CN111393166B - 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法 - Google Patents

一种白光led/ld用高热稳定性荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN111393166B
CN111393166B CN202010229334.1A CN202010229334A CN111393166B CN 111393166 B CN111393166 B CN 111393166B CN 202010229334 A CN202010229334 A CN 202010229334A CN 111393166 B CN111393166 B CN 111393166B
Authority
CN
China
Prior art keywords
fluorescent ceramic
sintering
temperature
white light
ceramic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN202010229334.1A
Other languages
English (en)
Other versions
CN111393166A (zh
Inventor
张乐
马跃龙
孙炳恒
康健
邵岑
陈东顺
周天元
黄国灿
李明
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuzhou Attapulgite Photoelectric Technology Co ltd
Original Assignee
Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Xuzhou Attapulgite Photoelectric Technology Co ltd filed Critical Xuzhou Attapulgite Photoelectric Technology Co ltd
Priority to CN202010229334.1A priority Critical patent/CN111393166B/zh
Publication of CN111393166A publication Critical patent/CN111393166A/zh
Application granted granted Critical
Publication of CN111393166B publication Critical patent/CN111393166B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • C04B35/505Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds based on yttrium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • C04B35/6303Inorganic additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/602Making the green bodies or pre-forms by moulding
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/608Green bodies or pre-forms with well-defined density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/658Atmosphere during thermal treatment
    • C04B2235/6581Total pressure below 1 atmosphere, e.g. vacuum
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2933/00Details relating to devices covered by the group H01L33/00 but not provided for in its subgroups
    • H01L2933/0008Processes
    • H01L2933/0033Processes relating to semiconductor body packages
    • H01L2933/0041Processes relating to semiconductor body packages relating to wavelength conversion elements

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明公开了一种白光LED/LD用高热稳定性荧光陶瓷及其制备方法,该荧光陶瓷化学式为:(GdzCexY1‑x‑z)3(ScyAl1‑y)2Al3O12,其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Sc3+掺杂八面体Al3+位的摩尔百分数,z为Gd3+掺杂Y3+位的摩尔百分数,0<x≤0.02,0.6≤y≤0.8,y:z=10:1,采用固相反应法烧结制得。本发明的透明荧光陶瓷材料具有发射光谱主峰520~540nm之间,半高宽在80~90nm之间。在高功率蓝光LED(350~500mA)或蓝光LD(4W~10W)激发下,实现暖白光到淡绿光发射,色温2800~6500K,在150℃下发光强度衰减5%~10%,所制备陶瓷的工艺简单,易于工业化生产。

Description

一种白光LED/LD用高热稳定性荧光陶瓷及其制备方法
技术领域
本发明涉及荧光陶瓷技术领域,具体涉及一种白光LED/LD用高热稳定性荧光陶瓷及其制备方法。
背景技术
能源危机、气候变暖、生态环境污染等全球问题使环保节能产业广受国内外的重视。在半导体照明领域,白光LED作为新一代绿色固态照明光源,因其发光效率高、器件体积小、使用寿命长等诸多优点,具有无与伦比的竞争优势。随着社会的发展及生活品质的提高,人们更加热衷于追求高功率高品质健康绿色照明光源。所以,传统的将荧光粉Ce3+:Y3Al5O12(Ce:YAG)与有机硅胶混合的方式正逐步被芯片接合Ce:YAG荧光陶瓷的远程激发封装方式所取代。作为新型白光LED的核心材料之一,荧光陶瓷以其导热系数高、机械性能好、易实现高掺杂浓度等优点成为主流发展对象及国内外研究的热点。然而,在蓝光LED/LD激发下,Ce:YAG荧光陶瓷发射出的光颜色比例失调及热猝灭,导致制备的照明器件显色指数偏低、相对色温偏高、光效低等缺陷,无法满足使用要求。为了解决上述难题,必须要对Ce:YAG荧光陶瓷进行改性。虽然已有多篇关于关于铈掺杂钇铝石榴石、镥铝石榴石、钆铝石榴石的文献报道。但是,由于在调控光谱的同时,荧光陶瓷的热稳定性随之下降,即,在正常服役温度环境下,发光强度大都下降至50%以下。
目前国内外调控荧光陶瓷光谱的方法主要分为增加红光离子(J.Eur.Ceram.Soc.,2017,37(10),3403–3409.),通过调控能级来增加发射光谱半高宽(ACS Appl.Mater.Interfaces,2019,11(2),2130–2139.),复合结构实现红、绿、黄三色耦合发光(CN110218085A)。上述方法有自个优点,但是缺陷也比较明显,即荧光陶瓷的热稳定性变差,极易发生温度猝灭。
发明内容
本发明的目的之一是提供一种白光LED/LD用高热稳定性荧光陶瓷,热稳定性好。
本发明的目的之二是提供上述白光LED/LD用高热稳定性荧光陶瓷的制备方法,易于(半)工业化生产。
为实现上述目的,本发明采用的技术方案如下:一种白光LED/LD用高热稳定性荧光陶瓷,该荧光陶瓷化学式为:
(GdzCexY1-x-z)3(ScyAl1-y)2Al3O12
其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Sc3+掺杂八面体Al3+位的摩尔百分数,z为Gd3+掺杂Y3+位的摩尔百分数,0<x≤0.02,0.6≤y≤0.8,y:z=10:1。
在高功率蓝光LED(350~500mA)或蓝光LD(4W~10W)激发下,实现暖白光到淡绿光发射,色温2800~6500K。且随着温度增加,该荧光陶瓷的发光强度逐渐降低,但是在室温~150℃范围内,发光强度随温度升高降低不明显,150℃时发光强度衰减5%~10%,热稳定性好。
本发明还提供上述白光LED/LD用高热稳定性荧光陶瓷的制备方法,采用固相反应法烧结,具体包括以下步骤:
(1)按照化学式(GdzCexY1-x-z)3(ScyAl1-y)2Al3O12,0<x≤0.02,0.6≤y≤0.8,y:z=10:1,中各元素的化学计量比分别称取α-氧化铝、氧化钇、氧化钆、氧化钪和氧化铈作为原料粉体;将原料粉体、电荷补偿剂、分散剂、球磨介质按一定比例混合球磨,获得混合料浆;
(2)将步骤(1)得到的混合料浆置于烘箱中干燥,再将干燥后的混合粉体过筛后置于600℃~700℃条件下煅烧除杂;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,得到相对密度为52%~53%的素坯;
(4)将步骤(3)所得素坯先置于管式炉中预烧,烧结温度为600℃~900℃,保温时间为2h~4h,而后置于真空炉中烧结,烧结温度1700℃~1750℃,保温时间4h~15h,烧结真空度不低于10-3Pa,得到荧光陶瓷;
(5)将步骤(4)真空烧结后的荧光陶瓷进行空气退火处理,退火温度1100℃~1250℃,保温时间为20h~50h,得到相对密度为99%~99.9%的高热稳定性荧光陶瓷。
优选的,步骤(1)中,所述电荷补偿剂为正硅酸乙酯,其加入量为铈源的1wt.%~2wt.%。
优选的,步骤(1)中,所述分散剂为聚醚酰亚胺,其加入量为铈源的5wt.%~10wt.%。
优选的,步骤(1)中,所述球磨转速为180r/min~200r/min,球磨时间为20h~25h。
优选的,步骤(2)中,所述干燥时间为10h~20h,干燥温度为50℃~60℃。
优选的,步骤(2)中,所述煅烧时间为4h~6h。
优选的,步骤(4)中,管式炉预烧阶段的升温速率为1~2℃/分钟,烧结完毕后降温速率为1~2℃/分钟;真空烧结阶段的升温速率为0.5~1℃/分钟,烧结完毕后降温速率为1~2℃/分钟。
与现有技术相比,本发明具有如下有益效果:
1.本发明提供的荧光陶瓷采用电负性最大、半径最小的稀土元素Sc取代八面体Al格位,Gd3+离子取代十二面体Y3+离子。充分利用处于八面体格位的Sc3+离子和处于十二面体格位Gd3+形成离子对匹配效应,消除晶格畸变,提高Ce3+离子发光热稳定性,同时利用八面体格位的Sc3+离子调控斯托克斯位移和光谱位置,最大程度改善发射光颜色。两者协同效应提升荧光陶瓷在高功率下的服役性能。
2.本发明通过固相反应法获得了纯石榴石相的荧光陶瓷。通过控制化学配比,使Sc3+离子(半径为0.0885nm,CN=6)只占据八面体Al3+离子(半径为0.0675nm,CN=6)格位,实施例的XRD及SEM检测结果显示没有发现第二相的存在,生成陶瓷是纯相。
3.本发明提供的荧光陶瓷可以有效地解决荧光陶瓷中青绿光不足问题,可有效提高LED/LD器件显色指数,得到低色温的白光。在高功率蓝光LED(350~500mA)或蓝光LD(4W~10W)的激发下,发射光谱主峰520~540nm之间,半高宽在80~90nm之间,实现暖白光到淡绿光发射,色温2800~6500K。
4.本发明提供的荧光陶瓷在150℃下发光强度衰减5%~10%,热稳定性好。
附图说明
图1为本发明实施例3制得荧光陶瓷在460nm波长激发下的发射光谱;
图2为本发明实施例3制得荧光陶瓷的透过率图;
图3为本发明实施例3制得荧光陶瓷随温度变化的发射光谱图;
图4为本发明实施例1至4制得荧光陶瓷的XRD图;
图5为本发明实施例3制得荧光陶瓷表面SEM图;
图6为本发明实施例1至4制得荧光陶瓷的实物图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例中使用的原料粉体均为市售商品,纯度均大于99.99%,所述α相氧化铝平均粒径250nm~300nm;所述氧化钇平均粒径10nm~100nm;所述氧化钆平均粒径10nm~100nm;所述氧化钪平均粒径50nm~100nm;所述氧化铈平均粒径10nm~50nm。
实施例1:制备化学式为(Gd0.06Y0.938Ce0.002)3(Al0.4Sc0.6)2Al3O12荧光陶瓷
(1)设定目标产物质量为60g,按照化学式(Gd0.06Y0.938Ce0.002)3(Al0.4Sc0.6)2Al3O12中各元素的化学计量比分别称取氧化铝(18.515g)、氧化钇(30.365g)、氧化钆(3.118g)、氧化钪(7.908g)和氧化铈(0.99g)作为原料粉体;将原料粉体、0.00156g正硅酸乙酯、0.0078gPEI、120ml无水乙醇混合,加入直径为1mm氧化铝球120g,在氧化铝球磨罐中进行球磨,球磨转速为180r/min,球磨时间为25h;
(2)将步骤(1)球磨后的混和浆料置于50℃鼓风干燥箱中干燥10h,干燥后的混合粉体过80目筛,过筛5遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度600℃,煅烧时间4h;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,所述冷等静压的压力为220MPa,保压时间为500s,成型后素坯的相对密度为52%;
(4)将成型后素坯在管式炉下煅烧,煅烧温度600℃,煅烧时间2h,升温速率为1℃/分钟,烧结完毕后降温速率为1℃/分钟;
(5)将步骤(4)得到的陶瓷素坯放入真空炉中烧结,烧结温度为1700℃,保温时间为4h,升温速率为0.5℃/分钟,烧结完毕后降温速率为1℃/分钟;
(6)将步骤(5)得到的陶瓷放入马弗炉中退火,退火温度1100℃,保温时间为20h,陶瓷相对密度为99%。
将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性荧光陶瓷,其实物为黄色透明陶瓷(如图6中编号1)。
将本实施例中得到的(Gd0.06Y0.938Ce0.002)3(Al0.4Sc0.6)2Al3O12荧光陶瓷进行XRD测试,测试结果如图4所示,表明:所制备的材料为纯石榴石相。
将本实施例中得到的(Gd0.06Y0.938Ce0.002)3(Al0.4Sc0.6)2Al3O12荧光陶瓷在460nm波长的蓝光LED芯片(I=350mA)激发下进行发射光谱测试,其发射光谱主峰534nm,半高宽88.3nm,实现淡绿光发射,色温4000K。
将本实施例得到的(Gd0.06Y0.938Ce0.002)3(Al0.4Sc0.6)2Al3O12荧光陶瓷进行随温度变化的发射光谱测试。结果表明:随着温度增加,陶瓷的发光强度逐渐降低,但是在室温~150℃范围内,发光强度随温度升高降低不明显,150℃时发光强度仅降低9.7%。
将本实施例中得到的(Gd0.06Y0.938Ce0.002)3(Al0.4Sc0.6)2Al3O12荧光陶瓷进行透过率测试,结果表明:该荧光陶瓷透过率T=59.64%@800nm。
实施例2:制备化学式为(Gd0.07Y0.928Ce0.002)3(Al0.3Sc0.7)2Al3O12荧光陶瓷
(1)设定目标产物质量为60g,按照化学式中各元素的化学计量比分别称取氧化铝(17.384g)、氧化钇(29.773g)、氧化钆(3.605g)、氧化钪(9.144g)和氧化铈(0.098g)作为原料粉体;将原料粉体、0.00234g正硅酸乙酯、0.00936gPEI、130ml无水乙醇混合,加入直径为2mm氧化铝球150g,在氧化铝球磨罐中进行球磨,球磨转速为190r/min,球磨时间为22h;
(2)将步骤(1)球磨后的混和浆料置于55℃鼓风干燥箱中干燥15h,干燥后的混合粉体过90目筛,过筛4遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度650℃,煅烧时间5h;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型;所述冷等静压的压力为220MPa,保压时间为500s,成型后素坯的相对密度为52.5%;
(4)将成型后素坯在管式炉下煅烧,煅烧温度650℃,煅烧时间3h,升温速率为1℃/分钟,烧结完毕后降温速率为1℃/分钟;
(5)将步骤(4)得到的陶瓷素坯放入真空炉烧结,烧结温度为1720℃,保温时间为8h,升温速率为0.8℃/分钟,烧结完毕后降温速率为1.5℃/分钟;
(6)将步骤(5)得到的陶瓷放入马弗炉中退火,退火温度1200℃,保温时间为30h,陶瓷相对密度为99.5%。
将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性LED/LD照明用荧光陶瓷,其实物为淡黄色透明陶瓷(如图6中编号2)。
将本实施例中得到的(Gd0.07Y0.928Ce0.002)3(Al0.3Sc0.7)2Al3O12荧光陶瓷进行XRD测试,测试结果如图4所示,表明:所制备的材料为纯石榴石相。
将本实施例中得到的(Gd0.07Y0.928Ce0.002)3(Al0.3Sc0.7)2Al3O12荧光陶瓷在460nm波长的蓝光LED芯片(I=350mA)激发下进行发射光谱测试,结果表明:发射光谱主峰531nm,半高宽84.2nm,实现淡绿色光发射,色温4500K。
将本实施例得到的(Gd0.07Y0.928Ce0.002)3(Al0.3Sc0.7)2Al3O12荧光陶瓷进行随温度变化的发射光谱测试。结果表明:随着温度增加,陶瓷的发光强度逐渐降低,但是在室温~150℃范围内,发光强度随温度升高降低不明显,150℃时发光强度仅降低6.8%。
将本实施例中得到的(Gd0.07Y0.928Ce0.002)3(Al0.3Sc0.7)2Al3O12荧光陶瓷进行透过率测试,结果表明:该荧光陶瓷透过率T=66.93%@800nm。
实施例3:制备化学式为(Gd0.075Y0.922Ce0.003)3(Al0.25Sc0.75)2Al3O12荧光陶瓷
(1)设定目标产物质量为60g,按照化学式中各元素的化学计量比分别称取氧化铝(16.822g)、氧化钇(29.442g)、氧化钆(3.845g)、氧化钪(9.751g)和氧化铈(0.146g)作为原料粉体;将原料粉体、0.00312g正硅酸乙酯、0.0156gPEI、150ml无水乙醇混合,加入直径为5mm氧化铝球180g,在氧化铝球磨罐中进行球磨,球磨转速为200r/min,球磨时间为25h;
(2)将步骤(1)球磨后的混和浆料置于60℃鼓风干燥箱中干燥20h,干燥后的混合粉体过100目筛,过筛3遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度700℃,煅烧时间6h;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型;所述冷等静压的压力为220MPa,保压时间为500s,成型后素坯的相对密度为53%;
(4)将成型后素坯在管式炉下煅烧,煅烧温度900℃,煅烧时间4h,升温速率为2℃/分钟,烧结完毕后降温速率为2℃/分钟;
(5)将步骤(4)得到的陶瓷素坯放入真空炉烧结,烧结温度为1750℃,保温时间为15h,升温速率为1℃/分钟,烧结完毕后降温速率为2℃/分钟;
(6)将步骤(5)得到的陶瓷放入马弗炉中退火,退火温度1250℃,保温时间为50h,陶瓷相对密度为99.9%。
将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性LED/LD照明用荧光陶瓷,其实物为淡绿色透明陶瓷(如图6中编号3)。
将本实施例中得到的(Gd0.075Y0.922Ce0.003)3(Al0.25Sc0.75)2Al3O12荧光陶瓷进行XRD测试,测试结果如图4所示,表明:所制备的材料为纯石榴石相。
将本实施例中得到的(Gd0.075Y0.922Ce0.003)3(Al0.25Sc0.75)2Al3O12荧光陶瓷进行表面SEM测试,测试结果如图5所示,表明:所制备的材料晶粒尺寸均一且晶界干净,无杂相。
将本实施例中得到的(Gd0.075Y0.922Ce0.003)3(Al0.25Sc0.75)2Al3O12荧光陶瓷在460nm波长的蓝光LED芯片(I=500mA)激发下进行发射光谱测试,结果如图1所示,表明:发射光谱主峰526nm,半高宽83.7nm,实现淡绿色发射,色温5945K。
将本实施例中得到的(Gd0.075Y0.922Ce0.003)3(Al0.25Sc0.75)2Al3O12荧光陶瓷进行透过率测试,结果如图2所示,表明:该荧光陶瓷透过率T=72.41%@800nm。
图3为本实施例得到的(Gd0.075Y0.922Ce0.003)3(Al0.25Sc0.75)2Al3O12荧光陶瓷随温度变化的发射光谱图。结果表明:随着温度增加,陶瓷的发光强度逐渐降低,但是在室温~150℃范围内,发光强度随温度升高降低不明显,150℃时发光强度仅降低6.0%。
实施例4:制备化学式为(Gd0.08Y0.9Ce0.02)3(Al0.2Sc0.8)2Al3O12荧光陶瓷
(1)设定目标产物质量为60g,按照化学式中各元素的化学计量比分别称取氧化铝(16.203g)、氧化钇(28.534g)、氧化钆(4.066g)、氧化钪(10.313g)和氧化铈(0.965g)作为原料粉体;将原料粉体、0.0028g正硅酸乙酯、0.01248gPEI、160ml无水乙醇混合,加入直径为2mm氧化铝球170g,在氧化铝球磨罐中进行球磨,球磨转速为195r/min,球磨时间为24h;
(2)将步骤(1)球磨后的混和浆料置于58℃鼓风干燥箱中干燥16h,干燥后的混合粉体过90目筛,过筛4遍,然后在空气气氛下煅烧除去残留有机物,煅烧温度660℃,煅烧时间6h;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型;所述冷等静压的压力为220MPa,保压时间为500s,成型后素坯的相对密度为52.8%;
(4)将成型后素坯在管式炉下煅烧,煅烧温度800℃,煅烧时间3h,升温速率为2℃/分钟,烧结完毕后降温速率为2℃/分钟;
(5)将步骤(4)得到的陶瓷素坯放入真空炉烧结,烧结温度为1740℃,保温时间为10h,升温速率为0.8℃/分钟,烧结完毕后降温速率为1.8℃/分钟;
(6)将步骤(5)得到的陶瓷放入马弗炉中退火,退火温度1150℃,保温时间为40h,陶瓷相对密度为99.7%。
将烧结后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高热稳定性LED/LD照明用荧光陶瓷,其实物为淡绿色透明陶瓷(如图6中编号4)。
将本实施例中得到的(Gd0.08Y0.9Ce0.02)3(Al0.2Sc0.8)2Al3O12荧光陶瓷进行XRD测试,测试结果如图4所示,表明:所制备的材料为纯石榴石相。
将本实施例中得到的(Gd0.08Y0.9Ce0.02)3(Al0.2Sc0.8)2Al3O12荧光陶瓷在460nm波长的蓝光LED芯片(I=400mA)激发下进行发射光谱测试,结果表明:发射光谱主峰535nm,半高宽81.0nm,实现暖白光发射,色温3400K。
将本实施例得到的(Gd0.08Y0.9Ce0.02)3(Al0.2Sc0.8)2Al3O12荧光陶瓷进行随温度变化的发射光谱测试。结果表明:随着温度增加,陶瓷的发光强度逐渐降低,但是在室温~150℃范围内,发光强度随温度升高降低不明显,150℃时发光强度仅降低9.5%。
将本实施例中得到的(Gd0.08Y0.9Ce0.02)3(Al0.2Sc0.8)2Al3O12荧光陶瓷进行透过率测试,结果表明:该荧光陶瓷透过率T=56.32%@800nm。

Claims (7)

1.一种白光LED或白光LD用高热稳定性荧光陶瓷,其特征在于,该荧光陶瓷化学式为:
(GdzCexY1-x-z)3(ScyAl1-y)2Al3O12
其中x为Ce3+掺杂Y3+位的摩尔百分数,y为Sc3+掺杂八面体Al3+位的摩尔百分数,z为Gd3+掺杂Y3+位的摩尔百分数,0<x≤0.02,0.6≤y≤0.8,y:z=10:1;
当环境温度为150℃时,所述荧光陶瓷的发光强度衰减5%~10%。
2.一种权利要求1所述的白光LED或白光LD用高热稳定性荧光陶瓷的制备方法,其特征在于,采用固相反应法烧结,具体包括以下步骤:
(1)按照化学式(GdzCexY1-x-z)3(ScyAl1-y)2Al3O12,0<x≤0.02,0.6≤y≤0.8,y:z=10:1中各元素的化学计量比分别称取α-氧化铝、氧化钇、氧化钆、氧化钪和氧化铈作为原料粉体;将原料粉体、电荷补偿剂、分散剂、球磨介质按一定比例混合球磨,获得混合料浆,所述电荷补偿剂为正硅酸乙酯,其加入量为铈源的1wt.%~2wt.%;
(2)将步骤(1)得到的混合料浆置于干燥箱中干燥,再将干燥后的混合粉体过筛后置于600℃~700℃条件下煅烧除杂;
(3)将步骤(2)煅烧后的粉体放入磨具中干压成型后再进行冷等静压成型,得到相对密度为52%~53%的素坯;
(4)将步骤(3)所得素坯先置于管式炉中预烧,烧结温度为600℃~900℃,保温时间为2h~4h,而后置于真空炉中烧结,烧结温度1700℃~1750℃,保温时间4h~15h,烧结真空度不低于10-3Pa,得到荧光陶瓷;
(5)将步骤(4)真空烧结后的荧光陶瓷进行空气退火处理,退火温度1100℃~1250℃,保温时间为20h~50h,得到相对密度为99%~99.9%的高热稳定性荧光陶瓷。
3.根据权利要求2所述的白光LED或白光LD用高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(1)中,所述分散剂为聚醚酰亚胺,其加入量为铈源的5wt.%~10wt.%。
4.根据权利要求2所述的白光LED或白光LD用高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(1)中,所述球磨转速为180r/min~200r/min,球磨时间为20h~25h。
5.根据权利要求2所述的白光LED或白光LD用高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(2)中,所述干燥时间为10h~20h,干燥温度为50℃~60℃。
6.根据权利要求2所述的白光LED或白光LD用高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(2)中,所述煅烧时间为4h~6h。
7.根据权利要求2所述的白光LED或白光LD用高热稳定性荧光陶瓷的制备方法,其特征在于,步骤(4)中,管式炉预烧阶段的升温速率为1~2℃/分钟,烧结完毕后降温速率为1~2℃/分钟;真空烧结阶段的升温速率为0.5~1℃/分钟,烧结完毕后降温速率为1~2℃/分钟。
CN202010229334.1A 2020-03-27 2020-03-27 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法 Active CN111393166B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202010229334.1A CN111393166B (zh) 2020-03-27 2020-03-27 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202010229334.1A CN111393166B (zh) 2020-03-27 2020-03-27 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法

Publications (2)

Publication Number Publication Date
CN111393166A CN111393166A (zh) 2020-07-10
CN111393166B true CN111393166B (zh) 2022-04-15

Family

ID=71427604

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202010229334.1A Active CN111393166B (zh) 2020-03-27 2020-03-27 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN111393166B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112239352A (zh) * 2020-10-17 2021-01-19 江苏师范大学 一种复相荧光陶瓷材料及其制备方法
CN114988862B (zh) * 2022-06-29 2023-06-23 江苏师范大学 一种激光照明用高显色指数荧光陶瓷及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6903505B2 (en) * 2001-12-17 2005-06-07 General Electric Company Light-emitting device with organic electroluminescent material and photoluminescent materials
CN103964834A (zh) * 2014-02-18 2014-08-06 张红卫 一种用于白光led的石榴石型结构的复合荧光透明陶瓷体
CN108264899A (zh) * 2016-12-30 2018-07-10 中国科学院宁波材料技术与工程研究所 一种应用于led的荧光陶瓷及其制备方法
CN109592978B (zh) * 2018-12-03 2021-07-23 江苏师范大学 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用

Also Published As

Publication number Publication date
CN111393166A (zh) 2020-07-10

Similar Documents

Publication Publication Date Title
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN108863317B (zh) 一种荧光复合陶瓷及其制备方法和应用
CN112159220B (zh) 一种白光led/ld用高热稳定性高量子效率荧光陶瓷及其制备方法
CN106221695B (zh) 氮化铝基荧光粉的制备方法
WO2020228066A1 (zh) 一种绿色荧光透明陶瓷的制备方法和应用
CN106518037B (zh) 一种全光谱发射的硅酸盐荧光陶瓷及其制备方法
CN111393166B (zh) 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
CN112552912A (zh) 一种新型Cr3+掺杂宽带近红外荧光粉、制备及应用
CN111995397A (zh) 一种荧光陶瓷及其制备方法与应用
CN109592978A (zh) 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
KR101484428B1 (ko) 질소 화합물 발광 재료, 그 제조 방법 및 이로부터 제조된 조명 광원
CN102173773A (zh) 用于高亮度白光发光二极管的透明陶瓷及其制备方法
CN113480311A (zh) 一种发射暖白光的Ce:YAG荧光陶瓷的制备方法
CN113582679B (zh) 一种白光照明用高显色指数高热稳定性荧光陶瓷及其制备方法
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN108018040A (zh) 一种荧光陶瓷材料、其制备方法以及一种低色温白光led
CN112266239B (zh) 一种白光led/ld用高热稳定性高显色指数荧光陶瓷及其制备方法
CN112047735B (zh) 一种复相荧光陶瓷材料及其制备方法
CN115838286B (zh) 一种高显指白光led/ld用荧光陶瓷制备与应用
CN112209714A (zh) 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术
CN104496474B (zh) 一种紫外转换白光led透明陶瓷材料及其制备方法
CN113683407B (zh) 一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法
CN114031400B (zh) 单相暖白光荧光陶瓷及其制备方法和应用
CN111072384A (zh) 一种紫外激发荧光陶瓷及其制备方法
CN113087527B (zh) 一种Eu3+激活的红色透明荧光陶瓷及其制备方法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant