CN111205081B - 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用 - Google Patents

一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用 Download PDF

Info

Publication number
CN111205081B
CN111205081B CN202010070058.9A CN202010070058A CN111205081B CN 111205081 B CN111205081 B CN 111205081B CN 202010070058 A CN202010070058 A CN 202010070058A CN 111205081 B CN111205081 B CN 111205081B
Authority
CN
China
Prior art keywords
equal
color
ceramic
temperature
fluorescent ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010070058.9A
Other languages
English (en)
Other versions
CN111205081A (zh
Inventor
张乐
马跃龙
孙炳恒
康健
邵岑
陈东顺
周天元
黄国灿
李明
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Attapulgite Photoelectric Technology Co ltd
Original Assignee
Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Attapulgite Photoelectric Technology Co ltd filed Critical Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority to CN202010070058.9A priority Critical patent/CN111205081B/zh
Publication of CN111205081A publication Critical patent/CN111205081A/zh
Application granted granted Critical
Publication of CN111205081B publication Critical patent/CN111205081B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/62675Thermal treatment of powders or mixtures thereof other than sintering characterised by the treatment temperature
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62645Thermal treatment of powders or mixtures thereof other than sintering
    • C04B35/6268Thermal treatment of powders or mixtures thereof other than sintering characterised by the applied pressure or type of atmosphere, e.g. in vacuum, hydrogen or a specific oxygen pressure
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用,该荧光陶瓷化学式为:(Y1‑x‑y‑z‑aLuxGdyPr3+ aCe3+ z)3(Al1‑bMn2+ b)5O12,其中x为Lu3+掺杂Y3+位的摩尔百分数,y为Gd3+掺杂Y3+位的摩尔百分数,a为Pr3+掺杂Y3+十二面体格位的摩尔百分数,b为Mn2+掺杂Al3+八面体格位的摩尔百分数,z为Ce3+掺杂Y3+位的摩尔百分数,0≤x≤1,0≤y<1,0.001≤a≤0.005,0.001≤z≤0.01,0.001≤b≤0.02,1≤(b:a)≤10。采用固相反应法烧结,本发明的荧光陶瓷材料具有发射光谱主峰545~575nm之间,半高宽在100~120nm之间,在高功率LED(350~500mA)或LD(4W~10W)激发下,实现暖白光发射,色温3000~4000K,显色指数80~88,制备工艺简单,易于工业化生产,对高功率照明产业具有极大的促进作用。

Description

一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
技术领域
本发明涉及荧光陶瓷技术领域,具体涉及一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用。
背景技术
以LED/LD为激发源的固态照明技术具有节能、环保、使用寿命长等优点,被广泛应用于室内照明、投影、显示器件等产品中。这种照明技术的实施路径是利用蓝光LED/LD芯片激发荧光转换材料(铈掺杂钇铝石榴石),未被利用的蓝光与荧光转换材料发出的光混合形成白光。目前,在众多荧光转换材料(荧光玻璃、荧光薄膜、单晶、荧光陶瓷)中,荧光陶瓷以其导热系数高、机械性能好、易实现高掺杂浓度等优点成为主流发展对象及国内外研究的热点。然而,在蓝光半导体芯片/蓝光激光器激发下,Ce3+:Y3Al5O12(Ce:YAG)荧光陶瓷发射出的光颜色比例失调,导致制备的照明器件显色指数偏低、相对色温偏高等缺陷,无法满足使用要求。
为了解决Ce:YAG荧光陶瓷相对色温高、显色指数低的难题,必须要对Ce:YAG荧光陶瓷进行掺杂、改性。虽然已有多篇关于关于铈掺杂钇铝石榴石、镥铝石榴石、钆铝石榴石的文献报道。但是,其结果并不十分理想。专利CN108503352A公开了一种化学式为RE3Al5-x- yMnxRyO12石榴石基红色荧光陶瓷。其中RE为Y,Lu,La,Ga中的至少一种,R为Mg,Ca,K,Li中的一种,0.001≤x≤0.05,0≤y≤0.1,x为发光离子Mn4+掺杂的摩尔分数。虽然其能被蓝光激发,但是,因其只能发射红光,不能单独做为照明用荧光转换材料。专利CN108530071A公开的荧光陶瓷,在Al3+格位(八面体格位和四面体格位)进行了多离子掺杂,但是忽略了溶解度及半径相近掺杂原则,因此得到的陶瓷未提及显色指数上的数据。CN107384398A公开了一种YAG荧光粉及其制备方法和由其制备的YAG荧光陶瓷方法,其制备过程包括配料、混料、烘干、高温合成YAG基粉体、球磨破碎YAG基粉体,成型、烧结、后处理等步骤,具体步骤包括以氧化铝粉、氧化钇、氧化铈、三氧化二铬为反应原料,以常压下沸点不高于120℃的低沸点的有机溶剂为媒介,通过湿法混料,使得氧化铝、氧化钇、氧化铈、三氧化二铬充分混合,得到均匀的料浆;将所得浆料烘干,过筛,得到混合粉体;将得到的混合粉体装入坩埚中,置于高温炉中,通入流动N2/H2混合气,高温保温,合成高纯YAG基粉体;将合成的YAG基粉体过筛,球磨,加入适量的烧结助剂,烘干得到组分均匀超细YAG基粉体;将得到的超细YAG基粉体经成型得到YAG基陶瓷素坯;将YAG基素坯装入坩埚中,置于真空钨丝炉中,高温下保温,真空烧结制得YAG基陶瓷;将得到的YAG基陶瓷进行研磨抛光,得到高品质YAG基荧光陶瓷。对实验条件要求高,步骤繁琐,耗费时间长,不利于工业化生产。
非专利文献(Ceramics International,40(2014)7043-7047)设计了Ce:YAG/Ce,Cr:YAG复合结构用来提高荧光陶瓷的显色指数,发现结果并不理想且制备过程复杂。究其原因是Cr发射范围超过了CIE1931视觉函数x的值,该值截止波长700nm。非专利文献(Ceramics International,45(2019)21520-21527)采用旋涂法将红色荧光粉CaAlSiN3:Eu2+涂覆在YAG:Ce3+荧光陶瓷上,实现85显色指数发射光,但是,该红色荧光粉极易分解且制备工艺复杂。因此该方法不利于工业化生产。有此可见,复合结构制备高显色指数荧光陶瓷工艺复杂且极具技术挑战性,不利于工业化生产和获得高显色指数荧光陶瓷。
通过研究各个时段的太阳光中可见光光谱,高显色指数荧光陶瓷必须具备合适的发射光比例,目前虽然已有多篇关于对Ce:YAG荧光陶瓷进行红光离子掺杂的文献报道,但是由于其是在追求高显色指数的同时提升发光效率的研究,且显色指数仅停留在70以下,与高功率LED/LD照明用低色温高显指荧光陶瓷的实际应用仍有巨大差距。
发明内容
本发明的目的之一是提供一种单一结构式低色温高显指荧光陶瓷,色温低,显色指数高。
本发明的目的之二是提供上述荧光陶瓷的制备方法,制备工艺简单,易于(半)工业化生产。
本发明的目的之三是提供上述荧光陶瓷的应用。
为实现上述目的,本发明采用的技术方案如下:一种单一结构式低色温高显指荧光陶瓷,其化学式为:
(Y1-x-y-z-aLuxGdyPr3+ aCe3+ z)3(Al1-bMn2+ b)5O12
其中x为Lu3+掺杂Y3+位的摩尔百分数,y为Gd3+掺杂Y3+位的摩尔百分数,a为Pr3+掺杂Y3+十二面体格位的摩尔百分数,b为Mn2+掺杂Al3+八面体格位的摩尔百分数,z为Ce3+掺杂Y3+位的摩尔百分数,0≤x≤1,0≤y<1,0.001≤a≤0.005,0.001≤z≤0.01,0.001≤b≤0.02,1≤(b:a)≤10。
具体来说,所述Pr3+离子掺杂在十二面体格位上,Mn2+掺杂在八面体格位上,且两者为同步协同掺杂。
本发明还提供上述单一结构式高功率LED/LD照明用低色温高显指荧光陶瓷的制备方法,采用固相反应法烧结,具体包括以下步骤:
(a)按照化学式(Y1-x-y-z-aLuxGdyPr3+ aCe3+ z)3(Al1-bMn2+ b)5O12中各元素的化学计量比分别称取氧化铝、氧化钇、氧化钆、氧化镥、十一氧六镨、碳酸锰和氧化铈作为原料粉体,将原料粉体、电荷补偿剂、分散剂、球磨介质按一定比例混合球磨,获得平均粒径在1nm~10μm之间的混合浆料;
(b)将步骤(a)球磨后的混和浆料进行干燥,干燥后的混合粉体过80~100目筛,过筛2~3遍,然后在氩气气氛下煅烧除去残留有机物;
(c)将步骤(b)煅烧后的粉体放入模具中干压成型,干压成型后再进行冷等静压成型,所述冷等静压的压力为220MPa~300MPa,保压时间为500s~600s,冷等静压成型后素坯的相对密度为50%~55%;
(d)将成型后素坯在氩气气氛下煅烧,煅烧温度600℃~700℃,煅烧时间2h~4h;
(e)将步骤(d)得到的陶瓷素坯放入管式炉内,在还原气氛或者氩气气氛中烧结,烧结温度为1500℃~1650℃,保温时间为4h~8h,升温速率为1~2℃/分钟,烧结完毕后降温速率为2~4℃/分钟;或者将步骤(d)得到的陶瓷素坯放入真空烧结炉内烧结,真空烧结温度为1500℃~1750℃,保温时间为1h~8h,烧结真空度不低于10-1Pa,升温速率为2~3℃/分钟,烧结完毕后降温速率为2~8℃/分钟;
(f)将烧结后的陶瓷进行双面抛光,得到低色温高显指荧光陶瓷。
优选的,步骤(a)中,所述氧化钆、氧化镥、碳酸锰、氧化铈、氧化铝、氧化钇的质量百分纯度为≥99.9%,平均粒径10nm~50μm;所述十一氧六镨的质量百分纯度为≥99.99%,平均粒径10nm~5μm;所述氧化铈的质量百分纯度为≥99.99%,平均粒径50nm~5μm。
优选的,步骤(a)中,所述电荷补偿剂为SiO2或者SiF4,电荷补偿剂的加入量为碳酸锰的0.01wt.%~1wt.%。
优选的,步骤(a)中,所述球磨介质为无水乙醇,球磨介质的体积与原料粉体总质量的比为2.5~3:1ml/g。
优选的,步骤(a)中,所述磨球为高纯氧化铝磨球,磨球直径为0.5~10mm;所述球磨罐的材质为氧化铝陶瓷罐,球磨时球料比为3:1~6:1,球磨方式为行星式球,球磨转速为160r/min~200r/min,球磨时间为20h~30h。
优选的,步骤(b)中,所述干燥温度为50~60℃,干燥时间2min/g~5min/g(混合浆料的重量以g为单位),所述煅烧温度为620~650℃,煅烧时间为3~4h。
本发明还提供上述单一结构式低色温高显指荧光陶瓷在制备高功率LED/LD照明器件中的应用。
该荧光陶瓷发射光谱主峰在545~575nm之间,半高宽在100~120nm之间,在高功率LED(350~500mA)或LD(4W~10W)激发下,实现低色温发射,色温3000~4000K,显色指数80~88。
与现有技术相比,本发明具有如下有益效果:
(1)本发明采用Pr3+和Mn2+离子分别取代晶体结构中的Y3+和Al3+离子,其中Pr3+离子取代的是十二面体的Y3+离子格位,Mn2+离子取代的是八面体的Al3+离子格位,得到的荧光陶瓷可以有效的产生橙红光矮峰和橘红光窄峰。
(2)本发明提供的荧光陶瓷,通过在Ce:YAG中同步掺杂Pr3+离子和Mn2+离子,协同利用八面体格位的Mn2+离子(发射主峰在585nm左右)的发射宽峰和十二面体格位的Pr3+离子(发射主峰在610nm左右)的发射窄峰,通过固相反应法及按比例的电荷补充剂的加入,获得单一结构式低色温高显指纯石榴石相荧光陶瓷。
(3)本发明提供的荧光陶瓷可以有效地解决荧光陶瓷中红光成份不足,光效低等问题,可有效提高LED/LD器件显色指数,得到低色温和高显色指数的白光。并且在高功率LED(350~500mA)或LD(4W~10W)激发下,发射光谱主峰545~575nm之间,半高宽在100~120nm之间,在高功率LED(350~500mA)或LD(4W~10W)激发下,实现低色温发射,色温3000~4000K,显色指数80~88。
附图说明
图1为本发明实施例1制得的荧光陶瓷的发射光谱;
图2为本发明实施例1制得的荧光陶瓷的透过率图;
图3为本发明实施例2制得的荧光陶瓷的透过率图;
图4为本发明实施例1至4制得的荧光陶瓷的XRD图;
图5为本发明实施例1至4制得的荧光陶瓷的实物图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例、对比例中使用的原料粉体均为市售商品,其中氧化钆、氧化镥、碳酸锰、氧化铈、氧化铝、氧化钇的质量百分纯度为≥99.9%,平均粒径10nm~50μm;十一氧六镨的质量百分纯度为≥99.99%,平均粒径10nm~5μm;氧化铈的质量百分纯度为≥99.99%,平均粒径50nm~5μm。
实施例1:(Y0.998Ce0.001Pr0.001)3(Al0.999Mn0.001)5O12荧光陶瓷
(a)设定目标产物质量为60g,按照化学式(Y0.998Ce0.001Pr0.001)3(Al0.999Mn0.001)5O12中各元素的化学计量比分别称取氧化铝、氧化钇、十一氧六镨、碳酸锰和氧化铈作为原料粉体;将原料粉体、0.005g SiO2、0.06g PEI、118.35g无水乙醇混合,加入直径为0.5mm高纯氧化铝磨球180g,在氧化铝陶瓷罐中进行球磨,球磨转速为160r/min,球磨时间为30h;
(b)将步骤(a)球磨后的混和浆料置于60℃鼓风干燥箱中干燥6h,干燥后的混合粉体过80目筛,过筛3遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度600℃,煅烧时间4h;
(c)将步骤(b)煅烧后的粉体放入磨具中干压成型和冷等静压;所述冷等静压的压力为300MPa,保压时间为600s,成型后素坯的相对密度为55%;
(d)将成型后素坯在空气气氛下煅烧,煅烧温度700℃,煅烧时间2h;
(e)将步骤(d)得到的陶瓷素坯放入管式炉烧结,在还原气氛或者氩气气氛中,烧结温度为1650℃,保温时间为4h,升温速率为1℃/分钟,烧结完毕后降温速率为2℃/分钟;
(f)将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高功率LED/LD照明用低色温高显指荧光陶瓷,其实物为橙黄色透明陶瓷(如图5中的序号1),其透过率在800nm处为44.1%(如图2所示)。
图1为该荧光陶瓷在460nm蓝光激发下的发射光谱图,可以看出,发射光谱主峰548nm,半高宽105nm,实现低色温发射,色温4200K,显色指数81。
实施例2:(Lu0.998Ce0.001Pr0.001)3(Al0.999Mn0.001)5O12荧光陶瓷
(a)设定目标产物质量为60g,按照化学式(Lu0.998Ce0.001Pr0.001)3(Al0.999Mn0.001)5O12中各元素的化学计量比分别称取氧化铝、氧化镥、十一氧六镨、碳酸锰和氧化铈作为原料粉体;将原料粉体、0.005g SiO2、0.06g PEI、118.35g无水乙醇混合,加入直径为0.5mm高纯氧化铝磨球180g,在氧化铝陶瓷罐中进行球磨,球磨转速为160r/min,球磨时间为30h;
(b)将步骤(a)球磨后的混和浆料置于60℃鼓风干燥箱中干燥6h,干燥后的混合粉体过80目筛,过筛3遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度600℃,煅烧时间4h;
(c)将步骤(b)煅烧后的粉体放入磨具中干压成型和冷等静压;所述冷等静压的压力为300MPa,保压时间为600s,成型后素坯的相对密度为55%;
(d)将成型后素坯在空气气氛下煅烧,煅烧温度700℃,煅烧时间2h;
(e)将步骤(d)得到的陶瓷素坯放入管式炉烧结,在还原气氛或者氩气气氛中,烧结温度为1650℃,保温时间为4h,升温速率为1℃/分钟,烧结完毕后降温速率为2℃/分钟;
(f)将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高功率LED/LD照明用低色温高显指荧光陶瓷,其实物为黄色透明陶瓷(如图5中的序号2),其透过率在800nm处为66.4%(如图3所示)。
该荧光陶瓷在460nm蓝光激发下,发射光谱主峰545nm,半高宽100nm,实现低色温发射,色温4000K,显色指数80。
实施例3:(Y0.1Gd0.895Ce0.01Pr0.005)3(Al0.98Mn0.02)5O12荧光陶瓷
(a)设定目标产物质量为60g,按照化学式(Y0.1Gd0.895Ce0.01Pr0.005)3(Al0.98Mn0.02)5O12中各元素的化学计量比分别称取氧化铝、氧化钆、氧化钇、十一氧六镨、碳酸锰和氧化铈作为原料粉体;将原料粉体、0.05g SiO2、0.06g PEI、142.02g无水乙醇混合,加入直径为10mm高纯氧化铝磨球360g,在氧化铝陶瓷罐中进行球磨,球磨转速为200r/min,球磨时间为20h;
(b)将步骤(a)球磨后的混和浆料置于60℃鼓风干燥箱中干燥6h,干燥后的混合粉体过100目筛,过筛2遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度700℃,煅烧时间2h;
(c)将步骤(b)煅烧后的粉体放入磨具中干压成型和冷等静压;所述冷等静压的压力为220MPa,保压时间为500s,成型后素坯的相对密度为45%;
(d)将成型后素坯在空气气氛下煅烧,煅烧温度600℃,煅烧时间4h;
(e)将步骤(d)得到的陶瓷素坯放入真空炉烧结,烧结温度为1500℃,保温时间为8h。升温速率为3℃/分钟,烧结完毕后降温速率为8℃/分钟;
(f)将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高功率LED/LD照明用低色温高显指荧光陶瓷,其实物为橘黄色透明陶瓷(如图5中的序号3),其透过率在800nm处为23.2%。
该荧光陶瓷在460nm蓝光激发下,发射光谱主峰575nm,半高宽125nm,实现低色温发射,色温3000K,显色指数88。
实施例4:(Lu0.3Gd0.694Ce0.005Pr0.001)3(Al0.99Mn0.01)5O12荧光陶瓷
(a)设定目标产物质量为60g,按照化学式(Lu0.3Gd0.694Ce0.005Pr0.001)3(Al0.99Mn0.01)5O12中各元素的化学计量比分别称取氧化铝、氧化镥、氧化钆、十一氧六镨、碳酸锰和氧化铈作为原料粉体;将原料粉体、0.05g SiF4、0.06g PEI、142.02g无水乙醇混合,加入直径为10mm高纯氧化铝磨球360g,在氧化铝陶瓷罐中进行球磨,球磨转速为200r/min,球磨时间为20h;
(b)将步骤(a)球磨后的混和浆料置于60℃鼓风干燥箱中干燥6h,干燥后的混合粉体过100目筛,过筛2遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度700℃,煅烧时间2h;
(c)将步骤(b)煅烧后的粉体放入磨具中干压成型和冷等静压;所述冷等静压的压力为220MPa,保压时间为500s,成型后素坯的相对密度为45%;
(d)将成型后素坯在空气气氛下煅烧,煅烧温度600℃,煅烧时间4h;
(e)将步骤(d)得到的陶瓷素坯放入真空炉烧结,,烧结温度为1500℃,保温时间为8h。升温速率为3℃/分钟,烧结完毕后降温速率为8℃/分钟;
(f)将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高功率LED/LD照明用低色温高显指荧光陶瓷,其实物为橘黄色透明陶瓷(如图5中的序号4),其透过率在800nm处为15.7%。
该荧光陶瓷在460nm蓝光激发下,发射光谱主峰555nm,半高宽115nm,实现低色温发射,色温3500K,显色指数84。
图4为本发明实施例1至4制得的荧光陶瓷的XRD图。
本发明采用同步掺杂稀土金属Pr3+离子和过渡族Mn2+离子分别进入石榴石十二面体Y3+和Al3+八面体格位,能够在单一结构中实现在570~620nm波段宽窄峰同时发射的特征,利于获得高显指低色温发光。此外,添加的电荷补偿剂及碳酸锰能够有效起到促进烧结作用,在保证纯石榴石相的基础上使获得的荧光陶瓷具有一定的透过性和低气孔率特征。

Claims (7)

1.一种单一结构式低色温高显指荧光陶瓷的制备方法,采用固相反应法烧结,其特征在于,具体包括以下步骤:
(a)按照单一结构式低色温高显指荧光陶瓷的化学式(Y1-x-y-z-aLuxGdyPr3+ aCe3+ z)3(Al1- bMn2+ b)5O12中各元素的化学计量比分别称取氧化铝、氧化钇、氧化钆、氧化镥、十一氧化六镨、碳酸锰和氧化铈作为原料粉体,将原料粉体、电荷补偿剂、分散剂、球磨介质按一定比例混合球磨,获得平均粒径在1nm~10μm之间的混合浆料;
其中x为Lu3+掺杂Y3+位的摩尔百分数,y为Gd3+掺杂Y3+位的摩尔百分数,a为Pr3+掺杂Y3+十二面体格位的摩尔百分数,b为Mn2+掺杂Al3+八面体格位的摩尔百分数,z为Ce3+掺杂Y3+位的摩尔百分数,0≤x≤1,0≤y<1,0.001≤a≤0.005,0.001≤z≤0.01,0.001≤b≤0.02,1≤(b:a)≤10;
(b)将步骤(a)球磨后的混和浆料进行干燥,干燥后的混合粉体过80~100目筛,过筛2~3遍,然后在氩气气氛下煅烧除去残留有机物;
(c)将步骤(b)煅烧后的粉体放入模具中干压成型,干压成型后再进行冷等静压成型,所述冷等静压的压力为220MPa~300MPa,保压时间为500s~600s,冷等静压成型后素坯的相对密度为50%~55%;
(d)将成型后素坯在氩气气氛下煅烧,煅烧温度600℃~700℃,煅烧时间2h~4h;
(e)将步骤(d)得到的陶瓷素坯放入管式炉内,在还原气氛或者氩气气氛中烧结,烧结温度为1500℃~1650℃,保温时间为4h~8h,升温速率为1~2℃/分钟,烧结完毕后降温速率为2~4℃/分钟;或者将步骤(d)得到的陶瓷素坯放入真空烧结炉内烧结,真空烧结温度为1500℃~1750℃,保温时间为1h~8h,烧结真空度不低于10-1Pa,升温速率为2~3℃/分钟,烧结完毕后降温速率为2~8℃/分钟;
(f)将烧结后的陶瓷进行双面抛光,得到低色温高显指荧光陶瓷。
2.根据权利要求1所述的单一结构式低色温高显指荧光陶瓷的制备方法,其特征在于,步骤(a)中,所述氧化钆、氧化镥、碳酸锰、氧化铈、氧化铝、氧化钇的质量百分纯度为≥99.9%,平均粒径10nm~50μm;所述十一氧化六镨的质量百分纯度为≥99.99%,平均粒径10nm~5μm;所述氧化铈的质量百分纯度为≥99.99%,平均粒径50nm~5μm。
3.根据权利要求1所述的单一结构式低色温高显指荧光陶瓷的制备方法,其特征在于,步骤(a)中,所述电荷补偿剂为SiO2或者SiF4,电荷补偿剂的加入量为碳酸锰的0.01wt.%~1wt.%。
4.根据权利要求1所述的单一结构式低色温高显指荧光陶瓷的制备方法,其特征在于,步骤(a)中,所述球磨介质为无水乙醇,球磨介质的体积与原料粉体总质量的比为2.5~3:1mL /g。
5.根据权利要求1所述的单一结构式低色温高显指荧光陶瓷的制备方法,其特征在于,步骤(a)中,磨球为高纯氧化铝磨球,磨球直径为0.5~10mm;球磨罐的材质为氧化铝陶瓷罐,球磨时球料比为3:1~6:1,球磨方式为行星式球,球磨转速为160r/min~200r/min,球磨时间为20h~30h。
6.根据权利要求1所述的单一结构式低色温高显指荧光陶瓷的制备方法,其特征在于,步骤(b)中,所述干燥温度为50℃~60℃,干燥时间为2min/g~5min/g,所述煅烧温度为600℃~700℃,煅烧时间为2h~4h。
7.权利要求1所述的单一结构式低色温高显指荧光陶瓷在制备高功率LED/LD照明器件中的应用。
CN202010070058.9A 2020-01-21 2020-01-21 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用 Active CN111205081B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010070058.9A CN111205081B (zh) 2020-01-21 2020-01-21 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010070058.9A CN111205081B (zh) 2020-01-21 2020-01-21 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN111205081A CN111205081A (zh) 2020-05-29
CN111205081B true CN111205081B (zh) 2022-03-15

Family

ID=70783567

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010070058.9A Active CN111205081B (zh) 2020-01-21 2020-01-21 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN111205081B (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111908910B (zh) * 2020-08-18 2022-04-22 新沂市锡沂高新材料产业技术研究院有限公司 一种暖白光照明用高显指透明陶瓷及其制备方法
CN112094110A (zh) * 2020-10-15 2020-12-18 贵州赛义光电科技有限公司 一种Al2O3-YAG:Ce3+复相荧光陶瓷的制备方法
CN112125659A (zh) * 2020-10-15 2020-12-25 贵州赛义光电科技有限公司 一种用于暖白光照明的荧光陶瓷及其制备方法
CN112094120A (zh) * 2020-10-16 2020-12-18 贵州赛义光电科技有限公司 一种发光颜色可调的荧光陶瓷及其制备方法
CN113582679B (zh) * 2021-07-26 2023-02-07 江苏师范大学 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
CN115650725B (zh) * 2022-10-12 2023-11-03 中国科学院上海光学精密机械研究所 一种具有多波段荧光发射的荧光陶瓷材料及其制备方法
CN115838286B (zh) * 2022-12-26 2023-12-08 江苏师范大学 一种高显指白光led/ld用荧光陶瓷制备与应用
CN116655366A (zh) * 2023-04-17 2023-08-29 内蒙古科技大学 L/b位共掺杂钇铝石榴石粉体的低温固相合成方法

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101307228B (zh) * 2008-02-29 2011-11-30 中国计量学院 氯铝硅酸盐荧光粉及其制备方法
CN102492424A (zh) * 2011-11-16 2012-06-13 中国科学院长春应用化学研究所 一种低色温石榴石基的荧光发光材料及其制备方法
CN102660280B (zh) * 2012-05-23 2013-12-25 南京工业大学 一种白光led用钛酸盐红色荧光粉及其制备方法
CN103059860B (zh) * 2012-09-17 2015-01-07 温州大学 一种锰掺杂钇铝石榴石单晶材料及其应用
CN103469306A (zh) * 2013-08-22 2013-12-25 昆山开威电子有限公司 一种生长Ce:YAG单晶荧光材料的方法
JP2017210529A (ja) * 2016-05-24 2017-11-30 国立研究開発法人物質・材料研究機構 蛍光体、その製造方法、発光装置、画像表示装置、顔料、および、紫外線吸収剤
CN109987932B (zh) * 2018-01-02 2022-08-09 上海航空电器有限公司 用于白光照明的复相荧光陶瓷、制备方法及光源装置
CN108503352B (zh) * 2018-03-27 2021-03-16 中国科学院上海硅酸盐研究所 一种石榴石基红色荧光陶瓷材料及其制备方法
CN109053182B (zh) * 2018-08-14 2021-06-08 徐州凹凸光电科技有限公司 一种采用Isobam凝胶注模制备YAG基多层复合结构透明陶瓷的方法
CN109266345A (zh) * 2018-10-29 2019-01-25 江苏师范大学 一种稀土离子双掺杂的单基质磷酸盐白光荧光粉及其制备方法
CN109592978B (zh) * 2018-12-03 2021-07-23 江苏师范大学 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用

Also Published As

Publication number Publication date
CN111205081A (zh) 2020-05-29

Similar Documents

Publication Publication Date Title
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
WO2019047822A1 (zh) 一种具有特征微观结构的荧光陶瓷及其制备方法和应用
JP2013539490A (ja) 酸窒化物発光材料及びその調製方法並びにそれによって製造された照明光源
CN109592978B (zh) 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
WO2018205710A1 (zh) 一种荧光复合陶瓷及其制备方法和应用
CN106221695A (zh) 氮化铝基荧光粉的制备方法
KR101484428B1 (ko) 질소 화합물 발광 재료, 그 제조 방법 및 이로부터 제조된 조명 광원
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN102173773A (zh) 用于高亮度白光发光二极管的透明陶瓷及其制备方法
CN108503352A (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
CN113045205A (zh) 一种绿色荧光陶瓷及其制备方法和应用
CN104087293A (zh) 红色荧光体及其碳热还原氮化制备方法及应用
CN110642624A (zh) 一种蓝绿光发射的荧光透明陶瓷及其制备方法
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
CN113402269A (zh) 一种可调节不同程度白光的三色透明荧光陶瓷制备方法
CN112266239B (zh) 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN112047735B (zh) 一种复相荧光陶瓷材料及其制备方法
CN111393166B (zh) 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
CN107502354B (zh) 一种暖白光led用荧光粉及其制备方法
CN111269717B (zh) 一种白光led用复合钙钛矿红色荧光粉及其制备方法
CN115838286B (zh) 一种高显指白光led/ld用荧光陶瓷制备与应用
Sun et al. Significant enhancement of luminescence properties of YAG: Ce ceramics by differential grain sizes control
Yi et al. Microstructural and optical properties of Pr3+:(Ca0. 97Gd0. 03) F2. 03 transparent ceramics sintered by vacuum hot-pressing method
CN107880885B (zh) 石榴石型铝硅酸盐荧光粉及其制备方法和包含其的发光器件

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant