CN113087527B - 一种Eu3+激活的红色透明荧光陶瓷及其制备方法 - Google Patents

一种Eu3+激活的红色透明荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN113087527B
CN113087527B CN202110290848.2A CN202110290848A CN113087527B CN 113087527 B CN113087527 B CN 113087527B CN 202110290848 A CN202110290848 A CN 202110290848A CN 113087527 B CN113087527 B CN 113087527B
Authority
CN
China
Prior art keywords
fluorescent ceramic
equal
red transparent
preparation
transparent fluorescent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202110290848.2A
Other languages
English (en)
Other versions
CN113087527A (zh
Inventor
张乐
张曦月
李延彬
王忠英
周天元
邵岑
康健
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN202110290848.2A priority Critical patent/CN113087527B/zh
Publication of CN113087527A publication Critical patent/CN113087527A/zh
Application granted granted Critical
Publication of CN113087527B publication Critical patent/CN113087527B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7783Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals one of which being europium
    • C09K11/7784Chalcogenides
    • C09K11/7787Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3225Yttrium oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5454Particle size related information expressed by the size of the particles or aggregates thereof nanometer sized, i.e. below 100 nm
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

一种Eu3+激活的红色透明荧光陶瓷及其制备方法,该荧光陶瓷的分子式为(Y0.3‑x‑yLu0.7)2O3:xSm3+,yEu3+,x、y分别为摩尔百分数,0.005≤x≤0.03,0.05≤y≤0.15。制备方法为:以Y2O3、Lu2O3和Eu2O3为原料,称取各原料、TeO2和Sm2O3,共混后加入无水乙醇,球磨;球磨后粉末在70℃~90℃的烘箱中干燥10~16h,在700℃~900℃下煅烧3~6h;过200目筛,干压成素胚后置于高温真空烧结炉中,在1200℃~1350℃下烧结8~10h;退火后进行双面抛光处理。该方法易实现光谱的准确调谐,具有激发光谱展宽明显、烧结温度低、热导率高等优点。

Description

一种Eu3+激活的红色透明荧光陶瓷及其制备方法
技术领域
本发明涉及荧光陶瓷材料技术领域,具体涉及一种Eu3+激活的红色透明荧光陶瓷及其制备方法。
背景技术
目前,白光LED的主流封装方式需将荧光粉分散在有机树脂、硅胶等封装材料中。随着人们对照明需求的不断增加,激发源的能流密度以及产生的热量不断提高,再结合荧光粉自身转换过程产生的热能,造成封装材料在长时间工作条件下的老化,最终导致白光LED器件的效率降低、光品质下降同时缩短其使用寿命。与上述封装材料相比,荧光陶瓷因其优异的物化性能、良好的光学性能以及杰出的热稳定性在众多无机荧光转换材料中脱颖而出,能够克服在高功率激发源的激发下,传统封装方案的寿命较短、色温漂移以及明显的器件老化等问题,大大提高了照明器件的使用寿命与应用价值,使上述领域的发展迈向新的台阶。其中,Y2O3透明陶瓷具有优异的化学稳定性、透光范围大、声子能量低、热膨胀系数低,即使与被广泛使用的YAG透明陶瓷相比也展现了多方面的优势,因而,十分适合作为基质发光材料。
在采用Y2O3作为基质材料制备红色荧光陶瓷方面,公开号为CN108753296A的专利公开了一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用,此材料的结构通式为(RE1-x-y-z-mLamZryMgz)2O3:xEu,0.01≤x≤0.2,0.001≤y≤0.2,0≤z≤0.1,0≤m≤0.2,其中 RE=Lu1-p-rYpGdr,0≤p<1,0≤r<1,但是此材料原料种类众多,组分含量要求严格,不易实现光谱的准确调谐,且存在激发光谱展宽不明显、烧结温度高、热导率低等问题,不能满足低温高效的红光透明陶瓷的制备,特别是其在高功率LED/LDs器件中的应用。
发明内容
本发明的目的在于提供一种Eu3+激活的红色透明荧光陶瓷及其制备方法,该方法使用原料种类少,易实现光谱的准确调谐,具有激发光谱展宽明显、烧结温度低、热导率高等优点,能够满足低温高效的红光透明陶瓷的制备。
为实现上述目的,本发明采用的技术方案是:一种Eu3+激活的红色透明荧光陶瓷,其分子式为(Y0.3-x-yLu0.7)2O3:xSm3+,yEu3+,其中x、y分别为Sm3+和Eu3+掺杂Y3+位的摩尔百分数,0.005≤x≤0.03,0.05≤y≤0.15。
优选的,所述荧光陶瓷在波长为320nm~410nm的紫外/近紫外LED芯片激发下,发射出 610nm附近的窄带红光,显色指数为80-90,半高宽为10-30nm,室温下的热导率为25~30Wm-1K-1
上述Eu3+激活的红色透明荧光陶瓷的制备方法,包括以下步骤:
(1)以Y2O3、Lu2O3和Eu2O3为原料,按分子式(Y0.3-x-yLu0.7)2O3:xSm3+,yEu3+中对应元素的化学计量比称取各原料,其中x、y分别为Sm3+和Eu3+掺杂Y3+位的摩尔百分数,0.005 ≤x≤0.03,0.05≤y≤0.15;
(2)称取作为烧结助剂的TeO2和既作为烧结助剂又作为原料的Sm2O3,将Y2O3、Lu2O3、 Eu2O3、TeO2和Sm2O3共混后加入无水乙醇,球磨充分混合;
(3)将球磨后得到的粉末在70~90℃的烘箱中干燥10~16h,然后在700~900℃下煅烧 3~6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在钢模中干燥压制成素坯,将素坯置于高温真空烧结炉中,在1200~1350℃下烧结8~10h得到第二次烧结产物;
(4)将第二次烧结产物在1000~1100℃的空气中退火30~40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。
优选的,TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1~0.3%;Sm2O3的添加量为 Y2O3、Lu2O3、Eu2O3总摩尔量的0.5~3%。
优选的,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为(1~3):1,
优选的,所述Y2O3、Lu2O3和Eu2O3的粉体粒径为60~80nm,纯度均为99.99%以上。
优选的,步骤(3)中,在钢模中干燥压制的压力为10~20MPa。
优选的,步骤(4)中所述的呈片状的Eu3+激活的红色透明荧光陶瓷的直径为15~20mm,厚度为0.5-3mm,在可见光波段的光学透过率达到70~80%。
在本发明中,透明陶瓷材料采用(Y0.3Lu0.7)2O3作为基质材料,Lu3+取代了70%的Y3 +,从而进一步加宽了激发光谱;Sm3+作为敏化剂离子,Eu3+作为激活剂离子,Sm2O3和TeO2作为烧结助剂。在1050-1100℃时,Sm2O3和TeO2固溶入Y2O3,并生成大量正离子空位提高了扩散系数,从而以固相反应烧结的作用机理促进了氧化钇陶瓷的致密化,添加适量的TeO2可将Sm2O3在Y2O3中的固溶温度降低至1000℃以下,并以液相润湿作用促进氧化钇陶瓷的致密烧结,当在Y2O3中添加TeO2和Sm2O3作为烧结助剂时,可有效降低烧结激活能,从而降低了烧结温度,同时少量Sm2O3促进了材料中孔隙的充分填充,有效提高了陶瓷的热导率。
与现有技术方案相比,本发明具有以下优点:
(1)本发明制备的红色透明荧光陶瓷的激发光谱为320nm~480nm,响应范围广,其中在320nm~410nm波长范围内的(近)紫外光源对该透明陶瓷材料进行激发,在610nm附近发出明亮的窄带红光;
(2)本发明充分利用了透明陶瓷作为发光材料的独特优势,使用紫外/近紫外光作为激发光源,在克服了蓝光激发的发光不稳定带来的不利影响的同时,制备了具有高热稳定性和高导热系数的红光陶瓷,替代了传统的LED封装方式,提升了器件的使用寿命和应用价值;
(3)本发明中Sm3+向Eu3+的能量转移不仅拓宽了激发光谱,解决了传统Eu:Y2O3发光材料激发波段窄,以至于不能被有效激发的关键问题,还增强了Eu3+发射的特征峰,降低了超过650nm的波长的发射强度,实现了高亮度的窄带红光发射;
(4)本发明通过对TeO2和Sm2O3烧结助剂的添加量的控制,使得Y2O3的烧结温度从1600℃降至1300℃左右,并提高了热导率,本发明制备方法简单,可应用于大功率LED/LDs器件。
附图说明
图1是本发明实施例一制备样品(Y0.245Lu0.7)2O3:0.005Sm3+,0.05Eu3+透明陶瓷在1350℃时的扫描电子显微镜(SEM)图谱;
图2是本发明实施例一制备样品(Y0.245Lu0.7)2O3:0.005Sm3+,0.05Eu3+透明陶瓷的发射光谱图;
图3是本发明中实施例一至实施例六所提供化学式为(Y0.295-xLu0.7)2O3:xSm3+,0.05Eu3+, 0.005≤x≤0.03透明陶瓷的热导率图;
图4是本发明中实施例一至实施例六所提供化学式为(Y0.295-xLu0.7)2O3:xSm3+,0.05Eu3+, 0.005≤x≤0.03透明陶瓷的透过率图。
具体实施方式
以下结合附图和具体实施例对本发明作进一步详细说明。
对比组:制备过程中没有添加烧结助剂TeO2
制备(Y0.245Lu0.7)2O3:0.005Sm3+,0.05Eu3+:根据化学式(Y0.245Lu0.7)2O3:0.005Sm3+,0.05Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O39.39767g、Lu2O347.3171g 和Eu2O32.98905g,Y2O3、Lu2O3和Eu2O3三者粒径为70nm,添加Sm2O3粉体为Y2O3、Lu2O3、 Eu2O3总摩尔量的0.5%,质量为0.29618g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为1:1,球磨后的粉末在90℃的烘箱中干燥15h,在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在20MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1350℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1100℃的空气中退火40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为15mm,厚度为0.5mm,在可见光波段的光学透过率仅40%,热导率为12Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/近紫外LED芯片激发下,在610nm附近发射相对较弱的窄带红光,显色指数为70,半高宽为28nm。
实施例一
制备(Y0.245Lu0.7)2O3:0.005Sm3+,0.05Eu3+:根据化学式(Y0.245Lu0.7)2O3:0.005Sm3+,0.05Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O39.39767g、Lu2O347.3171g 和Eu2O32.98905g,Y2O3、Lu2O3和Eu2O3三者粒径为70nm,添加TeO2粉体和Sm2O3粉体, TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1%,质量为0.01356g,Sm2O3的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.5%,质量为0.29618g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为1:1,球磨后的粉末在90℃的烘箱中干燥15h,在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在20MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1350℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1100℃的空气中退火40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为15mm,厚度为0.5mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅80%,热导率为30Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/ 近紫外LED芯片激发下,在610nm附近发射出高强度的窄带红光,显色指数为90,半高宽为10nm。
图1为本实施例所制备的透明陶瓷在1350℃时的扫描电子显微镜(SEM)图谱,从图中可以看出,陶瓷内部致密度高达99%,并且未发现残余气孔以及杂质相。
图2为本实施例所制备的透明陶瓷的发射光谱图,从图中可以看出,在610nm附近发射出的高强度窄带红光。
实施例二
制备(Y0.24Lu0.7)2O3:0.01Sm3+,0.05Eu3+:根据化学式(Y0.24Lu0.7)2O3:0.01Sm3+,0.05Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O39.20588g、Lu2O347.3171g 和Eu2O32.98905g,Y2O3、Lu2O3和Eu2O3三者粒径为70nm,添加TeO2粉体和Sm2O3粉体, TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1%,质量为0.01356g,Sm2O3的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的1%,质量为0.59236g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为1:1,球磨后的粉末在90℃的烘箱中干燥15h,在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在20MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1350℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1100℃的空气中退火40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为15mm,厚度为0.5mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅78%,热导率为29Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/ 近紫外LED芯片激发下,在610nm附近发射出高强度的窄带红光。显色指数为88,半高宽为15nm。
实施例三
制备(Y0.235Lu0.7)2O3:0.015Sm3+,0.05Eu3+:根据化学式(Y0.235Lu0.7)2O3:0.015Sm3+,0.05Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O39.01409g、Lu2O347.3171g 和Eu2O32.98905g,Y2O3、Lu2O3和Eu2O3三者粒径为70nm,添加TeO2粉体和Sm2O3粉体, TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1%,质量为0.01356g,Sm2O3的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的1.5%,质量为0.88854g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为1:1,球磨后的粉末在90℃的烘箱中干燥15h,在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在20MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1350℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1100℃的空气中退火40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为15mm,厚度为0.5mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅75%,热导率为28Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/ 近紫外LED芯片激发下,在610nm附近发射出高强度的窄带红光,显色指数为85,半高宽为18nm。
实施例四
制备(Y0.23Lu0.7)2O3:0.02Sm3+,0.05Eu3+:根据化学式(Y0.23Lu0.7)2O3:0.02Sm3+,0.05Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O38.82230g、Lu2O347.3171g 和Eu2O32.98905g,Y2O3、Lu2O3和Eu2O3三者粒径为70nm,添加TeO2粉体和Sm2O3粉体, TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1%,质量为0.01356g,Sm2O3的摩添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的2%,质量为1.18472g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为1:1,球磨后的粉末在90℃的烘箱中干燥15h,在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在20MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1350℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1100℃的空气中退火40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为15mm,厚度为0.5mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅73%,热导率为27Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/ 近紫外LED芯片激发下,在610nm附近发射出高强度的窄带红光,显色指数为85,半高宽为20nm。
实施例五
制备(Y0.225Lu0.7)2O3:0.025Sm3+,0.05Eu3+:根据化学式(Y0.225Lu0.7)2O3:0.025Sm3+,0.05Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O38.63051 g、Lu2O347.3171g和Eu2O32.98905g,Y2O3、Lu2O3和Eu2O3三者粒径为70nm,添加TeO2粉体和Sm2O3粉体, TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1%,质量为0.01356g,Sm2O3的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的2.5%,质量为1.48090g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为1:1,球磨后的粉末在90℃的烘箱中干燥15h,在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在20MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1350℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1100℃的空气中退火40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为15mm,厚度为0.5mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅72%,热导率为26Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/ 近紫外LED芯片激发下,在610nm附近发射出高强度的窄带红光,显色指数为84,半高宽为25nm。
实施例六
制备(Y0.22Lu0.7)2O3:0.03Sm3+,0.05Eu3+:根据化学式(Y0.22Lu0.7)2O3:0.03Sm3+,0.05Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O38.43873g、Lu2O347.3171g 和Eu2O32.98905g,Y2O3、Lu2O3和Eu2O3三者粒径为70nm,添加TeO2粉体和Sm2O3粉体, TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1%,质量为0.01356g,Sm2O3的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的3%,质量为1.77708g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为1:1,球磨后的粉末在90℃的烘箱中干燥15h,在900℃下煅烧6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在20MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1350℃下烧结10h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1100℃的空气中退火40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为15mm,厚度为0.5mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅70%,热导率为25Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/ 近紫外LED芯片激发下,在610nm附近发射出高强度的窄带红光,显色指数为82,半高宽为27nm。
图3是实施例一至实施例六所制备得到透明陶瓷的热导率图,从图3中可以看出,热导率为25~30Wm-1K-1,当x为0.005时,热导率达到30Wm-1K-1
图4是实施例一至实施例六所制备得到透明陶瓷的透过率图,从图3中可以看出,透过率为70~80%,当x为0.005时,透过率为80%。
实施例七
制备(Y0.19Lu0.7)2O3:0.01Sm3+,0.1Eu3+:根据化学式(Y0.19Lu0.7)2O3:0.01Sm3+,0.1Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O37.28799g、Lu2O347.3171g和 Eu2O35.97809g,Y2O3、Lu2O3和Eu2O3三者粒径为60nm,添加TeO2粉体和Sm2O3粉体,TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.2%,质量为0.02711g,Sm2O3的添加量为Y2O3、 Lu2O3、Eu2O3总摩尔量的1%,质量为0.59236g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为2:1,球磨后的粉末在80℃的烘箱中干燥10h,在800℃下煅烧4h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在10MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1300℃下烧结8h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1000℃的空气中退火35h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为18mm,厚度为1.5mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅78%,热导率为27Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/近紫外 LED芯片激发下,在610nm附近发射出高强度的窄带红光。显色指数为81,半高宽为27nm。
实施例八
制备(Y0.12Lu0.7)2O3:0.03Sm3+,0.15Eu3+:根据化学式(Y0.12Lu0.7)2O3:0.03Sm3+,0.15Eu3+中各元素的化学计量比,分别称取纯度均为99.99%的Y2O34.60294g、Lu2O347.3171g 和Eu2O38.96714g,Y2O3、Lu2O3和Eu2O3三者粒径为80nm,添加TeO2粉体和Sm2O3粉体, TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.3%,质量为0.04067g,Sm2O3的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的3%,质量为1.77708g,共混后加入无水乙醇,采用行星球磨进行充分混合,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为3:1,球磨后的粉末在70℃的烘箱中干燥16h,在700℃下煅烧3h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在17MPa的钢模中干燥压制成素坯,将获得的素坯在高温真空烧结炉中进行烧结,在1200℃下烧结9h得到第二次烧结产物,真空烧结炉的真空度为10-3pa;将第二次烧结产物在1050℃的空气中退火30h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。该荧光陶瓷直径约为20mm,厚度为3mm,获得致密的荧光陶瓷,在可见光波段的光学透过率仅72%,热导率为25Wm-1K-1。该陶瓷材料在320nm~410nm的紫外/近紫外LED芯片激发下,在610nm附近发射出高强度的窄带红光,显色指数为80,半高宽为 30nm。

Claims (8)

1.一种Eu3+激活的红色透明荧光陶瓷,其特征在于,其分子式为(Y0.3-x-yLu0.7) 2O3:xSm3 +,yEu3+,其中x、y分别为Sm3+和Eu3+掺杂Y3+位的摩尔百分数,0.005≤x≤0.03,0.05≤y≤0.15。
2.根据权利要求1所述的一种Eu3+激活的红色透明荧光陶瓷,其特征在于,所述荧光陶瓷在波长为320nm~410nm的紫外/近紫外LED芯片激发下,发射出610nm附近的窄带红光,显色指数为80-90,半高宽为10-30nm,室温下的热导率为25~30Wm-1K-1
3.一种如权利要求1或2所述的一种Eu3+激活的红色透明荧光陶瓷的制备方法,其特征在于,包括以下步骤:
(1)以Y2O3、Lu2O3和Eu2O3为原料,按分子式(Y0.3-x-yLu0.7)2O3:xSm3+,yEu3+中对应元素的化学计量比称取各原料,其中x、y分别为Sm3+和Eu3+掺杂Y3+位的摩尔百分数,0.005≤x≤0.03,0.05≤y≤0.15;
(2)称取作为烧结助剂的TeO2和既作为烧结助剂又作为原料的Sm2O3,将Y2O3、Lu2O3、Eu2O3、TeO2和Sm2O3共混后加入无水乙醇,球磨充分混合;
(3)将球磨后得到的粉末在70~90℃的烘箱中干燥10~16h,然后在700~900℃下煅烧3~6h得到第一次烧结产物;将第一次烧结产物过200目筛,然后在钢模中干燥压制成素坯,将素坯置于高温真空烧结炉中,在1200~1350℃下烧结8~10h得到第二次烧结产物;
(4)将第二次烧结产物在1000~1100℃的空气中退火30~40h,再进行双面抛光得到呈片状的Eu3+激活的红色透明荧光陶瓷。
4.根据权利要求3所述的一种Eu3+激活的红色透明荧光陶瓷的制备方法,其特征在于,TeO2的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.1~0.3%;Sm2O3的添加量为Y2O3、Lu2O3、Eu2O3总摩尔量的0.5~3%。
5.根据权利要求3或4所述的一种Eu3+激活的红色透明荧光陶瓷的制备方法,其特征在于,无水乙醇与原料Y2O3、Lu2O3、Eu2O3、Sm2O3粉体总质量的比为(1~3):1。
6.根据权利要求3或4所述的一种Eu3+激活的红色透明荧光陶瓷的制备方法,其特征在于,所述Y2O3、Lu2O3和Eu2O3的粉体粒径为60~80nm,纯度均为99.99%以上。
7.根据权利要求3或4所述的一种Eu3+激活的红色透明荧光陶瓷的制备方法,其特征在于,步骤(3)中,在钢模中干燥压制的压力为10~20MPa。
8.根据权利要求3或4所述的一种Eu3+激活的红色透明荧光陶瓷的制备方法,其特征在于,步骤(4)中所述的呈片状的Eu3+激活的红色透明荧光陶瓷的直径为15~20mm,厚度为0.5-3mm,在可见光波段的光学透过率达到70~80%。
CN202110290848.2A 2021-03-18 2021-03-18 一种Eu3+激活的红色透明荧光陶瓷及其制备方法 Active CN113087527B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110290848.2A CN113087527B (zh) 2021-03-18 2021-03-18 一种Eu3+激活的红色透明荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110290848.2A CN113087527B (zh) 2021-03-18 2021-03-18 一种Eu3+激活的红色透明荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN113087527A CN113087527A (zh) 2021-07-09
CN113087527B true CN113087527B (zh) 2023-02-07

Family

ID=76669300

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110290848.2A Active CN113087527B (zh) 2021-03-18 2021-03-18 一种Eu3+激活的红色透明荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN113087527B (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456734A (zh) * 2008-12-16 2009-06-17 中国计量学院 稀土氧化物固溶体陶瓷闪烁体及其制备方法
CN107056297A (zh) * 2017-03-03 2017-08-18 中国科学院长春光学精密机械与物理研究所 Re:Lu2O3透明陶瓷及其凝胶注模制备方法
CN108753296A (zh) * 2018-07-19 2018-11-06 东北大学 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
CN111718198A (zh) * 2020-07-07 2020-09-29 韶关学院 一种用于陶瓷材料制备的多元烧结助剂添加方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101456734A (zh) * 2008-12-16 2009-06-17 中国计量学院 稀土氧化物固溶体陶瓷闪烁体及其制备方法
CN107056297A (zh) * 2017-03-03 2017-08-18 中国科学院长春光学精密机械与物理研究所 Re:Lu2O3透明陶瓷及其凝胶注模制备方法
CN108753296A (zh) * 2018-07-19 2018-11-06 东北大学 一种可由近紫外或蓝光芯片激发的红光发光材料及其制备方法和应用
CN111718198A (zh) * 2020-07-07 2020-09-29 韶关学院 一种用于陶瓷材料制备的多元烧结助剂添加方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
Photoluminescence characteristics of Sm3+ and Eu3+ doped yttrium;Tarkeshwari Verma等;《Journal of Materials Science》;20180621;第25卷(第15期);1339-13406 *
Preparetion and photoluminescence of Sm3+ and Eu3+ doped Lu2O3 phosphor;Liqiong An等;《Optical Materails》;20070627;第30卷(第6期);957-960 *
Thermographic properties of Eu3+- and Sm3+-doped Lu2O3 nanophosphor;VESNA LOJPUR等;《Journal of the Serbian Chemical Society》;20121231;第77卷(第12期);1735-1746 *
溶剂热法合成La1.9Y0.06Mo2O9:Eu3+Sm3+荧光粉及其能量传递机理;侯芹芹等;《材料导报》;20190625;第33卷(第6期);1939-1944 *

Also Published As

Publication number Publication date
CN113087527A (zh) 2021-07-09

Similar Documents

Publication Publication Date Title
CN108503352B (zh) 一种石榴石基红色荧光陶瓷材料及其制备方法
CN110240468B (zh) 荧光陶瓷及其制备方法
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN111995397A (zh) 一种荧光陶瓷及其制备方法与应用
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN101880528A (zh) 一种单一基质白光荧光粉及其制造方法和所制发光器件
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
CN111393166B (zh) 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
CN113683407B (zh) 一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法
CN113087527B (zh) 一种Eu3+激活的红色透明荧光陶瓷及其制备方法
Liu et al. Spectrum regulation of YAG: Ce/YAG: Cr/YAG: Pr phosphor ceramics with barcode structure prepared by tape casting
CN104496474B (zh) 一种紫外转换白光led透明陶瓷材料及其制备方法
CN108484168B (zh) 一种红色透明荧光陶瓷及其制备方法
CN113999671B (zh) 一种照明显示白光led用荧光粉及其制备和应用
CN112552038B (zh) 一种绿色荧光复合陶瓷及其制备方法和应用
CN110283588B (zh) 一种照明显示用白光led用荧光粉及其制备和应用
CN115259852A (zh) 一种高光效的绿光转换材料及其制备方法
CN112239352A (zh) 一种复相荧光陶瓷材料及其制备方法
CN109294583B (zh) 一种白光led用铈离子掺杂钛酸钆钡蓝光荧光粉及其制备方法
CN111072384A (zh) 一种紫外激发荧光陶瓷及其制备方法
CN115180948B (zh) 一种激光照明用高光效复相荧光陶瓷及其制备方法
CN111286329B (zh) 铈离子掺杂YAG与铬离子掺杂LuAG混晶材料及其制备方法
CN111040762A (zh) 单一基质色度可调的发光材料及其制备方法与应用
CN111995398B (zh) 一种用于高显指激光照明的荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant