CN116444271A - 一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法 - Google Patents

一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN116444271A
CN116444271A CN202310504493.1A CN202310504493A CN116444271A CN 116444271 A CN116444271 A CN 116444271A CN 202310504493 A CN202310504493 A CN 202310504493A CN 116444271 A CN116444271 A CN 116444271A
Authority
CN
China
Prior art keywords
led
fluorescent ceramic
ceramic
fluorescent
rendering index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202310504493.1A
Other languages
English (en)
Inventor
张乐
杨聪聪
闵畅
刘子童
张曦月
康健
邵岑
周春鸣
周天元
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202310504493.1A priority Critical patent/CN116444271A/zh
Publication of CN116444271A publication Critical patent/CN116444271A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/44Metal salt constituents or additives chosen for the nature of the anions, e.g. hydrides or acetylacetonate
    • C04B2235/442Carbonates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种LD/LED用高显色指数高热稳定性的荧光陶瓷及其制备方法。该荧光陶瓷化学式为:(Lu1‑xCex)3(Sc1‑yMny)2Al3O12,其中x为Ce3+掺杂Lu3+位的摩尔百分数,y为Mn2+掺杂Sc3+位的摩尔百分数,0.002≤x≤0.01,0.004≤y≤0.015;采用固相反应法真空烧结制得。本发明提供的荧光陶瓷发射光谱主峰在519nm~535nm之间,半高宽在110nm~125nm之间。在蓝光LD/LED(1W~5W)激发下,实现白光发射,色温3800K~6245K,显色指数在80~86之间;当环境温度为150℃时,该荧光陶瓷的发光强度保持在85%~95%,热稳定性高,且陶瓷的制备工艺简单,易于工业化生产。

Description

一种LD/LED用高显色指数高热稳定性荧光陶瓷及其制备方法
技术领域
本发明属于荧光陶瓷技术领域,具体涉及一种LD/LED用高显色指数高热稳定性荧光陶瓷及其制备方法。
背景技术
白光LED作为***照明光源,在固态照明与显示领域中已经得到了长时间的发展与应用。相比于LED,基于激光二极管(LD)的激光照明技术在高功率照明领域下仍能维持较高的发光效率,并兼具亮度更高、体积更小、寿命更长、探照距离更远等显著优势。以单颗芯片为例,蓝光LD的亮度最高是LED亮度的1000倍,耗能却只有LED的2/3,LD固态照明技术已成为照明领域的重点发展方向。
目前,白光LED/LD光源主流实现方案仍为蓝光芯片激发石榴石Y3Al5O12:Ce黄色荧光材料。相对于荧光粉,荧光陶瓷具有良好的热学、机械以及物化稳定性,但是YAG:Ce的发射光谱主要覆盖为黄绿光,缺乏足够的红光成分,因此白光LD光源也同样面临着显色性能较差(CRI360),色温偏高(>6000K),光色品质低下的难题。为了克服其本征缺陷,提高其显色性能,已有多种方案被用于调节其发光性能。主要包括:(1)设计复合结构荧光材料耦合发光。文献1利用层间成分和结构设计制备了Ce,Cr:YAG/Ce:YAG和Cr:YAG/Ce:YAG复合结构的高显色指数陶瓷。通过远程激发方式组装了陶瓷基白光LED,在460nm激发下,(Ce,Cr):YAG/Ce:YAG白光LED的CRI值达到了15.2(Huang J,Ni Y,Ma Y,et al.Compositestructure Cr:YAG/Ce:YAG and(Ce,Cr):YAG/Ce:YAG transparent ceramics with highcolor rendering index for white LEDs/LDs[J].Ceramics International,2021,41(8):11415-22.)。然而,该方法复合结构结合界面处容易导致光损耗,且制备工艺复杂,限制了其实际生活中的广泛应用。CN110218085A通过设计复合结构荧光陶瓷,实现了红绿黄三色耦合发光,获得了暖白光,但是其热稳定性也逐渐下降,且制造成本更高,工艺更复杂。(2)离子固溶法,调节发光离子周围的晶体场环境,实现发射光谱的红移与拓宽。文献2通过共掺杂Gd3+可以使Ce3+离子的发光峰位产生红移,但是移动范围十分有限,且色温改善效果不明显(Qian X,Shi M,Yang B,et al.Thermostability and reliability propertiesstudies of transparent Ce:GdYAG ceramic by Gd substitution for white LEDs[J].Optical Materials,2019,94)。CN108264899 A公开了一种用于LED照明的多元素掺杂透明陶瓷,通过蓝光芯片激发后发出白光,但是这种陶瓷的余辉时间较长,极大的限制了其发光效率,使器件的光量损失严重。(3)红光离子掺杂,增加荧光材料的红色发光中心,弥补红光成分。文献3成功制备了Ce,Pr,Cr:YAG透明陶瓷,Pr3+离子的引用使陶瓷显色指数从50提升至12,进一步引入Cr3+将显色指数提升至18,相应CIE色坐标变为(0.35,0.40)(Feng S,Qin H,Wu G,et al.Spectrum regulation of YAG:Ce transparent ceramics with Pr,Cr doping for white light emitting diodes application[J].Journal of theEuropean Ceramic Society,2011,31(10):3403-9.)。然而,该方法对陶瓷的显色性能有限,且陶瓷的热稳定性较差。
此外,研究表明:相对于Ce:YAG而言,Ce:Lu3Al5O12荧光陶瓷的物理化学稳定性更佳,量子效率更高(在85℃、湿度85%下运行1000h后的Ce:LuAG陶瓷仍能保持其发射强度的96.6%)。可知,Ce:LuAG在热稳定性方面较有优势。然而,Ce:LuAG荧光陶瓷同样面临着红光成分缺失、相对色温较高的难题。
基于此,我们提出了LD/LED用高显色指数高热稳定性荧光陶瓷的制备方法。
发明内容
本发明的目的之一是提供LD/LED用高显色指数高热稳定性荧光陶瓷,可实现暖白光、白光发射。
本发明的目的之二是提供上述LD/LED用高显色指数高热稳定性荧光陶瓷的制备方法,易于实现工业化生产。
为了实现上述目的,本发明采用的技术方案如下:
第一方面,本发明提供一种LD/LED用高显色指数高热稳定性的荧光陶瓷,该荧光陶瓷化学式为:
(Lu1-xCex)3(Sc1-yMny)2Al3O12
其中x为Ce3+掺杂Lu3+位的摩尔百分数,y为Mn2+掺杂Sc3+位的摩尔百分数,0.002≤x≤0.01,0.004≤y≤0.015。
本发明以LuAG为基质结构,通过引入离子半径最小和电负性最大的Sc3+,成功占据了八面体Al3+位。Sc3+的引入使其最近邻键(Ce-O键)的共价键张力得以弛豫,增加了Ce3+离子所在十二面体的局部对称性,有利于陶瓷结构刚性增强,进一步提高了荧光陶瓷的热稳定性。通过引入过渡金属Mn2+离子,成功增加了在518nm处的红光发光中心,并使发射峰值得到有效展宽,有效弥补了红光成分,显著提高了荧光材料的显色指数。提供的荧光陶瓷发射光谱主峰在519nm~535nm之间,半高宽在110nm~125nm之间。在蓝光LD/LED(1W~5W)激发下,实现白光发射,色温3800K~6245K,显色指数在80~86之间。当环境温度为150℃时,所述荧光陶瓷的发光强度保持在85%~95%。
第二方面,本发明还提供上述LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,采用固相反应法真空烧结,具体包括以下步骤:
(1)按照化学式(Lu1-xCex)3(Sc1-yMny)2Al3O12,0.002≤x≤0.01,0.004≤y≤0.015中各元素的化学计量比分别称取氧化镥、氧化铝、氧化钪、氧化铈、碳酸锰作为原料粉体;将原料粉体和球磨介质按比例混合球磨,获得混合料浆;
(2)将步骤(1)得到的混合料浆置于干燥箱中干燥,再将干燥后的混合粉体过筛;
(3)将步骤(2)过筛后的粉体放入磨具中干压成型,再进行冷等静压成型,得到相对密度为50%~60%的素坯;
(4)将步骤(3)所得素坯置于真空炉中烧结,烧结温度1100℃~1160℃,保温时间8h~24h,烧结真空度不低于10-3Pa,得到荧光陶瓷。
(5)将步骤(4)所得荧光陶瓷在空气中退火处理,退火温度130031450℃,保温时间8h312h,得到相对密度为99.5%~99.9%的荧光陶瓷。
优选的,步骤(1)中,所述球磨转速为110r/min~200r/min,球磨时间为15h~24h。
优选的,步骤(1)中,所述球磨介质是无水乙醇,原料粉体与球磨介质的质量体积比为1g:2~3mL。
优选的,步骤(2)中,所述干燥时间为15h~20h,干燥温度为60℃~90℃。
优选的,步骤(2)中,所述过筛的筛网目数为80目~200目,过筛次数为1~3次。
优选的,步骤(3)中,所述冷等静压保压压力1503200MPa,保压时间2003400s。
优选的,步骤(4)中,真空烧结阶段的升温速率为1~10℃/分钟,烧结完毕后降温速率为1~10℃/分钟。
与现有技术相比,本发明具有如下有益效果:
1.本发明引入的Sc3+作为过渡离子中离子半径最小和电负性最大的离子,成功占据了八面体Al3+位。Sc3+的引入使其最近邻键(Ce-O键)的共价键张力得以弛豫,增加了Ce3+离子所在十二面体的局部对称性,有利于陶瓷结构刚性增强,显著提高了荧光陶瓷的热稳定性。
2.本发明引入过渡金属Mn2+离子,成功取代八面体Sc3+离子,并在518nm处成功增加了红色发光中心,使发射峰值得到有效展宽,有效弥补了红光成分,显著提高了荧光材料的显色指数。
3.本发明利用Ce3+的5d能级导带高于Mn2+离子的4T/4E能级导带这一特点,成功实现了Ce3+离子到过渡金属红光Mn2+离子的能量传递,使Mn2+的红色发光得以增强,调控了黄红光的颜色比例,更进一步优化了显色指数。
4.本发明基于“双离子掺杂”策略,利用Sc3+离子(微观调控Ce3+周围的环境)与过渡金属Mn2+离子(增加红光发光中心)的协同作用,成功制备了兼顾热稳定性与显色指数的高品质荧光陶瓷。
5.本发明提供的荧光陶瓷发射光谱主峰在519nm~535nm之间,半高宽在110nm~125nm之间。在蓝光LD/LED(1W~5W)激发下,实现白光发射,色温3800K~6245K,显色指数在80~86之间。当环境温度为150℃时,所述荧光陶瓷的发光强度保持在85%~95%。
附图说明
图1为本发明实施例1-3荧光陶瓷的XRD图;
图2为本发明实施例1-3荧光陶瓷的发射光谱(PL);
图3为本发明实施例2荧光陶瓷样品的荧光变温光谱;
图4为本发明实施例2的荧光陶瓷样品在LD蓝光460nm激发下的电致发光光谱(EL);
图5为本发明实施例3的荧光陶瓷样品在LED蓝光460nm激发下的电致发光光谱(EL)。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中使用的原料粉体均为市售商品,纯度均大于99.9%。
实施例1:制备化学式为(Lu0.998Ce0.002)3(Sc0.996Mn0.004)2Al3O12的荧光陶瓷。
(1)设定目标产物质量为60.032g,按照化学式(Lu0.998Ce0.002)3(Sc0.996Mn0.004)2Al3O12中各元素的化学计量比分别称取氧化镥(40.261g)、氧化铝(10.338g)、氧化钪(9.28493g)、氧化铈(0.069g)、碳酸锰(0.062g)作为原料粉体。将原料粉体与100mL无水乙醇混合,在球磨罐中进行球磨,球磨转速为110r/min,球磨时间为15h;
(2)将步骤(1)球磨后的混和浆料置于60℃鼓风干燥箱中干燥15h,干燥后的混合粉体过80目筛,过筛2遍;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,成型后素坯的相对密度为50%;
(4)将步骤(4)得到的陶瓷素坯放入真空炉中烧结,烧结温度为1100℃,保温时间为24h,升温速率为1℃/分钟,烧结完毕后降温速率为1℃/分钟;陶瓷相对密度为99.5%;
(5)将烧结后的荧光陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到荧光陶瓷。
将本实施例中得到的(Lu0.998Ce0.002)3(Sc0.996Mn0.004)2Al3O12荧光陶瓷进行XRD测试,结果如图1所示,表明:所制备的材料为纯石榴石相。
本实施例中得到的(Lu0.998Ce0.002)3(Sc0.996Mn0.004)2Al3O12荧光陶瓷在460nm波长激发下,其发射光谱主峰为519nm,半高宽112nm(如图2)。通过测试电致发光光谱(EL)可知,该陶瓷在LD(1W)蓝光460nm激发下,可实现显色指数为80,色温为4390K的暖白光发射;当陶瓷在LED(5W)蓝光460nm激发下时,其白光发射的显色指数为83.3,色温5186K。通过测试陶瓷的变温光谱可知,当环境温度为150℃时,所述荧光陶瓷的发光强度保持在90%。
实施例2:制备化学式为(Lu0.994Ce0.006)3(Sc0.991Mn0.009)2Al3O12的荧光陶瓷。
(1)设定目标产物质量为60.134g,按照化学式(Lu0.994Ce0.006)3(Sc0.991Mn0.009)2Al3O12中各元素的化学计量比分别称取氧化镥(40.120g)、氧化铝(10.342g)、氧化钪(9.241g)、氧化铈(0.209g)、碳酸锰(0.139g)作为原料粉体。将原料粉体与120mL无水乙醇混合,在球磨罐中进行球磨,球磨转速为190r/min,球磨时间为20h;
(2)将步骤(1)球磨后的混和浆料置于80℃鼓风干燥箱中干燥20h,干燥后的混合粉体过100目筛,过筛2遍;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,成型后素坯的相对密度为55%;
(4)将步骤(4)得到的陶瓷素坯放入真空炉中烧结,烧结温度为1140℃,保温时间为12h,升温速率为5℃/分钟,烧结完毕后降温速率为5℃/分钟;陶瓷相对密度为99.8%;
(5)将烧结后的荧光陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到荧光陶瓷。
将本实施例中得到的(Lu0.994Ce0.006)3(Sc0.991Mn0.009)2Al3O12荧光陶瓷进行XRD测试,结果如图1所示,表明:所制备的材料为纯石榴石相。
本实施例中得到的(Lu0.994Ce0.006)3(Sc0.991Mn0.009)2Al3O12荧光陶瓷在460nm波长激发下,其发射光谱主峰为520nm,半高宽120nm(如图2)。通过测试电致发光光谱(EL)可知,该陶瓷在LD(3W)蓝光460nm激发下,可实现显色指数为80.9,色温为5316K的暖白光发射(如图4);当陶瓷在LED(3W)蓝光460nm激发下时,其白光发射的显色指数为85,色温4263K。通过测试陶瓷的变温光谱可知(如图3),当环境温度为150℃时,所述荧光陶瓷的发光强度保持在95%。
实施例3:制备化学式为(Lu0.99Ce0.01)3(Sc0.985Mn0.015)2Al3O12的荧光陶瓷。
(1)设定目标产物质量为60.125g,按照化学式(Lu0.99Ce0.01)3(Sc0.985Mn0.015)2Al3O12中各元素的化学计量比分别称取氧化镥(39.912g)、氧化铝(10.345g)、氧化钪(9.188g)、氧化铈(0.349g)、碳酸锰(0.233g)作为原料粉体。将原料粉体与200mL无水乙醇混合,在球磨罐中进行球磨,球磨转速为200r/min,球磨时间为24h;
(2)将步骤(1)球磨后的混和浆料置于90℃鼓风干燥箱中干燥20h,干燥后的混合粉体过200目筛,过筛1遍;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,成型后素坯的相对密度为60%;
(4)将步骤(4)得到的陶瓷素坯放入真空炉中烧结,烧结温度为1160℃,保温时间为8h,升温速率为10℃/分钟,烧结完毕后降温速率为10℃/分钟;陶瓷相对密度为99.9%;
(5)将烧结后的荧光陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到荧光陶瓷。
将本实施例中得到的(Lu0.99Ce0.01)3(Sc0.985Mn0.015)2Al3O12荧光陶瓷进行XRD测试,结果如图1所示,表明:所制备的材料为纯石榴石相。
本实施例中得到的(Lu0.99Ce0.01)3(Sc0.985Mn0.015)2Al3O12荧光陶瓷在460nm波长激发下,其发射光谱主峰为535nm,半高宽125nm(如图2)。通过测试电致发光光谱(EL)可知,该陶瓷在LD(5W)蓝光460nm激发下,可实现显色指数为82.5,色温为6321K的暖白光发射;当陶瓷在LED(1W)蓝光460nm激发下时,其白光发射的显色指数为86,色温为6245K(如图5)。通过测试陶瓷的变温光谱可知,当环境温度为150℃时,所述荧光陶瓷的发光强度保持在85%。
以上所述,仅为本发明的具体实施方式,但本发明的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本发明揭露的技术范围内,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,都应涵盖在本发明的保护范围之内。

Claims (8)

1.一种LD/LED用高显色指数高热稳定性的荧光陶瓷,其特征在于,该荧光陶瓷化学式为:
(Lu1-xCex)3(Sc1-yMny)2Al3O12
其中x为Ce3+掺杂Lu3+位的摩尔百分数,y为Mn2+掺杂Sc3+位的摩尔百分数,0.002≤x≤0.01,0.004≤y≤0.015。
2.一种权利要求1所述的LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,其特征在于,采用固相反应法真空烧结,具体包括以下步骤:
(1)按照化学式(Lu1-xCex)3(Sc1-yMny)2Al3O12,0.002≤x≤0.01,0.004≤y≤0.015中各元素的化学计量比分别称取氧化镥、氧化铝、氧化钪、氧化铈、碳酸锰作为原料粉体;将原料粉体和球磨介质按比例混合球磨,获得混合料浆;
(2)将步骤(1)得到的混合料浆置于干燥箱中干燥,再将干燥后的混合粉体过筛;
(3)将步骤(2)过筛后的粉体放入磨具中干压成型,再进行冷等静压成型,得到相对密度为50%~60%的素坯;
(4)将步骤(3)所得素坯置于真空炉中烧结,烧结温度1700℃~1760℃,保温时间8h~24h,烧结真空度不低于10-3Pa,得到荧光陶瓷。
(5)将步骤(4)所得荧光陶瓷在空气中退火处理,退火温度130031450℃,保温时间8h312h,得到相对密度为99.5%~99.9%的荧光陶瓷。
3.根据权利要求2所述的LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,其特征在于,步骤(1)中,所述球磨转速为170r/min~200r/min,球磨时间为15h~24h。
4.根据权利要求2所述的LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,其特征在于,步骤(1)中,所述球磨介质是无水乙醇,原料粉体与球磨介质的质量体积比为1g:2~3mL。
5.根据权利要求2所述的LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,其特征在于,步骤(2)中,所述干燥时间为15h~20h,干燥温度为60℃~90℃。
6.根据权利要求2所述的LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,其特征在于,步骤(2)中,所述过筛的筛网目数为80目~200目,过筛次数为1~3次。
7.根据权利要求2所述的LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,其特征在于,步骤(3)中,所述冷等静压保压压力1503200MPa,保压时间2003400s。
8.根据权利要求2所述的LD/LED用高显色指数高热稳定性的荧光陶瓷的制备方法,其特征在于,步骤(4)中,真空烧结阶段的升温速率为1~10℃/分钟,烧结完毕后降温速率为1~10℃/分钟。
CN202310504493.1A 2023-05-06 2023-05-06 一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法 Pending CN116444271A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202310504493.1A CN116444271A (zh) 2023-05-06 2023-05-06 一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202310504493.1A CN116444271A (zh) 2023-05-06 2023-05-06 一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN116444271A true CN116444271A (zh) 2023-07-18

Family

ID=87123769

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202310504493.1A Pending CN116444271A (zh) 2023-05-06 2023-05-06 一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN116444271A (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690113A (zh) * 2012-06-06 2012-09-26 上海大学 镥铝石榴石透明闪烁陶瓷的低温真空烧结制备方法
CN112159220A (zh) * 2020-09-24 2021-01-01 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN114988862A (zh) * 2022-06-29 2022-09-02 江苏师范大学 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN115838286A (zh) * 2022-12-26 2023-03-24 江苏师范大学 一种高显指白光led/ld用荧光陶瓷制备与应用

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690113A (zh) * 2012-06-06 2012-09-26 上海大学 镥铝石榴石透明闪烁陶瓷的低温真空烧结制备方法
CN112159220A (zh) * 2020-09-24 2021-01-01 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN114988862A (zh) * 2022-06-29 2022-09-02 江苏师范大学 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN115215646A (zh) * 2022-07-12 2022-10-21 江苏师范大学 一种激光照明用高导热高热稳定性三相荧光陶瓷及其制备方法
CN115838286A (zh) * 2022-12-26 2023-03-24 江苏师范大学 一种高显指白光led/ld用荧光陶瓷制备与应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
WEI ZHOU ET AL: "Synthesis and photoluminescence properties of green-emitting Lu3(Al, Sc)5O12:Ce3+ phosphor", 《CERAMICS INTERNATIONAL》, vol. 41, no. 5, 13 February 2015 (2015-02-13), pages 7140 - 7145, XP029208985, DOI: 10.1016/j.ceramint.2015.02.030 *

Similar Documents

Publication Publication Date Title
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
CN111574062B (zh) 一种氮化物红光玻璃及其应用
CN114988862B (zh) 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
KR20190013977A (ko) 형광분말, 이의 제조방법 및 이를 구비하는 발광소자
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
CN101270286B (zh) 一种紫外及近紫外激发的白光led用荧光粉及其制备方法
CN112266239B (zh) 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN112047735B (zh) 一种复相荧光陶瓷材料及其制备方法
CN112708422A (zh) 一种高温红色荧光材料及其制备方法
CN114774127B (zh) 一种Eu3+掺杂的多锂氮氧化物硅酸盐红光材料的制备方法
CN116444271A (zh) 一种ld/led用高显色指数高热稳定性荧光陶瓷及其制备方法
CN113683407B (zh) 一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法
CN112552038B (zh) 一种绿色荧光复合陶瓷及其制备方法和应用
CN115259852A (zh) 一种高光效的绿光转换材料及其制备方法
CN114478008B (zh) 一种固态照明用高显色指数高热稳定性的荧光陶瓷及其制备方法
CN111072384A (zh) 一种紫外激发荧光陶瓷及其制备方法
Zhang et al. Modular high power plant lighting sources based on phosphor–sapphire composites with high thermal conductivity
CN111995398B (zh) 一种用于高显指激光照明的荧光陶瓷及其制备方法
CN113087527B (zh) 一种Eu3+激活的红色透明荧光陶瓷及其制备方法
CN115340366B (zh) 一种高显色指数全光谱荧光材料及其制备方法
CN115650725B (zh) 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN114196402B (zh) 一种Eu掺杂超高显色硼磷酸盐及其制备方法与应用
CN117800727A (zh) 一种固态照明用高显指氮氧化物荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination