CN101351414B - 制造玻璃的方法和设备 - Google Patents

制造玻璃的方法和设备 Download PDF

Info

Publication number
CN101351414B
CN101351414B CN2006800499066A CN200680049906A CN101351414B CN 101351414 B CN101351414 B CN 101351414B CN 2006800499066 A CN2006800499066 A CN 2006800499066A CN 200680049906 A CN200680049906 A CN 200680049906A CN 101351414 B CN101351414 B CN 101351414B
Authority
CN
China
Prior art keywords
smelting furnace
glass
melt
pipe
glass melt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN2006800499066A
Other languages
English (en)
Other versions
CN101351414A (zh
Inventor
G·迪格利斯
W·W·约翰逊
J·J·克尔斯汀
D·A·诺勒
R·R·托马斯
P·弗杜雷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Corning Inc
Original Assignee
Corning Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Corning Inc filed Critical Corning Inc
Publication of CN101351414A publication Critical patent/CN101351414A/zh
Application granted granted Critical
Publication of CN101351414B publication Critical patent/CN101351414B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B18/00Shaping glass in contact with the surface of a liquid
    • C03B18/02Forming sheets
    • C03B18/20Composition of the atmosphere above the float bath; Treating or purifying the atmosphere above the float bath
    • C03B18/22Controlling or regulating the temperature of the atmosphere above the float tank
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/04Melting in furnaces; Furnaces so far as specially adapted for glass manufacture in tank furnaces
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/18Stirring devices; Homogenisation
    • C03B5/193Stirring devices; Homogenisation using gas, e.g. bubblers
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B5/00Melting in furnaces; Furnaces so far as specially adapted for glass manufacture
    • C03B5/16Special features of the melting process; Auxiliary means specially adapted for glass-melting furnaces
    • C03B5/20Bridges, shoes, throats, or other devices for withholding dirt, foam, or batch
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S65/00Glass manufacturing
    • Y10S65/09Tube

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Glass Melting And Manufacturing (AREA)
  • Vertical, Hearth, Or Arc Furnaces (AREA)

Abstract

一种形成玻璃熔体的方法,包括在第一熔炉中加热玻璃进料以形成玻璃熔体,使玻璃熔体经耐火金属联结管流入第二熔炉,和在第二熔炉中进一步加热玻璃熔体。加热耐火金属联结管,以防止熔融玻璃过度冷却,确保进入第二熔炉的玻璃熔体与第二熔炉中玻璃熔体的温度相等或更高。还公开了进行该方法的设备。

Description

制造玻璃的方法和设备
发明背景 
技术领域
本发明涉及一种形成玻璃熔体的方法,具体说是利用多区熔炉形成玻璃熔体。
背景技术
液晶显示屏(LCD)是依赖于外部光源照明的被动平面显示屏。对于LCD玻璃片应用,常用无碱金属的硅酸铝玻璃。该族玻璃易于在熔炉(熔化炉)中填充批料(玻璃进料)处的表面形成稳定的泡沫层。泡沫层含有固态二氧化硅夹杂物。这种夹杂物在成品玻璃中会形成固态的“结石(stone)”或透明的“节(knot)”瑕疵,除非在玻璃进入传递***前除去这些夹杂物。已显示当泡沫层到达熔炉前壁时,可通过熔炉出口将固态夹杂物带入玻璃传递***。这些固态夹杂物可在成品玻璃中形成固态瑕疵。泡沫层还会使玻璃熔料与在玻璃熔料自由表面上方由燃烧炉提供的热隔绝。燃烧炉因此产生的低效率意味着形成熔体所需的大部分能量由浸在熔体自由表面下的电极的焦耳加热提供。因此导致的相对较高水平的电力缩短了电极寿命,并导致经常性的熔炉维修。
具有两个或多个区的单熔炉可防止泡沫层中的二氧化硅夹杂物残留进行玻璃传递***。分隔第一和第二区的壁能防止第一区中的泡沫层进入第二区。历史上,已用具有一或多个槽形喉的内部冷却隔板(cross wall)(将一个大的玻璃槽分成两个较小的区),或用两个以管状喉联结的独立的室将熔炉分成多区。
对于隔板的情形,隔板两侧都是热的,玻璃对板的腐蚀一般较快。因此加工寿命短。当隔板顶部破损,或当内部冷却失败时,熔融效力终止,使得冷却水直接(或爆发性的)被释放入玻璃熔体中。另外,如果隔板是用熔融氧化锆耐火材料制备的,隔板电阻率会变低,两面都会是热的。一些用于加热玻璃浴的电流会通过隔板,将其单独加热,并可能导致壁破损,或在熔体中形成氧化锆夹杂物。通常,隔板在有限的一段时间内是有效的,但代表了一部分寿命有限的玻璃熔融过程。
解决这些问题的常规方法是增大熔炉。估计实现无泡沫表面需要使得今天的熔体表面积加倍。此外,为了将固态或气态夹杂物减少到理想值需要另一个乘数,从而导致总的熔炉体积增加到现今表面积的三倍。熔炉尺寸如此大的增加导致资本和运作开销增加,而且由于电极(通常为氧化锡)数也需要增加,会导致玻璃中氧化锡的量上升到熔体会发生锡石脱玻化的程度。
熔炉还可分成不需要有共同的壁的区域。在这种情况下,第一和第二区可以有自己的壁,它们通过管状喉相联。这使得壁能够有外部冷却,但在熔炉中产生了显著未加热的区域,当玻璃从第一区通入第二区时,会降低温度。当进入第二区的玻璃比离开第一区时更冷时,第二区在熔出固态夹杂物或从玻璃中除去气体夹杂物方面的效率减弱。此外,耐火材料喉保护层将会磨损到玻璃水平,最终使得泡沫层从第一区通过到第二区。喉渗漏将会导致处理过程也一起终止。
为了二区熔炉能有效防止残留在泡沫层中的固态夹杂物进入传递***,在第一和第二区之间的分隔必须保持完整。否则,熔炉会变成一个大容器,使得泡沫层从前壁向前移动,并将来自泡沫层的固态夹杂物传递入玻璃传递***。
当包括两个或多个区的熔融过程有效时,将阻止泡沫层在第二区内形成,而且可额外提供时间和温度,以在第二区内熔出进入泡沫层的固态夹杂物或排出气态夹杂物。
发明内容
本发明的实施方式,形成玻璃熔体的方法和设备。
简单说,本方法的一个实施方式包括在第一熔炉内将玻璃进料加热到第一温度,形成玻璃熔体,使玻璃熔体从第一熔炉通过包含耐火金属的联结管流到与第一熔炉分开的第二熔炉,在第二熔炉内将玻璃熔体加热到第二温度,其中流过联结管的玻璃熔体被联结管加热到第三温度,该第三温度与第二温度相当或更高。耐火金属应能耐第一和第二熔炉中的高熔融温度,而不会在玻璃熔体中加入显著量的杂质。耐火金属优选自钌、铑、钯、锇、铱、铂、钼、钨及其合金。
熔炉壁通常较厚-约为8英寸-并且本身不被加热。通过熔炉壁的熔融玻璃在第一和第二熔炉之间传递时会丧失热量,更不用说在两个炉之间的通道内的热量丧失。为了确保从第一熔炉流出,通过联结管进入第二熔炉的玻璃熔体在进入第二熔 炉前具有适合的温度,至少在第二熔炉后壁内加热联结管,且优选也在第一熔炉前壁和第二熔炉后壁之间进行加热。也可在第一熔炉内加热联结管,但通常并不需要。可通过许多方法,包括使来自外部电源的电流(current)直接流过,或通过感应加热管来加热传递管。
优选第二炉的熔融率是第一炉熔融率的约50%-90%。在第二熔炉内的玻璃熔体还可经过机械搅动。机械搅动可通过例如使气体冒泡通过第二熔炉内的玻璃熔体。氧气是一种合适的气体,但空气和惰性气体也是可接受的替代物。有利的是,可用氧气重新填充或重新装载熔体内的多价澄清剂。用氧气重新装载澄清剂在玻璃熔体的温度在重新装载过程中降低时最有效。
在一个具体的实施方式中,与耐火金属传递管接触的气氛中氢的分压可被控制,从而促使通过传递管的玻璃熔体剧烈沸腾。这可通过降低该管外气氛中氢的分压,使其低于玻璃熔体内氢的分压来实现。
本发明还可被看做提供了一种进行本发明方法的设备。在此,该设备的一个实施方式可被概括为用于加热玻璃进料形成玻璃熔体的第一熔炉,该第一熔炉包括前壁,包括后壁的第二熔炉,联结第一和第二熔炉,以将玻璃熔体从第一熔炉运到第二熔炉的耐火金属管。该管可通过使电流直接流过管,或感应加热来加热。
该管包括第一端、第二端、位于第一和第二端之间的连续的外表面。为了实现电连接和确保位于第二熔炉后壁内的管部分被加热,该管第二端可由内向外翻出,并自身向后折叠,从而使第二端与管外表面同心。因此,当邻近第二端的管部分被***第二熔炉后壁的开口中时,第二端能与电连接接触,让电流能流过在后壁内的管部分。
根据下列示范性描述,应能更好的理解本发明,而其它的目的、特征、细节和优点也能变得更加明白。这些示范性描述并不是以任何方式限制本发明,并应参考附图。所有额外的***、方法特征和优点也都将包含在该描述内、本发明的范围内,和被权利要求书所保护。
附图说明
图1是本发明一个实施方式的设备的截面侧视图。
图2是第一熔炉和第二熔炉之间的传递管的一个实施方式的截面侧视图。
图3是传递管一个实施方式的截面侧视图,其中传递管第二端被由内向外翻出,并自身向后折叠,从而使传递管的第二端与传递管外表面同心。
具体实施方式
在下列详述中,为了解释而不是为了限制,列出了公开具体细节的实施方式的例子,以提供对本发明的充分理解。然而,本领域技术人员在得到本公开内容的益处后应理解,本发明可用任何与本文详述的不同的其它实施方式实施。此外,可省略熟知的装置、方法和材料的描述,从而使本发明的描述明显。最后,在任何可应用的地方,相同的附图标记指相同的部件。
在一常规玻璃制造过程中,新进料在炉(熔炉)中加热形成粘性物质或玻璃熔体。炉通常是用非金属耐火砖搭建的,这些砖含有煅烧燧土、硅线石、锆或其它耐火材料。进料可以成批(其中形成玻璃的组分混合在一起,不连续装填)引入熔炉,或进料可混合并连续引入熔炉。进料可包括废玻璃。进料可通过炉结构中的开口或孔,通过使用推门横条或斗(在成批过程中),或螺旋式或螺栓设备(在连续进料熔炉中)将进料引入熔炉。进料成分的量和类型构成了玻璃“配方”。成批过程通常用于少量的玻璃,并用于容积在达几吨玻璃级别的炉中,而大型商业连续进料炉可容纳超过1,500吨玻璃,并每天输送几百吨玻璃。
可在熔炉中通过从进料上方的一个或多个燃烧器喷出的燃料-空气(或燃料-氧气)焰,或通过装在熔炉内壁上的电极之间通过的电流,或两者加热进料。在壁上方也用耐火砖制造的冠状结构覆盖了熔炉,并在燃烧加热的炉中提供燃料燃烧的空间。
在一些过程中,首先用燃料-空气焰加热进料,于是进料开始熔融,进料的电阻系数开始下降。然后使电流通过进料/熔体混合物,以完成加热和熔融过程。在加热过程中,进料的反应释放了各种气体。这些气体形成了在玻璃熔体中的夹杂物(通常称为小气泡或气泡(seed))。气泡也可以是由于在进料颗粒之间的空隙空间内捕获了空气造成的,或由于耐火砖本身溶入熔料造成的。可形成气泡的气体可包括例如,O2、CO2、CO、N2和NO的任一或混合物。如不除去,气泡可通过玻璃制造过程,并有害地进入最终玻璃产品。除去气态夹杂物被称为从玻璃中排出气体(fining)。固态夹杂物也可进入终产品,如果发生不完全熔融和溶解,例如如果熔 体在熔融过程中在合适的温度下没有经过充分的停留时间。可包含熔体的固态夹杂物是未熔融的进料(结石)和未完全熔融、与剩余熔体不均质的玻璃熔体小区域(节),该夹杂物具有与整体熔体不同的折射系数。
在熔融过程中,可在熔体表面形成泡沫状物质(浮渣)。无碱金属的硅酸铝玻璃尤其是这样。不希望被理论所限,据信泡沫状物质是由于一定程度的氧化铝和二氧化硅层化作用造成的,其中更粘而较不致密的富含二氧化硅的玻璃漂浮在粘性较小而更重的富含氧化铝的玻璃之上。通过熔体上升的小气泡被挡在粘性的富含二氧化硅的玻璃中,在熔体上形成泡沫层。该泡沫状物质还可包含新进料和熔融过程产生的副产物。随着熔融玻璃被拉或移动出炉,泡沫状物质的成分,例如未熔融的进料,可从熔体表面通过熔炉出口移出,从而使完全熔融发生所需的炉内理想停留时间周期缩短。也就是说,玻璃熔体内的正常对流在不同分解阶段和整个熔体体积内起到了循环进料的作用,并在热熔体内提供了进料能完全结合或溶解入熔体所需的足够时间。例如,残留在接近熔炉前壁的熔体表面内的结石可从表面向下移动,离开炉,从而不在整个熔体体积内被循环。然后这些污染物-结石、节等最终可能进入最终玻璃产品。
根据本发明的一个实施方式,显示了一多区熔融设备,通常由附图标记10表示,包括第一熔炉12和与第一熔炉分隔的第二熔炉14。第一和第二熔炉通常由如前公开的耐火砖构成。玻璃进料被喂入第一熔炉12(如箭头16所示),并熔融形成玻璃熔体18。熔融过程可在第一熔炉12内的玻璃熔体18表面形成一层浮渣或泡沫20,如用于显示屏用途的无碱金属硅酸铝玻璃的情况。如前所述,该泡沫表面层可同时含有气态和固态夹杂物,包括未溶解的进料。熔融设备10还可包括排气容器22,以从玻璃熔体除去气态夹杂物。
第一熔炉12通过联结管24与第二熔炉14联结,该联结管优选圆柱形,在第一和第二熔炉之间延伸。就此,第一熔炉与第二熔炉分隔的意思是指在炉和炉之间在各炉所含的玻璃熔体体积之间并没有共同的壁,而且在操作中,与两个玻璃熔体的自由(暴露)表面接触的气氛之间并不直接接触。
联结管24由可与玻璃的温度和化学相容的耐火金属制成。即联结管24必须在温度高达约1650℃时维持其结构完整性,并对玻璃产生最少的污染。联结管24必须较易加热,以提高或维持流过管24的熔融玻璃的温度。联结管24优选由选自 铂族的耐火金属或其合金构成。铂族金属-钌、铑、钯、锇、铱和铂的特征是耐化学磨蚀性、卓越的高温性能、以及稳定的电性质。其它合适的耐火金属包括钼。可通过例如感应加热或通过直接通过管的电流、或通过外部加热元件加热管24。
如图1-2所示,管24通过浸在玻璃熔体18表面下、在第一熔炉前壁26中的的开口伸出第一熔炉12,并通过在第二熔炉后壁30中,浸在玻璃熔体18表面28以下的类似开口进入第二熔炉14。因此,如图2所示,管24包括第一端32和与第一端32相对的第二端34。图2显示了管24从前壁26伸出,进入后壁30的情形。管24邻近每个末端32、34的一部分位于各熔炉耐火壁内,即管24的一部分位于第一熔炉前壁26,和管24的一部分位于第二熔炉后壁30内。在通过使电流通过管道加热管24的情形下,在前壁26和后壁30上装有凸缘36,凸缘36作为直接电阻加热管24的电接触点,并可通过例如电子保险管条(buss bar)或电缆40与电源38联结。优选例如通过使液体(例如水)流过凸缘上或内部的通道冷却凸缘36。各端32、34优选位于横跨各炉壁宽度的中点附近,还位于接近各炉底部。
虽然在炉12、14内通过燃料-空气或燃料-氧气燃烧器和/或通过与玻璃熔体接触的电极的电流加热玻璃熔体18,炉的耐火壁本身并不直接被加热。因此,当熔融玻璃从第一熔炉12通过管24流到第二熔炉14时,随着熔体通过炉壁,熔融玻璃损失热量。为了确保熔融玻璃以相当于第一熔体的平均温度进入第二熔炉,如前公开加热管24。优选电阻加热管24,通过使电流,优选交变电流流过管。此外,可通过感应加热管。由于熔炉的耐火壁本身不被直接加热,通过壁开口和炉之间未加热的联结管的熔融玻璃将丧失多达100℃,并可能更多。如果进入第二熔炉的熔体的温度比第二熔炉内的熔体的温度显著要低,例如,低100℃,进入第二炉14的更冷的玻璃易于沉降到熔炉底部,直接流向炉出口。该横跨炉底部的短循环会减少玻璃停留时间,并可能导致结石和节没有在熔体内完全溶解就离开第二炉14。通常,在第二炉14内的熔体的温度比第一炉12中的温度要高。在至少后壁30内加热管24(其中管24进入第二熔炉14)和在管之间的那部分管内加热的方法也是合乎需要的。简单地将通过电流直接加热的联结管24作为两个熔炉之间的直管***第一和第二熔炉,且在管上伸出或进入熔炉处接有电连接,可能不能提供满意的管道加热-电流将会在两个联结之间流动,但由于在炉壁内的管部分没有电流,这些部分不被加热。因此,根据本发明的一个实施方式和如图3所述,管24的端34 被由内向外翻出,自身向后折叠,从而使端34与管24的连续外表面同心。因此,凸缘36可与端34联结,电流可通过管24接近端34,并位于熔炉14后壁30内的那部分。可在管24的每个末端都制造管24的这种翻转构造,但在一个典型的装置中,仅端34被向后折叠。这是对由于熔融玻璃的温度在进入第二熔炉时比离开第一熔炉时熔融玻璃的温度感兴趣得多。优选,加热联结管24有效加热了管内的玻璃熔体,从而使进入第二熔炉14的熔融玻璃的温度基本上与第一熔炉12中的熔融玻璃在进入管之前相当。“基本相当”指进入第二炉的玻璃熔体的温度应和第一炉内玻璃熔体的温度在25℃的差异范围内。
第二熔炉14优选构建成比第一熔炉12的熔融率更低。选择第一熔炉内的熔融率,使其相当或大于要将进料变成溶液所需的最小的熔融率。第二熔炉14的熔融率优选是第一熔炉12的约50%-90%。应理解本文所用的熔融率是指表面积单位除以玻璃流出炉的流速,例如平方米除以吨每天(m2/吨/天)。因此,对于给定的流速,可方便地计算所需的炉大小。优选第二熔炉14的长度L2是第一熔炉12的长度L1的约30%-50%。第二熔炉14内的玻璃熔体的操作深度d2应选为使得炉内熔体的温度和停留时间都最大,应在第一熔炉12内玻璃熔体深度d1的约65%-110%之间。
有利的,可调节第一和第二熔炉12,14之间管24周围的气氛,从而在气氛内提供预定的氢分压。如公开的,例如2005年4月27日提交的美国专利申请11/116669所述,联结管24外部或与其接触的氢分压可用于控制除去耐火金属容器中熔融玻璃内的气态夹杂物。将容器密封在包围容器的外壳内有利于上述控制,包围容器的外壳也将与耐火金属容器接触的气氛密封在其中。当其从第一熔炉12的前壁26排出时冷却玻璃,可用于重新在玻璃内用氧装载多价澄清剂。通过随后降低与熔炉壁外的管24接触的气氛中的氢分压,可促使氢气从玻璃熔体中渗出,通过和排出管24,导致氧释放和在传送过管的熔融玻璃中剧烈冒泡。该大量氧气释放可帮助熔体内的小泡合并。可用重新装载澄清剂来改善第二熔炉14内的最初排气和在随后的排气步骤中,例如在第二熔炉14下游并与其流体连接的排气容器22中进行改善。可控制接触管24的气氛的氢分压,例如通过控制与管24接触的气氛中的有效露点。
还可通过小心控制联结管24内的氧重新装载来建立熔炉14内的局部氧释放。因此,在第二熔炉14内的氧释放和熔体随后***可改善熔体的流动稳定性,通过 引入机械搅拌促进熔体的均匀化,和帮助排气。此外,如图1所示,可将气体(优选氧气)从源44鼓泡通入第二熔炉内的熔体,例如通过炉底部上的管或喷管(46)。可用阀门48来控制鼓泡通过熔体的气体体积。虽然通过合适的管线引入过量氧,从而使氧气鼓泡能在第一熔炉内实现,但这种鼓泡可导致第一炉中表面泡沫20的颗粒被带入熔体并与其混合,因此可能导致最后形成的玻璃缺陷增加。在第二熔炉内机械搅拌熔体也可通过用搅拌装置(例如桨式搅拌机)搅拌实现。然而,熔体内存在的高温可能会限制这些搅拌器的机械完整性。
根据本发明,与第一熔炉14内熔体表面不同,第二熔炉14内的玻璃熔体表面基本无泡沫、颗粒和其它污染特征,如本文所述。第二炉14内熔体的无泡沫表面可对位于熔体表面上方的燃烧器(未显示)提供更高的热效率。存在于熔炉12内的泡沫层的作用是使玻璃熔体表面与燃烧器产生的热隔绝。因此在第一熔炉12中产生用于熔融的约75%的热是由于电流的焦耳加热产生的,而约25%是来自玻璃熔体18上方的燃料-氧燃烧器。电熔融节约能量,但靠近电极的侧壁上的局部温度会很高,电熔融的耐火寿命通常比主要的燃烧熔融要短得多。在另一方面,第二熔炉14内玻璃熔体18的基本无泡沫的表面可允许用燃料-氧燃烧器向熔体提供显著量的热,而不是用电焦耳加热。
应重视的是上述本发明的实施方式,特别是任何“优选的”实施方式仅仅是可能的实施方式的例子,仅仅是为了清楚理解本发明的原理。可对上述本发明的实施方式进行许多改变和修改,而不违背本发明的精神和意义。所有这些改变和修改都应包括在本公开范围和本发明的范围内,并受到权利要求的保护。

Claims (9)

1.一种制备玻璃的方法,包括:
在第一熔炉内加热玻璃进料到第一温度,形成玻璃熔体;
使玻璃熔体从第一熔炉通过含有耐火金属的联结管流到与第一熔炉隔开的第二熔炉,一部分联结管置于第一熔炉的前壁内;
在第二熔炉内加热玻璃熔体到第二温度;和
其中流过联结管的玻璃熔体不在第一熔炉的前壁内加热,而通过第一熔炉和第二熔炉之间的联结管加热到基本与第一温度相当的温度。
2.如权利要求1所述的方法,其中在第二熔炉的后壁内加热联结管。
3.如权利要求1所述的方法,其中使电流流过联结管加热联结管。
4.如权利要求1所述的方法,其中第二熔炉的熔融率是第一熔炉熔融率的50%-90%之间。
5.如权利要求1所述的方法,其中第二温度高于第一温度。
6.如权利要求1所述的方法,其中第二熔炉内的玻璃熔体深度是第一熔炉内的玻璃熔体深度的65%-110%。
7.一种制造玻璃的设备,包括:
用于加热玻璃进料形成玻璃熔体的第一熔炉,所述第一熔炉包括前壁;
包括后壁的第二熔炉;
连接第一和第二熔炉,用于将玻璃熔体从第一熔炉运输到第二熔炉的耐火金属管,该耐火金属管包括第一端和与第一端相对的第二端,靠近第一端的一部分耐火金属管置于第一熔炉的前壁内,且靠近第二端的一部分耐火金属管置于第二熔炉的后壁内;
不加热置于第一熔炉前壁内的那部分耐火金属管;
加热置于第二熔炉后壁内的那部分耐火金属管;和
其中加热第一熔炉和第二熔炉之间的耐火金属管。
8.如权利要求7所述的设备,其中所述管是通过使电流流过管加热的。
9.如权利要求7所述的设备,其中第二熔炉的长度是第一熔炉长度的30%-50%。
CN2006800499066A 2005-12-29 2006-12-15 制造玻璃的方法和设备 Active CN101351414B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US11/323,848 2005-12-29
US11/323,848 US7454925B2 (en) 2005-12-29 2005-12-29 Method of forming a glass melt
PCT/US2006/047891 WO2007078875A2 (en) 2005-12-29 2006-12-15 Method of forming a glass melt

Publications (2)

Publication Number Publication Date
CN101351414A CN101351414A (zh) 2009-01-21
CN101351414B true CN101351414B (zh) 2011-09-07

Family

ID=38222949

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2006800499066A Active CN101351414B (zh) 2005-12-29 2006-12-15 制造玻璃的方法和设备

Country Status (7)

Country Link
US (1) US7454925B2 (zh)
EP (1) EP1968904A4 (zh)
JP (1) JP5139320B2 (zh)
KR (1) KR101377897B1 (zh)
CN (1) CN101351414B (zh)
TW (1) TWI339193B (zh)
WO (1) WO2007078875A2 (zh)

Families Citing this family (67)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102007008299B4 (de) * 2006-08-12 2012-06-14 Schott Ag Verfahren zur Herstellung von Gläsern, wobei die chemische Reduktion von Bestandteilen vermieden wird
WO2009115725A2 (fr) * 2008-03-03 2009-09-24 Saint-Gobain Glass France Procede d'elaboration de verre
US20090320525A1 (en) * 2008-06-26 2009-12-31 William Weston Johnson Method of bubbling a gas into a glass melt
US20100083704A1 (en) * 2008-10-08 2010-04-08 Paul Richard Grzesik Methods and apparatus for manufacturing glass sheet
US20100199721A1 (en) * 2008-11-12 2010-08-12 Keisha Chantelle Ann Antoine Apparatus and method for reducing gaseous inclusions in a glass
US8695378B2 (en) * 2008-11-26 2014-04-15 Corning Incorporated Apparatus for making glass and methods
US8408029B2 (en) 2009-11-17 2013-04-02 Corning Incorporated Method for thermally conditioning molten glass
US20110126594A1 (en) * 2009-12-01 2011-06-02 Asahi Glass Company, Limited Apparatus for producing molten glass, apparatus and process for producing glass products
TWI504578B (zh) * 2010-03-01 2015-10-21 Corning Inc 製造玻璃之裝置及方法
US9776903B2 (en) 2010-06-17 2017-10-03 Johns Manville Apparatus, systems and methods for processing molten glass
US9032760B2 (en) 2012-07-03 2015-05-19 Johns Manville Process of using a submerged combustion melter to produce hollow glass fiber or solid glass fiber having entrained bubbles, and burners and systems to make such fibers
US8973400B2 (en) 2010-06-17 2015-03-10 Johns Manville Methods of using a submerged combustion melter to produce glass products
US10322960B2 (en) 2010-06-17 2019-06-18 Johns Manville Controlling foam in apparatus downstream of a melter by adjustment of alkali oxide content in the melter
US8650914B2 (en) 2010-09-23 2014-02-18 Johns Manville Methods and apparatus for recycling glass products using submerged combustion
US8991215B2 (en) 2010-06-17 2015-03-31 Johns Manville Methods and systems for controlling bubble size and bubble decay rate in foamed glass produced by a submerged combustion melter
US8707740B2 (en) 2011-10-07 2014-04-29 Johns Manville Submerged combustion glass manufacturing systems and methods
US8769992B2 (en) 2010-06-17 2014-07-08 Johns Manville Panel-cooled submerged combustion melter geometry and methods of making molten glass
US8875544B2 (en) 2011-10-07 2014-11-04 Johns Manville Burner apparatus, submerged combustion melters including the burner, and methods of use
US8973405B2 (en) 2010-06-17 2015-03-10 Johns Manville Apparatus, systems and methods for reducing foaming downstream of a submerged combustion melter producing molten glass
US9021838B2 (en) 2010-06-17 2015-05-05 Johns Manville Systems and methods for glass manufacturing
US8707739B2 (en) 2012-06-11 2014-04-29 Johns Manville Apparatus, systems and methods for conditioning molten glass
US8997525B2 (en) 2010-06-17 2015-04-07 Johns Manville Systems and methods for making foamed glass using submerged combustion
US9096452B2 (en) 2010-06-17 2015-08-04 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US10173915B2 (en) 2011-02-18 2019-01-08 Gas Technology Institute Convective thermal removal of gaseous inclusions from viscous liquids
KR101411139B1 (ko) * 2011-03-31 2014-06-23 아반스트레이트코리아 주식회사 유리판의 제조 방법
US9533905B2 (en) 2012-10-03 2017-01-03 Johns Manville Submerged combustion melters having an extended treatment zone and methods of producing molten glass
WO2014055199A1 (en) 2012-10-03 2014-04-10 Johns Manville Methods and systems for destabilizing foam in equipment downstream of a submerged combustion melter
US9227865B2 (en) 2012-11-29 2016-01-05 Johns Manville Methods and systems for making well-fined glass using submerged combustion
CN103030260B (zh) * 2013-01-10 2015-09-23 湖北新华光信息材料有限公司 一种制作梯度光学玻璃的装置及其制作方法
US10131563B2 (en) 2013-05-22 2018-11-20 Johns Manville Submerged combustion burners
US10654740B2 (en) 2013-05-22 2020-05-19 Johns Manville Submerged combustion burners, melters, and methods of use
WO2014189506A1 (en) 2013-05-22 2014-11-27 Johns Manville Submerged combustion burners and melters, and methods of use
US9777922B2 (en) 2013-05-22 2017-10-03 Johns Mansville Submerged combustion burners and melters, and methods of use
WO2014189502A1 (en) 2013-05-22 2014-11-27 Johns Manville Improved burner for submerged combustion melting
SI3003997T1 (sl) 2013-05-30 2021-08-31 Johns Manville Potopni zgorevalni gorilniki s sredstvi za izboljšanje mešanja za talilne peči za steklo in uporaba
PL3003996T3 (pl) 2013-05-30 2020-12-28 Johns Manville Układy do topienia szkła ze spalaniem zanurzeniowym i sposoby ich zastosowania
US10858278B2 (en) 2013-07-18 2020-12-08 Johns Manville Combustion burner
JP6292090B2 (ja) * 2014-09-03 2018-03-14 旭硝子株式会社 溶解窯、溶解方法、および無アルカリガラス板の製造方法
JP6620411B2 (ja) * 2015-03-30 2019-12-18 日本電気硝子株式会社 ガラス物品の製造装置及びガラス物品の製造方法
US9586846B2 (en) 2015-04-13 2017-03-07 Corning Incorporated Apparatus and methods for processing molten material
CN107531537A (zh) * 2015-05-06 2018-01-02 康宁股份有限公司 用于处理熔融材料的设备和方法
CN107922232B (zh) 2015-06-10 2020-12-08 康宁股份有限公司 用于调整熔融玻璃的设备和方法
US9751792B2 (en) 2015-08-12 2017-09-05 Johns Manville Post-manufacturing processes for submerged combustion burner
TW201711967A (zh) * 2015-08-26 2017-04-01 美商.康寧公司 用於增進的均質性之玻璃熔融系統及方法
US10041666B2 (en) 2015-08-27 2018-08-07 Johns Manville Burner panels including dry-tip burners, submerged combustion melters, and methods
US10670261B2 (en) 2015-08-27 2020-06-02 Johns Manville Burner panels, submerged combustion melters, and methods
US10730779B2 (en) 2015-09-01 2020-08-04 Owens-Brockway Glass Container Inc. Glass manufacturing apparatus and related processes
US9815726B2 (en) 2015-09-03 2017-11-14 Johns Manville Apparatus, systems, and methods for pre-heating feedstock to a melter using melter exhaust
US20170066673A1 (en) * 2015-09-09 2017-03-09 Corning Incorporated Glass manufacturing apparatuses and methods for operating the same
US9982884B2 (en) 2015-09-15 2018-05-29 Johns Manville Methods of melting feedstock using a submerged combustion melter
US10837705B2 (en) 2015-09-16 2020-11-17 Johns Manville Change-out system for submerged combustion melting burner
US10081563B2 (en) 2015-09-23 2018-09-25 Johns Manville Systems and methods for mechanically binding loose scrap
WO2017063666A1 (de) * 2015-10-12 2017-04-20 Emp-Glass Gmbh Vorrichtung zur erzeugung einer dampfhaltigen gasatmosphäre und anlagenkomponente mit einer solchen vorrichtung
US10144666B2 (en) 2015-10-20 2018-12-04 Johns Manville Processing organics and inorganics in a submerged combustion melter
US10246362B2 (en) 2016-06-22 2019-04-02 Johns Manville Effective discharge of exhaust from submerged combustion melters and methods
US10337732B2 (en) 2016-08-25 2019-07-02 Johns Manville Consumable tip burners, submerged combustion melters including same, and methods
US10301208B2 (en) 2016-08-25 2019-05-28 Johns Manville Continuous flow submerged combustion melter cooling wall panels, submerged combustion melters, and methods of using same
US10196294B2 (en) 2016-09-07 2019-02-05 Johns Manville Submerged combustion melters, wall structures or panels of same, and methods of using same
US10233105B2 (en) 2016-10-14 2019-03-19 Johns Manville Submerged combustion melters and methods of feeding particulate material into such melters
TWI764952B (zh) 2016-11-08 2022-05-21 美商康寧公司 用於形成玻璃製品之設備及方法
KR102417853B1 (ko) * 2017-12-08 2022-07-06 코닝 인코포레이티드 유리 제조 장치 및 유리 제조 방법
WO2020068567A1 (en) * 2018-09-28 2020-04-02 Corning Incorporated Apparatus and method for mitigating electrochemical attack of precious metal components in a glass making process
CN113348153B (zh) 2018-11-21 2023-05-05 康宁公司 用于减少玻璃熔体表面上的气泡寿命的方法
EP3689831A1 (de) 2019-01-30 2020-08-05 Schott Ag Vorrichtung und verfahren zum herstellen eines glasprodukts sowie glasprodukt
CN110108125B (zh) * 2019-06-06 2023-11-28 烟台华正科信实业有限公司 一种用于加工硅酸盐熔体的熔融炉
US11339077B2 (en) 2019-10-30 2022-05-24 Owens-Brockway Glass Container Inc. Fining glass using high temperature and low pressure
CN113754239B (zh) * 2021-09-16 2023-04-07 江苏徐耐新材料科技股份有限公司 一种节能型全电玻璃熔炉

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594089A (en) * 1984-01-28 1986-06-10 Asahi Glass Co. Ltd. Method of manufacturing glass
CN1048534A (zh) * 1989-06-13 1991-01-16 皮尔念顿·公共有限公司 玻璃熔化
US5665137A (en) * 1995-08-15 1997-09-09 Owens-Corning Fiberglas Technology, Inc. Method for controlling secondary foam during glass melting
CN1306945A (zh) * 1999-08-16 2001-08-08 波克股份有限公司 使用炉顶安装的氧气燃料烧嘴对玻璃熔炉进行辅助加热的方法
JP2003192354A (ja) * 2001-12-20 2003-07-09 Nippon Electric Glass Co Ltd ガラス溶融炉及び溶融ガラスの加熱方法
JP2003292323A (ja) * 2002-04-01 2003-10-15 Nippon Electric Glass Co Ltd ガラス溶融炉及びガラスの溶融方法
CN1671631A (zh) * 2002-07-31 2005-09-21 法国圣戈班玻璃厂 玻璃熔化的方法与有串联槽的炉子

Family Cites Families (49)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2331052A (en) 1941-11-27 1943-10-05 Owens Illinois Glass Co Method of refining molten glass
US3015190A (en) 1952-10-13 1962-01-02 Cie De Saint Gobain Soc Apparatus and method for circulating molten glass
US2902524A (en) 1955-10-26 1959-09-01 Stratabar Process Company Method and apparatus for producing molten silicates
US2866838A (en) 1956-02-16 1958-12-30 Stratabar Process Company Method and apparatus for producing molten silicates
US3160692A (en) 1960-08-01 1964-12-08 Warren H F Schmieding Apparatus for controlling the flow of molten silicates through throat type continuous melting furnaces
US3206295A (en) * 1962-01-02 1965-09-14 Bausch & Lomb Lined glass furnace
US3457059A (en) 1962-03-19 1969-07-22 Corning Glass Works Flow control of molten material in a glass furnace
US3811858A (en) 1972-06-09 1974-05-21 Ppg Industries Inc Method and apparatus for mixing molten glass by bubbling
US3997710A (en) 1974-09-16 1976-12-14 Owens-Corning Fiberglas Corporation Glass furnace having electrically heated submerged throat and method of operation
US4029887A (en) * 1976-04-27 1977-06-14 Corning Glass Works Electrically heated outlet system
GB1590431A (en) * 1976-05-28 1981-06-03 Alcan Res & Dev Process for the production of aluminium
US4352687A (en) 1981-03-16 1982-10-05 Corning Glass Works Furnace delivery system
US4365987A (en) 1981-11-04 1982-12-28 Corning Glass Works Apparatus and method of conditioning and conveying thermoplastic material
US4366571A (en) * 1981-03-16 1982-12-28 Corning Glass Works Electric furnace construction
US4388721A (en) 1981-08-03 1983-06-14 Owens-Corning Fiberglas Corporation Throat upwell baffle
US4426217A (en) 1982-05-17 1984-01-17 Owens-Corning Fiberglas Corporation Electric melting of solidified glass in melting units
FR2550523B1 (fr) * 1983-08-09 1986-07-25 Saint Gobain Vitrage Procede et dispositif de fusion, d'affinage et d'homogeneisation de verre, et leurs applications
WO1985001497A1 (en) * 1983-09-29 1985-04-11 Owens-Corning Fiberglas Corporation Electrical melting of solidified glass in melting units
DE3590523C2 (zh) * 1984-10-17 1988-09-01 Trest "Juzvodoprovod", Krasnodar, Su
GB8501137D0 (en) * 1985-01-17 1985-02-20 Lucas Ind Plc Master cylinder flange attachment
JPS6283322A (ja) * 1985-10-08 1987-04-16 Toshiba Glass Co Ltd 垂直形白金連続ガラス溶融炉
US4726831A (en) * 1987-01-12 1988-02-23 Corning Glass Works Molten glass delivery and conditioning system
DE3839346C1 (zh) * 1988-11-22 1990-06-13 Sorg Gmbh & Co Kg, 8770 Lohr, De
JP2817168B2 (ja) 1989-02-21 1998-10-27 旭硝子株式会社 ガラスの清澄装置
JP2515898B2 (ja) * 1989-11-30 1996-07-10 ホーヤ株式会社 溶融装置
JPH05229831A (ja) 1992-02-20 1993-09-07 Asahi Glass Co Ltd 溶融物の均質化方法及び装置
DE4207059C1 (de) 1992-03-06 1993-10-21 Schott Glaswerke Verfahren zur Läuterung oxidischer Schmelzen
US5451284A (en) * 1992-12-25 1995-09-19 Nippon Kokan Koji Kabushiki Kaisha Self-mobile work vehicle moveable through pipeline and method and apparatus for lining interconnecting branch pipe using the vehicle
JP2952398B2 (ja) * 1994-11-08 1999-09-27 俊臣 林 フランジつきパイプの接合方法
US5939016A (en) * 1996-08-22 1999-08-17 Quantum Catalytics, L.L.C. Apparatus and method for tapping a molten metal bath
US5785726A (en) * 1996-10-28 1998-07-28 Corning Incorporated Method of reducing bubbles at the vessel/glass interface in a glass manufacturing system
US6647747B1 (en) * 1997-03-17 2003-11-18 Vladimir B. Brik Multifunctional apparatus for manufacturing mineral basalt fibers
US5961686A (en) 1997-08-25 1999-10-05 Guardian Fiberglass, Inc. Side-discharge melter for use in the manufacture of fiberglass
JPH11236237A (ja) * 1998-02-23 1999-08-31 Nippon Electric Glass Co Ltd ガラス繊維製造装置
DE19908492A1 (de) 1998-03-05 1999-09-09 Corning Inc Versenktes Überführungsrohr für die Glaszuführung
JP4225626B2 (ja) * 1999-04-02 2009-02-18 三菱電機株式会社 光源装置
US6334337B1 (en) 1999-08-17 2002-01-01 Pedro Buarque de Macedo Air bubbler to increase glass production rate
DE19939781C2 (de) * 1999-08-21 2003-06-18 Schott Glas Skulltiegel für das Erschmelzen oder das Läutern von anorganischen Substanzen, insbesondere von Gläsern und Glaskeramiken
DE19939771B4 (de) 1999-08-21 2004-04-15 Schott Glas Verfahren zur Läuterung von Glasschmelzen
DE10003948B4 (de) 2000-01-29 2006-03-23 Schott Ag Verfahren zum Erschmelzen, Läutern und Homogenisieren von Glasschmelzen
DE10009425A1 (de) 2000-02-28 2001-09-06 Schott Glas Verfahren zur Sauerstoffläuterung von Glasschmelzen
US6286337B1 (en) * 2000-06-29 2001-09-11 Corning Incorporated Tubing system for reduced pressure finer
DE10042771B4 (de) 2000-08-31 2004-02-12 Schott Glas Verfahren zur Steuerung und Einstellung des Redoxzustandes von Redox-Läutermitteln in einer Glasschmelze
EP1184343B1 (de) 2000-09-01 2006-05-24 Schott Ag Vorrichtung zum Läutern einer Glasschmelze
DE10136875C2 (de) 2000-09-02 2003-04-24 Schott Glas Verfahren zum Eindüsen von Gas in eine Glasschmelze
DE10141585C2 (de) * 2001-08-24 2003-10-02 Schott Glas Edelmetallrohr zum Führen einer Glasschmelze
DE10253222B4 (de) * 2002-02-26 2008-01-17 Ept Eglass Platinum Technology Gmbh Verfahren und Vorrichtung zum Läutern von schmelzflüssigem Glas
US20060174655A1 (en) * 2003-04-15 2006-08-10 Hisashi Kobayashi Process of fining glassmelts using helium bubblles
US7584632B2 (en) * 2005-07-28 2009-09-08 Corning Incorporated Method of increasing the effectiveness of a fining agent in a glass melt

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4594089A (en) * 1984-01-28 1986-06-10 Asahi Glass Co. Ltd. Method of manufacturing glass
CN1048534A (zh) * 1989-06-13 1991-01-16 皮尔念顿·公共有限公司 玻璃熔化
US5665137A (en) * 1995-08-15 1997-09-09 Owens-Corning Fiberglas Technology, Inc. Method for controlling secondary foam during glass melting
CN1306945A (zh) * 1999-08-16 2001-08-08 波克股份有限公司 使用炉顶安装的氧气燃料烧嘴对玻璃熔炉进行辅助加热的方法
JP2003192354A (ja) * 2001-12-20 2003-07-09 Nippon Electric Glass Co Ltd ガラス溶融炉及び溶融ガラスの加熱方法
JP2003292323A (ja) * 2002-04-01 2003-10-15 Nippon Electric Glass Co Ltd ガラス溶融炉及びガラスの溶融方法
CN1671631A (zh) * 2002-07-31 2005-09-21 法国圣戈班玻璃厂 玻璃熔化的方法与有串联槽的炉子

Also Published As

Publication number Publication date
TW200728223A (en) 2007-08-01
JP5139320B2 (ja) 2013-02-06
TWI339193B (en) 2011-03-21
JP2009522194A (ja) 2009-06-11
KR101377897B1 (ko) 2014-03-25
CN101351414A (zh) 2009-01-21
US7454925B2 (en) 2008-11-25
WO2007078875A3 (en) 2007-12-27
EP1968904A4 (en) 2010-03-17
WO2007078875A2 (en) 2007-07-12
EP1968904A2 (en) 2008-09-17
KR20080083690A (ko) 2008-09-18
US20070151297A1 (en) 2007-07-05

Similar Documents

Publication Publication Date Title
CN101351414B (zh) 制造玻璃的方法和设备
CN101734841B (zh) 用来制造玻璃的设备和方法
CN102307821B (zh) 用来减少玻璃中的气态内含物的设备和方法
KR920003221B1 (ko) 에너지 절약형 유리 용해 방법 및 그 방법을 수행하기 위한 유리 용해로
CN102076618B (zh) 将气体鼓入玻璃熔体的方法
RU2471727C2 (ru) Устройство и способ плавления остекловывающихся материалов
KR101011418B1 (ko) 유리 용융로
JP5674156B2 (ja) ガラス溶融炉、溶融ガラスの製造方法、ガラス製品の製造装置、及びガラス製品の製造方法
KR101899171B1 (ko) 유리 용융로, 유리 소지의 변성 방법, 용융 유리의 제조 방법, 유리 제품의 제조 방법 및 유리 제품의 제조 장치
CN101253124A (zh) 提高澄清剂在玻璃熔体中的效力的方法
CN101679090A (zh) 减少玻璃制造工艺中气态内含物的方法
RU2473474C1 (ru) Способ варки стекломассы и стекловаренная печь с барботированием слоя стекломассы
CZ302569B6 (cs) Zpusob výroby rafinovaného skla
CN102503078A (zh) 两槽式玻璃池炉
JP4446283B2 (ja) ガラス溶融炉
EP3647280A1 (en) Method and apparatus of continuous intensive glass melting
US20120272685A1 (en) Melting method and apparatus
TWI504578B (zh) 製造玻璃之裝置及方法
CN118251366A (zh) 用于供应浮法单元的使用电熔化的混合型玻璃制备熔炉

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant