CN112125659A - 一种用于暖白光照明的荧光陶瓷及其制备方法 - Google Patents

一种用于暖白光照明的荧光陶瓷及其制备方法 Download PDF

Info

Publication number
CN112125659A
CN112125659A CN202011102606.8A CN202011102606A CN112125659A CN 112125659 A CN112125659 A CN 112125659A CN 202011102606 A CN202011102606 A CN 202011102606A CN 112125659 A CN112125659 A CN 112125659A
Authority
CN
China
Prior art keywords
fluorescent ceramic
terbium
oxide
warm white
ions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN202011102606.8A
Other languages
English (en)
Inventor
林辉
段与同
李宇焜
胡健
蒋顺攀
李席安
张朴
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zunyi Huitong Academician Technology Co ltd
Guizhou Saiyi Photoelectric Technology Co ltd
Original Assignee
Zunyi Huitong Academician Technology Co ltd
Guizhou Saiyi Photoelectric Technology Co ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zunyi Huitong Academician Technology Co ltd, Guizhou Saiyi Photoelectric Technology Co ltd filed Critical Zunyi Huitong Academician Technology Co ltd
Priority to CN202011102606.8A priority Critical patent/CN112125659A/zh
Publication of CN112125659A publication Critical patent/CN112125659A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/50Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on rare-earth compounds
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

本发明提供了一种用于暖白光照明的荧光陶瓷及其制备方法,该荧光材料的化学式为Tb3(1‑x)Ce3xAl5(1‑2y)Mn5ySi5yO12,其中:0.00005≤x≤0.15,0.00005≤y≤0.3,上述荧光陶瓷的制备方法为:将氧化铽,氧化铝,氧化铈,二氧化硅和二氧化锰等原料按照化学式Tb3(1‑x)Ce3xAl5(1‑2y)Mn5ySi5yO12进行配比,将按照化学计量比配置好的粉末混合后压制成型,将压制后的坯体通过热处理发生相变反应生成铽铝石榴石物相的荧光陶瓷,在高温条件下Ce3+离子和Mn2+离子通过扩散进入铽铝石榴石结构,并分别替换已存在的Tb3+离子和Al3+离子中成为发光中心,得到用于暖白光照明的Ce3+、Mn2+离子共激活的铽铝石榴石相荧光陶瓷。本发明在蓝光激发下具有宽带的黄绿‑橙红荧光发射,且荧光峰值波长可以随着掺杂Ce3+,Mn2+的浓度进行调节,适用于暖白光照明。

Description

一种用于暖白光照明的荧光陶瓷及其制备方法
技术领域
本发明属于化工领域,涉及一种荧光材料及其制备方法,具体来说是一种用于暖白光照明的铽铝石榴石相荧光陶瓷及其制备方法。
背景技术
目前白光LED因为其高效节能,绿色环保,使用寿命长等优点,已经逐步成为照明和显示领域主要的光源。白光LED的合成方式基本有两种,一种是红绿蓝三色合成白光LED,但这种方式合成白光LED所用的LED数量多,成本较高,而且由于不同颜色的LED驱动电压,使用寿命等条件不同,设计相对复杂。因此广泛应用的白光LED合成方案为荧光转化型,通过蓝光芯片激发Ce3+:YAG黄色荧光粉。
然而,常用的商业Ce3+:YAG荧光粉的光谱中红光成分不足,与蓝光芯片合成后制备的白光光源主要存在两个问题。一是其色温较高,颜色偏冷,容易让人精神紧张,不适于用室内舒缓放松的照明环境;二是其显色指数较低,色彩还原度不足,无法应用于需要色彩精确对比的场合如医疗、军事等领域。因此对于Ce3+:YAG荧光粉的光谱进行改善,增加其光谱中的红光成分就显得十分必要。
铽铝石榴石荧光陶瓷(以Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12为例)在420~480蓝光波段激发下可有宽带黄绿-橙红光发射,荧光峰值波长可以随着掺杂Ce3+,Mn2+的浓度进行调节。而且,陶瓷材料具有很好的物理化学稳定性和良好的热导率,可以保证荧光陶瓷材料可以在长时间的稳定工作,是一种性能优异的荧光材料。在暖白光照明光源的应用上具有很大的潜力。
目前,制备荧光陶瓷常采用真空烧结的方式,真空烧结对设备和环境要求较高,也不利于大规模工业生产。对于光谱的调节,市面上常用的方式是添加氟化物和氮化物红粉,氟化物氮化物不仅在制备条件上比氧化物荧光粉复杂,而且添加的红粉还会对光谱自吸收降低出光效率,从而对发光强度造成影响
发明内容
针对现有技术中的上述技术问题,本发明提供了用于暖白光照明的铽铝石榴石相荧光陶瓷的制备方法,本发明的铽铝石榴石相荧光陶瓷的制备方法具有Ce3+,Mn2+离子分布均匀,光谱可调,热性能优秀,适用于暖白光照明光源等优点。
该荧光材料的化学式为Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12,其中:0.00005≤x≤0.15,0.00005≤y≤0.3;其特征在于:将氧化铽(Tb4O7),氧化铝(Al2O3),氧化铈(CeO2),二氧化硅(SiO2)和二氧化锰(MnO2)按照化学式Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12进行配比,将按照化学计量比配置好的粉末混合后压制成型,将压制后的坯体在气氛条件下通过热处理发生相变反应生成石榴石物相的荧光陶瓷,在高温的条件下Ce3+离子和Mn2+离子扩散进入石榴石结构分别替换已存在的Tb3+离子和Al3+离子中成为发光中心,得到用于暖白光照明的铽铝石榴石相荧光陶瓷。
进一步的,上述的用于暖白光照明的铽铝石榴石相荧光陶瓷的制备方法,包括如下步骤:
(1)根据Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12化学式中Ce3+,Mn2+离子的目标掺杂浓度计算、称取所需各种原料的质量;
(2)将称量的氧化铽,氧化铝,氧化铈,二氧化硅和二氧化锰原料加入球磨罐中。通过球磨机进行球磨,使粉料混合均匀,将混合后的浆料干燥过筛得到粉体;
(3)将过筛后的粉体在500℃~1200℃素烧,素烧时间1~24小时;除去粉体中可能存在的有机物;
(4)素烧后的粉体加入磨具中压制成型,将坯体在流动气氛中进行热处理,热处理温度为1300℃~1800℃,热处理时间1~72小时,热处理过程中发生相变反应生成石榴石物相;
(5)降温冷却后获得用于暖白光照明的铽铝石榴石荧光陶瓷。
(优选的,所述步骤3)的素烧温度为700~1100℃。
(优选的,所述步骤3)的素烧时间为2~10小时。
(优选的,所述步骤4)的热处理温度为1600℃~1750℃。
(优选的,所述步骤4)的热处理时间为3~8小时。
本发明采用氧化铽,氧化铝,氧化铈,二氧化硅和二氧化锰等原料按照化学式为初始原料,球磨机中球磨粉料和无水酒精的混合物,球磨完成后,含有Ce3+,Mn2+离子的浆料烘干后在气氛中热处理,通过相变生成立方石榴石物相;同时,Ce3+离子和Mn2+离子扩散进入石榴石结构分别替换已存在的Tb3+离子和Al3+离子中成为发光中心,得到用于暖白光照明的铽铝石榴石相荧光陶瓷。
在蓝光波段激发下可有宽带黄绿-橙红光发射,荧光峰值波长可以随着掺杂Ce3+,Mn2+的浓度进行调节。该方法具有Ce3+,Mn2+离子分布均匀,制备工艺简单,光谱可调,热性能优秀、适用于暖白光照明光源等优点。
本发明制备的铽铝石榴石荧光陶瓷,目标锁定立方石榴石这一优异发光基质物相,通过物料在酒精中球磨的方式将Ce3+,Mn2+离子引入石榴石结构,通过气氛热处理发生固相反应生成宽光谱的、致密的、高热导率的Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12荧光陶瓷材料。
本发明与现有技术相比,其技术进步是显著的。本发明所提供的用于暖白光照明铽铝石榴石荧光陶瓷制备方法,具有Ce3+,Mn2+离子分布均匀、可控性高、一致性好等明显优势。本发明的铽铝石榴石荧光陶瓷在高显色、高亮度、暖白光照明LED领域具有重要应用。
附图说明
图1为采用紫外分光光度计对实施例1制备得到的Tb2.9997Ce0.0003Al4.99Mn0.005Si0.00 5O12荧光陶瓷测试得到的透过率。
图2为采用X射线衍射仪对实施例1制备得到的Tb2.9997Ce0.0003Al4.99Mn0.005Si0.005O12荧光陶瓷进行检测的XRD图谱。
图3为采用导热系数测试仪对实施例1制备得到的Tb2.9997Ce0.0003Al4.99Mn0.005Si0.00 5O12荧光陶瓷进行检测的导热系数图谱。
图4为采用荧光光谱仪对实施例1制备得到的Tb2.9997Ce0.0003Al4.99Mn0.005Si0.005O12荧光陶瓷在460nm蓝光激发下的荧光光谱。
图5为采用积分球对实施例1制备得到的Tb2.9997Ce0.0003Al4.99Mn0.005Si0.005O12荧光陶瓷与460nm蓝光芯片封装后得到的白光LED的电致发光光谱。
图6为采用X射线衍射仪对实施例2制备得到的Tb2.9997Ce0.0003Al4.97Mn0.015Si0.015O12荧光陶瓷进行检测的XRD图谱。
图7为采用荧光光谱仪对实施例2制备得到的Tb2.9997Ce0.0003Al4.97Mn0.015Si0.015O12荧光陶瓷在460nm蓝光激发下的荧光光谱。
图8为采用积分球对实施例2制备得到的Tb2.9997Ce0.0003Al4.97Mn0.015Si0.015O12荧光陶瓷与460nm蓝光芯片封装后得到的白光LED的电致发光光谱。
图9为采用X射线衍射仪对实施例3制备得到的Tb2.9997Ce0.0003Al4.95Mn0.025Si0.025O12荧光陶瓷进行检测的XRD图谱。
图10为采用荧光光谱仪对实施例3制备得到的Tb2.9997Ce0.0003Al4.95Mn0.025Si0.025O12荧光陶瓷在460nm蓝光激发下的荧光光谱。
图11为采用积分球对实施例3制备得到的Tb2.9997Ce0.0003Al4.95Mn0.025Si0.025O12荧光陶瓷与460nm蓝光芯片封装后得到白光LED的电致发光光谱。
图12为采用紫外分光光度计对实施例4制备得到的Tb2.9997Ce0.0003Al4.9Mn0.05Si0.0 5O12荧光陶瓷测试得到的透过率。
图13为采用X射线衍射仪对实施例4制备得到的Tb2.9997Ce0.0003Al4.9Mn0.05Si0.05O12荧光陶瓷进行检测的XRD图谱。
图14为采用荧光光谱仪对实施例4制备得到的Tb2.9997Ce0.0003Al4.9Mn0.05Si0.05O12荧光陶瓷在460nm蓝光激发下的荧光光谱。
图15为采用积分球对实施例4制备得到的Tb2.9997Ce0.0003Al4.9Mn0.05Si0.05O12荧光陶瓷与460nm蓝光芯片封装后得到白光LED的电致发光光谱。
具体实施方式
为了进一步理解本发明,下面结合实施例对本发明优选实施方案进行描述,但是应当理解,这些描述只是为进一步说明本发明的特征和优点,而不是对本发明权利要求的限制。
实施例1
以氧化铽(化学式:Tb4O7),氧化铝(化学式:Al2O3),二氧化硅(化学式:SiO2),二氧化铈(化学式:CeO2)和二氧化锰(化学式:MnO2)为原料,称取氧化铽209272g,氧化铝9.5038g,二氧化硅0.0112g,二氧化铈0.0019g,二氧化锰0.0162g。将原料在18ml无水酒精中球磨混合,其中在球磨罐中加入90g玛瑙球辅助混合均匀。混合浆料在室温下以250r/min的速度球磨12小时。
球磨停止后,浆料置于80℃干燥箱中干燥12小时得到干燥后的粉体,并将干燥粉体使用200目的尼龙网筛过筛得到细密粉体。将细密粉体放入坩埚中在马弗炉中850℃的条件下素烧5小时。
将素烧好的粉体放入内径为20mm的金属膜具中,施加以10MPa的单向压力压制成型,随后通过200MPa冷等静压使坯体致密化,致密化后的坯体在氧气气氛的条件下1700℃热处理5小时,冷却得到用于暖白光照明的铽铝石榴石相荧光陶瓷Tb2.9997Ce0.0003Al4.99Mn0.005Si0.005O12
采用紫外-可见分光光度计测试本实施例制备得到的荧光陶瓷的透过光谱,如图1所示,可以看到该荧光陶瓷在400~800nm范围具有一定的透过率。
采用X射线衍射仪,对本实施例制备所得荧光陶瓷的物相组成进行检测,检测结果数据表明所得荧光陶瓷的物相为立方石榴石,XRD图谱如图2所示。
采用导热系数测试仪,对本实施例制备所得荧光材料在25℃,100℃,200℃,300℃进行热导率检测,热导率图谱如图3所示。
采用荧光光谱仪,测试本实施例制备得到的荧光材料在460nm蓝光激发下的荧光光谱,测试结果如图4所示。
由图4可知,本实施例制备得到的铽铝石榴石陶瓷在蓝光激发下可产生宽带光发射,发光峰位在572nm,发光峰半宽高132nm。
采用积分球设备,对本实施例制备得到的荧光陶瓷与460nm蓝光芯片封装后得到的白光LED器件的电致发光光谱进行测试,测试结果如图5所示。
实施例2
实施例2制备荧光陶瓷材料方法与实例1基本相同,所采取的原料都是氧化铽,氧化铝,二氧化硅,二氧化铈和二氧化锰,不同的是Mn2+,Si4+相对Al3+的掺杂量为0.015。
采用X射线衍射仪,对所得荧光陶瓷的物相组成进行检测,检测结果数据表面所得到的荧光陶瓷的物相仍为立方石榴石相,XRD图谱如图6所示。
采用荧光光谱仪,测试本实施例制备得到的荧光材料在460nm蓝光激发下的荧光光谱,测试结果如图7所示。得到了峰值为585nm,半高宽为134nm的宽带光发射。
采用积分球设备,对本实施例制备得到的荧光陶瓷与460nm蓝光芯片封装后得到的白光LED器件的电致发光光谱进行测试,测试结果如图8所示。
实施例3
实施例3制备荧光陶瓷材料方法与实例1基本相同,所采取的原料都是氧化铽,氧化铝,二氧化硅,二氧化铈和二氧化锰,不同的是Mn2+,Si4+相对Al3+的掺杂量为0.025。
采用X射线衍射仪,对所得荧光陶瓷的物相组成进行检测,检测结果数据表面所得到的荧光陶瓷的物相仍为立方石榴石相,XRD图谱如图9所示。
采用荧光光谱仪,测试本实施例制备得到的荧光材料在460nm蓝光激发下的荧光光谱,测试结果如图10所示。得到了峰值为590nm,半高宽为132nm的宽带光发射。
采用积分球设备,对本实施例制备得到的荧光陶瓷与460nm蓝光芯片封装后得到的白光LED器件的电致发光光谱进行测试,测试结果如图11所示。
实施例4
实施例4制备荧光陶瓷材料方法与实例1基本相同,所采取的原料都是氧化铽,氧化铝,二氧化硅,二氧化铈和二氧化锰,不同的是Mn2+,Si4+相对Al3+的掺杂量为0.05。
采用紫外-可见分光光度计测试本实施例制备得到的荧光陶瓷的透过光谱,如图12所示,可以看到该荧光陶瓷在400~800nm范围具有一定的透过率
采用X射线衍射仪,对所得荧光陶瓷的物相组成进行检测,检测结果数据表面所得到的荧光陶瓷的物相仍为立方石榴石相,XRD图谱如图13所示。
采用荧光光谱仪,测试本实施例制备得到的荧光材料在460nm蓝光激发下的荧光光谱,测试结果如图14所示。得到了峰值为605nm,半高宽为124nm的宽带光发射。
采用积分球设备,对本实施例制备得到的荧光陶瓷与460nm蓝光芯片封装后得到的白光LED器件的电致发光光谱进行测试,测试结果如图15所示。
由以上实施例可知,本发明提供了一种用于暖白光照明的铽铝石榴石相荧光陶瓷的制备方法,通过球磨的方式使Ce3+,Mn2+发光离子分布均匀,常压烧结陶瓷的工艺也降低了样品的制备要求,通过调节Ce3+,Mn2+发光离子的掺杂浓度也可以制备出适合暖白光照明应用的发光光谱。
综上,该方法具有制备工艺简单,光谱可调,热性能优秀、适用于暖白光照明光源等优点。
以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其它实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (2)

1.一种用于暖白光照明的荧光陶瓷及其制备方法,该荧光材料的化学式为Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12,其中:0.00005≤x≤0.15,0.00005≤y≤0.3;其特征在于:将七氧化四铽(Tb4O7)或三氧化二铽(Tb2O3),氧化铝(Al2O3),氧化铈(CeO2),二氧化硅(SiO2)和二氧化锰(MnO2)按照化学式Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12进行配比,将按照化学计量比配置好的粉末混合后压制成型,将压制后的坯体通过热处理发生相变反应生成铽铝石榴石物相的荧光陶瓷,在高温的条件下Ce3+离子和Mn2+离子扩散进入石榴石结构分别替换已存在的Tb3+离子和Al3+离子中成为发光中心,得到用于暖白光照明的铽铝石榴石相荧光陶瓷。
2.根据权利要求1所述的用于暖白光照明的铽铝石榴石相荧光陶瓷的制备方法,其特征在于包括如下步骤:
(1)根据Tb3(1-x)Ce3xAl5(1-2y)Mn5ySi5yO12化学式中Ce3+,Mn2+离子的目标掺杂浓度计算、称取所需各种原料的质量;
(2)将称量的氧化铽,氧化铝,氧化铈,二氧化硅和二氧化锰原料加入球磨罐中。通过球磨机进行球磨,使粉料混合均匀,将混合后的浆料干燥过筛得到粉体;
(3)将过筛后的粉体在500℃~1200℃素烧,素烧时间1~24小时;除去粉体中可能存在的有机物;
(4)素烧后的粉体加入磨具中压制成型,将坯体在真空炉、热压炉或者流动气氛高温炉中进行烧结,烧结保温温度为1300℃~1800℃,保温时间为1~72小时,烧结过程中发生相变反应生成石榴石物相;
(5)降温冷却后获得用于暖白光照明的铽铝石榴石荧光陶瓷。
CN202011102606.8A 2020-10-15 2020-10-15 一种用于暖白光照明的荧光陶瓷及其制备方法 Pending CN112125659A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011102606.8A CN112125659A (zh) 2020-10-15 2020-10-15 一种用于暖白光照明的荧光陶瓷及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011102606.8A CN112125659A (zh) 2020-10-15 2020-10-15 一种用于暖白光照明的荧光陶瓷及其制备方法

Publications (1)

Publication Number Publication Date
CN112125659A true CN112125659A (zh) 2020-12-25

Family

ID=73853013

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011102606.8A Pending CN112125659A (zh) 2020-10-15 2020-10-15 一种用于暖白光照明的荧光陶瓷及其制备方法

Country Status (1)

Country Link
CN (1) CN112125659A (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188655A1 (en) * 2003-03-28 2004-09-30 Jui-Kung Wu Fluorescent material of terbium aluminum garnet and producing methods therefor
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
CN102173774A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 掺铈铽钇石榴石透明陶瓷荧光材料及其制备方法
CN102492424A (zh) * 2011-11-16 2012-06-13 中国科学院长春应用化学研究所 一种低色温石榴石基的荧光发光材料及其制备方法
CN104609849A (zh) * 2015-02-10 2015-05-13 中国科学院上海光学精密机械研究所 Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
CN105038787A (zh) * 2015-07-01 2015-11-11 上海应用技术学院 一种铈、铽、锰共激活的单基质磷酸盐白光荧光粉及其制备方法
CN111205081A (zh) * 2020-01-21 2020-05-29 徐州凹凸光电科技有限公司 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040188655A1 (en) * 2003-03-28 2004-09-30 Jui-Kung Wu Fluorescent material of terbium aluminum garnet and producing methods therefor
CN1927996A (zh) * 2006-09-08 2007-03-14 北京宇极科技发展有限公司 一种荧光粉材料及其制备方法和白光led电光源
CN102173774A (zh) * 2011-01-28 2011-09-07 中国科学院上海光学精密机械研究所 掺铈铽钇石榴石透明陶瓷荧光材料及其制备方法
CN102492424A (zh) * 2011-11-16 2012-06-13 中国科学院长春应用化学研究所 一种低色温石榴石基的荧光发光材料及其制备方法
CN104609849A (zh) * 2015-02-10 2015-05-13 中国科学院上海光学精密机械研究所 Si/Ti掺杂的铽铝石榴石法拉第磁旋光透明陶瓷及其制备方法
CN105038787A (zh) * 2015-07-01 2015-11-11 上海应用技术学院 一种铈、铽、锰共激活的单基质磷酸盐白光荧光粉及其制备方法
CN111205081A (zh) * 2020-01-21 2020-05-29 徐州凹凸光电科技有限公司 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
刘行仁: "白光LED固态照明光转换荧光体", 《发光学报》 *
李宏等: "《新型特种玻璃》", 30 November 2019, 武汉理工大学出版社 *
潘裕柏等: "《稀土陶瓷材料》", 31 May 2016, 冶金工业出版社 *

Similar Documents

Publication Publication Date Title
CN112094647B (zh) 一种窄带发射氮氧化物红色荧光粉及其制备方法
CN110129051B (zh) La4Ca3Si6N14晶体及荧光粉和制备方法
CN113308242B (zh) 一种新型Cr3+掺杂宽带近红外荧光粉及其制成的光源
CN106479498A (zh) 一种氮氧化物蓝色荧光粉及其制备方法与应用
CN105219382B (zh) Eu2+‑Eu3+共掺杂氟铝酸盐基质荧光粉及其合成方法与应用
CN113185977A (zh) 一种铕掺杂的超宽带红色荧光材料及其制备方法和应用
CN114686225A (zh) 一种近红外荧光粉及其制备方法和应用
CN116120928B (zh) 一种超宽带发射近红外荧光粉及其制备方法
CN114540015B (zh) 一种宽谱黄绿色发射氮氧化物荧光粉及制备方法
CN112342021A (zh) 一种近红外宽带发射的发光材料、其制备方法及包含该材料的发光装置
CN113201342A (zh) Ce3+激活的硅酸盐宽带绿色荧光粉及制备方法和应用
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN113292997A (zh) 一种双有序复合钙钛矿红色荧光粉及其制备方法
CN110591711B (zh) 一种用于白光led的镓酸盐红色荧光粉及其制备方法
CN106590655A (zh) 一种Ce3+、Mn2+双掺杂的磷灰石结构氮氧化物白光荧光粉及其制备方法和应用
CN101838533B (zh) 一种led用荧光材料及制备方法
CN109880622A (zh) 一种基于氮化增强荧光粉发光强度的方法
CN105778904A (zh) 一种铝镓酸盐基荧光材料及其制备方法
CN112125659A (zh) 一种用于暖白光照明的荧光陶瓷及其制备方法
CN112159213B (zh) 一种零光衰发光陶瓷及其制备方法
CN106554778A (zh) 一种单基质单掺杂白色发光材料及其制备方法与应用
CN108676556B (zh) Ba3Si3N4O3晶体及荧光粉和制备方法
CN105238401B (zh) 基于紫外光或近紫外光激发的白光荧光粉及其制备方法
CN114702958B (zh) 一种热稳定氮氧化物荧光粉及其制备方法和应用
CN104478435A (zh) Eu2+/Eu3+共存(Y0.9La0.1)2O3粉体、制法、应用和透明陶瓷制法

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20201225

WD01 Invention patent application deemed withdrawn after publication