WO2023014127A1 - 건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법 - Google Patents

건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법 Download PDF

Info

Publication number
WO2023014127A1
WO2023014127A1 PCT/KR2022/011591 KR2022011591W WO2023014127A1 WO 2023014127 A1 WO2023014127 A1 WO 2023014127A1 KR 2022011591 W KR2022011591 W KR 2022011591W WO 2023014127 A1 WO2023014127 A1 WO 2023014127A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrode
binder resin
dry
crystallinity
mixture
Prior art date
Application number
PCT/KR2022/011591
Other languages
English (en)
French (fr)
Inventor
강성욱
한재성
신동목
신동오
윤경환
유광호
Original Assignee
주식회사 엘지에너지솔루션
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지에너지솔루션 filed Critical 주식회사 엘지에너지솔루션
Priority to JP2023572196A priority Critical patent/JP2024519967A/ja
Priority to CN202280046692.6A priority patent/CN117597792A/zh
Priority to CA3227840A priority patent/CA3227840A1/en
Publication of WO2023014127A1 publication Critical patent/WO2023014127A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • H01G11/86Processes for the manufacture of hybrid or EDL capacitors, or components thereof specially adapted for electrodes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/04Processes of manufacture in general
    • H01M4/043Processes of manufacture in general involving compressing or compaction
    • H01M4/0435Rolling or calendering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/021Physical characteristics, e.g. porosity, surface area
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrode for an electrochemical device including a dry electrode film and a method for manufacturing the same.
  • the present invention relates to the dry electrode film and a manufacturing method thereof.
  • the present invention relates to a mixed powder for an electrode used to manufacture the dry electrode film and a method for manufacturing the same.
  • a secondary battery is a representative example of an electrochemical device using such electrochemical energy, and its use area is gradually expanding.
  • representative lithium secondary batteries are used not only as an energy source for mobile devices, but also as vehicles that use fossil fuels such as gasoline vehicles and diesel vehicles, which are one of the major causes of air pollution. Its use as a power source for automobiles is being realized, and its use area is expanding to applications such as power auxiliary power sources through gridization.
  • the manufacturing process of such a lithium secondary battery is largely divided into three steps: an electrode manufacturing process, an electrode assembly manufacturing process, and a conversion process.
  • the electrode manufacturing process is again divided into an electrode mixture mixing process, an electrode coating process, a drying process, a rolling process, a slitting process, a winding process, and the like.
  • the electrode mixture mixing process is a process of mixing components for forming an electrode active layer in which an actual electrochemical reaction occurs in an electrode. It is prepared in the form of a slurry having fluidity by mixing a binder for binding and adhesion to a current collector, and a solvent for imparting viscosity and dispersing powder.
  • the mixed composition for forming the electrode active layer is also referred to as an electrode mixture in a broad sense. Thereafter, an electrode coating process of applying the electrode mixture on an electrically conductive current collector and a drying process for removing the solvent contained in the electrode mixture are performed, and the electrode is additionally rolled to manufacture a predetermined thickness.
  • the solvent contained in the electrode mixture evaporates during the drying process, defects such as pinholes or cracks may be induced in the previously formed electrode active layer.
  • the powder floating phenomenon caused by the difference in solvent evaporation rate that is, the powder in the area dried first floats and forms a gap with the area dried relatively later, resulting in electrode quality this may deteriorate.
  • the dry electrode is generally manufactured by laminating a free standing film including an active material, a binder, a conductive material, and the like and manufactured in a film form on a current collector.
  • an active material, a carbon material as a conductive material, and a fiberizable binder are mixed together in a blender, etc., and the binder is fiberized through a high shear mixing process such as jet-milling. and calendering the mixture into a film form to prepare a free standing film. Then, it is produced by laminating the free-standing film produced after calendering on the current collector.
  • the present invention is to solve the above problems, and an object of the present invention is to provide a dry electrode and a method for manufacturing the same, in which micronization of the active material is minimized and fiberization of the binder is maximized.
  • an object of the present invention is to provide a dry electrode with improved mechanical properties such as flexibility and strength, and a manufacturing method thereof.
  • an object of the present invention is to provide a dry electrode manufacturing method to which process conditions based on the crystallinity of a binder resin are applied.
  • a first aspect of the present invention relates to an electrode for an electrochemical device, wherein the electrode includes a dry electrode film manufactured by a dry manufacturing process that does not use a solvent, and the dry electrode film includes an electrode active material, a conductive material, and a binder A resin and a binder resin included in the dry electrode film have a crystallinity of 10% or less.
  • the dry electrode film has a tensile strength of 0.5 MPa or more in the machine direction (MD).
  • the dry electrode film has a tensile elongation of 2% or more.
  • the electrode film has a porosity of 20 vol% to 50 vol%.
  • the electrode is according to any one of the first to fourth aspects, the method comprising: (a) an electrode active material, a conductive material, and a binder resin preparing a powdery blend;
  • step (d) calendering the mixed powder for the electrode to obtain a free standing type dry electrode film, wherein the crystallinity (d) of the binder resin included in the dry electrode film obtained in step (d) is It is less than 10%.
  • the crystallinity (c) of the binder resin included in the electrode mixture powder obtained in step (c) is 20% or less.
  • the crystallinity (a) of the binder resin contained in the mixture obtained in step (a) is 50% or less.
  • step (a) is performed under conditions of 500 rpm to 30,000 rpm.
  • the step (b) is performed at a speed of 100 rpm or less.
  • the step (b) is performed under a pressure of 0.5 kgf/cm 2 to 10 kgf/cm 2 .
  • the step (b) is performed under normal pressure or higher conditions.
  • the binder resin includes polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyolefin, or a mixture of two or more of them is to do
  • the electrode further includes a current collector, and the dry electrode film is disposed on at least one side or both sides of the current collector.
  • a fourteenth aspect of the present invention according to any one of the fifth to eleventh aspects further comprises preparing a current collector, disposing the dry electrode film on at least one side of the current collector, and laminating the dry electrode film.
  • a fifteenth aspect of the present invention relates to a secondary battery, comprising the dry electrode according to any one of the first to fourth aspects, wherein the dry electrode is a positive electrode, and an electrode assembly including the positive electrode, the negative electrode, and the separator It is built into the battery case together with the lithium-containing non-aqueous electrolyte.
  • a sixteenth aspect of the present invention relates to an energy storage device including the secondary battery according to the fifteenth aspect as a unit cell.
  • a seventeenth aspect of the present invention relates to a method for manufacturing electrode powder for manufacturing a dry electrode film, the manufacturing method comprising: (a) preparing a powdery blend including an electrode active material, a conductive material, and a binder resin;
  • the binder resin included in the electrode powder has a crystallinity of 20% or less
  • the binder resin includes polytetrafluoroethylene (PTFE), polyolefin, or a mixture thereof.
  • An eighteenth aspect of the present invention is a mixed powder for an electrode prepared by the method according to the seventeenth aspect, wherein the mixed powder for an electrode includes an electrode active material, a conductive material, and a binder resin, and the binder resin is polytetrafluorocarbon. It includes polyethylene (Polytetrafluoroethylene, PTFE), PVDF, polyolefin, or a mixture of two or more of them, and the crystallinity of the binder resin included in the mixed powder for the electrode is 20% or less.
  • the mixed powder for an electrode includes an electrode active material, a conductive material, and a binder resin
  • the binder resin is polytetrafluorocarbon. It includes polyethylene (Polytetrafluoroethylene, PTFE), PVDF, polyolefin, or a mixture of two or more of them, and the crystallinity of the binder resin included in the mixed powder for the electrode is 20% or less.
  • a nineteenth aspect of the present invention relates to a method for manufacturing a dry electrode film comprising the steps of calendering the mixed powder for electrode to obtain a free standing type dry electrode film, wherein the mixed powder for electrode is the seventeenth It is obtained by the method according to the aspect, and the crystallinity (d) of the binder resin included in the electrolytic electrode film is 10% or less.
  • a twentieth aspect of the present invention relates to a dry electrode film produced by the method according to the nineteenth aspect, and has a tensile strength of 0.5 MPa or more in the machine direction (MD), a tensile elongation of 2% or more, and a porosity of is 20 vol% to 50 vol%.
  • the dry electrode manufacturing process according to the present invention introduces a process of pulverizing after a high-temperature, low-shear mixing process when preparing mixed powder for an electrode, thereby minimizing the pulverization of the active material and preventing the cutting of the fibrous binder.
  • a dry electrode using the powder mixture for an electrode there is an effect of improving mechanical properties such as flexibility and strength of the dry electrode.
  • the dry electrode manufacturing method according to the present invention can determine and confirm the degree of fine fiberization of the binder resin and whether the process of each step is completed from the crystallinity of the binder resin in each step, and based on this, the process of the mixed powder for electrode or electrode film Conditions can be controlled, making it easy and efficient to check and control process conditions and process completion time.
  • the dry electrode manufacturing method according to the present invention is advantageous for fine fiberization by undergoing low shear kneading and pulverization through a kneader, and is advantageous for mass production because there is no problem of clogging of the flow path due to aggregation of components.
  • Example 1 shows a DSC thermal analysis graph according to Example 1 of the present invention.
  • Example 2 shows a DSC thermal analysis graph according to Example 2 of the present invention.
  • FIG. 3 is a process flow chart showing the manufacturing sequence of the dry electrode of the present invention.
  • the electrochemical device may be, for example, a secondary battery, and more specifically, the secondary battery may be a lithium ion secondary battery.
  • the electrode includes a dry electrode film manufactured by a dry manufacturing process in which a solvent for dispersing electrode components is not used during the electrode manufacturing process.
  • the dry electrode film includes an electrode active material, a conductive material, and a binder resin, and the binder resin included in the dry electrode film has a crystallinity of 10% or less.
  • the crystallinity may be 5% or less.
  • the binder resin When the crystallinity range is 10% or less, the binder resin is highly fibrous, so flexibility of the dry electrode film can be secured. Therefore, as will be described later, it is easy to manufacture a dry electrode film in the form of a strip in the calendering process to which a roll to roll continuous process is applied, and after manufacturing the electrode film, it is wound or re-wound in a roll form. When shipped, the shape is stably maintained without damage such as fracture or cracking. In addition, it is advantageous to ensure that the binding force with the current collector exceeds a predetermined strength.
  • the dry electrode film preferably has a tensile strength of 0.5 MPa or more in the machine direction (MD).
  • the dry electrode film may have a tensile strength of 10.0 MPa or less, 5.0 MPa or less, or 3.0 MPa or less in the machine direction (MD).
  • MD machine direction
  • the tensile strength satisfies the above range, it is possible to secure sufficient mechanical strength when manufacturing a freestanding type dry electrode, so that manufacturing and handling are easy.
  • the mechanical strength is weak and can be easily broken.
  • the tensile strength is excessively high, since the tensile elongation increases together, the fairness is lowered as follows and the film thickness is not uniform.
  • the dry electrode film preferably has a tensile elongation of 2% or more.
  • the dry electrode film may have a tensile elongation of 30% or less, 20% or less, or 10% or less.
  • the porosity of the dry electrode film may be 20 vol% to 50 vol%.
  • a second aspect of the present invention relates to a method for manufacturing the electrode.
  • the crystallinity of the binder resin included in the dry electrode film is controlled to 10% or less.
  • the crystallinity is zero or less than 10% in the dry electrode.
  • step (b) may be performed under a temperature condition of 70 °C to 200 °C.
  • the object to which the kneading process is applied may be controlled at a temperature of 70° C. to 200° C.
  • the crystallinity (a) of the binder resin is 60% or less, preferably 50% or less.
  • the crystallinity (c) of the binder resin in the electrode mixture powder obtained in step (c) is 20% or less
  • the crystallinity (d) of the binder resin in the dry electrode film obtained in step (d) is 10% it is below
  • determining the completion of each step of (a) to (d) is to check the crystallinity of the product obtained in each step. If the crystallinity of the binder resin of the product in each process step satisfies the crystallinity degree determined in advance in each step, the next step process is performed.
  • step (a) when the crystallinity of the binder resin of the powdery blend is 60% or less, preferably 50% or less, the process of step (a) is terminated, and the obtained product is introduced into step (b) .
  • step (c) when the crystallinity of the binder resin in the mixed powder for electrode is 20% or less, the process of step (c) is terminated, and the subsequently obtained result is introduced into step (d).
  • step (d) is regarded as complete when the crystallinity of the binder resin in the obtained dry electrode film satisfies 10% or less.
  • steps (a), (b) and (d) the process conditions in which the crystallinity within the range can be controlled are experimentally confirmed in each step, and the experimentally set process is performed in each step. can be applied to
  • the crystallinity (Xc) can be measured through differential scanning calorimetry (DSC), and is based on the temperature (peak temperature) at the time of crystallization showing the highest enthalpy. Specifically, the crystallinity is expressed in % by dividing the melting enthalpy ( ⁇ H m ) value actually measured by DSC by the melting enthalpy ( ⁇ H m 0 ) (equilibrium heat of fusion) of a theoretically perfect crystal (crystallinity 100%) and expressed in %, can be calculated by 1.
  • the melting enthalpy value ( ⁇ Hm0) of the theoretical perfect crystal may refer to a polymer handbook (J.
  • a powdery blend including an electrode active material, a conductive material, and a binder is prepared (step a).
  • the mixing to prepare the powdery blend is performed to obtain a uniform blend of the electrode active material, the conductive material, and the binder resin, and preferably to adjust the crystallinity of the binder resin in the obtained powdery blend to 50% or less. It will be. Since the above materials are mixed in the form of powder, it is not limited and various methods may be applied as long as they enable uniform mixing. However, since the present invention is manufactured with a dry electrode that does not use a solvent, the mixing may be performed by dry mixing. For example, it may be performed by injecting the materials into a device such as a mixer or blender.
  • the mixing time is not particularly limited, but may be performed for 1 second to 20 minutes. For example, it may be performed for 1 second to 10 minutes.
  • the mixing speed is not particularly limited, but may be appropriately controlled within the range of about 500 rpm to 30,000 rpm. For example, it may be controlled in the range of 500rmp to 20,000rpm.
  • the temperature of the mixture may be controlled to 70 °C or less or 60 °C or less.
  • the mixing temperature exceeds 70° C., it may be difficult to obtain a uniform mixture due to the adhesion of the materials to the mixing device.
  • the lower limit of the temperature of the mixture is not particularly limited, and in one embodiment of the present invention, it may be carried out at a temperature of 20 °C or more.
  • the mixing is performed in a mixer at 500 rpm to 20,000 rpm for 30 seconds to 10 minutes or at 5,000 rpm to 20,000 rpm for 30 seconds to 2 minutes in a mixer in terms of high uniformity and control of the crystallinity of the binder resin, and the temperature of the mixture is 70 ° C. or less. It can be prepared by mixing at a temperature of, or 1000 rpm to 15,000 rpm or 10,000 rpm to 15,000 rpm for 30 seconds to 1 minute or 30 seconds to 7 minutes at a temperature of 60 ° C or less.
  • the crystallinity of the binder resin in the mixture obtained by the mixing is 60% or less, preferably 50% or less.
  • the speed (rpm) is increased and/or the process time is increased to pulverize the binder lumps into primary particles so that they do not agglomerate, , it is desirable to partially advance coarse fiberization.
  • step (a) If the crystallinity of the blend mixture obtained in step (a) is not within the above range and is not high, fiberization of the binder resin is not easy in the low shear kneading process (step b) described later, and fibers are formed on the surface of the binder. It may not be sufficiently formed or the process time required for fiberization of the binder resin may be increased.
  • the electrode active material may be micronized/damaged or the fibers may be cut.
  • the crystallinity of the binder resin in the mixture blend may be controlled to 30% or more, 35% or more, or 40% or more.
  • the binder resin is not limited to a specific one as long as it can be fibrillated by step (a) and/or step (b) described later.
  • the binder resin may be fibrous even in step (a), but the fiber formed in step (a) is thick and is difficult to be thinned enough to achieve tensile elongation with tensile strength required in a dry electrode.
  • the fine fiberization of the binder resin is mainly performed through (b) to be described later.
  • the fibrillation refers to a treatment of thinning and dividing a high-molecular polymer, and may be performed using, for example, mechanical shear force.
  • the surface of the polymer fibers fibrillated in this way is unraveled, and a large number of fine fibers (fibrils) are generated.
  • the binder resin may include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), polyolefin, or a mixture of two or more thereof, and in detail, polytetrafluoroethylene ( Polytetrafluoroethylene (PTFE) may be included, and more specifically, polytetrafluoroethylene (PTFE) may be included.
  • the polytetrafluoroethylene (PTFE) may be included in an amount of 30% by weight or more based on the total weight of the binder resin.
  • the binder resin may additionally include polyethylene oxide (PEO) and/or polyvinylidene fluoride-cohexafluoropropylene (PVdF-HFP) in addition to the aforementioned components.
  • the dry electrode may be a cathode, and the electrode active material may be a cathode active material.
  • the cathode active material is not limited to a specific component as long as it is in the form of lithium transition metal oxide, lithium metal iron phosphate, or metal oxide.
  • the dry electrode may be an anode
  • the active material may be a cathode active material.
  • the negative electrode active material may include carbon such as non-graphitizing carbon and graphite-based carbon; Li x Fe 2 O 3 (0 ⁇ x ⁇ 1), Li x WO 2 (0 ⁇ x ⁇ 1), Sn x Me 1-x Me' y O z (Me: Mn, Fe, Pb, Ge; Me' : metal composite oxides such as Al, B, P, Si, elements of groups 1, 2, and 3 of the periodic table, halogens; 0x ⁇ 1; 1 ⁇ y ⁇ 3; 1 ⁇ z ⁇ 8); lithium metal; lithium alloy; silicon-based alloys; tin-based alloys; silicon-based oxides such as SiO, SiO/C, and SiO 2 ; SnO, SnO 2 , PbO, PbO 2 , Pb 2 O 3 , Pb 3 O 4 , Sb 2 O 3 , Sb 2 O 4 , Sb 2 O 5 ,
  • the dry electrode may be a positive electrode in detail
  • the active material may be a positive electrode active material in detail, and more specifically, lithium transition metal oxide, lithium nickel-manganese-cobalt oxide, lithium nickel- It may be an oxide in which a part of manganese-cobalt oxide is substituted with another transition metal, lithium iron phosphate, and the like.
  • the conductive material is not particularly limited as long as it has conductivity without causing chemical change in the battery, and examples include graphite such as natural graphite or artificial graphite; carbon black such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and summer black; conductive fibers such as carbon fibers and metal fibers; metal powders such as carbon fluoride, aluminum, and nickel powder; conductive whiskeys such as zinc oxide and potassium titanate; conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used, but in detail, 1 selected from the group consisting of activated carbon, graphite, carbon black, and carbon nanotubes for uniform mixing of the conductive material and improvement of conductivity. It may include more than one species, and more specifically, it may include activated carbon.
  • the mixing ratio of the electrode active material, the conductive material, and the binder may include 80 to 98% by weight: 0.5 to 10% by weight: 0.5 to 10% by weight of the electrode active material: conductive material: binder resin, in detail, 85 to 98% by weight: 0.5 to 5% by weight: 0.5 to 10% by weight may be included.
  • the binder resin may become excessively fibrous in the subsequent kneading process and affect the process, and if it is too small, sufficient fiberization may not be achieved, resulting in the formation of a mixture lump. There may be a problem of not being able to aggregate to a certain extent, making it difficult to manufacture a dry electrode film, or deteriorating physical properties of the dry electrode film.
  • a filler which is a component that suppresses expansion of the electrode, may be additionally added to the mixture, and the filler is not particularly limited as long as it does not cause chemical change in the battery and is a fibrous material.
  • olefinic polymers such as polyethylene and polypropylene; Fibrous materials such as glass fibers and carbon fibers are used.
  • step (a) in the powdery blend obtained in step (a), the crystallinity of the binder resin is checked, and when the determined crystallinity is 60% or less, preferably 50% or less, step (a) The process of may be terminated, and the obtained product may be introduced into step (b). The degree of crystallinity can be confirmed at each step while processes (a) to (d) are performed.
  • step (a) in the step (a), the process conditions in which the crystallinity of the binder resin of the powdery blend can be controlled to 60% or less, or 50% or less are experimentally confirmed, and the experimentally set process is performed as described above. Step (a) is applicable.
  • step b As a process for fiberizing the binder resin with respect to this mixture obtained above, a kneading step is performed (step b).
  • the fiberization binder has high uniformity of fiber thickness and/or length.
  • the kneading is not limited to a specific method.
  • the kneading may be performed through a kneader such as a kneader.
  • a twin screw extruder a single screw extruder, a batch type kneader, a continuous type kneader, etc. may be used as the kneader.
  • This kneading is a step of forming a lumpy blend of 100% solid content by combining or connecting the electrode active material and conductive material powders while the binder resin is fibrous.
  • the kneading in step (b) may be controlled at a speed of 10 rpm to 100 rpm.
  • the kneading may be controlled at a speed of 20 rpm or more or 70 rpm or less within the above range.
  • the kneading may be performed for 1 minute to 30 minutes. For example, it may be performed for 3 minutes to 10 minutes at a speed of 20 rpm to 70 rpm within the above range.
  • the shear rate in the kneading step, may be controlled in the range of 5/sec to 1,000/sec. In a specific embodiment of the present invention, the kneading may be performed for 1 minute to 30 minutes, and the shear rate may be controlled in the range of 10/sec to 500/sec.
  • the kneading step may be performed under conditions of high temperature and atmospheric pressure or higher.
  • the kneading may be performed at a range of 70°C to 200°C, specifically, 90°C to 150°C.
  • the temperature may be the temperature inside the kneader or the temperature of the object to be kneaded. Alternatively, both temperatures may be controlled within the above range.
  • the kneading process may be performed under a pressure of 0.5 kgf/cm 2 to 10 kgf/cm 2 , more specifically, under a pressure of 1 kgf/cm 2 to 8 kgf/cm 2 , for example, at a pressure of 8 kgf/cm 2 or less above normal pressure.
  • a pressure of 0.5 kgf/cm 2 to 10 kgf/cm 2 more specifically, under a pressure of 1 kgf/cm 2 to 8 kgf/cm 2 , for example, at a pressure of 8 kgf/cm 2 or less above normal pressure.
  • the process conditions in the kneading step may be controlled according to the characteristics of the input material.
  • the process conditions may be appropriately adjusted according to the particle diameter of the injected electrode active material particles.
  • the particle size of the electrode active material particles is large, fiberization may proceed relatively easily compared to electrode active materials having a small particle size. Accordingly, when the particle size of the electrode active material is large, a relatively low rotation speed and/or shear rate may be applied, and when the particle size of the electrode active material is small, a relatively high rotation speed and/or shear rate may be applied.
  • even in the case of temperature or pressure it can be adjusted in consideration of these material characteristics.
  • step c a step of obtaining mixed powder for an electrode by pulverizing the lumpy blend material prepared through the step of (b) kneading is performed.
  • the lumpy blend produced through the (b) kneading step may be directly put into a calendering process to form a sheet, but in this case, strong pressure and high temperature are required to press the mixture lump to form a thin film, Accordingly, a problem may occur in which the density of the dry electrode film is too high or a uniform film cannot be obtained in terms of thickness or density. Accordingly, according to the present invention, the mass of the mixture prepared in step (b) (blended blend in the form of lumps) is subjected to the crushing step.
  • the grinding is not particularly limited, but may be performed using a known grinding device such as a blender or grinder.
  • the grinding speed may be controlled within the range of 100 rpm to 30,000 rpm or 3000 rpm to 30,000 rpm.
  • the grinding time may be appropriately controlled within a range of 1 second to 10 minutes.
  • the grinding speed and time are not particularly limited to the above ranges.
  • the grinding is performed at a speed of 500 rpm to 20,000 rpm or 5000 rpm to 20000 rpm for 30 seconds to 10 minutes, or at a speed of 700 rpm to 18000 rpm or 10000 rpm to 18000 rpm for 30 seconds to 5 minutes or 30 seconds to 1 minute can be performed
  • the particle size of the electrode mixture powder obtained in step (c) may preferably have a range of 30 ⁇ m to 180 ⁇ m in consideration of film formation.
  • the particle size may be measured by applying a particle size distribution analyzer (PSA) (Model Mastersizer 300, Malvem Instruments LTD). Specifically, a laser is irradiated, and the incident laser detects the degree of light scattering scattered by the particles, and through this, the particle diameter can be measured.
  • PSD particle size distribution analyzer
  • a wet method in which particles are dispersed in a solvent for measurement and a dry method in which particles are measured in a powder state may be applied.
  • the crystallinity (c) of the binder resin included in the mixed electrode powder is 20% or less, and is lower than the crystallinity (a) of the binder resin included in the powdery blend.
  • the crystallinity (d) of the binder resin included in the dry electrode film after calendering may be higher. That is, crystallinity may be further reduced through the progress of the calendering step.
  • the crystallinity (c) of the binder resin exceeds 20%, it is difficult to manufacture a film of uniform quality in a subsequent calendering process.
  • the crystallinity of the obtained electrode mixture powder exceeds 20%, the crystallinity can be adjusted by adjusting at least one of the preceding process conditions, kneading time, kneading temperature, rotation speed (rpm), and shear rate.
  • the degree of crystallinity can be adjusted by increasing the kneading time to promote fiberization of the binder.
  • the crystallinity (c) of the binder resin in the electrode mixture powder obtained in step (c) is preferably 20% or less.
  • the degree of crystallinity (c) exceeds 20%, fiberization is not sufficient, and the tensile strength and tensile elongation of the dry electrode obtained through the calendering process described below may be reduced.
  • step (c) in the mixed powder for electrode obtained in step (c), the crystallinity of the binder resin is checked, and when the confirmed crystallinity (c) is 20% or less, the process of step (c) , and the obtained result may be put into step (d). The degree of crystallinity can be confirmed at each step while processes (a) to (d) are performed.
  • step (c) the process conditions in which the crystallinity of the binder resin can be controlled to 20% or less are experimentally confirmed, and the set process conditions are changed to the steps (b) and/or (c). can be applied to
  • a dry electrode is prepared using this powder for an electrode (step d). Specifically, a step of preparing a dry electrode film by calendering the mixed powder for an electrode prepared by completing the crushing step as described above is performed.
  • Such calendering may be a step of manufacturing the mixed powder for an electrode by processing it into a film form, for example, by pressing it into a film form to have an average thickness of 50 ⁇ m to 300 ⁇ m.
  • the calendering may be performed using a calendering device including a roll press unit in which two rollers are disposed to face each other.
  • the calender may include at least one roll press unit.
  • the temperature of one or more rollers may be independently controlled at 50° C. to 200° C. Together with or independently of this, the rotation speed ratio of the two rollers in the at least one roll press unit may be controlled in a ratio of 1:1 to 1:3.
  • Such a dry electrode film serves as an electrode mixture.
  • Such a dry electrode film is also referred to as a free standing film or a self-supporting film.
  • Such dry electrode films may have sufficient mechanical strength to be used in the fabrication process of energy storage devices without any external support elements such as current collectors, support webs or other structures. Alternatively, it may be used in manufacturing a battery by combining with a support such as a current collector.
  • the obtained dry electrode film has a crystallinity (d) of 10% or less of the binder resin in the dry electrode film. If the crystallinity of the obtained dry electrode film exceeds 10%, the crystallinity can be adjusted by adjusting the gap between the two rollers of the roll press unit or controlling the speed ratio. For example, the degree of fiberization of the binder may be increased by reducing the gap and/or increasing the speed ratio.
  • step (d) in the dry electrode film obtained in step (d), the crystallinity of the binder resin is checked, and when the confirmed crystallinity (d) is 10% or less, the process of step (d) can be terminated The degree of crystallinity can be confirmed at each stage while processes (a) to (d) are performed.
  • step (d) process conditions in which the crystallinity of the binder resin can be controlled to 10% or less may be experimentally confirmed, and the set process conditions may be applied to step (d). there is.
  • the dry electrode film produced in this way does not contain a solvent, has little fluidity, is easy to handle, and can be processed into a desired shape to be used in manufacturing various types of electrodes.
  • the dry electrode film of the present invention is used for electrode manufacturing, since the drying process for solvent removal can be omitted, not only can the manufacturing process of the electrode be greatly improved, but also problems in the manufacturing of conventional dry electrodes can be eliminated. It is possible to solve problems such as fine powder of an active material or breakage of a fibrous binder.
  • the dry electrode film according to the present invention since the crystallinity of the binder resin included in the dry electrode film according to the present invention is controlled to 10% or less, the dry electrode film according to the present invention has an advantage of not breaking or cracking when it is wound and stored or unwound again due to increased flexibility. there is.
  • mechanical strength such as tensile strength and tensile elongation, can be improved according to the increase in flexibility.
  • the dry electrode film may have a porosity of 20 vol% to 50 vol%, and may be preferably controlled to a value of 45 vol% or less or 40 vol% or less within the above range.
  • the porosity satisfies the above range, it is preferable in terms of various effects.
  • the porosity is obtained by measuring the apparent density of the dry electrode film and using the actual density calculated based on the actual density and composition of each component by the following [Relational Expression 2] can
  • Porosity (vol%) ⁇ 1 - (apparent density/actual density) ⁇ x 100
  • a lamination step of forming the dry electrode film on at least one surface of the current collector may be performed.
  • the lamination may be a step of rolling and attaching the dry electrode film to a predetermined thickness on a current collector.
  • the lamination may also be performed by a lamination roll, and at this time, the lamination roll may be maintained at a temperature of 20° C. to 200° C.
  • the bending resistance of the dry electrode prepared above may be less than 10 mm phi ( ⁇ ), specifically 8 mm pie ( ⁇ ) or less, and more specifically 5 mm pie ( ⁇ ) or less. That is, as described above, since the dry electrode manufactured according to the present invention is less likely to break the fibrous binder, flexibility can be improved.
  • the bending resistance may be performed according to the method of the measurement standard JIS K5600-5-1, and specifically, whether or not cracks occur by lifting both ends after contacting the prepared dry electrode with measuring rods of various diameters. It can be obtained by measuring and the minimum diameter at which cracks do not occur.
  • the active material loading amount of the dry electrode film may be 3 mAh/cm 2 to 15 mAh/cm 2 , and in detail, 4 mAh/cm 2 to 10 mAh/cm 2 .
  • the loading amount of the active material is a value calculated by the method as shown in [Relationship 3] below.
  • the current collector is not particularly limited as long as it does not cause chemical change in the battery and has high conductivity.
  • a surface treated with carbon, nickel, titanium, silver, or the like may be used.
  • the current collector may also form fine irregularities on its surface to increase adhesion of the positive electrode active material, and various forms such as films, sheets, foils, nets, porous materials, foams, and non-woven fabrics are possible.
  • the current collector may be coated entirely or partially with a conductive primer for lowering resistance and improving adhesion on the surface of the current collector.
  • the conductive primer may include a conductive material and a binder, and the conductive material may be, for example, a carbon-based material, although it is not limited thereto as long as it is a conductive material.
  • the binder may include a solvent-soluble fluorine-based binder (including PVDF and PVDF copolymer), an acrylic binder, and an aqueous binder.
  • a dry electrode manufactured by the dry electrode manufacturing method is provided.
  • the electrode further includes a current collector, and the dry electrode film is disposed on at least one side or both sides of the current collector.
  • the dry electrode is a positive electrode
  • An energy storage device comprising a unit cell is provided.
  • a dry electrode manufacturing system includes a blender device for mixing raw materials including an electrode active material, a conductive material, and a binder resin; A kneader device for kneading the mixture to prepare a mixture lump; a pulverizing device that pulverizes the mass of the mixture to form mixed powder for an electrode; a calender device for forming the electrode powder into a dry electrode film; and a lamination device for laminating the dry electrode film and the current collector.
  • Each device of the system and each process performed using the device may have process conditions set in advance so that the binder resin exhibits the crystallinity described above in each step.
  • a sample is taken to measure the degree of crystallinity, and if the standard is not met, the preset process conditions may be modified and reflected.
  • each process time may be increased.
  • the crystallinity of the electrode film obtained after the calendering process exceeds 10%
  • the crystallinity can be controlled by reducing the gap between rollers in the roll press unit or increasing the speed ratio.
  • the blender device is a mixer for mixing raw materials, and as described above, the blend raw materials may be mixed at a speed of 500 rpm to 30,000 rpm.
  • the kneader device makes the mixture into a mixture lump through kneading and proceeds with fiberization of the binder.
  • the kneader device may be set to a pressure condition in the range of 70 ° C to 200 ° C and normal pressure or higher. Specifically, 90 °C to 150 °C, 0.5 kgf/cm 2 to 10 kgf/cm 2 under pressure conditions, and more specifically, 1 kgf/cm 2 to 8 kgf/cm 2 pressure conditions.
  • the pulverization device is a device for pulverizing the mass of the mixture obtained in the kneader device to form powder for an electrode, and for example, a blender or a grinder may be used.
  • the calendering device is a device for compressing the powder for the electrode and molding it into a film form.
  • the calendering device includes a roll press unit in which two rollers are disposed to face each other, and a plurality of roll press units are continuously disposed to perform multi-stage compression of powder.
  • the lamination device serves to attach and roll the dry electrode film formed by the calender to at least one surface of the current collector, and a roll press device may be used, for example.
  • the porosity of the dry electrode dry electrode film according to the present invention can be determined by the calendering device and the lamination device.
  • Specific structures of the blender device, the kneader device, the calender device, and the lamination device are conventionally known, and detailed descriptions thereof are omitted herein.
  • a powdery mixture is prepared by blending an electrode active material, a binder resin, and a conductive material, and then the crystallinity of the binder resin is measured. If it is confirmed that the crystallinity of the binder resin is 50% or less, the powdery mixture is introduced into the next kneading process. However, if it is confirmed that the crystallinity exceeds 50%, the mixing time may be increased by performing a blending process again on the powdery mixture. At this time, the binder mass is pulverized into primary particles, and coarse fiberization may proceed.
  • the obtained powdery blend is kneaded to obtain a mixture lump, which is pulverized to obtain a mixed powder for an electrode. If it is confirmed that the crystallinity of the binder resin in the obtained mixed powder for an electrode is 20% or less, the mixed powder for an electrode is introduced into the next calendering process. However, when it is confirmed that the crystallinity exceeds 20%, the mixed powder for electrode is put into the kneading process again.
  • a dry electrode film is prepared by calendering the obtained mixed powder for an electrode. If the crystallinity of the prepared dry electrode film is confirmed to be 10% or less, the dry electrode film is put into a lamination process to manufacture an electrode. However, if it is confirmed that the crystallinity exceeds 10%, the crystallinity is adjusted by adjusting the distance between the rollers, controlling the speed ratio of the rollers, or both. Meanwhile, the process flow chart according to FIG. 3 can also be used to establish process conditions for achieving the required crystallinity in each step in electrode manufacturing.
  • Li(Ni, Mn, Co, Al)O 2 , activated carbon and polytetrafluoroethylene (PTFE) were put into a blender at a weight ratio of 96:1:3 and mixed at 15000 rpm for 1 minute to form a powder.
  • a blend was prepared.
  • the temperature of the kneader was stabilized at 150° C., and the mixture was put into the kneader and operated at a speed of 25 rpm under a pressure of 1 kgf/cm 2 for 5 minutes to obtain a lump of the mixture.
  • the mixture lump was put into a blender and pulverized at 10000 rpm for 30 seconds to obtain mixed powder for an electrode.
  • the mixed powder for the electrode was put into a lab calender (roll diameter: 200 mm, roll temperature: 100 ° C, roll speed ratio 1.5 conditions) to prepare a dry electrode film.
  • the positive electrode active material had a particle diameter of about 5 ⁇ m to 12 ⁇ m.
  • Lithium iron phosphate (LFP), activated carbon, and polytetrafluoroethylene (PTFE) as cathode active materials were put into a blender at a ratio of 94:1.5:4.5 and mixed at 10000 rpm for 1 minute to prepare a powdery blend.
  • the temperature of the kneader was stabilized at 150° C., and the mixture was put into the kneader and operated at a speed of 50 rpm under a pressure of 1 kgf/cm 2 for 5 minutes to obtain a lump of the mixture.
  • the mixture lump was put into a blender and pulverized at 10000 rpm for 20 seconds to obtain mixed powder for an electrode.
  • the mixed powder for the electrode was put into a lab calender (roll diameter: 200 mm, roll temperature: 100 ° C, roll speed ratio 1.75 conditions) to prepare a dry electrode film.
  • the positive electrode active material had a particle diameter of about 2 ⁇ m to 3 ⁇ m.
  • cathode active materials Li(Ni, Mn, Co, Al)O 2 , activated carbon, and polytetrafluoroethylene (PTFE) were put into a blender at a weight ratio of 96:1:3 and mixed at 15,000 rpm for 1 minute. A powdered blend was prepared.
  • the positive electrode active material had a particle diameter of about 5 ⁇ m to about 12 ⁇ m.
  • the temperature of the kneader was stabilized at 150° C., and the powdery blend was put into the kneader and operated at a speed of 25 rpm under a pressure of 1 kgf/cm 2 for 2 minutes to obtain a mixture mass.
  • the mixture lump was put into a blender and pulverized at 10000 rpm for 30 seconds to obtain mixed powder for an electrode.
  • the mixed powder for the electrode was put into a lab calender (roll diameter: 200 mm, roll temperature: 100 ° C, roll speed ratio 1.5 conditions) to prepare a dry electrode film.
  • Lithium iron phosphate (LFP), activated carbon, and polytetrafluoroethylene (PTFE) as cathode active materials were put into a blender at a ratio of 94:1.5:4.5 and mixed at 10,000 rpm for 1 minute to prepare a powdery blend.
  • the temperature of the kneader was stabilized at 150° C., and the mixture was put into the kneader and operated at a speed of 25 rpm under a pressure of 1 kgf/cm 2 for 2 minutes to obtain a lump of the mixture.
  • the mixture lump was put into a blender and pulverized at 10000 rpm for 20 seconds to obtain mixed powder for an electrode.
  • the mixed powder for the electrode was put into a lab calender (roll diameter: 200 mm, roll temperature: 100 ° C, roll speed ratio 1.75 conditions) to prepare a dry electrode film.
  • the positive electrode active material had a particle diameter of about 2 ⁇ m to 3 ⁇ m.
  • Li(Ni, Mn, Co, Al)O 2 , activated carbon and polytetrafluoroethylene (PTFE) were put into a super mixer at a weight ratio of 96:1:3 and mixed at 400 rpm for 2 minutes. A powdered blend was prepared.
  • the temperature of the kneader was stabilized at 150° C., and the mixture was put into the kneader and operated at a speed of 25 rpm under a pressure of 1 kgf/cm 2 for 5 minutes to obtain a lump of the mixture.
  • the mixture lump was put into a blender and pulverized at 10,000 rpm for 30 seconds to obtain mixed powder for an electrode.
  • the mixed powder for the electrode was put into a lab calender (roll diameter: 200 mm, roll temperature: 100 ° C, roll speed ratio 1.5 conditions) to prepare a dry electrode film.
  • the positive electrode active material had a particle diameter of about 5 ⁇ m to 12 ⁇ m.
  • cathode active material Li(Ni, Mn, Co, Al)O 2 , activated carbon, and polytetrafluoroethylene (PTFE) were put into a blender at a weight ratio of 96:1:3 and mixed at 15,000 rpm for 1 minute. . Then, the mixture was mixed for 30 seconds at 800 rpm in a super mixer. At this time, the temperature was maintained at 23° C. and the pressure was controlled at about 85 psi. A powdery blend was obtained in this way. Thereafter, the mixed powder for the electrode was put into a lab calender (roll diameter: 200 mm, roll temperature: 100 ° C, roll speed ratio 1.5 conditions) to prepare a dry electrode film. Meanwhile, the positive electrode active material had a particle diameter of about 5 ⁇ m to 12 ⁇ m.
  • Example 1 is a graph showing the DSC thermal analysis results of Example 1. According to this, it was confirmed that the crystallinity of the mixed powder for electrode (griding) and the dry electrode film (sheet) processed later were lower than those of the powdery blend (Mixing). 2 is a graph showing the DSC thermal analysis results of Example 2. In Example 2, it was confirmed that the crystallinity of the mixed powder for electrodes (Grinding) and the dry electrode film (Sheet) processed later were lower than those of the powdery blend (Mixing).
  • the tensile strength was confirmed to be 0.5 Mpa or more, and the tensile elongation was also 2% or more.
  • the PTFE of FIG. 2 is a measure of the inherent crystallinity of 100% PTFE before processing, and is listed for comparison with the degree of crystallization of PTFE after processing.
  • Comparative Examples 1 to 2 it was confirmed that the crystallinity of the binder resin of the obtained electrode mixture powder exceeded 20%. This means that fiberization was insufficient in the obtained mixed powder for electrodes, and it was difficult to prepare a sheet-shaped dry electrode film through a calendering process thereafter.
  • Comparative Example 2 since the crystallinity of the binder resin in the powdery blend exceeded 60%, it was confirmed that sufficient fiberization was not achieved even after the subsequent process.
  • Comparative Example 3 it was confirmed that the kneading process according to the present invention was not applied, so that fine fiberization was not sufficiently achieved, and therefore, even after calendering, it was confirmed that it could not be made into a sheet.
  • samples for measuring crystallinity were prepared from the powdery blend, the mixed powder for electrode, and the dry electrode film.
  • the crystallinity (Xc) was measured by weighing and introducing about 5 mg to 12 mg of the sample to TA's differential scanning calorimetry (DSC), and increasing the temperature at a rate of 10 ° C / min in a temperature range of 25 to 360 ° C in a nitrogen atmosphere
  • the heat of fusion ( ⁇ heat of fusion) was measured according to the temperature while doing so.
  • Tm and melting enthalpy ( ⁇ Hm) were analyzed based on the temperature (peak temperature) at the time of melting with the highest enthalpy using TA's TROIS program.
  • the crystallinity of each sample is expressed in % by dividing the melting enthalpy ( ⁇ Hm) value actually measured by DSC by the melting enthalpy ( ⁇ Hm0) value of a theoretically perfect crystal (crystallinity 100%), and was calculated by the above relational expression 1.
  • the melting enthalpy value of the theoretical perfect crystal of PTFE was 85.4 J/g, and reference was made to pages 8872-8882 of Polymer magazine 46 (2005).

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명에 따른 건식 전극 제조 방법은 바인더 수지의 결정화도로부터 바인더 수지의 미세 섬유화 정도를 판단할 수 있으며 이를 기반으로 전극용 혼합 분체나 전극 필름의 공정 조건을 제어할 수 있어 공정 조건의 확인 및 제어가 쉽고 효율적이다. 또한, 본 발명에 다른 건식 전극 제조 방법은 고온 및 저속의 니더를 통한 니딩(kneading), 및 분쇄 단계를 거침으로 구성성분들의 뭉침으로 유로가 막히는 문제가 없어 대량 생산에도 유리하다.

Description

건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법
본 출원은 2021년 8월 6일에 출원된 한국특허출원 제10-2021-0104169호에 기초한 우선권을 주장한다. 본 발명은 건식 전극 필름을 포함하는 전기화학소자용 전극 및 이를 제조하는 방법에 대한 것이다. 또한, 본 발명은 상기 건식 전극 필름 및 이의 제조 방법에 대한 것이다. 또한, 본 발명은 상기 건식 전극 필름을 제조하는데 사용되는 전극용 혼합 분체 및 이를 제조하는 방법에 대한 것이다.
화석 연료 사용의 급격한 증가로 인하여 대체 에너지, 청정 에너지의 사용에 대한 요구가 증가하고 있으며, 그 일환으로 가장 활발하게 연구되고 있는 분야가 전기화학을 이용한 발전, 축전 분야이다. 현재 이러한 전기 화학적 에너지를 이용하는 전기화학 소자의 대표적인 예로 이차전지를 들 수 있으며, 점점 더 그 사용 영역이 확대되고 있는 추세이다. 이러한 이차전지 중 대표적인 리튬 이차전지는 모바일 기기의 에너지원뿐 아니라, 최근에는, 대기오염의 주요 원인의 하나인 가솔린 차량, 디젤 차량 등 화석연료를 사용하는 차량을 대체할 수 있는 전기 자동차, 하이브리드 전기 자동차의 동력원으로서의 사용이 실현화되고 있으며, 그리드(Grid)화를 통한 전력 보조전원 등의 용도로도 사용영역이 확대되고 있다. 이러한 리튬 이차전지의 제조 공정은 크게 전극 제조 공정, 전극 조립체 제조 공정, 화성 공정의 3단계로 구분된다. 상기 전극 제조 공정은 다시 전극 합제 혼합 공정, 전극 코팅 공정, 건조 공정, 압연 공정, 슬리팅 공정, 권취 공정 등으로 구분된다. 이 중, 전극 합제 혼합 공정은, 전극에서 실제 전기화학 반응이 일어나는 전극 활성층 형성을 위한 성분들을 배합하는 공정으로서, 상세하게는 전극의 필수 요소인 전극 활물질과 기타 첨가제인 도전재와 충진재, 분체간 결착과 집전체에 대한 접착을 위한 바인더, 및 점도 부여와 분체 분산을 위한 용매 등을 혼합하여 유동성을 가지는 슬러리의 형태로 제조하는 것이다.
이와 같이 전극 활성층을 형성을 위해 혼합된 조성물을 넓은 의미에서 전극 합제(electrode mixture)라고 지칭하기도 한다. 이후, 전극 합제를 전기 전도성이 있는 집전체 상에 도포하는 전극코팅 공정과, 전극 합제에 함유되어 있던 용매를 제거하기 위한 건조 공정이 수행되고, 추가적으로 전극이 압연되어 소정의 두께로 제조된다.
한편, 상기 건조 과정에서 전극 합제에 함유되어 있던 용매가 증발함에 따라 기 형성된 전극 활성층에 핀홀이나 크랙과 같은 결함이 유발될 수 있다. 또한, 활성층의 내, 외부가 균일하게 건조되는 것은 아니어서, 용매 증발 속도 차이에 의한 분체 부유 현상, 즉, 먼저 건조되는 부위의 분체들이 떠오르면서 상대적으로 나중에 건조되는 부위와 간극을 형성하여 전극 품질이 저하될 수도 있다.
이에, 이상의 문제 해결을 위해, 활성층의 내, 외부가 균일하게 건조되도록 하면서도, 용매의 증발 속도를 조절할 수 있는 건조 장치 등이 고려되고 있으나, 이러한 건조 장치들은 매우 고가이고 운용에도 상당한 비용과 시간이 소요되는 바, 제조 공정성 측면에서 불리한 점이 있다. 따라서, 최근에는 용매를 사용하지 않는 건식 전극을 제조하는 연구가 활발히 이루어지고 있다.
상기 건식 전극은 일반적으로 집전체 상에, 활물질, 바인더, 도전재 등을 포함하고 필름 형태로 제조된 프리 스탠딩 필름을 라미네이션함으로써 제조된다. 먼저, 활물질, 도전재로서 카본재료, 및 섬유화 가능한 바인더를 함께 블렌더 등으로 혼합하고, 젯-밀링(Jet-milling)과 같은 고전단 믹싱(High Shear Mixing) 공정을 통해 바인더를 섬유화한 뒤, 이러한 혼합물을 필름 형태로 캘린더화하여 프리 스탠딩 필름을 제조하는 과정을 포함한다. 이후, 캘린더 이후에 제조된 프리 스탠딩 필름을 집전체 상에 라미네이션함으로써 제조된다.
그러나, 부서지기 쉬운 활물질에 상기와 같은 고전단 믹싱 공정을 적용하는 경우, 분체 크기가 작은 미분이 많이 생성되어 기계적 성능이나 전기화학적 성능이 저하되기 쉽고, 고전단 믹싱이 과한 경우에는 생성된 바인더 섬유를 절단시켜 프리 스탠딩 필름의 유연성이 저하될 수 있다.
따라서, 이러한 문제를 해결할 수 있는 건식 전극 제조 기술의 개발이 절실한 실정이다. 특히, 상기 건식 전극 필름 제조용 성분들이 혼합되어 있는 혼합물의 혼합 균일도나 바인더의 상태(섬유화 정도 등)를 정량적으로 분석할 수 있는 방법의 제공 및 공정 조건의 확립이 필요하다.
본 발명은 상기한 문제를 해결하기 위한 것으로, 활물질 미분화가 최소화하고, 바인더 섬유화는 극대화된 건식 전극 및 이의 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 유연성 및 강도 등 기계적 물성이 개선된 건식 전극 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
이 외에도, 본 발명은 바인더 수지의 결정화도 기반의 공정 조건이 적용된 건식 전극 제조 방법을 제공하는 것을 목적으로 한다.
본 발명의 제1 측면은 전기화학소자용 전극에 대한 것으로서, 상기 전극은 용매를 사용하지 않는 건식 제조 공정에 의해서 제조된 건식 전극 필름을 포함하며, 상기 건식 전극 필름은 전극 활물질, 도전재 및 바인더 수지를 포함하고, 상기 건식 전극 필름에 포함된 바인더 수지는 결정화도가 10% 이하인 것이다.
본 발명의 제2 측면은 상기 제1 측면에 있어서, 상기 건식 전극 필름은 기계방향(MD)의 인장강도가 0.5MPa 이상인 것이다.
본 발명의 제3 측면은 상기 제1 또는 제2 측면에 있어서, 상기 건식 전극 필름은 인장신율이 2% 이상인 것이다.
본 발명의 제4 측면은 상기 제1 내지 제3 측면 중 어느 하나에 있어서, 상기 전극 필름은 기공도가 20vol% 내지 50vol%인 것이다.
본 발명의 전기화학소자용 전극을 제조하는 방법에 대한 것으로서, 상기 전극은 제1 내지 제4 측면 중 어느 하나에 따른 것이며, 상기 방법은, (a) 전극 활물질, 도전재, 및 바인더 수지를 포함하는 분말상 블렌드를 제조하는 단계;
(b) 상기 분말상의 혼합물을 70℃ 내지 200℃의 범위에서 니딩(kneading)하여 혼합물 덩어리를 제조하는 단계;
(c) 상기 혼합물 덩어리를 분쇄하여 전극용 혼합 분체를 수득하는 단계; 및
(d) 상기 전극용 혼합 분체를 캘린더링 하여 free standing 타입의 건식 전극 필름을 수득하는 단계;를 포함하며, 상기(d) 단계에서 수득된 건식 전극 필름 중 포함된 바인더 수지의 결정화도(d)는 10% 이하인 것이다.
본 발명의 제6 측면은, 상기 제5 측면에 있어서, 상기 (c) 단계에서 수득된 전극용 혼합 분체 중 포함된 바인더 수지의 결정화도(c)는 20% 이하인 것이다.
본 발명의 제7 측면은, 상기 제5 또는 제6 측면에 있어서, 상기 (a) 단계에서 수득된 혼합물 중 포함된 바인더 수지의 결정화도(a)는 50% 이하인 것이다.
본 발명의 제8 측면은, 상기 제5 내지 제7 측면 중 어느 하나에 있어서, 상기 (a) 단계는 500 rpm 내지 30,000rpm의 조건에서 수행되는 것이다.
본 발명의 제9 측면은, 상기 제5 내지 제8 측면 중 어느 하나에 있어서, 상기 (b) 단계는 100 rpm 이하의 속도하에서 수행되는 것이다.
본 발명의 제10 측면은, 상기 제5 내지 제9 측면 중 어느 하나에 있어서, 상기 (b) 단계는 0.5kgf/cm2 내지 10kgf/cm2 압력 하에서 수행되는 것이다.
본 발명의 제11 측면은, 상기 제5 내지 제10 측면 중 어느 하나에 있어서, 상기 단계(b)은 상압 이상의 조건에서 수행되는 것이다.
본 발명의 제12 측면은 상기 제1 내지 제4 측면 중 어느 하나에 있어서, 상기 바인더 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), PVDF(Polyvinylidene fluoride), 폴리올레핀, 또는 이중 둘 이상의 혼합물을 포함하는 것이다.
본 발명의 제13 측면은 상기 제1 내지 제4 측면 중 어느 하나에 있어서, 상기 전극이 집전체를 더 포함하며, 상기 건식 전극 필름이 상기 집전체의 적어도 일측면 또는 양측면상에 배치되어 있는 것이다.
본 발명의 제14 측면은 상기 제5 내지 제11 측면 중 어느 하나에 있어서, 집전체를 준비하고, 상기 건식 전극 필름을 상기 집전체의 적어도 일측면상에 배치하고 라미네이션하는 단계를 더 포함하는 것이다.
본 발명의 제15 측면은 이차 전지에 대한 것으로서, 제1 내지 제4 측면 중 어느 하나에 따른 건식 전극을 포함하며, 상기 건식 전극은 양극이며, 상기 양극, 음극, 및 분리막을 포함하는 전극 조립체가 리튬 함유 비수계 전해질과 함께 전지케이스에 내장되어 있는 것이다.
본 발명의 제16 측면은 에너지 저장장치에 대한 것으로서 제15 측면에 따른 이차전지를 단위전지로서 포함하는 것이다.
본 발명의 제17 측면은 건식 전극 필름 제조용 전극 분체를 제조하는 방법에 대한 것으로서, 상기 제조 방법은(a) 전극 활물질, 도전재, 및 바인더 수지를 포함하는 분말상 블렌드를 제조하는 단계;
(b) 상기 분말상 블렌드를 70℃ 내지 200℃의 범위에서 니딩(kneading)하여 혼합물 덩어리를 제조하는 단계; 및
(c) 상기 혼합물 덩어리를 분쇄하여 전극용 혼합 분체를 수득하는 과정;을 포함하며,
상기 전극 분체 중 포함된 바인더 수지는 결정화도가 20% 이하이며,
상기 바인더 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리올레핀, 또는 이들의 혼합물을 포함하는 것이다.
본 발명의 제18 측면은, 상기 제17측면에 따른 방법에 의해서 제조된 전극용 혼합 분체이며, 상기 전극용 혼합 분체는 전극 활물질, 도전재 및 바인더 수지를 포함하며, 상기 바인더 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), PVDF, 폴리올레핀, 또는 이 중 둘 이상의 혼합물을 포함하며, 상기 전극용 혼합 분체 중 포함된 바인더 수지의 결정화도가 20% 이하인 것이다.
본 발명의 제19 측면은, 전극용 혼합 분체를 캘린더링 하여 free standing 타입의 건식 전극 필름을 수득하는 단계;를 포함하는 건식 전극 필름을 제조하는 방법에 대한 것으로서, 상기 전극용 혼합 분체는 제17 측면에 따른 방법에 의해서 수득된 것이며, 상기 전식 전극 필름 중 포함된 바인더 수지의 결정화도(d)는 10% 이하인 것이다.
본 발명의 제20 측면은, 상기 제19 측면에 따른 방법에 의해서 제조된 건식 전극 필름에 대한 것이며, 기계방향(MD)의 인장강도가 0.5MPa 이상이고, 인장신율이 2% 이상이며, 기공도가 20vol% 내지 50vol%인 것이다.
본 발명에 따른 건식 전극 제조 공정은 전극용 혼합 분체 제조시 고온 저전단 믹싱 공정 후 분쇄하는 공정을 도입함으로써, 활물질의 미분화를 최소화하고, 섬유화된 바인더의 절단을 방지할 수 있다. 또한, 이러한 전극용 혼합 분체를 사용하여 건식 전극을 제조함으로써, 건식 전극의 유연성 및 강도 등 기계적 물성이 개선되는 효과가 있다.
또한, 본 발명에 따른 건식 전극 제조 방법은 바인더 수지의 미세 섬유화 정도 및 각 단계의 공정 완료 여부를 각 단계의 바인더 수지의 결정화도로부터 판단 및 확인할 수 있으며 이를 기반으로 전극용 혼합 분체나 전극 필름의 공정 조건을 제어할 수 있어 공정 조건 및 공정 완료 시점의 확인 및 제어가 쉽고 효율적이다.
또한, 본 발명에 다른 건식 전극 제조 방법은 니더(Kneader)를 통한 저전단 니딩, 및 분쇄 단계를 거침으로 미세 섬유화가 유리하며, 구성 성분들의 뭉침으로 유로가 막히는 문제가 없어 대량 생산에도 유리하다.
도 1은 본 발명의 실시예 1에 따른 DSC 열분석 그래프를 나타낸 것이다.
도 2는 본 발명의 실시예 2에 따른 DSC 열분석 그래프를 나타낸 것이다.
도 3은 본 발명의 건식 전극의 제조 순서를 나타낸 공정 흐름도이다.
이하, 본 발명에 대한 이해를 돕기 위해 본 발명을 더욱 상세하게 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
또한, 명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함" 한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.
본 발명의 일 측면은 전기화학소자용 전극 및 이를 제조하는 방법에 대한 것이다. 상기 전기화학소자는 예를 들어 이차 전지일 수 있으며, 상기 이차 전지는 더욱 구체적으로는 리튬이온 이차전지일 수 있다.
본 발명에 있어서, 상기 전극은 전극 제조 공정시 전극 성분들을 분산시키기 위한 용매가 사용되지 않는 건식 제조 공정에 의해서 제조된 건식 전극 필름을 포함한다. 상기 건식 전극 필름은 전극 활물질, 도전재 및 바인더 수지를 포함하고, 상기 건식 전극 필름에 포함된 바인더 수지는 결정화도가 10% 이하인 것이다. 예를 들어 상기 결정화도는 5% 이하일 수 있다.
상기 결정화도 범위 10% 이하의 범위를 나타내는 경우 바인더 수지가 고도로 섬유화되어 건식 전극 필름에 유연성이 확보될 수 있다. 이에 후술하는 바와 같이, 롤투롤(roll to roll) 연속 공정이 적용되는 캘린더링 공정에서 스트립(strip) 형태의 건식 전극 필름 제조가 용이하며, 전극 필름을 제조한 후 이를 롤 형태로 권취하거나 다시 권출하는 경우 파단이나 균열 등 손상 없이 형태가 안정적으로 유지된다. 또한, 집전체와의 결착력이 소정 강도 이상으로 확보되는데 유리하다.
또한, 본 발명에 있어서, 상기 건식 전극 필름은 기계방향(MD)의 인장강도가 0.5MPa 이상인 것이 바람직하다. 한편, 상기 건식 전극 필름은 기계 방향(MD)의 인장강도는 10.0MPa 이하, 5.0MPa 이하, 또는 3.0MPa 이하일 수 있다. 상기 인장강도가 상기 범위를 만족하는 경우에는 프리스탠딩 타입의 건식 전극 제조시 충분한 기계적 강도를 확보할 수 있어 제조 및 취급이 용이하다. 반면 상기 범위에 미치지 못하는 경우에는 기계적 강도가 약하여 쉽게 파단될 수 있다. 한편, 인장강도가 과도하게 높아지는 경우에는 인장 신율이 함께 증가하게 되므로 아래와 같이 공정성이 저하되며 필름 두께가 균일하지 않다.
한편, 상기 건식 전극 필름은 인장신율이 2% 이상인 것이 바람직하다.
상기 건식 전극 필름은 인장 신율이 30% 이하, 20% 이하 또는 10% 이하일 수 있다.
상기 인장 신율이 상기 범위를 만족하는 경우에는 프리스탠딩 타입의 건식 전극 제조시 충분한 형태적 안정성과 유연성을 확보할 수 있어 제조 및 취급이 용이하다 상기 인장 신율이 과도하게 낮은 경우에는 유연성과 형태 안정성이 낮아 제조나 이동 중 쉽게 파단될 수 있어 바람람직하지 않다. 한편, 상기 범위를 초과하는 경우에는 유연성이 과도하게 높아 후술하는 캘린더링 공정에서 롤과 롤 사이에서 건식 전극 필름이 과도하게 연신될 수 있으며, 수득된 필름의 두께가 일정하지 않을 수 있다.
한편, 상기 건식 전극 필름은 기공도는 20vol% 내지 50vol%일 수 있다.
본 발명의 제2 측면은, 상기 전극을 제조하는 방법에 대한 것이다. 상기 전극을 제조하는 방법은 건식 전극 필름에 포함된 바인더 수지의 결정화도가 10% 이하로 제어되는 것이다. 본 발명에 있어서 상기 건식 전극에서 상기 결정화도는 없거나(0 이거나) 10% 이하인 것이다.
구체적인 일 실시양태에 있어서, 상기 전극을 제조하는 방법은
(a) 전극 활물질, 도전재, 및 바인더 수지를 포함하는 분말상 블렌드(blend)를 제조하는 단계;
(b) 상기 분말상 블렌드를 니딩(kneading)하여 혼합물 덩어리를 제조하는 단계;
(c) 상기 혼합물 덩어리를 분쇄하여 전극용 혼합 분체를 수득하는 단계; 및
(d) 상기 전극용 혼합 분체를 캘린더링 하여 자립형(free standing type)의 건식 전극 필름을 수득하는 단계;를 포함한다.
한편, 본 명의 일 실시양태에 있어서, 상기 (b) 단계는 70℃ 내지 200℃의 온도 조건 하에서 수행될 수 있다. 예를 들어서 상기 니딩 공정이 적용되는 대상물이 70℃ 내지 200℃의 온도로 제어되는 것일 수 있다.
여기에서, 상기 (a) 단계에서 수득된 분말상 블렌드에서 상기 바인더 수지의 결정화도(a)는 60% 이하, 바람직하게는 50% 이하인 것이다. 또한, 상기 (c) 단계에서 수득된 전극용 혼합 분체 중 바인더 수지의 결정화도(c)는 20% 이하이며, 상기 (d) 단계에서 수득된 건식 전극 필름 중 바인더 수지의 결정화도(d)는 10% 이하인 것이다.
본 발명의 일 실시양태에 있어서, 상기 (a) 내지 (d)의 각 단계의 공정 완료를 판단하는 것은 각 단계에서 수득된 결과물의 결정화도를 확인하는 것이다. 만일 각 공정 단계의 산물의 바인더 수지의 결정화도가 각 단계에서 미리 결정된 결정화도를 만족하는 경우 다음 단계의 공정이 수행된다.
구체적으로, 상기 (a) 단계는 분말상 블렌드의 바인더 수지의 결정화도가 60% 이하인 경우, 바람직하게는 50% 이하인 경우 (a) 단계의 공정을 종료하고, 수득된 결과물을 (b) 단계에 투입한다.
또한, 상기 (c) 단계는 전극용 혼합 분체 중 바인더 수지의 결정화도가 20% 이하인 경우 (c) 단계의 공정을 종료하고, 후속적으로 수득된 결과물을 (d) 단계에 투입한다.
또한, 상기 (d) 단계는 수득된 제조된 건식 전극 필름에서 바인더 수지의 결정화도가 10% 이하를 만족하는 경우 제조가 완료된 것으로 본다.
대안적으로는, (a) 단계, (b) 단계 및 (d) 단계에 있어서 각 단계에서 상기 범위의 한정된 결정화도가 제어될 수 있는 공정 조건을 실험적으로 확인하고, 상기 실험적으로 설정된 공정을 각 단계에 적용할 수 있다.
본 발명에 있어서, 상기 결정화도(Xc)는 시차주사열량계(differential scanning calorimetry, DSC)를 통해 측정할 수 있으며, 결정화시 가장 높은 엔탈피를 보이는 시점에서의 온도 (peak 온도)를 기준으로 한다. 구체적으로 상기 결정화도는 DSC에서 실측된 용융 엔탈피(△Hm) 값을 이론상 완전 결정(결정화도 100%)의 용융 엔탈피(△Hm 0)(평형 융해열)의 값으로 나누어 %로 표시하는 것으로서 아래 관계식 1에 의해서 계산될 수 있다. 여기에서 이론적인 완전 결정의 용융 엔탈피 값(△Hm0)은 폴리머 핸드북(polymer handbook)(J. Brandrup 등, 2003년)이나 Polymer 등 학술 논문 등을 참조할 수 있다. 예를 들어 PTFE 이론적인 완전 결정의 용융 엔탈피 값은 85.4J/g (Polymer지 46권(2005년) 8872~8882)이다. 한편, 통상적으로 DSC 등 고분자의 열분석은 ASTM D3418-21에 의해 측정 및 계산될 수 있다.
[관계식 1]
Xc(%) = (△Hm ÷ △Hm 0) x 100
이하 본 발명에 따른 건식 전극의 제조 방법을 더욱 상세하게 설명한다.
먼저 전극 활물질, 도전재, 및 바인더를 포함하는 분말상 블렌드를 제조한다(a 단계).
이때, 상기 분말상 블렌드를 제조하기 위한 혼합은 상기 전극 활물질, 도전재, 및 바인더 수지의 균일한 블렌드를 수득하고, 바람직하게는 수득된 분말상 블렌드 중 바인더 수지의 결정화도를 50% 이하로 조절하기 위해서 수행되는 것이다. 상기 재료들이 분말상으로 혼합되므로, 이들의 균일한 혼합을 가능하게 하는 것이라면 한정되지 아니하고, 다양한 방법이 적용될 수 있다. 다만, 본원이 용매를 사용하지 않는 건식 전극으로 제조되므로, 상기 혼합은 건식 혼합으로 수행될 수 있다. 예를 들어 믹서나 블렌더와 같은 장치에 상기 물질들을 투입하여 수행될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 혼합 시간은 특별히 한정되는 것은 아니나 1초 내지 20분 동안 수행될 수 있다. 예를 들어 1초 내지 10분 동안 수행될 수 있다. 한편, 상기 혼합 속도는 특별히 한정되는 것은 아니나 약 500 rpm 내지 30,000rpm의 범위 내에서 적절하게 제어될 수 있다. 예를 들어 500rmp 내지 20,000rpm의 범위로 제어될 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 혼합물의 온도는 70℃ 이하 또는 60℃ 이하로 제어될 수 있다. 혼합 온도가 70℃를 초과하는 경우에는 혼합 장치에 재료들의 부착되어 균일한 혼합물 수득이 어려울 수 있다. 한편, 상기 혼합물의 온도의 하한은 특별히 한정되는 것은 아니며 본 발명의 일 실시양태에 있어서, 20℃ 이상의 온도에서 수행될 수 있다.
구체적인 예로 상기 혼합은, 높은 균일성 및 바인더 수지의 결정화도의 제어 측면에서 혼합기에서 500 rpm 내지 20,000rpm 으로 30초 내지 10분 또는 5,000rpm 내지 20,000rpm으로 30초 내지 2분으로 혼합물의 온도 70℃ 이하의 온도에서, 또는 1000 rpm 내지 15,000 rpm 또는 10,000rpm 내지 15,000rpm으로 30초 내지 1 분 또는 30초 내지 7분 동안 60℃ 이하의 온도에서 혼합하여 제조될 수 있다.
본 발명에 있어서, 상기 혼합에 의해서 수득된 혼합물 중 바인더 수지의 결정화도가 60% 이하, 바람직하게는 50% 이하인 것이다. 한편, 수득된 혼합물에서 바인더 수지의 결정화도가 60% 초과 또는 50%를 초과하는 경우에는, 속도(rpm)을 높이거나 및/또는 공정 시간을 늘려서 바인더 덩어리가 응집되어 있지 않도록 1차 입자로 분쇄하고, 굵은 섬유화를 일부 진행시키는 것이 바람직하다.
상기 (a) 단계에서 수득된 블렌드 혼합물의 결정화도가 상기 범위에 미치지 않고 높은 못하는 경우에는 후술하는 저전단 니딩(kneading) 공정(b 단계)에서 바인더 수지의 섬유화가 용이하지 않고, 바인더 표면에서 섬유가 충분히 형성되지 않거나 바인더 수지의 섬유화에 필요한 공정 시간이 증가될 수 있다.
한편, 상기 혼합 시간이 과도하게 길거나 혼합 속도가 과도하게 높은 경우 또는 이 둘 모두의 경우에는 전극 활물질이 미분화/손상되거나 섬유가 오히려 절단될 우려가 있다. 이와 함께/또는 바인더 섬유화의 불균일이 초래될 우려가 있다. 이러한 점을 고려하여, 본 발명의 일 실시양태에 있어서, 상기 혼합물 블렌드에서 바인더 수지의 결정화도는 30% 이상, 35% 이상, 또는 40% 이상으로 제어될 수 있다.
본 발명에 있어서, 상기 바인더 수지는 상기 (a) 단계 및/또는 후술하는 (b) 단계에 의해서 피브릴화 가능한 것이면 특정한 것으로 한정되는 것은 아니다.
한편, 상기 바인더 수지는 (a) 단계에서도 섬유화가 진행될 수 있으나 (a) 단계에서 형성된 섬유는 굵기가 굵고 건식 전극에서 요구되는 인장강도가 인장신율을 달성할 수 있을 정도로 세화되기 어렵다. 본 발명에 있어서, 바람직하게는 상기 바인더 수지의 미세 섬유화는 주로 후술하는 (b)를 통해서 수행된다.
상기 피브릴화는 고분자 중합체를 세화 분할하는 처리를 말하며, 예를 들어 기계적인 전단력 등을 사용하여 수행될 수 있다. 이렇게 피브릴화된 중합체 섬유는, 그 표면이 풀어져서 미세 섬유(피브릴)가 다수 발생한다. 이러한 바인더 수지의 비제한적인 예로 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리불화비닐리덴(PVDF), 폴리올레핀 또는 이 중 둘 이상의 혼합물을 포함할 수 있고, 상세하게는, 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)을 포함할 수 있으며, 더욱 상세하게는, 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)일 수 있다. 구체적으로, 상기 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE)은, 전체 바인더 수지 중량을 기준으로 30중량% 이상으로 포함될 수 있다. 한편, 이때, 상기 바인더 수지에는 전술한 성분 이외에도 PEO(polyethylene oxide) 및/또는 PVdF-HFP(polyvinylidene fluoride-cohexafluoropropylene) 등이 추가로 포함될 수 있음은 물론이다.
상기 건식 전극은 양극일 수 있고, 상기 전극 활물질은, 양극 활물질일 수 있다.
상기 양극 활물질은, 리튬 전이금속 산화물 또는 리튬 금속 철인산화물, 금속 산화물 형태라면 특정 성분으로 한정되는 것은 아니다. 이러한 양극 활물질로 리튬 코발트 산화물(LiCoO2), 리튬 니켈 산화물(LiNiO2) 등의 층상 화합물이나 1 또는 그 이상의 전이금속으로 치환된 화합물; 화학식 Li1+xMn2-xO4 (여기서, x 는 0 ~ 0.33 임), LiMnO3, LiMn2O3, LiMnO2 등의 리튬 망간 산화물; 리튬 구리 산화물(Li2CuO2); LiV3O8, LiFe3O4, V2O5, Cu2V2O7 등의 바나듐 산화물; 화학식 LiNi1-xMxO2 (여기서, M = Co, Mn, Al, Cu, Fe, Mg, B 또는 Ga 이고, x = 0.01 ~ 0.5 임)으로 표현되는 Ni 사이트형 리튬 니켈 산화물, 예를 들어 Li(Ni,Co,Mn,Al)O2 Li을 제외한 금속 중 Ni의 분율이 50% 이상인 것; 화학식 LiMn2-xMxO2 (여기서, M = Co, Ni, Fe, Cr, Zn 또는 Ta 이고, x = 0.01 ~ 0.1임) 또는 Li2Mn3MO8 (여기서, M = Fe, Co, Ni, Cu 또는 Zn 임)으로 표현되는 리튬 망간 복합 산화물; 화학식의 Li 일부가 알칼리토금속 이온으로 치환된 LiMn2O4; 리튬 금속 인산화물 LiMPO4 (여기서, M은 M = Fe, CO, Ni, 또는 Mn임), 디설파이드 화합물; Fe2(MoO4)3 등을 예로 들 수 있으며 이 중 하나 이상을 포함할 수 있다. 그러나, 이들만으로 한정되는 것은 아니다.
또는, 상기 건식 전극은 음극일 수 있고, 활물질은, 음극 활물질일 수 있다. 상기 음극 활물질은, 난흑연화 탄소, 흑연계 탄소 등의 탄소; LixFe2O3(0≤x ≤1), LixWO2(0≤x≤1), SnxMe1-xMe'yOz (Me: Mn, Fe, Pb, Ge; Me': Al, B, P, Si, 주기율표의 1족, 2족, 3족 원소, 할로겐; 0x≤1; 1≤y≤3; 1≤z≤8) 등의 금속 복합산화물; 리튬 금속; 리튬 합금; 규소계 합금; 주석계 합금; SiO, SiO/C, SiO2 등의 실리콘계 산화물; SnO, SnO2, PbO, PbO2, Pb2O3, Pb3O4, Sb2O3, Sb2O4, Sb2O5, GeO, GeO2, Bi2O3, Bi2O4 및 Bi2O5 등의 금속 산화물; 폴리아세틸렌 등의 도전성 고분자; Li-Co-Ni 계 재료 등을 사용할 수 있다.
다만, 상기 건식 전극은, 상세하게는 양극일 수 있고, 따라서, 활물질은 상세하게는, 양극 활물질일 수 있으며, 더욱 상세하게는, 리튬 전이금속 산화물, 리튬 니켈-망간-코발트 산화물, 리튬 니켈-망간-코발트 산화물에 일부가 다른 전이금속으로 치환된 산화물, 리튬 철인산화물 등일 수 있다.
상기 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서머 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분체 등의 금속 분체; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있으나, 상세하게는, 도전재의 균일한 혼합과, 전도성의 향상을 위해, 활성카본, 흑연, 카본블랙, 및 카본나노튜브로 이루어진 군에서 선택되는 1종 이상을 포함할 수 있고, 더욱 상세하게는, 활성카본을 포함할 수 있다.
상기 전극 활물질, 도전재, 및 바인더의 혼합비는, 전극 활물질 : 도전재 : 바인더 수지가 중량비로 80 내지 98중량% : 0.5 내지 10 중량% : 0.5 내지 10중량%로 포함될 수 있고, 상세하게는, 85 내지 98중량% : 0.5 내지 5 중량% : 0.5 내지 10중량%로 포함될 수 있다.
상기 범위를 벗어나, 바인더 수지의 함량이 너무 많은 경우에는 바인더 수지가 이후 니딩 공정에서 과도하게 섬유화되면서, 공정에 영향이 갈 수 있으며, 너무 적은 경우에는 충분한 섬유화가 이루어지지 못해, 혼합물 덩어리를 형성할 정도로 응집되지 못하거나 건식 전극 필름이 제조되기 어렵거나 건식 전극 필름의 물성이 저하되는 문제가 있을 수 있다.
또한, 상기 범위를 벗어나, 도전재의 함량이 너무 많은 경우, 상대적으로 활물질의 함량이 감소해 용량 감소 문제가 있으며, 너무 적은 경우에는 충분한 전도성을 확보할 수 없거나 건식 전극 필름의 물성이 저하될 수 있는 바, 바람직하지 않다.
한편, 경우에 따라서는, 상기 혼합물에 전극의 팽창을 억제하는 성분인 충진제가 추가로 투입될 수 있으며, 상기 충진제는 당해 전지에 화학적 변화를 유발하지 않으면서 섬유상 재료라면 특별히 제한되는 것은 아니며, 예를 들어, 폴리에틸렌, 폴리프로필렌 등의 올리핀계 중합체; 유리섬유, 탄소섬유 등의 섬유상 물질이 사용된다.
본 발명의 일 실시양태에 있어서, 상기 (a) 단계에서 수득된 분말상 블렌드에 있어서, 바인더 수지의 결정화도를 확인하고, 확인된 결정화도가 60% 이하인 경우, 바람직하게는 50% 이하인 경우 (a) 단계의 공정을 종료하고, 수득된 결과물을 (b) 단계에 투입할 수 있다. 상기 결정화도는 (a) 내지 (d) 공정이 수행되면서 각 단계에서 확인될 수 있다.
또는, 다른 일 실시양태에 있어서, 상기 (a) 단계에서 분말상 블렌드의 바인더 수지의 결정화도가 60% 이하, 또는 50% 이하로 제어될 수 있는 공정 조건을 실험적으로 확인하고 상기 실험적으로 설정된 공정을 상기 (a) 단계에 적용할 수 있다.
다음으로, 상기에서 수득된 이러한 혼합물에 대해서 바인더 수지를 섬유화시키기 위한 공정으로 니딩(kneading) 단계가 수행된다(b 단계).
본 니딩 단계에서는 후술하는 바와 같이 높은 온도에서 비교적 낮은 전단력이 인가되므로, 전극 활물질의 미분화/손상이나 바인더 섬유의 절단과 같은 우려가 없고, 바인더 수지가 미세 섬유화된 전극용 혼합 입자를 수득할 수 있다 또한 상기 섬유화 바인더는 섬유의 굵기 및/또는 길이의 균일성이 높다.
상기 니딩은 특정한 방법으로 한정되는 것은 아니다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 니딩은 예를 들어, 니더(kneader)와 같은 반죽기를 통해 수행될 수 있다. 예를 들어 상기 니더로는 이축 압출기, 단축 압출기, 배치식 니더, 연속식 니더 등이 사용될 수 있다.
이러한 니딩(kneading)은 상기 바인더 수지가 섬유화되면서 상기 전극 활물질 및 도전재 분체들을 결합 또는 연결함으로써, 고형분 100%의 덩어리 모양의 블렌드물을 형성하는 단계다.
구체적으로, 상기 단계(b)의 니딩은 10rpm 내지 100rpm의 속도로 제어될 수 있다. 예를 들어 상기 니딩은 상기 범위 내에서 20rpm 이상 또는 70rpm이하의 속도로 제어될 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 니딩은 1분 내지 30분동안 수행될 수 있다. 예를 들어 상기 범위 내에서 20rpm 내지 70rpm의 속도로 3분 내지 10분동안 수행될 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 니딩 단계은 전단속도가 5/sec 내지 1,000/sec의 범위로 제어될 수 있다. 본 발명의 구체적인 일 실시양태에 있어서 상기 니딩은 1분 내지 30분동안 수행될 수 있으며 전단 속도는 10/sec 내지 500/sec의 범위로 제어될 수 있다.
상기 니딩 단계는, 고온 및 상압 이상의 압력 조건에서 수행될 수 있다.
구체적으로, 상기 니딩은 70℃ 내지 200℃의 범위, 상세하게는, 90℃ 내지 150℃에서 수행될 수 있다. 상기 온도는 니더 내부의 온도이거나 니딩 대상물의 온도일 수 있다. 또는 이 둘 모두의 온도가 상기 범위로 제어될 수 있다.
상기 범위를 벗어나, 낮은 온도에서 수행하는 경우, 니딩 공정 수행시 바인더의 섬유화 및 니딩에 의한 덩어리화가 잘 이루어지지 않아, 캘린더링 시 필름화가 용이하게 이루어지지 않고, 너무 높은 온도에서 수행하는 경우에는, 바인더의 섬유화가 급격히 일어나고 이후 과한 전단력에 의해 이미 형성된 섬유가 절단될 수 있는 문제가 있는 바, 바람직하지 않다.
또한, 상기 니딩 공정은 0.5kgf/cm2 내지 10kgf/cm2 의 압력 하, 더욱 상세하게는 1kgf/cm2 내지 8kgf/cm2 압력 하, 예를 들어 상압 이상 8kgf/cm2 이하에서 수행될 수 있다. 상기 범위를 벗어나, 너무 높은 압력에서 수행하는 경우에는 과한 전단력과 압력이 가해져 형성된 섬유가 절단되거나 혼합물 덩어리의 밀도가 너무 높아질 수 있는 문제가 있을 수 있으므로 바람직하지 않다. 즉, 본원에 따르면, 고온 및 상압 이상의 압력 조건에서의 저전단 니딩 공정을 수행할 때, 본 발명이 의도한 효과를 달성할 수 있다. 대안적으로는 상압 이상, 상세하게는 1 atm 내지 3 atm 의 기압하, 또는 1.1 atm 내지 3 atm 기압하에서 수행될 수 있다.
한편, 본 발명의 일 실시양태에 있어서, 니딩 단계에서의 상기 공정 조건들은 투입된 재료의 특성에 따라 제어될 수 있다. 구체적인 일 실시양태에 있어서, 투입된 전극 활물질 입자의 입경에 따라서 상기 공정 조건들이 적절하게 조절될 수 있다. 전극 활물질 입자의 입경이 큰 경우에는 입경이 작은 전극 활물질에 비해서 상대적으로 용이하게 섬유화가 진행될 수 있다. 이에 전극 활물질의 입경이 큰 경우에는 상대적으로 낮은 회전 속도 및/또는 전단 속도가 적용될 수 있고, 입경이 작은 경우에는 상대적으로 큰 회전 속도 및/또는 전단 속도가 적용될 수 있다. 한편, 온도나 압력의 경우에도 이러한 재료적인 특성을 고려하여 조절될 수 있다.
다음으로, 상기 (b) 니딩의 단계를 통해 제조된 덩어리상 블렌드물을 다시 분쇄하여 전극용 혼합 분체를 얻는 단계가 수행된다(c 단계).
구체적으로, 상기 (b) 니딩 단계를 통해 제조된 덩어리상 블렌드물을 바로 캘린더 공정에 투입하여 시트화할 수도 있으나, 이 경우, 혼합물 덩어리를 눌러 얇은 필름 형태로 제조하려면 강한 압력과 고온이 요구되며, 이에 따라, 건식 전극 필름의 밀도가 너무 높아지거나 두께나 밀도 등의 측면에서 균일한 필름을 얻을 수 없는 문제가 발생할 수 있다. 이에 본 발명에 따르면, 상기 (b) 단계에서 제조된 혼합물 덩어리(덩어리 형태의 블렌드물)는 상기 분쇄 단계를 거친다.
이때, 상기 분쇄는 특별히 한정되지 아니하나, 블렌더 또는 그라인더 등과 같은 공지의 분쇄 기기를 이용하여 수행될 수 있다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 분쇄는 100rpm 내지 30,000 rpm 또는 3000rpm 내지 30,000rpm의 범위 내에서 속도가 제어될 수 있다. 한편, 상기 분쇄 시간은 1초 내지 10분의 범위 내에서 적절하게 제어될 수 있다. 그러나, 상기 분쇄 속도와 시간은 상기 범위로 특별히 한정되는 것은 아니다. 구체적인 예로, 상기 분쇄는 500rpm 내지 20,000rpm 또는 5000rpm 내지 20000rpm의 속도로 30 초 내지 10분 수행되거나, 또는 700 rpm 내지 18000 rpm 또는 10000rpm 내지 18000rpm의 속도로 30초 내지 5분 또는 30초 내지 1분동안 수행될 수 있다.
상기 범위를 벗어나, 너무 낮은 rpm으로 수행되거나 분쇄 시간이 짧게 수행되는 경우에는 충분한 분쇄가 이루어지지 않아 필름화하기에 부적절한 크기의 분체가 생길 수 있는 문제가 있고, 너무 높은 rpm으로 수행되거나 길게 수행하면, 혼합물 덩어리에서 미분이 많이 발생할 수 있는 바, 바람직하지 않다.
본 발명의 일 실시양태에 있어서, 필름화의 측면을 고려하여 상기 (c) 단계에서 수득된 전극용 합제 분체의 입경은 바람직하게는 30㎛ 내지 180㎛의 범위를 가질 수 있다.
본 발명의 일 실시양태에 있어서, 상기 입경의 측정은 입도분포측정기(PSA)(Model Mastersizer 300, Malvem Instruments LTD)를 적용하여 측정될 수 있다. 구체적으로 레이저를 조사하고, 입사된 레이저는 입자에 의해 산란된 광산란의 정도를 검출하고, 이를 통해 입경이 측정될 수 있다. 측정 방식에는 입자를 용매에 분산시켜서 측정하는 습식 방식과 분말 상태에서 측정하는 건식 방식이 적용될 수 있다.
한편 본 발명에 있어서, 상기 전극용 혼합 분체는 전극용 혼합 분체 중 포함된 바인더 수지의 결정화도(c)는 20% 이하인 것으로서 상기 분말상 블렌드 중 포함된 바인더 수지의 결정화도(a)보다 낮다. 한편, 캘린더링 후 건식 전극 필름에 포함된 바인더 수지의 결정화도(d) 보다 높을 수 있다. 즉, 캘린더링 단계 진행을 통해서 결정화도가 더욱 저하될 수 있다.
한편, 상기 바인더 수지의 결정화도(c)가 20%를 초과하는 경우에는 이후 캘린더링 공정에서 균일한 품질의 필름 제조가 어렵다. 만일 수득된 전극용 혼합 분체의 결정화도가 20%를 초과하는 경우에는 앞선 공정 조건들, 니딩 시간, 니딩 온도, 회전 속도(rpm) 및 전단 속도 중 적어도 1개 이상을 조절하여 결정화도를 조절할 수 있다. 예를 들어 니딩 시간을 늘려 바인더의 섬유화를 진행하는 방식으로 결정화도를 조절할 수 있다.
본 발명의 일 실시양태에 있어서, 상기 (c) 단계에서 수득된 전극용 혼합 분체에서 바인더 수지의 결정화도(c)는 20% 이하인 것이 바람직하다. 상기 결정화도(c)가 20%를 초과하는 경우에는 섬유화가 충분하지 않아 후술하는 캘린더링 공정을 통해 수득된 건식 전극의 인장강도 및 인장신율이 저하될 수 있다.
본 발명의 일 실시양태에 있어서, 상기 (c) 단계에서 수득된 전극용 혼합 분체에 있어서, 바인더 수지의 결정화도를 확인하고, 확인된 결정화도(c)가 20% 이하인 경우, (c) 단계의 공정을 종료하고, 수득된 결과물을 (d) 단계에 투입할 수 있다. 상기 결정화도는 (a) 내지 (d) 공정이 수행되면서 각 단계에서 확인될 수 있다.
또 다르게는 상기 (c) 단계에서 수득된 결과물에 있어서, 바인더 수지의 결정화도가 20% 이하로 제어될 수 있는 공정 조건을 실험적으로 확인하고 설정된 공정 조건을 상기 (b) 및/또는 (c) 단계에 적용할 수 있다.
이와 같은 방법으로, 전극용 혼합 분체가 수득되면 다음으로 이러한 전극용 분체를 사용하여, 건식 전극을 제조한다(d 단계). 구체적으로, 상기와 같이 분쇄 단계까지 완료하여 제조된 전극용 혼합 분체를 캘린더링하여 건식 전극 필름을 제조하는 단계를 거친다.
이러한 캘린더링은, 상기 전극용 혼합 분체를 필름 형태로 가공하는 것으로, 예를 들어, 50 ㎛ 내지 300 ㎛의 평균 두께를 가지도록 필름 형태로 가압하여 통해 제조하는 단계일 수 있다.
본 발명의 일 실시양태에 있어서, 상기 캘린더링은 두 개의 롤러가 마주보도록 배치되어 있는 롤 프레스부를 포함하는 캘린더 장치를 이용하여 수행될 수 있다. 상기 캘린더 장치는 롤 프레스부를 적어도 하나 이상 포함할 수 있다. 예를 들어 상기 롤 프레스부는 연속적으로 복수 개 배치되어 있어 전극용 혼합 분체의 압착이 다단에 걸쳐 수행될 수 있다. 한편, 상기 캘린더링 장치에서 하나 이상의 롤러는 각각 독립적으로 50℃ 내지 200℃로 온도가 제어될 수 있다. 이와 함께 또는 이와는 독립적으로, 상기 하나 이상의 롤 프레스부에서 두 롤러의 회전 속도비는 1:1 내지 1:3의 비율로 제어될 수 있다.
이와 같은 캘린더링 단계까지 진행하면 전극 합제의 역할을 수행하는 건식 전극 필름이 제조될 수 있다. 이러한 건식 전극 필름은 프리 스탠딩(free standing) 필름 또는 자립형(self-supporting) 필름이라 명명하기도 한다. 이러한 건식 전극 필름은 집전체, 지지웹 (support web) 또는 다른 구조와 같은 임의의 외부의 지지 요소 없이 에너지 저장 장치의 제작 과정에서 사용되기에 충분한 기계적 강도를 가질 수 있다. 또는 집전체와 같은 지지체와 결합하여 전지 제조에 이용될 수도 있다.
한편, 본 발명의 일 실시양태에 있어서, 상기 수득된 건식 전극 필름은 건식 전극 필름 중 바인더 수지의 결정화도(d)가 10% 이하인 것이다. 만일 수득된 건식 전극 필름의 결정화도가 10%를 초과하는 경우에는 롤 프레스부의 두 롤러 사이의 갭을 조절하거나 속도비를 제어하는 방법으로 결정화도를 조절할 수 있다. 예를 들어서, 상기 갭을 줄이는 방법 및/또는 속도비를 높이는 방법으로 바인더의 섬유화 정도를 높일 수 있다.
본 발명의 일 실시양태에 있어서, 상기 (d) 단계에서 수득된 건식 전극 필름에 있어서, 바인더 수지의 결정화도를 확인하고, 확인된 결정화도(d)가 10% 이하인 경우, (d) 단계의 공정을 종료할 수 있다. 상기 결정화도는 (a) 내지 (d) 공정이 수행되면서 각 단계에서 확인될 수 있다.
또 다르게는 상기 (d) 단계에서 수득된 건식 전극 필름에 있어서, 바인더 수지의 결정화도가 10% 이하로 제어될 수 있는 공정 조건을 실험적으로 확인하고 설정된 공정 조건을 상기 (d) 단계에 적용할 수 있다.
이와 같이 제조되는, 건식 전극 필름은 용매를 포함하지 않는 바, 유동성이 거의 없어 취급이 용이하고 소망하는 형태로 가공하여 다양한 형태의 전극 제조에 이용될 수 있다. 뿐만 아니라, 본 발명의 건식 전극 필름을 전극 제조에 이용한다면, 용매 제거를 위한 건조 공정이 생략될 수 있으므로, 전극의 제조 공정성을 크게 개선할 수 있을 뿐 아니라, 기존의 건식 전극의 제조에 문제가 되었던 활물질의 미분이나 섬유화된 바인더의 끊김 등의 문제를 해소할 수 있다.
또한, 본 발명에 따른 건식 전극 필름은 건식 전극 필름 중 포함된 바인더 수지의 결정화도가 10% 이하로 제어되므로 유연성이 증가하여 권취하여 보관하거나 이를 다시 권출하는 경우 파단이나 균열이 발생하지 않는 장점이 있다. 또한, 유연성의 증가에 따라 인장강도 및 인장 신율이 개선되는 등 기계적 강도가 개선될 수 있다.
한편, 본 발명에 있어서, 상기 건식 전극 필름은 기공도가 20vol% 내지 50vol%일 수 있으며 상기 범위 내에서 바람직하게는 상기 범위 내에서 45vol% 이하 또는 40 vol% 이하의 값으로 제어될 수 있다. 기공도가 상기 범위를 만족하는 경우, 다양한 효과 측면에서 바람직하다. 반면 상기 범위를 벗어나, 기공도가 너무 작은 경우에는, 전해액 함침이 어려워 수명 특성, 출력 특성 등에서 바람직하지 않고, 너무 큰 경우에는 동일 용량을 발현시키기 위한 부피가 증가하는 바, 부피 대비 에너지 밀도 측면에서 바람직하지 않다. 본 발명의 일 실시양태에 있어서, 상기 기공도는 건식 전극 필름의 겉보기 밀도를 측정하고, 각 구성 성분의 실제 밀도와 조성을 기준으로 계산한 실제 밀도를 이용하여 하기와 같은 [관계식 2]에 의해 구할 수 있다.
[관계식 2]
기공도(vol%) = { 1 - (겉보기 밀도/실제 밀도)} x 100
또한, 본 발명에 따르면, 캘린더링 이후, 상기 건식 전극 필름을 집전체의 적어도 일면에 형성시키는 라미네이션 단계가 수행될 수 있다. 상기 라미네이션은, 상기 건식 전극 필름을 집전체 상에 소정의 두께로 압연, 부착시키는 단계일 수 있다. 상기 라미네이션 역시 라미네이션 롤에 의해 수행될 수 있고, 이때, 라미네이션 롤은 20℃ 내지 200℃의 온도로 유지될 수 있다.
한편 본 발명의 일 실시양태에 있어서, 상기 제조된 건식 전극의 내굴곡성은 10mm파이(Φ) 미만, 상세하게는 8mm파이(Φ) 이하, 더욱 상세하게는 5mm파이(Φ) 파이 이하일 수 있다. 즉, 상기에서 설명한 바와 같이, 본 발명에 따라 제조된 건식 전극은, 섬유화된 바인더의 끊김이 덜하므로, 유연성을 향상시킬 수 있다. 상기 내굴곡성은, 측정 표준 JIS K5600-5-1의 방법에 따라 수행될 수 있고, 구체적으로, 상기 제조된 건식 전극을 다양한 직경의 측정봉에 접촉시킨 뒤 양쪽 끝을 들어올림으로써 크랙의 발생 여부와 크랙이 발생하지 않는 최소 직경을 측정하여 얻을 수 있다.
또한, 상기 건식 전극 필름의 활물질 로딩량은 3mAh/cm2 내지 15mAh/cm2일 수 있고, 상세하게는 4mAh/cm2 내지 10mAh/cm2일 수 있다.
여기서, 상기 활물질의 로딩량은, 하기 [관계식 3]과 같은 방법으로 계산한 값이다.
[관계식 3]
로딩량(mAh/cm2) = 활물질의 용량(mAh/g) x 건식 전극 필름 내 활물질의 무게 함량비(wt%) x 건식 전극 필름의 단위 면적당 무게(g/cm2)
한편, 상기 집전체는 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면처리한 것 등이 사용될 수 있다. 집전체는 또한 그것의 표면에 미세한 요철을 형성하여 양극활물질의 접착력을 높일 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태가 가능하다.
더 나아가, 상기 집전체는 표면에서 저항을 낮추고 접착력을 향상시키기 위한 전도성 프라이머를 전체적으로 또는 부분적으로 코팅한 것이 사용될 수 있다. 여기서, 상기 전도성 프라이머는 전도성 물질과 바인더를 포함할 수 있고, 상기 전도성 물질은 전도성을 띄는 물질이라면 한정되지 아니하나, 예를 들어, 탄소계 물질일 수 있다. 상기 바인더는, 용제에 녹을 수 있는 불소계(PVDF 및 PVDF 공중합체 포함), 아크릴계 바인더 및 수계 바인더 등을 포함할 수 있다.
본 발명의 또 하나의 일 실시예에 따르면, 상기 건식 전극의 제조방법으로 제조된 건식 전극이 제공된다. 상기 전극은 집전체를 더 포함하며, 상기 건식 전극 필름이 상기 집전체의 적어도 일측면 또는 양측면상에 배치되어 있는 것이다. 또한, 상기 건식 전극을 포함하는 이차전지로서, 상기 건식 전극은 양극이며, 상기 양극, 음극, 및 분리막을 포함하는 전극조립체가 리튬 함유 비수계 전해질과 함께 전지케이스에 내장되어 있는 이차전지, 및 이를 단위전지로서 포함하는 에너지 저장장치를 제공된다.
이때, 상기 이차전지 및 에너지 저장장치의 구체적인 구조 등은 종래에 알려진 바와 같으므로, 본 명세서에는 설명을 생략한다.
한편, 본 발명의 구체적인 일 실시예에 있어서, 건식 전극의 제조 시스템이 제공된다. 상기 시스템은 전극 활물질, 도전재, 및 바인더 수지를 포함하는 원료 물질들을 혼합하는 블렌더 장치; 상기 혼합물을 니딩하여 혼합물 덩어리를 제조하는 니더(kneader) 장치; 상기 혼합물 덩어리를 분쇄하여 전극용 혼합 분체를 형성하는 분쇄 장치; 상기 전극용 분체를 건식 전극 필름으로 형성하는 캘린더(calender) 장치; 및 상기 건식 전극 필름과 집전체를 라미네이션하는 라미네이션 장치를 포함한다.
상기 시스템의 각 장치 및 상기 장치를 이용하여 수행되는 각 공정들은 각 단계에서 바인더 수지가 앞서 설명된 결정화도를 나타낼 수 있도록 공정 조건이 미리 설정되어 있는 것일 수 있다.
또한, 각 단계별 공정 수행 후 시료를 채취하여 결정화도를 측정하고 기준에 부합하지 않는 경우에는 기설정된 공정 조건을 수정하여 반영할 수 있다.
예를 들어서, 상기 블렌더 장치에서 수득된 분말상 혼합물에 대한 결정화도 측정 결과 결정화도가 50%를 초과하거나 수득된 전극용 혼합 분체의 결정화도 측정 결과 결정화도가 20%를 초과하는 경우에는 각각의 공정 시간을 늘릴 수 있다. 또한, 상기 캘린더링 공정 후 수득된 전극 필름의 결정화도가 10%를 초과하는 경우에는 롤 프레스부에서 롤러 사이의 갭을 줄이거나 속도비를 높이는 방법으로 결정화도를 제어할 수 있다.
한편, 상기 블렌더 장치는 원료 물질들을 혼합하는 혼합기로서, 상기에서 설명한 바와 같이 500rpm 내지 30,000rpm의 속도로 합제 원료 물질들을 혼합할 수 있다.
상기 니더 장치는 니딩을 통해 혼합물을 혼합물 덩어리로 만들며 바인더의 섬유화를 진행한다. 이러한 목적으로 상기 니더 장치는 70℃ 내지 200℃의 범위, 상압 이상의 압력 조건으로 설정될 수 있다. 상세하게는 90℃ 내지 150℃, 0.5kgf/cm2 내지 10kgf/cm2 압력 하의 압력 조건, 더욱 상세하게는 1kgf/cm2 내지 8kgf/cm2 압력 하의 조건으로 설정될 수 있다.
상기 분쇄 장치는, 상기 니더 장치에서 수득된 혼합물 덩어리를 분쇄시켜, 전극용 분체를 형성하는 장치로서, 예를 들어 블렌더나 그라인더 등을 사용될 수 있다.
상기 캘린더 장치는, 상기 전극용 분체를 압착하여 필름 형태로 성형하는 장치이다. 본 발명의 구체적인 일 실시양태에 있어서, 상기 캘린더링 장치는 두 개의 롤러가 마주보도록 배치되어 있는 롤 프레스부를 포함하며, 상기 롤 프레스부는 연속적으로 복수 개 배치되어 있어 분체의 압착의 다단에 걸쳐 수행될 수 있다.
상기 라미네이션 장치는 상기 캘린더 장치에 의해 성형되는 건식 전극 필름을 집전체의 적어도 일면에 부착, 압연시키는 역할을 수행하는 것으로서, 예를 들어 롤 프레스 장치가 사용될 수 있다.
이러한 캘린더 장치와 라미네이션 장치에 의해 본 발명에 따른 건식 전극 건식 전극 필름의 기공도가 결정될 수 있다. 상기 블렌더 장치, 니더 장치, 캘린더 장치 및 라미네이션 장치의 구체적인 구조 등은 종래 알려져 있는 바, 본 명세서에서는 구체적인 설명을 생략한다.
도 3은 상기 장치들을 이용해서 수행되는 전극 제조 방법을 단계별로 나타낸 공정 흐름도이다. 이를 참조하면, 우선 전극 활물질, 바인더 수지 및 도전재 블렌드하여 분말상 혼합물을 제조하고 바인더 수지의 결정화도를 측정한다. 만일 상기 바인더 수지의 결정화도가 50% 이하인 것으로 확인되면 상기 분말상 혼합물을 다음 니딩 공정으로 투입한다. 그러나 상기 결정화도가 50%를 초과하는 것으로 확인되면 상기 분말상 혼합물에 대해서 다시 블렌드 공정을 수행하는 방식 등으로 믹싱 시간을 늘릴 수 있다. 이때 바인더 덩어리가 1차 입자로 분쇄되고 굵은 섬유화가 진행될 수 있다.
다음으로 수득된 분말상 블렌드를 니딩하여 혼합물 덩어리를 수득하고 이를 분쇄하여 전극용 혼합 분체를 수득한다. 만일 수득된 전극용 혼합 분체에서 바인더 수지의 결정화도가 20% 이하인 것으로 확인되면 상기 전극용 혼합 분체를 다음 캘린더링 공정으로 투입한다. 그러나 상기 결정화도가 20%를 초과하는 것으로 확인되면 전극용 혼합 분체를 다시 니딩 공정에 투입한다.
다음으로 상기 수득된 전극용 혼합 분체를 캘린더링하여 건식 전극 필름을 제조한다. 만일 제조된 건식 전극 필름의 결정화도가 10% 이하인 것으로 확인되면 상기 건식 전극 필름을 라미네이션 공정에 투입하여 전극을 제조한다. 그러나, 상기 결정화도가 10%를 초과하는 것으로 확인되면 롤러 사이의 간격을 조절, 롤러의 속도비를 제어 또는 이 둘 모두의 방법으로 결정화도를 조절한다. 한편, 상기 도 3에 따른 공정 흐름도는 전극 제조시 각 단계에서 필요한 결정화도를 달성하기 위한 공정 조건을 수립하기 위해서도 활용될 수 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 이해하기 위해 본 발명에 따른 실시예, 비교예, 및 실험예를 바탕으로 상세히 설명
한다.
실시예 1
양극 활물질로 Li(Ni, Mn, Co, Al)O2, 활성카본 및 폴리테트라플루오로에틸렌(PTFE)를 중량비로 96:1:3의 비율로 블렌더에 투입하고 15000rpm에서 1분 동안 믹싱하여 분말상 블렌드를 제조하였다. 다음으로 니더의 온도를 150℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 1kgf/cm2 하에서 25rpm의 속도로 5분 동안 작동하여 혼합물 덩어리를 수득하였다. 상기 혼합물 덩어리를 블렌더에 투입하고 10000rpm에서 30초 동안 분쇄하여 전극용 혼합 분체를 수득하였다. 이후, 상기 전극용 혼합 분체를 랩 캘린더(롤직경: 200mm, 롤 온도: 100℃, 롤 속도비 1.5 조건)에 투입하여 건식 전극 필름을 제조하였다. 한편, 상기 양극 활물질은 입경이 약 5㎛ 내지 12㎛ 이었다.
실시예 2
양극 활물질로 리튬인산철(LFP), 활성카본 및 폴리테트라플루오로에틸렌(PTFE)를 94:1.5:4.5의 비율로 블렌더에 투입하고 10000rpm에서 1분 동안 믹싱하여 분말상 블렌드를 제조하였다. 다음으로 니더의 온도를 150℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 1kgf/cm2 하에서 50rpm의 속도로 5분동안 작동하여 혼합물 덩어리를 수득하였다. 상기 혼합물 덩어리를 블렌더에 투입하고 10000rpm에서 20초 동안 분쇄하여 전극용 혼합 분체를 수득하였다. 이후, 상기 전극용 혼합 분체를 랩 캘린더(롤직경: 200mm, 롤 온도: 100℃, 롤 속도비 1.75 조건)에 투입하여 건식 전극 필름을 제조하였다. 한편, 상기 양극 활물질은 입경이 약 2㎛ 내지 3㎛였다.
실시예 3
양극 활물질로 Li(Ni, Mn, Co, Al)O2, 활성카본 및 폴리테트라플루오로에틸렌(PTFE)를 중량비로 96:1:3의 비율로 블렌더에 투입하고 15,000rpm에서 1분 동안 믹싱하여 분말상 블렌드를 제조하였다. 상기 양극 활물질은 입경이 약 5㎛ 내지 12㎛ 이었다.
다음으로 니더의 온도를 150℃로 안정화시키고, 상기 분말상 블렌드를 니더에 넣은 다음 압력 1kgf/cm2 하에서 25rpm의 속도로 2분 동안 작동하여 혼합물 덩어리를 수득하였다. 상기 혼합물 덩어리를 블렌더에 투입하고 10000rpm에서 30초 동안 분쇄하여 전극용 혼합 분체를 수득하였다. 이후, 상기 전극용 혼합 분체를 랩 캘린더(롤직경: 200mm, 롤 온도: 100℃, 롤 속도비 1.5 조건)에 투입하여 건식 전극 필름을 제조하였다.
비교예 1
양극 활물질로 리튬인산철(LFP), 활성카본 및 폴리테트라플루오로에틸렌(PTFE)를 94:1.5:4.5의 비율로 블렌더에 투입하고 10,000rpm에서 1분 동안 믹싱하여 분말상 블렌드를 제조하였다. 다음으로 니더의 온도를 150℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 1kgf/cm2 하에서 25rpm의 속도로 2분동안 작동하여 혼합물 덩어리를 수득하였다. 상기 혼합물 덩어리를 블렌더에 투입하고 10000rpm에서 20초 동안 분쇄하여 전극용 혼합 분체를 수득하였다. 이후, 상기 전극용 혼합 분체를 랩 캘린더(롤직경: 200mm, 롤 온도: 100℃, 롤 속도비 1.75 조건)에 투입하여 건식 전극 필름을 제조하였다. 한편, 상기 양극 활물질은 입경이 약 2㎛ 내지 3㎛였다.
비교예 2
양극 활물질로 Li(Ni, Mn, Co, Al)O2, 활성카본 및 폴리테트라플루오로에틸렌(PTFE)를 중량비로 96:1:3의 비율로 슈퍼믹서에 투입하고 400rpm에서 2분 동안 믹싱하여 분말상 블렌드를 제조하였다.
다음으로 니더의 온도를 150℃로 안정화시키고, 상기 혼합물을 니더에 넣은 다음 압력 1kgf/cm2 하에서 25rpm의 속도로 5분 동안 작동하여 혼합물 덩어리를 수득하였다. 상기 혼합물 덩어리를 블렌더에 투입하고 10,000rpm에서 30초 동안 분쇄하여 전극용 혼합 분체를 수득하였다. 이후, 상기 전극용 혼합 분체를 랩 캘린더(롤직경: 200mm, 롤 온도: 100℃, 롤 속도비 1.5 조건)에 투입하여 건식 전극 필름을 제조하였다. 한편, 상기 양극 활물질은 입경이 약 5㎛ 내지 12㎛ 이었다.
비교예 3
양극 활물질로 Li(Ni, Mn, Co, Al)O2, 활성카본 및 폴리테트라플루오로에틸렌 (PTFE)를 중량비로 96:1:3의 비율로 블렌더에 투입하고 15,000rpm에서 1분 동안 믹싱하였다. 이후 슈퍼 믹서에서 800rpm으로 30초간 혼합하였다. 이 때 온도는 23℃로 유지되었으며 압력은 약 85psi로 제어되었다. 이와 같은 방법으로 분말상 블렌드를 수득하였다. 이후, 상기 전극용 혼합 분체를 랩 캘린더(롤직경: 200mm, 롤 온도: 100℃, 롤 속도비 1.5 조건)에 투입하여 건식 전극 필름을 제조하였다. 한편, 상기 양극 활물질은 입경이 약 5㎛ 내지 12㎛ 이었다.
Figure PCTKR2022011591-appb-img-000001
Figure PCTKR2022011591-appb-img-000002
상기 [표 1]에서 확인할 수 있는 바와 같이 실시예 1 내지 실시예 3에서 분말상 블렌드의 결정화도는 50% 이하로, 전극용 혼합 분체의 결정화도는 20% 이하로, 그리고 건식 전극 필름의 결정화도는 10% 이하로 제어되었다. 도 1은 실시예 1의 DSC 열분석 결과를 그래프로 나타낸 것이다. 이에 따르면 분말상 블렌드의 경우(Mixing)에 비해서 이후 단계 가공된 전극용 혼합 분체(Griding) 및 건식 전극 필름(Sheet)의 결정화도가 낮은 것이 확인되었다. 또한, 도 2는 실시예 2의 DSC 열분석 결과를 그래프로 나타낸 것이다. 실시예 2에서도 분말상 블렌드의 경우(Mixing)에 비해서 이후 단계 가공된 전극용 혼합 분체(Grinding) 및 건식 전극 필름(Sheet)의 결정화도가 낮은 것이 확인되었다. 또한, 각 실시예에서 수득된 건식 전극 필름에 있어서 인장강도는 모두 0.5Mpa 이상의 값이 확인되었으며, 인장 신율도 2% 이상의 수치를 나타내었다. 한편, 도 2의 PTFE는 가공 전 PTFE 100%의 고유의 결정화도를 측정한 것으로서 가공된 후 PTFE의 결정화 정도와 비교하기 위해서 수록된 것이다.
한편, 비교예 1 내지 비교예 2는 수득된 전극용 혼합 분체의 바인더 수지의 결정화도가 20%를 초과하는 것으로 확인되었다. 이는 수득된 전극용 혼합 분체에서 섬유화가 불충분한 것을 의미하는 것으로서 이후 캘린더링 공정을 통해서 시트상의 건식 전극 필름이 제조되기 어려웠다. 특히 비교예 2는 분말상 블렌드에서의 바인더 수지의 결정화도가 60%를 초과하게 되어 이후 공정이 진행되더라도 충분한 섬유화가 달성되지 않은 것이 확인되었다. 한편, 비교예 3은 본 발명에 따른 니딩 공정이 적용되지 않아 미세 섬유화가 충분히 달성되지 않았으며, 이에 캘린더링을 하더라도 시트로 제작되지 못한 것으로 확인되었다.
- 결정화도 측정
각 실시예 및 비교예에 있어서, 분말상 블렌드, 전극용 혼합 분체 및 건식 전극 필름으로부터 결정화도 측정을 위한 시료를 각각 준비하였다. 각 시료에 대해서 상기 결정화도(Xc)는 TA사 시차주사열량계(differential scanning calorimetry, DSC)에 시료 약 5mg~12mg을 칭량하여 투입하고, 질소 분위기 25~360℃ 온도범위에서 10℃/분 속도로 승온하면서 온도에 따른 융융열(Δ융열)을 측정하였다.
TA사 TROIS 프로그램을 이용하여 용융시 가장 높은 엔탈피를 보이는 시점에서의 온도 (peak 온도)를 기준으로 융점(Tm)과 용융 엔탈피(△Hm)를 분석하였다. 각 시료의 결정화도는 DSC에서 실측된 용융 엔탈피(△Hm) 값을 이론상 완전 결정(결정화도 100%)의 용융 엔탈피(△Hm0)의 값으로 나누어 %로 표시하는 것으로서 상기 관계식 1에 의해서 계산하였다. PTFE 이론적인 완전 결정의 용융 엔탈피 값은 85.4J/g로 하였으며 Polymer지 46권(2005년) 8872~8882 페이지를 참조하였다.
- 인장 강도 및 인장 신율의 측정
각 실시예 및 비교예에서 수득된 건식 전극 필름을 10mm 폭으로 자른 후 인장강도 시험기를 이용해서 인장속도 5mm/분에서 3회 측정하였으며, 이를 평균하여 나타내었다. 인장강도는 파단이 일어날 때까지 가하여진 응력을 측정한 것이며, 인장 신율은 파단이 일어날 때까지 늘어난 시편이 늘어난 비율(%, 원래 길이 대비 길이 변화량의 비율)을 나타낸 것이다.

Claims (20)

  1. 용매를 사용하지 않는 건식 제조 공정에 의해서 제조된 건식 전극 필름을 포함하며, 상기 건식 전극 필름은 전극 활물질, 도전재 및 바인더 수지를 포함하고, 상기 건식 전극 필름에 포함된 바인더 수지는 결정화도가 10% 이하인 것인 전기화학소자용 전극.
  2. 제1항에 있어서,
    상기 건식 전극 필름은 기계방향(MD)의 인장강도가 0.5MPa 이상인 것인 전기화학소자용 전극.
  3. 제1항에 있어서,
    상기 건식 전극 필름은 인장신율이 2% 이상인 것인 전기화학소자용 전극.
  4. 제1항에 있어서,
    상기 전극 필름은 기공도가 20vol% 내지 50vol%인 전기화학소자용 전극.
  5. 제1항에 따른 전기화학소자용 전극을 제조하는 방법이며,
    상기 방법은
    (a) 전극 활물질, 도전재, 및 바인더 수지를 포함하는 분말상 블렌드를 제조하는 단계;
    (b) 상기 분말상의 혼합물을 70℃ 내지 200℃의 온도 조건 하에서 니딩(kneading)하여 혼합물 덩어리를 제조하는 단계;
    (c) 상기 혼합물 덩어리를 분쇄하여 전극용 혼합 분체를 수득하는 단계; 및
    (d) 상기 전극용 혼합 분체를 캘린더링 하여 free standing 타입의 건식 전극 필름을 수득하는 단계;을 포함하며,
    상기 (d)단계에서 수득된 건식 전극 필름 중 포함된 바인더 수지의 결정화도(d)는 10% 이하인 것인 전기화학소자용 전극을 제조하는 방법.
  6. 제5항에 있어서,
    상기 (c) 단계에서 수득된 전극용 혼합 분체 중 포함된 바인더 수지의 결정화도(c)는 20% 이하인 것인 전기화학소자용 전극을 제조하는 방법.
  7. 제5항에 있어서,
    상기 (a) 단계에서 수득된 혼합물 중 포함된 바인더 수지의 결정화도(a)는 50% 이하인 것인 전기화학소자용 전극을 제조하는 방법.
  8. 제5항에 있어서,
    상기 (a) 단계는 500 rpm 내지 30,000rpm의 조건에서 수행되는 것인 전기화학소자용 전극을 제조하는 방법.
  9. 제5항에 있어서,
    상기 단계(b)은 100rpm 이하의 속도 하에서 수행되는 것인 전기화학소자용 전극을 제조하는 방법.
  10. 제5항에 있어서,
    상기 (b) 단계는 0.5kgf/cm2 내지 10kgf/cm2 압력 하에서 수행되는 것인 전기화학소자용 전극을 제조하는 방법.
  11. 제5항에 있어서,
    상기 (b) 단계는 상압 이상의 조건에서 수행되는 것인 전기화학소자용 전극을 제조하는 방법.
  12. 제1항에 있어서,
    상기 바인더 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), PVDF(Polyvinylidene fluoride), 폴리올레핀, 또는 이중 둘 이상의 혼합물을 포함하는 것인 전기화학소자용 전극.
  13. 제1항에 있어서,
    집전체를 더 포함하며, 상기 건식 전극 필름이 상기 집전체의 적어도 일측면 또는 양측면상에 배치되어 있는 것인 전기화학소자용 전극.
  14. 제5항에 있어서,
    집전체를 준비하고, 상기 건식 전극 필름을 상기 집전체의 적어도 일측면상에 배치하고 라미네이션하는 단계를 더 포함하는 것인 전기화학소자용 전극을 제조하는 방법.
  15. 제1항에 따른 건식 전극을 포함하며,
    상기 건식 전극은 양극이며, 상기 양극, 음극, 및 분리막을 포함하는 전극 조립체가 리튬 함유 비수계 전해질과 함께 전지케이스에 내장되어 있는 이차전지.
  16. 제15항에 따른 이차전지를 단위전지로서 포함하는 에너지 저장장치.
  17. 건식 전극 필름 제조용 전극 분체를 제조하는 방법에 대한 것으로서,
    상기 제조 방법은
    (a) 전극 활물질, 도전재, 및 바인더 수지를 포함하는 분말상 블렌드를 제조하는 단계;
    (b) 상기 분말상 블렌드를 70℃ 내지 200℃의 범위에서 니딩(kneading)하여 혼합물 덩어리를 제조하는 단계; 및
    (c) 상기 혼합물 덩어리를 분쇄하여 전극용 혼합 분체를 수득하는 과정;을 포함하며,
    상기 전극 분체 중 포함된 바인더 수지는 결정화도가 20% 이하이며,
    상기 바인더 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), 폴리올레핀, 또는 이들의 혼합물을 포함하는 것인 전극용 혼합 분체를 제조하는 방법.
  18. 제17항에 따른 방법에 의해서 제조된 전극용 혼합 분체이며, 상기 전극용 혼합 분체는 전극 활물질, 도전재 및 바인더 수지를 포함하며, 상기 바인더 수지는 폴리테트라플루오로에틸렌(Polytetrafluoroethylene, PTFE), PVDF, 폴리올레핀, 또는 이 중 둘 이상의 혼합물을 포함하며, 상기 전극용 혼합 분체 중 포함된 바인더 수지의 결정화도가 20% 이하인 것인 전극용 혼합 분체.
  19. 전극용 혼합 분체를 캘린더링 하여 free standing 타입의 건식 전극 필름을 수득하는 단계;를 포함하며, 상기 전극용 혼합 분체는 제17항에 따른 방법에 의해서 수득된 것이며, 상기 전식 전극 필름 중 포함된 바인더 수지의 결정화도(d)는 10% 이하인 것인 건식 전극 필름을 제조하는 방법.
  20. 제19항에 따른 방법에 의해서 제조된 것이며, 기계방향(MD)의 인장강도가 0.5MPa 이상이고, 인장신율이 2% 이상이며, 기공도가 20vol% 내지 50vol%인 건식 전극 필름.
PCT/KR2022/011591 2021-08-06 2022-08-04 건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법 WO2023014127A1 (ko)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023572196A JP2024519967A (ja) 2021-08-06 2022-08-04 乾式電極フィルムを含む電気化学素子用電極及びその製造方法
CN202280046692.6A CN117597792A (zh) 2021-08-06 2022-08-04 包括干电极膜的用于电化学装置的电极及其制造方法
CA3227840A CA3227840A1 (en) 2021-08-06 2022-08-04 Electrode for electrochemical device comprising dry electrode film and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20210104169 2021-08-06
KR10-2021-0104169 2021-08-06

Publications (1)

Publication Number Publication Date
WO2023014127A1 true WO2023014127A1 (ko) 2023-02-09

Family

ID=85155919

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/011591 WO2023014127A1 (ko) 2021-08-06 2022-08-04 건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법

Country Status (5)

Country Link
JP (1) JP2024519967A (ko)
KR (1) KR102661426B1 (ko)
CN (1) CN117597792A (ko)
CA (1) CA3227840A1 (ko)
WO (1) WO2023014127A1 (ko)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150255779A1 (en) * 2014-03-10 2015-09-10 Maxwell Technologies, Inc. Methods and apparatuses for polymer fibrillization under electric field
US20150303481A1 (en) * 2014-04-18 2015-10-22 Maxwell Technologies, Inc. Dry energy storage device electrode and methods of making the same
WO2019222110A1 (en) * 2018-05-14 2019-11-21 Maxwell Technologies, Inc. Compositions and methods for dry electrode films having reduced binder content
KR20200138263A (ko) * 2018-03-30 2020-12-09 맥스웰 테크놀러지스 인코포레이티드 마이크로입자상 비-피브릴화 가능한 바인더를 포함하는 건식 전극 필름의 조성물 및 방법

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS529874B2 (ko) * 1972-05-24 1977-03-18
US20040224229A1 (en) * 2003-05-09 2004-11-11 Mansuetto Michael F. Alkaline cell with copper oxide cathode
US20050266298A1 (en) * 2003-07-09 2005-12-01 Maxwell Technologies, Inc. Dry particle based electro-chemical device and methods of making same
JP7145600B2 (ja) * 2017-10-10 2022-10-03 日産自動車株式会社 非水電解質二次電池用電極

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150255779A1 (en) * 2014-03-10 2015-09-10 Maxwell Technologies, Inc. Methods and apparatuses for polymer fibrillization under electric field
US20150303481A1 (en) * 2014-04-18 2015-10-22 Maxwell Technologies, Inc. Dry energy storage device electrode and methods of making the same
KR20200138263A (ko) * 2018-03-30 2020-12-09 맥스웰 테크놀러지스 인코포레이티드 마이크로입자상 비-피브릴화 가능한 바인더를 포함하는 건식 전극 필름의 조성물 및 방법
WO2019222110A1 (en) * 2018-05-14 2019-11-21 Maxwell Technologies, Inc. Compositions and methods for dry electrode films having reduced binder content

Also Published As

Publication number Publication date
KR102661426B1 (ko) 2024-04-26
JP2024519967A (ja) 2024-05-21
KR20230022129A (ko) 2023-02-14
CN117597792A (zh) 2024-02-23
CA3227840A1 (en) 2023-02-09

Similar Documents

Publication Publication Date Title
WO2015065098A2 (ko) 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2017111542A1 (ko) 리튬 이차전지용 음극활물질 및 이를 포함하는 리튬 이차전지용 음극
WO2021066560A1 (ko) 양극 및 이를 포함하는 이차 전지
WO2022086247A1 (ko) 이차전지용 건식 전극을 제조하기 위한 전극용 분체, 이의 제조방법, 이를 사용한 건식 전극의 제조방법, 건식 전극, 이를 포함하는 이차전지, 에너지 저장장치, 및 건식 전극 제조장치
WO2024111906A1 (ko) 리튬 이차전지용 음극 및 이의 제조방법
WO2021086098A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2023014126A1 (ko) 건식 전극 필름 제조 방법 및 상기 전극 필름 제조 시스템
WO2023014127A1 (ko) 건식 전극 필름을 포함하는 전기화학소자용 전극 및 이의 제조 방법
WO2023059039A1 (ko) 전극, 이를 포함하는 이차전지, 및 이의 제조 방법
WO2023204645A1 (ko) 전극용 필름, 이를 포함하는 전극, 이차전지, 및 이의 제조 방법
WO2016052944A1 (ko) 양극 활물질 및 이의 제조방법
WO2023204646A1 (ko) 전극조립체, 및 이를 포함하는 이차전지
WO2023204650A1 (ko) 건식 전극용 혼합 분체 및 이를 포함하는 전기화학소자용 건식 전극
WO2022191645A1 (ko) 전극 및 이의 제조방법
WO2023204647A1 (ko) 전극, 이를 포함하는 이차전지, 및 이의 제조 방법
WO2016032222A1 (ko) 표면 코팅된 양극 활물질, 이의 제조방법, 및 이를 포함하는 리튬 이차전지
WO2023204636A1 (ko) 이차전지용 건식 전극의 제조방법
WO2023204644A1 (ko) 전기화학소자용 전극
WO2021118144A1 (ko) 음극 활물질, 이의 제조방법, 이를 포함하는 음극 및 이차전지
WO2023204643A1 (ko) 도전재 마스터 배치 및 이를 이용하여 제조된 건식 전극
WO2023177244A1 (ko) 이차전지의 건식 전극용 필름
WO2023204649A1 (ko) 전극용 혼합 분체를 포함하는 건식 전극
WO2018008952A1 (ko) 이차전지용 양극활물질의 제조방법 및 이에 따라 제조된 이차전지용 양극활물질
WO2024101778A1 (ko) 음극 활물질용 탄소재, 리튬 이차 전지용 음극 활물질 및 이를 포함하는 리튬 이차 전지
WO2024058584A1 (ko) 리튬 이차전지용 음극 및 이를 포함하는 리튬 이차전지

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22853502

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023572196

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280046692.6

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 3227840

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE