本发明采用的技术方案如下:一种白光LED/LD用高热稳定性高量子效率荧光陶瓷,该荧光陶瓷化学式为:
(YyCezLu1-z-y)3(ScxAl1-x)2Al3O12
其中x为Sc3+掺杂八面体Al3+位的摩尔百分数,y为Y3+掺杂Lu3+位的摩尔百分数,z为Ce3+掺杂Lu3+位的摩尔百分数,0.5<x≤0.8,0.4≤y≤0.6,y:x=2: 3~3:4,0<z≤0.015。
在高功率蓝光LED(350~500mA)或蓝光LD(2W~10W)激发下,实现青绿光到绿黄光发射,色温4000~10000K,且随着器件运行,发光强度随温度升高降低不明显,150℃时发光强度衰减2%~5%,热稳定性极好。陶瓷内量子效率在 82%~88%之间。
本发明还提供上述白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,采用固相反应法烧结,具体包括以下步骤:
(1)按照化学式(YyCezLu1-z-y)3(ScxAl1-x)2Al3O12,0.5<x≤0.8,0.4≤y≤0.6, y:x=2:3~3:4,0<z≤0.015,中各元素的化学计量比分别称取α-氧化铝、氧化钇、氧化镥、氧化钪和氧化铈作为原料粉体;将原料粉体、球磨介质按一定比例混合球磨,获得混合料浆;
(2)将步骤(1)得到的混合料浆置于干燥箱中干燥,再将干燥后的混合粉体过筛;
(3)将步骤(2)过筛后的粉体放入磨具中成型后再进行冷等静压成型,得到相对密度为51%~52%的素坯;
(4)将步骤(3)所得素坯置于真空炉中烧结,烧结温度1680℃~1750℃,保温时间6h~10h,烧结真空度不低于10-4Pa,得到荧光陶瓷;
(5)将步骤(4)真空烧结后的荧光陶瓷进行空气退火处理,退火温度 1000℃~1150℃,保温时间为20h~50h,得到相对密度为99.2%~99.9%的荧光陶瓷。
优选的,步骤(1)中,所述球料比为3.5~4.5:1,其所选用磨球直径为 0.5cm~2cm。
优选的,步骤(1)中,所述球磨转速为170r/min~190r/min,球磨时间为 25h~40h。
优选的,步骤(1)中,所述球磨介质是无水乙醇,原料粉体与球磨介质的质量体积比为2~3:1g/ml。
优选的,步骤(2)中,所述干燥时间为10h~15h,干燥温度为60℃~70℃。
优选的,步骤(2)中,所述过筛的筛网目数为50目~150目,过筛次数4~6 次。
优选的,步骤(4)中,真空烧结阶段的升温速率为0.25~0.5℃/分钟,烧结完毕后降温速率为2~4℃/分钟。
优选的,步骤(4)中,空气退火阶段的升温速率为0.25~0.5℃/分钟,降温速率为2~4℃/分钟。
与现有技术相比,本发明具有如下有益效果:
1.本发明提供的荧光陶瓷,基于Ce:LuAG,采用Sc3+离子取代八面体Al3+离子格位和Y3+离子取代十二面体Lu3+离子的思想,充分利用处于八面体格位的 Sc3+离子和Al3+离子形成的新的有效离子半径与处于十二面体格位Y3+离子和 Lu3+离子形成的新的有效离子半径的匹配效应。在调节***的微配位结构的基础上,提供***的结构刚性,进而提高Ce3+离子发光热稳定性,同时该陶瓷还具有较高的量子效率。引入的八面体格位的Sc3+离子和十二面体各位的Y3+离子能够提升Ce3+离子所处晶体场环境的配位复杂度,进而改变发射光谱的半高宽和峰的位置,实现发射光颜色的可调节。
2.本发明通过固相反应法结合真空烧结技术,通过控制化学配比,使Sc3+离子只占据八面体Al3+离子格位,Y3+离子只占据十二面体Lu3+离子格位。整个***的离子半径匹配合适,获得了石榴石纯相的荧光陶瓷。
3.本发明提供的荧光陶瓷可以有效地解决Ce:YAG荧光陶瓷中青绿光不足问题和在高Sc含量下制备镥铝石榴石纯相的问题,可有效提高LED/LD器件发光性能。在高功率蓝光LED(350~500mA)或蓝光LD(2W~10W)的激发下,发射光谱主峰520~550nm之间,半高宽在90~110nm之间,实现青绿光到绿黄光发射,色温4000~10000K。
4.本发明提供的荧光陶瓷在150℃下发光强度衰减2%~5%,内量子效率在 82%~88%之间。
附图说明
图1为本发明实施例1、2制得荧光陶瓷的实物图;
图2为本发明实施例1、2和对比例制得荧光陶瓷的XRD图;
图3为本发明实施例1制得荧光陶瓷表面SEM图;
图4为本发明实施例1制得荧光陶瓷在460nm波长激发下的发射光谱;
图5为本发明实施例1制得荧光陶瓷在460nm波长的蓝光LED芯片 (I=350mA)激发下的电致发光光谱;
图6为本发明实施例1制得荧光陶瓷随温度变化的发射光谱图;
图7为本发明实施例2制得荧光陶瓷在460nm波长激发下的发射光谱;
图8为本发明实施例2制得荧光陶瓷在460nm波长的蓝光LED芯片 (I=350mA)激发下的电致发光光谱;
图9为本发明实施例1、2和对比例制得荧光陶瓷的透过率图;
图10为本发明对比例制得荧光陶瓷的实物图;
图11为本发明对比例制得荧光陶瓷表面SEM图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中使用的原料粉体均为市售商品,纯度均大于99.9%,所述α相氧化铝平均粒径150nm~200nm;所述氧化钇平均粒径10nm~50nm;所述氧化镥平均粒径10nm~50nm;所述氧化钪平均粒径1nm~50nm;所述氧化铈平均粒径1nm~50nm。
实施例1:制备化学式为(Lu0.596Y0.4Ce0.004)3(Al0.4Sc0.6)2Al3O12荧光陶瓷
(1)设定目标产物质量为60g,按照化学式(Lu0.594Y0.4Ce0.006)3(Al0.2Sc0.8)2Al3O12中各元素的化学计量比分别称取α-氧化铝(15.25g)、氧化钇(10.55g)、氧化镥 (27.73g)、氧化钪(6.40g)和氧化铈(0.16g)作为原料粉体;将原料粉体、120ml 无水乙醇混合,加入直径为0.5mm氧化铝球210g,在氧化铝球磨罐中进行球磨,球磨转速为170r/min,球磨时间为40h;
(2)将步骤(1)球磨后的混和浆料置于60℃鼓风干燥箱中干燥10h,干燥后的混合粉体过50目筛,过筛6遍。
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,成型后素坯的相对密度为51%;
(4)将步骤(4)得到的陶瓷素坯放入真空炉中烧结,烧结温度为1680℃,保温时间为10h,升温速率为0.25℃/分钟,烧结完毕后降温速率为2℃/分钟;
(5)将步骤(5)得到的陶瓷放入马弗炉中空气退火,退火温度1000℃,保温时间为50h,升温速率为0.25℃/分钟,烧结完毕后降温速率为2℃/分钟;陶瓷相对密度为99.2%。
将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性高量子效率荧光陶瓷,其实物为青黄色透明陶瓷,陶瓷底下的字清晰可见(如图1 中编号1)。
将本实施例中得到的(Lu0.596Y0.4Ce0.004)3(Al0.4Sc0.6)2Al3O12荧光陶瓷进行XRD 测试,结果如图2所示,表明:所制备的材料为纯石榴石相。
将本实施例中得到的(Lu0.596Y0.4Ce0.004)3(Al0.4Sc0.6)2Al3O12荧光陶瓷置于扫描电子显微镜下观测,结果如图3所示,可以看到陶瓷晶粒尺寸均一,没有杂相存在,与XRD测试结果一致。
本实施例中得到的(Lu0.596Y0.4Ce0.004)3(Al0.4Sc0.6)2Al3O12荧光陶瓷在460nm波长激发下,如图4所示,其发射光谱主峰为539nm,半高宽102nm。将该陶瓷在 460nm的蓝光LED芯片(I=350mA)激发下进行电致发光光谱测试,如图5所示,能够实现青绿光发射,色温10000K。
将本实施例得到的(Lu0.596Y0.4Ce0.004)3(Al0.4Sc0.6)2Al3O12荧光陶瓷进行随温度变化的发射光谱测试。结果如图6所示,表明:随着温度增加,陶瓷的发光强度逐渐降低,150℃时发光强度仅降低2.3%。内量子效率为88%。
将本实施例中得到的(Lu0.596Y0.4Ce0.004)3(Al0.4Sc0.6)2Al3O12荧光陶瓷进行透过率测试,结果如图9所示,表明:该荧光陶瓷透过率T=69.06%@800nm。
实施例2:制备化学式为(Lu0.385Y0.6Ce0.015)3(Al0.2Sc0.8)2Al3O12荧光陶瓷
(1)设定目标产物质量为60g,按照化学式(Lu0.385Y0.6Ce0.015)3(Al0.2Sc0.8)2Al3O12中各元素的化学计量比分别称取α-氧化铝(14.36g)、氧化钇(16.84g)、氧化镥(19.04g)、氧化钪(9.14g)和氧化铈(0.64g)作为原料粉体;将原料粉体、180ml 无水乙醇混合,加入直径为2mm氧化铝球270g,在氧化铝球磨罐中进行球磨,球磨转速为190r/min,球磨时间为25h;
(2)将步骤(1)球磨后的混和浆料置于70℃鼓风干燥箱中干燥10h,干燥后的混合粉体过150目筛,过筛4遍。
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,成型后素坯的相对密度为52%;
(4)将步骤(4)得到的陶瓷素坯放入真空炉中烧结,烧结温度为1750℃,保温时间为6h,升温速率为0.5℃/分钟,烧结完毕后降温速率为4℃/分钟;
(5)将步骤(5)得到的陶瓷放入马弗炉中空气退火,退火温度1150℃,保温时间为20h,升温速率为0.5℃/分钟,烧结完毕后降温速率为4℃/分钟;陶瓷相对密度为99.9%。
将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性高量子效率荧光陶瓷,其实物为青黄色透明陶瓷,陶瓷底下的字清晰可见(如图1 中编号2)。
将本实施例中得到的(Lu0.385Y0.6Ce0.015)3(Al0.2Sc0.8)2Al3O12荧光陶瓷进行XRD 测试,测试结果如图2所示,表明:所制备的材料为纯石榴石相。
将本实施例中得到的(Lu0.385Y0.6Ce0.015)3(Al0.2Sc0.8)2Al3O12荧光陶瓷在460nm 波长激发下的发射光谱图,如图7所示,其发射光谱主峰为546nm,半高宽110nm。将该陶瓷在460nm的蓝光LED芯片(I=350mA)激发下进行电致发光光谱测试,如图8所示,能够实现绿黄光发射,色温是4000K。
将本实施例得到的(Lu0.385Y0.6Ce0.015)3(Al0.2Sc0.8)2Al3O12荧光陶瓷进行随温度变化的发射光谱测试。结果表明:随着温度增加,陶瓷的发光强度逐渐降低,150℃时发光强度仅降低4.8%。内量子效率为82%。
将本实施例中得到的(Lu0.385Y0.6Ce0.015)3(Al0.2Sc0.8)2Al3O12荧光陶瓷进行透过率测试,结果如图9所示,表明:该荧光陶瓷透过率T=63.61%@800nm。
对比例:制备化学式为(Lu0.997Ce0.003)3(Al0.5Sc0.5)2Al3O12荧光陶瓷
(1)设定目标产物质量为60g,按照化学式(Lu0.997Ce0.003)3(Al0.5Sc0.5)2Al3O12中各元素的化学计量比分别称取α-氧化铝(14.07g)、氧化镥(41.07g)、氧化钪(4.75g)和氧化铈(0.11g)作为原料粉体;将原料粉体、150ml无水乙醇混合,加入直径为1.5mm氧化铝球240g,在氧化铝球磨罐中进行球磨,球磨转速为 185r/min,球磨时间为20h;
(2)将步骤(1)球磨后的混和浆料置于60℃鼓风干燥箱中干燥10h,干燥后的混合粉体过50目筛,过筛6遍;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,成型后素坯的相对密度为51.5%;
(4)将步骤(4)得到的陶瓷素坯放入真空炉中烧结,烧结温度为1700℃,保温时间为6h,升温速率为0.25℃/分钟,烧结完毕后降温速率为2℃/分钟;
(5)将步骤(5)得到的陶瓷放入马弗炉中空气退火,退火温度1050℃,保温时间为15h,升温速率为0.25℃/分钟,烧结完毕后降温速率为2℃/分钟;陶瓷相对密度为99.1%。
将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到荧光陶瓷,其实物为青黄色透明陶瓷,陶瓷底下的字被覆盖(如图10所示)。
将本对比例中得到的(Lu0.997Ce0.003)3(Al0.5Sc0.5)2Al3O12荧光陶瓷进行XRD测试,测试结果如图2所示,表明:所制备的材料为石榴石相和氧化钪相。
将本对比例中得到的(Lu0.997Ce0.003)3(Al0.5Sc0.5)2Al3O12荧光陶瓷置于扫描电子显微镜下观测,结果如图11所示,可以看到存在明显的杂质相,陶瓷主相晶粒和杂质相共存。
本实施例中得到的(Lu0.997Ce0.003)3(Al0.5Sc0.5)2Al3O12荧光陶瓷在460nm波长激发下,其发射光谱主峰为519nm,半高宽88.7nm。将该陶瓷在蓝光460nm的 LED芯片(I=350mA)激发下进行电致发光光谱测试,能够实现深青光发射,色温8400K。
将本对比例得到的(Lu0.997Ce0.003)3(Al0.5Sc0.5)2Al3O12荧光陶瓷进行随温度变化的发射光谱测试。结果表明:随着温度增加,陶瓷的发光强度逐渐降低,150℃时发光强度降低21.4%。内量子效率为72%。
将本对比例中得到的(Lu0.997Ce0.003)3(Al0.5Sc0.5)2Al3O12荧光陶瓷进行透过率测试,如图9所示,结果表明:该荧光陶瓷透过率T=0.34%@800nm。

Claims (7)

1.一种白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,其特征在于,该荧光陶瓷化学式为:
(Y y CezLu1-z-y)3(Sc x Al1-x)2Al3O12
其中,x为Sc3+掺杂八面体Al3+位的摩尔百分数,y为Y3+掺杂Lu3+位的摩尔百分数,z为Ce3+掺杂Lu3+位的摩尔百分数,0.5<x≤0.8,0.4≤y≤0.6,y:x=2:3~3:4,0<z≤0.015;当环境温度为150℃时,所述荧光陶瓷的发光强度衰减2%~5%,内量子效率在82%~88%之间;
采用固相反应法烧结,具体包括以下步骤:
(1)按照化学式(Y y CezLu1-z-y)3(Sc x Al1-x)2Al3O12,0.5<x≤0.8,0.4≤y≤0.6,y:x=2:3~3:4,0<z≤0.015中各元素的化学计量比分别称取α-氧化铝、氧化钇、氧化镥、氧化钪和氧化铈作为原料粉体;将原料粉体、球磨介质混合球磨,获得混合料浆;
(2)将步骤(1)得到的混合料浆置于干燥箱中干燥,再将干燥后的混合粉体过筛;
(3)将步骤(2)过筛后的粉体放入磨具中成型后再进行冷等静压成型,得到相对密度为51%~52%的素坯;
(4)将步骤(3)所得素坯置于真空炉中烧结,烧结温度1680℃~1750℃,保温时间6h~10h,烧结真空度不低于10-4Pa,得到荧光陶瓷;
(5)将步骤(4)真空烧结后的荧光陶瓷进行空气退火处理,退火温度1000℃~1150℃,保温时间为20h~50h,得到相对密度为99.2%~99.9%的荧光陶瓷。
2.根据权利要求1所述的白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,其特征在于,步骤(1)中,所述球磨转速为170r/min~190r/min,球磨时间为25h~40h。
3.根据权利要求1所述的白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,其特征在于,步骤(1)中,所述球磨介质是无水乙醇,原料粉体的质量与球磨介质的体积比为1g:2~3mL。
4.根据权利要求1所述的白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,其特征在于,步骤(2)中,所述干燥时间为10h~15h,干燥温度为60℃~70℃。
5.根据权利要求1所述的白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,其特征在于,步骤(2)中,所述过筛的筛网目数为50目~150目,过筛次数为4~6次。
6.根据权利要求1所述的白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,其特征在于,步骤(4)中,真空烧结阶段的升温速率为0.25~0.5℃/分钟,烧结完毕后降温速率为2~4℃/分钟。
7.根据权利要求1所述的白光LED/LD用高热稳定性高量子效率荧光陶瓷的制备方法,其特征在于,步骤(5)中,空气退火阶段的升温速率为0.25~0.5℃/分钟,烧结完毕后降温速率为2~4℃/分钟。
CN202011015514.6A 2020-09-24 2020-09-24 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法 Active CN112159220B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011015514.6A CN112159220B (zh) 2020-09-24 2020-09-24 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011015514.6A CN112159220B (zh) 2020-09-24 2020-09-24 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN112159220A CN112159220A (zh) 2021-01-01
CN112159220B true CN112159220B (zh) 2022-11-18

Family

ID=73863720

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011015514.6A Active CN112159220B (zh) 2020-09-24 2020-09-24 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112159220B (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114988862B (zh) * 2022-06-29 2023-06-23 江苏师范大学 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN115838286B (zh) * 2022-12-26 2023-12-08 江苏师范大学 一种高显指白光led/ld用荧光陶瓷制备与应用
CN116444271A (zh) * 2023-05-06 2023-07-18 江苏师范大学 一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006027307B4 (de) * 2006-06-06 2014-08-07 Schott Ag Verfahren zur Herstellung einer Sinterglaskeramik und deren Verwendung
BRPI1008218A2 (pt) * 2009-05-28 2016-07-05 Koninkl Philips Electronics Nv dispositivo de iluminação e lâmpada
SG11201405877UA (en) * 2012-03-29 2014-11-27 Merck Patent Gmbh Composite ceramic containing a conversion phosphor and a material with a negative coefficient of thermal expansion
JP2015113358A (ja) * 2013-12-09 2015-06-22 三菱化学株式会社 蛍光体、蛍光体含有組成物、発光装置、照明装置、画像表示装置、及び蛍光体の製造方法
CN103833348B (zh) * 2013-12-31 2015-07-01 北京雷生强式科技有限责任公司 一种自激辐射吸收材料及其制备方法
CN104177078B (zh) * 2014-07-17 2016-02-10 江苏诚赢照明电器有限公司 用于白光LED荧光转换的含Lu的Ce:YAG基透明陶瓷及其制备方法
CN111592347B (zh) * 2019-12-11 2021-11-05 中国科学院福建物质结构研究所 一种铽钪铝石榴石及其掺杂的磁光透明陶瓷、及其制备方法

Also Published As

Publication number Publication date
CN112159220A (zh) 2021-01-01

Similar Documents

Publication Publication Date Title
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN106221695B (zh) 氮化铝基荧光粉的制备方法
CN108863317A (zh) 一种荧光复合陶瓷及其制备方法和应用
JP5752257B2 (ja) 窒素化合物発光材料及びそれによって製造された白色led照明光源
CN114988862B (zh) 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN111393166B (zh) 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
CN112266239B (zh) 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN115838286B (zh) 一种高显指白光led/ld用荧光陶瓷制备与应用
CN114031400B (zh) 单相暖白光荧光陶瓷及其制备方法和应用
CN113683407B (zh) 一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法
CN114477989B (zh) 一种石墨烯改性的绿光透明陶瓷材料及其制备方法和应用
CN115305088A (zh) 基于石榴石结构衍生的荧光粉材料及其制备方法和应用
CN104496474A (zh) 一种紫外转换白光led透明陶瓷材料及其制备方法
CN111072384A (zh) 一种紫外激发荧光陶瓷及其制备方法
CN101705088A (zh) 锰铬共掺的镁铝尖晶石荧光衬底材料及其制备方法
CN114478008B (zh) 一种固态照明用高显色指数高热稳定性的荧光陶瓷及其制备方法
CN115180948B (zh) 一种激光照明用高光效复相荧光陶瓷及其制备方法
CN113087527B (zh) 一种Eu3+激活的红色透明荧光陶瓷及其制备方法
CN115521785B (zh) 一种氧化物近红外发光材料及其制备方法与发光装置
CN111286329B (zh) 铈离子掺杂YAG与铬离子掺杂LuAG混晶材料及其制备方法
CN117209276A (zh) 一种植物照明用深红色荧光陶瓷及其制备方法
CN117800727A (zh) 一种固态照明用高显指氮氧化物荧光陶瓷及其制备方法
CN117819969A (zh) 一种反常浓度猝灭红色荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant