CN109592978B - 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用 - Google Patents

高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用 Download PDF

Info

Publication number
CN109592978B
CN109592978B CN201811464585.7A CN201811464585A CN109592978B CN 109592978 B CN109592978 B CN 109592978B CN 201811464585 A CN201811464585 A CN 201811464585A CN 109592978 B CN109592978 B CN 109592978B
Authority
CN
China
Prior art keywords
equal
ceramic
warm white
ball milling
white light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201811464585.7A
Other languages
English (en)
Other versions
CN109592978A (zh
Inventor
张乐
马跃龙
陈浩
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiangsu Normal University
Original Assignee
Jiangsu Normal University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jiangsu Normal University filed Critical Jiangsu Normal University
Priority to CN201811464585.7A priority Critical patent/CN109592978B/zh
Publication of CN109592978A publication Critical patent/CN109592978A/zh
Application granted granted Critical
Publication of CN109592978B publication Critical patent/CN109592978B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/44Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on aluminates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7766Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing two or more rare earth metals
    • C09K11/7774Aluminates
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3229Cerium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6565Cooling rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/66Specific sintering techniques, e.g. centrifugal sintering
    • C04B2235/661Multi-step sintering
    • C04B2235/662Annealing after sintering
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/762Cubic symmetry, e.g. beta-SiC
    • C04B2235/764Garnet structure A3B2(CO4)3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9653Translucent or transparent ceramics other than alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9646Optical properties
    • C04B2235/9661Colour
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Power Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Structural Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Engineering & Computer Science (AREA)
  • Luminescent Compositions (AREA)
  • Led Device Packages (AREA)
  • Compositions Of Oxide Ceramics (AREA)

Abstract

本发明公开了一种高功率LED/LD照明用暖白光高显指荧光陶瓷及其制备方法与应用,该荧光陶瓷化学式为:(Gd1‑x‑zLuxCez)3(Al1‑yGay)5O12:zCe3+,其中x为晶体结构稳定离子Lu3+掺杂Gd3+位的摩尔百分数,y为晶体结构稳定离子Ga3+掺杂Al3+位的摩尔百分数,z为Ce3+掺杂Gd3+位的摩尔百分数,0.05≤x≤0.15,0.15≤y≤0.2,0.001≤z≤0.01;采用流延法和高温固相反应烧结实现陶瓷素坯的成型与烧结。本发明的透明荧光陶瓷材料具有发射光谱主峰575~580nm之间,半高宽在140~145nm之间,在高功率LED(350~500mA)或LD(4W~10W)激发下,实现暖白光发射,色温2800~3000K,显色指数80~84,且制备工艺简单,过程可控。

Description

高功率LED/LD照明用暖白光高显指荧光陶瓷及其制备方法与 应用
技术领域
本发明涉及透明荧光陶瓷材料领域,具体涉及一种高功率LED/LD照明用暖白光高显指荧光陶瓷及其制备方法与应用。
背景技术
作为***照明光源的白光LED/LD有着节能、环保、寿命长及响应迅速的优点,已经在城市景观灯、室内外照明、车用灯、平板显示背光源等领域得到应用。目前,商用白光LED灯的封装方案是将一种以上的荧光粉和环氧树脂或者硅胶混合后涂覆在InGaN/GaN基蓝光芯片上,InGaN/GaN-LED芯片发出的蓝光与去激发的荧光粉产生其他颜色的光混合后形成白光。然而这种封装方式存在一些问题:有机封装材料散热性能较差且有热积累效应,有机材料在高温下极易老化变质,造成光衰及色漂移,大大降低了白光LED的使用寿命。而且荧光粉在封装材料中也一直处于高温环境,导致荧光粉老化,引起温度猝灭,同样造成光效降低现象。荧光粉在封装材料中由于沉淀或其他原因引起的分散不均匀,也会导致光源发光颜色不均匀和光散射。特别是在大功率LED的场合,这种封装方式直接影响器件的使用寿命和光参量的品质。上述问题都极大的影响了白光LED的应用和推广,也限制了其在大功率白光LED领域的发展。
采用Ce:Y3Al5O12(Ce:YAG)透明荧光陶瓷替代“Ce:YAG荧光粉+树脂”,可以有效解决上述问题。荧光透明陶瓷导热性能好,不但可以抗光衰,减少光散射,还可以提高白光LED/LD亮度和光谱的稳定性。然而,Ce:YAG中的发射光谱中红光成分不足,使得与InGaN/GaN-LED蓝光芯片混合后得到的白光相对色温较高,红光的缺失也使得LED的显色指数较低。要解决这个问题,通常是在陶瓷材料中加入能使Ce3+发射峰纯移动或者引入红光波段的发射峰的元素来改善Ce:YAG透明荧光陶瓷的光谱和色度学参量。例如,通过共掺杂Gd3+可以使Ce3+离子的发光峰位产生红移,但是移动范围十分有限,且色温改善效果不明显。采用共掺杂Cr3+、Pr3+等元素则可以直接补充红光波段的发射峰,但Ce3+与Cr3+、Pr3+离子间的能量转移将导致Ce3+发光效率明显下降,且诱发淬灭温度大幅下降。
目前,中国专利CN108264899 A公开了一种替代荧光粉用于LED照明的多元素掺杂透明陶瓷,通过蓝光LED芯片激发后发出白光,但是,这种陶瓷的余辉时间较长,极大的限制了其发光效率,使器件的光量损失严重。中国专利CN 108018040 A公开了一种低色温荧光陶瓷材料,但是,其在八面体和四面体格位掺杂元素限定为Mg、Ti、Si、Ge,没有解决陶瓷透明化的问题,存在大量界面散射,必定大大降低光转换效率。多掺杂的荧光陶瓷材料诱发的新问题还有不同掺杂离子之间的相互作用、能量转移等,机理较为复杂,对发光效率,色坐标等指标势必有负面影响。
由于Gd3+(106pm)和Y3+(102pm)离子半径相似,且二者能相互成形置换固溶体。所以对陶瓷材料进行掺杂改性改变其能级水平能很好的解决这个问题。对于Ce:YAG而言,当Gd3+完全置换Y3+后形成了铈掺杂钆铝石榴石Ce:Gd3Al5O12(Ce:GAG)其发射光谱的峰值为564nm,远高于Ce:YAG的534nm。同时Gd3+的引入保证了Ce3+导带与5d1之间的能量分离,避免/抑制了热电离效应,还能降低禁带间隙中Ce3+5d1能级。就此来讲,Ce:GAG荧光透明陶瓷是较为理想的白光LED/LD的候选材料。但是,在制备Ce:GAG过程中,会伴随产生一种钆铝钙钛矿结构的GdAlO3化合物,严重影响陶瓷的光学质量,主要原因是由于Gd3+的引入使石榴石中十二面体产生了严重的扭曲变形,导致GAG的晶体结构不稳定。
发明内容
本发明的目的之一是提供一种高功率LED/LD照明用暖白光高显指荧光陶瓷,晶体结构稳定,且显色指数高,色温温和。
本发明的目的之二是提供上述高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,工艺简单,过程可控。
为实现上述目的,本发明采用的技术方案如下:一种高功率LED/LD照明用暖白光高显指荧光陶瓷,其化学式为:(Gd1-x-zLuxCez)3(Al1-yGay)5O12,其中x为Lu3+掺杂Gd3+位的摩尔百分数,y为Ga3+掺杂Al3+位的摩尔百分数,z为Ce3+掺杂Gd3+位的摩尔百分数,0.05≤x≤0.15,0.15≤y≤0.2,0.001≤z≤0.01。
该陶瓷结构为石榴石结构,Lu3+和Ga3+为晶体结构稳定离子,Ce3+为发光激活离子。
本发明提供的上述(Gd,Lu,Ce)3(Al,Ga)5O12透明荧光陶瓷的制备方法,采用流延法成型和固相烧结,具体包括以下步骤:
(1)按照化学式(Gd1-x-zLuxCez)3(Al1-yGay)5O12中各元素的化学计量比分别称取纯度大于99.9%的氧化铝、氧化钆、氧化镥、氧化镓和氧化铈作为原料粉体,其中x为Lu3+掺杂Gd3+位的摩尔百分数,y为Ga3+掺杂Al3+位的摩尔百分数,z为Ce3+掺杂Gd3+位的摩尔百分数,0.05≤x≤0.15,0.15≤y≤0.2,0.001≤z≤0.01;将原料粉体、烧结助剂、分散剂、球磨介质按一定比例混合,加入磨球在球磨罐中进行第一阶段球磨,球磨转速为120r/min~300r/min,球磨时间为10h~50h;
(2)向第一阶段球磨得到的浆料中加入增塑剂和粘结剂,进行第二阶段球磨,球磨转速为120r/min~250r/min,球磨时间为10h~40h;
(3)将第二阶段球磨得到的浆料进行真空除泡,得到适用于流延成型的低气泡甚至无气泡浆料;
(4)在室温下将除泡后的浆料送入流延机进行成型,膜带速度0.005m/min~10m/min,通过调整刮刀的高度为0.001mm~5mm,得到不同厚度的平整不开裂的高质量流延坯片;
(5)将所述流延坯片通过自定义裁剪、叠层、冷等静压成型,得到相对密度大于等于58%、不同厚度、无界面的陶瓷素坯;
(6)将上述陶瓷素坯进行排胶处理;
(7)将排胶后的素坯置于氧气气氛中高温烧结,烧结温度为1600℃~1850℃,保温3h~50h,得到透明陶瓷;
(8)将所制备的透明陶瓷置于空气气氛或者还原气氛中进行退火处理,退火温度为1000℃~1500℃,退火时间为1h~50h;
(9)将退火处理后的透明陶瓷进行机械抛光加工至陶瓷厚度为0.4mm~2.0mm,得到高功率LED/LD照明用暖白光高显指荧光陶瓷。
优选的,步骤(1)中所述烧结助剂为氧化镁、氧化钙、二氧化硅、氧化锆中的一种或多种,烧结助剂添加量为原料粉体总量的0.01wt.%~0.3wt.%;所述分散剂为NP-10、PEI、PEG中的一种或多种,分散剂添加量为原料粉体总量的0.1wt.%~8wt.%;所述球磨介质为无水乙醇和甲基乙基酮按质量比5~15:1混合的混合溶液,球磨介质与原料粉体的质量比为1:2~4;所述磨球为氧化铝球或氧化锆球,磨球与原料粉体的质量比为2~4:1。
优选的,步骤(2)中所述增塑剂为S160,增塑剂添加量为原料粉体总量的2wt.%~10wt.%,所述粘结剂为PVB,粘结剂添加量为原料粉体总量的3wt.%~15wt.%。
优选的,步骤(3)中所述真空除泡步骤中的真空度为10-2Pa~10-5Pa,搅拌速度为200r/min~600r/min,除泡时长0.5min~30min。
优选的,步骤(5)中所述冷等静压保压压力150MPa~250MPa进行冷等静压处理,保压时间200s~500s。
优选的,步骤(6)中所述排胶过程为:以升温速率10℃/h~60℃/h升温至600℃~1100℃,保温6h~24h,进行排胶,按照1℃/min~20℃/min的速率进行降温
优选的,步骤(6)中所述排胶过程在空气、惰性气体、氮中氢、氧气中的一种气氛中进行。
优选的,步骤(7)中所述烧结时的升温速率为0.05℃/min~4℃/min。
本发明的目的之三是提供上述高功率LED/LD照明用暖白光高显指荧光陶瓷的应用。
本发明制得的荧光陶瓷薄片,在陶瓷厚度为0.4~2.0mm时,荧光陶瓷在600nm处光学直线透过率为81~83%,无任何包裹物及气孔存在,光学质量优异;Lu3+和Ga3+离子两者共同作用使得石榴石结构稳定存在,且晶体场强度增强,Ce3+离子能级被压缩,发射主峰红移至575~580nm,半高宽140~145nm;在高功率LED(350~500mA)或LD(4W~10W)激发下,实现暖白光发射,色温2800~3000K,显色指数80~84。说明本发明提供的荧光陶瓷可用于制备高功率LED/LD照明器件。
本发明采用Lu3+和Ga3+分别取代晶体结构中的Gd3+和Al3+来稳定晶体结构,并使Ce3 +的发射光谱继续实现调控。制备得到的(Gd,Lu,Ce)3(Al,Ga)5O12陶瓷材料能够获得优异的光学指标,并应用于高功率白光LED/LD照明领域。
在本发明中,引入后过渡金属离子Ga3+抑制GdAlO3的产生,进而获得纯相Ce:GAG及稳定的纯石榴石结构,且Ga3+掺杂Ce:GAG能够有效降低导带的能量水平,用Ga3+替换Al3+还能使Ce3+5d1能级上升,促使5d14f能级之间的能量差距增大。此外,引入稀土离子Lu3+取代十二面体上的Gd3+,由于Lu3+(97pm)离子半径比Gd3+(106pm)离子半径小且能发生取代关系,以此来改善GAG扭曲程度,维持石榴石中十二面体、八面体、四面体的相互稳定性,促使形成纯石榴石结构,有利于提高白光LED/LD的显色性能和调控色温作用。即,本发明通过平衡的Lu3+离子和Ga3+离子的掺杂量可以确保Ce:GAG荧光透明陶瓷获得得到更大的Stokes位移和晶体场强度增强的作用。
与现有技术相比,本发明具有如下有益效果:
(1)本发明采用Lu3+和Ga3+离子分别取代晶体结构中的Gd3+和Al3+离子,得到的荧光陶瓷可以有效的解决GdAlO3的产生,能够使石榴石结构稳定存在,且晶体场强度增强。
(2)本发明提供的荧光陶瓷在陶瓷厚度为0.4~2.0mm时,在600nm处光学直线透过率为81~83%,无任何包裹物及气孔存在,光学质量优异;Lu3+和Ga3+离子两者共同作用使得石榴石结构稳定存在,且晶体场强度增强,Ce3+离子能级被压缩,发射主峰红移至575~580nm,半高宽140~145nm。
(3)本发明提供的荧光陶瓷可以有效地解决荧光陶瓷中红光成份不足,光效低等问题,可有效提高LED/LD器件发光效率,得到暖白光和高显色指数的白光。并且在高功率LED(350~500mA)或LD(4W~10W)激发下,发射范围覆盖480~750nm,实现暖白光发射,色温2800~3000K,显色指数80~84。
(4)本发明提供的荧光陶瓷可以有效地解决不同掺杂离子之间的相互作用、能量转移致使光效极低等问题,所以可以用于高功率LED/LD照明。
附图说明
图1为本发明实施例1至3制得的透明陶瓷的实物图;
图2为本发明实施例1制得的透明陶瓷的发射光谱图;
图3为本发明实施例1至3制得的透明陶瓷的XRD图。
具体实施方式
下面结合附图和具体实施例对本发明作进一步详细说明。
以下实施例、对比例中使用的原料粉体均为市售商品,纯度均大于99.9%,粒径范围50nm~50μm。
实施例1:制备(Gd0.849Lu0.15Ce0.001)3(Al0.8Ga0.2)5O12
(1)设定目标产物(Gd0.849Lu0.15Ce0.001)3(Al0.8Ga0.2)5O12质量为60g,按照化学式中各元素的化学计量比分别称取氧化铝、氧化钆、氧化镥、氧化镓和氧化铈作为原料粉体;将原料粉体、0.006g氧化钙、0.06g PEI、28.125g无水乙醇和1.875g甲基乙基酮混合,加入240g 2mm氧化铝球在250mm球磨罐中进行第一阶段球磨,球磨转速为300r/min,球磨时间为10h;
(2)向第一阶段球磨得到的浆料中加入1.2g增塑剂S160和9g粘结剂PVB,进行第二阶段球磨,球磨转速为250r/min,球磨时间为10h;
(3)将第二阶段球磨得到的浆料进行真空除泡30min,真空度为10-5Pa,搅拌速度为200r/min,得到适用于流延成型的低气泡甚至无气泡浆料;
(4)在20℃室温下将除泡后的浆料送入流延机进行成型,膜带速度0.005m/min,流延刮刀高度为0.001mm,得到平整、不开裂的高质量的流延坯片;
(5)将所述流延坯片通过自定义裁剪,取200片进行叠层,之后在150MPa下进行冷等静压处理,保压时间500s,得到相对密度大于等于58%、无界面的陶瓷素坯;
(6)将上述陶瓷素坯置于管式炉中在氧气气氛下进行排胶处理,以升温速率10℃/min升温至600℃,保温24h,进行排胶,按照1℃/min的速率进行降温;
(7)将排胶后的素坯置于管式炉中在氧气气氛下高温烧结,以4℃/min速率升温至1800℃,保温50h,再以10℃/min速率降温至400℃,随炉冷却后,得到透明陶瓷;在氧化气氛中烧结主要是用来稳定Ga元素;
(8)将所制备的透明陶瓷置于空气气氛中进行退火处理,退火温度为1000℃,退火时间为50h;在空气或者还原气氛中退火是为了消除除泡过程产生的缺陷及控制Ce的价态为+3价。
(9)将退火处理后的透明陶瓷进行双面抛光至陶瓷厚度为2.0mm,得到高功率LED/LD照明用暖白光高显指荧光陶瓷,其实物图参见图1中的(1),为黄色透明陶瓷。
荧光陶瓷在600nm处光学直线透过率为81%,发射光谱主峰575nm,半高宽140nm,(参见附图2),在高功率LED(电流350mA)或LD(功率4W)激发下,实现暖白光发射,色温2800K,显色指数80。
实施例2:制备(Gd0.94Lu0.05Ce0.01)3(Al0.85Ga0.15)5O12
(1)设定目标产物(Gd0.94Lu0.05Ce0.01)3(Al0.85Ga0.15)5O12质量为60g,按照化学式中各元素的化学计量比分别称取氧化铝、氧化钆、氧化镥、氧化镓和氧化铈作为原料粉体;将原料粉体、0.12g氧化镁、0.06g氧化锆、4.8g PEG、12.5g无水乙醇和2.5g甲基乙基酮混合,加入120g 30mm氧化锆球在250mm球磨罐中进行第一阶段球磨,球磨转速为120r/min,球磨时间为40h;
(2)向第一阶段球磨得到的浆料中加入6g增塑剂S160和1.8g粘结剂PVB,进行第二阶段球磨,球磨转速为120r/min,球磨时间为40h;
(3)将第二阶段球磨得到的浆料进行真空除泡0.5min,真空度为10-2Pa,搅拌速度为600r/min,得到适用于流延成型的低气泡甚至无气泡浆料;
(4)在25℃室温下将除泡后的浆料送入流延机进行成型,膜带速度10m/min,流延刮刀高度为5mm,得到平整、不开裂的高质量的流延坯片;
(5)将所述流延坯片通过自定义裁剪,取5片进行叠层,之后在250MPa下进行冷等静压处理,保压时间200s,得到相对密度大于等于58%、无界面的陶瓷素坯;
(6)将上述陶瓷素坯置于管式炉中在空气气氛下进行排胶处理,以升温速率60℃/min升温至1100℃,保温24h,进行排胶,按照20℃/min的速率进行降温;
(7)将排胶后的素坯置于管式炉中在氧气气氛下高温烧结,以0.05℃/min速率升温至1650℃,保温3h,再以10℃/min速率降温至400℃,随炉冷却后,得到透明陶瓷;
(8)将所制备的透明陶瓷置于空气气氛中进行退火处理,退火温度为1500℃,退火时间为1h;消除除泡过程产生的缺陷及控制Ce的价态为+3价。
(9)将退火处理后的透明陶瓷进行双面抛光至陶瓷厚度为2.0mm,得到高功率LED/LD照明用暖白光高显指荧光陶瓷,其实物图参见图1中的(2),为黄色透明陶瓷。
荧光陶瓷在600nm处光学直线透过率为83%,发射光谱主峰580nm,半高宽145nm,在高功率LED(电流500mA)或LD(功率10W)激发下,实现暖白光发射,色温3000K,显色指数84。
实施例3:制备(Gd0.895Lu0.1Ce0.005)3(Al0.82Ga0.18)5O12
(1)设定目标产物(Gd0.895Lu0.1Ce0.005)3(Al0.82Ga0.18)5O12质量为60g,按照化学式中各元素的化学计量比分别称取氧化铝、氧化钆、氧化镥、氧化镓和氧化铈作为原料粉体;将原料粉体、0.12g氧化硅、0.36g NP-10、18g无水乙醇和2g甲基乙基酮,加入150g直径30mm氧化锆球在250mm球磨罐中进行第一阶段球磨,球磨转速为120r/min,球磨时间为20h;
(2)向第一阶段球磨得到的浆料中加入3g增塑剂S160和6g粘结剂PVB,进行第二阶段球磨,球磨转速为150r/min,球磨时间为20h;
(3)将第二阶段球磨得到的浆料进行真空除泡20min,真空度为10-3Pa,搅拌速度为400r/min,得到适用于流延成型的低气泡甚至无气泡浆料;
(4)在25℃室温下将除泡后的浆料送入流延机进行成型,膜带速度5m/min,流延刮刀高度为0.5mm,得到平整、不开裂的高质量的流延坯片;
(5)将所述流延坯片通过自定义裁剪,取5片进行叠层,之后在250MPa下进行冷等静压处理,保压时间200s,得到相对密度大于等于58%、无界面的陶瓷素坯;
(6)将上述陶瓷素坯置于管式炉中在氮气气氛下进行排胶处理,以升温速率30℃/min升温至900℃,保温10h,进行排胶,按照15℃/min的速率进行降温;
(7)将排胶后的素坯置于管式炉中在氧气气氛下高温烧结,以2℃/min速率升温至1700℃,保温10h,再以10℃/min速率降温至400℃,随炉冷却后,得到透明陶瓷;
(8)将所制备的透明陶瓷置于空气气氛中进行退火处理,退火温度为1200℃,退火时间为15h;消除除泡过程产生的缺陷及控制Ce的价态为+3价。
(9)将退火处理后的透明陶瓷进行双面抛光至陶瓷厚度为1.0mm,得到高功率LED/LD照明用暖白光高显指荧光陶瓷,其实物图参见图1中的(3),为黄色透明陶瓷。
荧光陶瓷在600nm处光学直线透过率为82.6%,发射光谱主峰576nm,半高宽141nm,在高功率LED(电流400mA)或LD(功率6.5W)激发下,实现暖白光发射,色温2930K,显色指数82。
对比例:制备(Gd0.994Lu0.001Ce0.005)3(Al0.99Ga0.01)5O12
除原料粉体氧化铝、氧化钆、氧化镥、氧化镓和氧化铈的用量不同外,其制备方法同实施例3。
通过XRD检测,如图3所示,发现实施例1至3制得的荧光陶瓷均为Gd3Al5O12纯相,但是对比例制得的荧光陶瓷中存在大量钆铝钙钛矿结构的GdAlO3化合物,无法形成GAG纯相。说明只有在一定比例范围内掺杂Lu3+、Ga3+,才能得到纯GAG相的荧光陶瓷。

Claims (10)

1.一种高功率LED/LD照明用暖白光高显指荧光陶瓷,其特征在于,其化学式为:(Gd1-x- zLuxCez)3(Al1-yGay)5O12,其中x为Lu3+掺杂Gd3+位的摩尔百分数,y为Ga3+掺杂Al3+位的摩尔百分数,z为Ce3+掺杂Gd3+位的摩尔百分数,0.05≤x≤0.15,0.15≤y≤0.2,0.001≤z≤0.01。
2.一种权利要求1所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,采用流延法成型和固相烧结,具体包括以下步骤:
(1)按照化学式(Gd1-x-zLuxCez)3(Al1-yGay)5O12中各元素的化学计量比分别称取纯度大于99.9%的氧化铝、氧化钆、氧化镥、氧化镓和氧化铈作为原料粉体,其中x为Lu3+掺杂Gd3+位的摩尔百分数,y为Ga3+掺杂Al3+位的摩尔百分数,z为Ce3+掺杂Gd3+位的摩尔百分数,0.05≤x≤0.15,0.15≤y≤0.2,0.001≤z≤0.01;将原料粉体、烧结助剂、分散剂、球磨介质按一定比例混合,加入磨球在球磨罐中进行第一阶段球磨,球磨转速为120r/min~300r/min,球磨时间为10h~50h;
(2)向第一阶段球磨得到的浆料中加入增塑剂和粘结剂,进行第二阶段球磨,球磨转速为120r/min~250r/min,球磨时间为10h~40h;
(3)将第二阶段球磨得到的浆料进行真空除泡,得到适用于流延成型的低气泡甚至无气泡浆料;
(4)在室温下将除泡后的浆料送入流延机进行成型,膜带速度0.005m/min~10m/min,通过调整刮刀的高度为0.001mm~5mm,得到不同厚度的平整不开裂的高质量流延坯片;
(5)将所述流延坯片通过自定义裁剪、叠层、冷等静压成型,得到相对密度大于等于58%、不同厚度、无界面的陶瓷素坯;
(6)将上述陶瓷素坯进行排胶处理;
(7)将排胶后的素坯置于氧气气氛中高温烧结,烧结温度为1600℃~1850℃,保温3h~50h,得到透明陶瓷;
(8)将所制备的透明陶瓷置于空气气氛或者还原气氛中进行退火处理,退火温度为1000℃~1500℃,退火时间为1h~50h;
(9)将退火处理后的透明陶瓷进行机械抛光加工至陶瓷厚度为0.4mm~2.0mm,得到高功率LED/LD照明用暖白光高显指荧光陶瓷。
3.根据权利要求2所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,步骤(1)中所述烧结助剂为氧化镁、氧化钙、二氧化硅、氧化锆中的一种或多种,烧结助剂添加量为原料粉体总量的0.01wt.%~0.3wt.%;所述分散剂为NP-10、PEI、PEG中的一种或多种,分散剂添加量为原料粉体总量的0.1wt.%~8wt.%;所述球磨介质为无水乙醇和甲基乙基酮按质量比5~15:1混合的混合溶液,球磨介质与原料粉体的质量比为1:2~4;所述磨球为氧化铝球或氧化锆球,磨球与原料粉体的质量比为2~4:1。
4.根据权利要求2或3所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,步骤(2)中所述增塑剂为S160,增塑剂添加量为原料粉体总量的2wt.%~10wt.%,所述粘结剂为PVB,粘结剂添加量为原料粉体总量的3wt.%~15wt.%。
5.根据权利要求2或3所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,步骤(3)中所述真空除泡步骤中的真空度为10-2Pa~10-5Pa,搅拌速度为200r/min~600r/min,除泡时长0.5min~30min。
6.根据权利要求2或3所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,步骤(5)中所述冷等静压保压压力150MPa~250MPa进行冷等静压处理,保压时间200s~500s。
7.根据权利要求2或3所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,步骤(6)中所述排胶过程为:以升温速率10℃/h~60℃/h升温至600℃~1100℃,保温6h~24h,进行排胶,按照1℃/min~20℃/min的速率进行降温。
8.根据权利要求2或3所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,步骤(6)中所述排胶过程在空气、惰性气体、氮中氢、氧气中的一种气氛中进行。
9.根据权利要求2或3所述的高功率LED/LD照明用暖白光高显指荧光陶瓷的制备方法,其特征在于,步骤(7)中所述烧结时的升温速率为0.05℃/min~4℃/min。
10.权利要求1所述的高功率LED/LD照明用暖白光高显指荧光陶瓷在制备高功率LED/LD照明器件中的应用。
CN201811464585.7A 2018-12-03 2018-12-03 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用 Active CN109592978B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201811464585.7A CN109592978B (zh) 2018-12-03 2018-12-03 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201811464585.7A CN109592978B (zh) 2018-12-03 2018-12-03 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用

Publications (2)

Publication Number Publication Date
CN109592978A CN109592978A (zh) 2019-04-09
CN109592978B true CN109592978B (zh) 2021-07-23

Family

ID=65960060

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201811464585.7A Active CN109592978B (zh) 2018-12-03 2018-12-03 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用

Country Status (1)

Country Link
CN (1) CN109592978B (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113024242A (zh) * 2019-12-09 2021-06-25 上海航空电器有限公司 获得高流明激光照明的超细陶瓷荧光体及其制备方法
CN111205081B (zh) * 2020-01-21 2022-03-15 徐州凹凸光电科技有限公司 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
CN111393166B (zh) * 2020-03-27 2022-04-15 徐州凹凸光电科技有限公司 一种白光led/ld用高热稳定性荧光陶瓷及其制备方法
CN111908910B (zh) * 2020-08-18 2022-04-22 新沂市锡沂高新材料产业技术研究院有限公司 一种暖白光照明用高显指透明陶瓷及其制备方法
CN113675721B (zh) * 2021-07-26 2024-06-28 江苏师范大学 一种基于激光照射产生宽波段白光的光源***
CN114988862B (zh) * 2022-06-29 2023-06-23 江苏师范大学 一种激光照明用高显色指数荧光陶瓷及其制备方法
CN115838286B (zh) * 2022-12-26 2023-12-08 江苏师范大学 一种高显指白光led/ld用荧光陶瓷制备与应用

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331239A (ja) * 1994-06-08 1995-12-19 Hitachi Maxell Ltd 赤外発光蛍光体、蛍光体組成物、蛍光体担持物、潜像マーク形成部材、光学読取装置ならびに光学読取システム
EP1116418A1 (de) * 1999-07-23 2001-07-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Leuchstoff für lichtquellen und zugehörige lichtquelle
CN1528856A (zh) * 2003-10-09 2004-09-15 中国科学院上海硅酸盐研究所 铝酸钆基发光薄膜材料芯片及其制备方法
CN1544575A (zh) * 2003-11-13 2004-11-10 北京有色金属研究总院 含硼的白光led用荧光粉及其制造方法和所制成的电光源
CN1807548A (zh) * 2006-01-27 2006-07-26 王培� 多棱面大粒度分散萤光粉及使用它的白光二极管
CN101368102A (zh) * 2008-10-06 2009-02-18 罗文渊 暖白光发光二极管及其溴化物荧光粉
CN101638578A (zh) * 2008-07-31 2010-02-03 日立金属株式会社 荧光材料及采用该荧光材料的闪烁器和放射线检测器
CN101663372A (zh) * 2007-04-18 2010-03-03 三菱化学株式会社 荧光体及其制造方法、含荧光体组合物、发光装置、照明装置、图像显示装置以及含氮化合物
CN101880529A (zh) * 2009-05-08 2010-11-10 常耀辉 一种卤素共激活镓铝酸盐白光led用波长转换荧光材料
CN103080272A (zh) * 2010-07-22 2013-05-01 欧司朗光电半导体有限公司 石榴石材料、其制造方法及包括石榴石材料的发射辐射的元件
US8461535B2 (en) * 2009-05-20 2013-06-11 Lawrence Livermore National Security, Llc Phase stable rare earth garnets
CN103936420A (zh) * 2014-04-17 2014-07-23 中国科学院宁波材料技术与工程研究所 化学共沉淀法制备偏离化学计量比石榴石相闪烁体粉体的方法
CN108264899A (zh) * 2016-12-30 2018-07-10 中国科学院宁波材料技术与工程研究所 一种应用于led的荧光陶瓷及其制备方法
CN108863340A (zh) * 2017-05-16 2018-11-23 中国科学院上海硅酸盐研究所 一种复合结构透明闪烁陶瓷及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8268230B2 (en) * 2006-05-24 2012-09-18 Lawrence Livermore National Security, Llc Fabrication of transparent ceramics using nanoparticles
US8338790B2 (en) * 2007-12-21 2012-12-25 Koninklijke Philips Electronics N.V. Radiation-sensitive detector with a scintillator in a composite resin
JP5887238B2 (ja) * 2012-09-25 2016-03-16 クアーズテック株式会社 積層型セラミックス複合体
CN103045259B (zh) * 2012-12-20 2014-10-15 华东师范大学 氧氮化物荧光粉及其制备方法、及包含该荧光粉的led光源

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07331239A (ja) * 1994-06-08 1995-12-19 Hitachi Maxell Ltd 赤外発光蛍光体、蛍光体組成物、蛍光体担持物、潜像マーク形成部材、光学読取装置ならびに光学読取システム
EP1116418A1 (de) * 1999-07-23 2001-07-18 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Leuchstoff für lichtquellen und zugehörige lichtquelle
CN1528856A (zh) * 2003-10-09 2004-09-15 中国科学院上海硅酸盐研究所 铝酸钆基发光薄膜材料芯片及其制备方法
CN1544575A (zh) * 2003-11-13 2004-11-10 北京有色金属研究总院 含硼的白光led用荧光粉及其制造方法和所制成的电光源
CN1807548A (zh) * 2006-01-27 2006-07-26 王培� 多棱面大粒度分散萤光粉及使用它的白光二极管
CN101663372A (zh) * 2007-04-18 2010-03-03 三菱化学株式会社 荧光体及其制造方法、含荧光体组合物、发光装置、照明装置、图像显示装置以及含氮化合物
CN101638578A (zh) * 2008-07-31 2010-02-03 日立金属株式会社 荧光材料及采用该荧光材料的闪烁器和放射线检测器
CN101368102A (zh) * 2008-10-06 2009-02-18 罗文渊 暖白光发光二极管及其溴化物荧光粉
CN101880529A (zh) * 2009-05-08 2010-11-10 常耀辉 一种卤素共激活镓铝酸盐白光led用波长转换荧光材料
US8461535B2 (en) * 2009-05-20 2013-06-11 Lawrence Livermore National Security, Llc Phase stable rare earth garnets
CN103080272A (zh) * 2010-07-22 2013-05-01 欧司朗光电半导体有限公司 石榴石材料、其制造方法及包括石榴石材料的发射辐射的元件
CN103936420A (zh) * 2014-04-17 2014-07-23 中国科学院宁波材料技术与工程研究所 化学共沉淀法制备偏离化学计量比石榴石相闪烁体粉体的方法
CN108264899A (zh) * 2016-12-30 2018-07-10 中国科学院宁波材料技术与工程研究所 一种应用于led的荧光陶瓷及其制备方法
CN108863340A (zh) * 2017-05-16 2018-11-23 中国科学院上海硅酸盐研究所 一种复合结构透明闪烁陶瓷及其制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Fabrication of cerium-doped nonstoichiometric (Ce,Lu,Gd)3+δ(Ga,Al)5-δO12 transparent ceramics;Chen Xianqiang 等;《Journal of Rare Earths》;20150831;第33卷(第8期);863-866 *
Gd3(1-x)A15012:RE3x分立材料芯片制备及发光性能研究;罗岚 等;《感光科学与光化学》;20051130;第23卷(第6期);447-452 *
钆铝石榴石(Gd3Al5O12)的晶格稳定化及其新型发光材料;李金凯;《中国博士学位论文全文数据库 工程科技Ⅰ辑》;20160315(第03期);B016-27 *

Also Published As

Publication number Publication date
CN109592978A (zh) 2019-04-09

Similar Documents

Publication Publication Date Title
CN109592978B (zh) 高功率led/ld照明用暖白光高显指荧光陶瓷及其制备方法与应用
Wang et al. YAG: Ce3+, Mn2+ transparent ceramics prepared by gel-casting for warm white LEDs
CN111205081B (zh) 一种单一结构式低色温高显指荧光陶瓷及其制备方法与应用
WO2018010233A1 (zh) 一种led芯片发光灯条基板材料及led球泡灯
KR101762818B1 (ko) 백색 발광다이오드용 형광체 및 이의 제조방법
Zhao et al. Synthesis and luminescence properties of color-tunable Ce, Mn co-doped LuAG transparent ceramics by sintering under atmospheric pressure
CN104177079A (zh) 用于白光LED荧光转换的含Sr的Ce:YAG基透明陶瓷及其制备方法
Zhang et al. Preparation and luminescence properties of thermally stable Mn4+ doped spinel red-emitting ceramic phosphors
CN106978176A (zh) 一种黄色荧光粉及制备方法和其在发光器件中的应用
CN113402269A (zh) 一种可调节不同程度白光的三色透明荧光陶瓷制备方法
CN104177078A (zh) 用于白光LED荧光转换的含Lu的Ce:YAG基透明陶瓷及其制备方法
Dai et al. Fabrication and properties of transparent Tb: YAG fluorescent ceramics with different doping concentrations
CN112209714A (zh) 一种一次成型烧结铝基石榴石型发光陶瓷的制备技术
CN110240900B (zh) 一种Eu2+掺杂的窄带绿色发光材料、制备方法及照明与显示光源
CN112047735A (zh) 一种复相荧光陶瓷材料及其制备方法
WO2023005948A1 (zh) 一种双层稀土离子掺杂钇铝石榴石陶瓷及其制备方法
Liu et al. Spectrum regulation of YAG: Ce/YAG: Cr/YAG: Pr phosphor ceramics with barcode structure prepared by tape casting
WO2022100647A1 (zh) 一种绿色荧光陶瓷材料及其制备方法和应用
CN114031400B (zh) 单相暖白光荧光陶瓷及其制备方法和应用
CN113683407B (zh) 一种高亮度高热稳定性黄绿光荧光陶瓷及其制备方法
CN112552038B (zh) 一种绿色荧光复合陶瓷及其制备方法和应用
CN113716962A (zh) 一种多层复合荧光陶瓷及制备方法
CN114497326A (zh) 一种荧光转换复合层及制备方法和白光发光器件
CN109294583B (zh) 一种白光led用铈离子掺杂钛酸钆钡蓝光荧光粉及其制备方法
CN111040762A (zh) 单一基质色度可调的发光材料及其制备方法与应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant