WO2022266957A1 - 一种跨载波的波束使用时间的确定方法及其装置 - Google Patents

一种跨载波的波束使用时间的确定方法及其装置 Download PDF

Info

Publication number
WO2022266957A1
WO2022266957A1 PCT/CN2021/102182 CN2021102182W WO2022266957A1 WO 2022266957 A1 WO2022266957 A1 WO 2022266957A1 CN 2021102182 W CN2021102182 W CN 2021102182W WO 2022266957 A1 WO2022266957 A1 WO 2022266957A1
Authority
WO
WIPO (PCT)
Prior art keywords
scs
resource information
resource
time interval
carrier
Prior art date
Application number
PCT/CN2021/102182
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to KR1020247002712A priority Critical patent/KR20240023176A/ko
Priority to JP2023579247A priority patent/JP2024523521A/ja
Priority to BR112023027315A priority patent/BR112023027315A2/pt
Priority to PCT/CN2021/102182 priority patent/WO2022266957A1/zh
Priority to EP21946453.4A priority patent/EP4362582A1/en
Priority to CN202180001957.6A priority patent/CN113597804B/zh
Publication of WO2022266957A1 publication Critical patent/WO2022266957A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/08Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the receiving station
    • H04B7/0868Hybrid systems, i.e. switching and combining
    • H04B7/088Hybrid systems, i.e. switching and combining using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0023Time-frequency-space

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method and a device for determining cross-carrier beam usage time.
  • the terminal device may receive beams corresponding to the first carrier based on the first carrier, and may also receive beams corresponding to other carriers based on the first carrier. In the case of receiving beams corresponding to other carriers based on the first carrier, the terminal device may not be able to accurately determine the beam usage time corresponding to other carriers. At present, how to determine the use time of beams indicated by cross-carriers has become an urgent problem to be solved.
  • Embodiments of the present disclosure provide a method and device for determining cross-carrier beam usage time, which can be applied in the field of communication technologies.
  • an embodiment of the present disclosure provides a method for determining cross-carrier beam usage time, the method is performed by a terminal device, and the method includes:
  • the terminal device can receive the DCI based on the PDCCH of the first carrier, so as to know the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then can according to the indication
  • the time at which the information is sent determines the usage time of the beam corresponding to the specified resource.
  • the designated resources include at least one of channel resources and reference signal resources.
  • the specified resource includes at least one of the following:
  • PDCCH physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH, physical broadcast channel PBCH, channel state information CSI reference signal RS, sounding reference signal SRS, positioning reference signal PRS, Tracking Reference Signal TRS, and Synchronization Block SSB.
  • the designated resource is determined based on at least one of the following:
  • Reference signal resource set identifier
  • the determining the use time of the beam corresponding to the specified resource in the second carrier according to the sending moment of the indication information includes:
  • the determining the specified time interval includes:
  • the DCI is also used to indicate the first resource information of the PDSCH and/or PUSCH on the second carrier, and the second resource information of the PUCCH that sends the indication information, according to at least one of the following, the specified Time interval: the first resource information, the second resource information, and the third resource information of the PDCCH of the first carrier.
  • the determination of the specified time interval is based on at least one of the following, including:
  • the specified time interval is determined according to the subcarrier spacing SCS in the first resource information and/or the SCS in the second resource information.
  • the determining the specified time interval according to the subcarrier spacing SCS in the first resource information and/or the SCS in the second resource information includes:
  • the specified time interval is determined according to the SCS in the second resource information.
  • the determination of the specified time interval is based on at least one of the following, including:
  • the determining the first sub-time in the specified time interval according to the subcarrier spacing SCS in the first resource information and/or the SCS in the second resource information includes:
  • a second sub-time in the specified time interval is determined.
  • the determining the second sub-time in the specified time interval includes:
  • the second sub-time is proportional to the SCS in the first resource information and inversely proportional to the SCS in the third resource information;
  • the second sub-time is proportional to the SCS in the second resource information and inversely proportional to the SCS in the third resource information.
  • the determining the specified time interval includes:
  • the DCI In response to the DCI is also used to indicate the second resource information of the PUCCH that sends the indication information, according to the second resource information and/or the third resource information of the PDCCH of the first carrier, determine the specified time interval.
  • the determining the specified time interval according to the second resource information and/or the third resource information of the PDCCH of the first carrier includes:
  • the determining the specified time interval according to the second resource information and/or the third resource information of the PDCCH of the first carrier includes:
  • determining the specified SCS according to the SCS in the second resource information and/or the SCS in the third resource information The first subtime in the interval.
  • the second sub-time is proportional to the SCS in the second resource information and inversely proportional to the SCS in the third resource information.
  • the first carrier and the second carrier respectively correspond to different serving cells of the terminal device
  • the first carrier corresponds to a serving cell of the terminal device
  • the second carrier corresponds to a non-serving cell of the terminal device
  • the first carrier corresponds to a non-serving cell of the terminal device
  • the second carrier corresponds to a serving cell of the terminal device
  • an embodiment of the present disclosure provides a communication device, and the device includes:
  • the transceiver module is configured to receive downlink control information DCI based on the physical downlink control channel PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • the transceiver module is further configured to send indication information, wherein the indication information is used to indicate the receiving state of the DCI.
  • a processing module configured to determine the use time of the beam corresponding to the designated resource according to the sending time of the indication information.
  • the designated resources include at least one of channel resources and reference signal resources.
  • the specified resource includes at least one of the following:
  • PDCCH physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH, physical broadcast channel PBCH, channel state information CSI reference signal RS, sounding reference signal SRS, positioning reference signal PRS, Tracking Reference Signal TRS, and Synchronization Block SSB.
  • the designated resource is determined based on at least one of the following:
  • Reference signal resource set identifier
  • processing module is specifically used for:
  • processing module is also used for:
  • processing module is also specifically used for:
  • the DCI is also used to indicate the first resource information of the PDSCH and/or PUSCH on the second carrier, and the second resource information of the PUCCH that sends the indication information, according to at least one of the following, the specified Time interval: the first resource information, the second resource information, and the third resource information of the PDCCH of the first carrier.
  • processing module is also specifically used for:
  • the specified time interval is determined according to the subcarrier spacing SCS in the first resource information and/or the SCS in the second resource information.
  • processing module is also specifically used for:
  • the specified time interval is determined according to the SCS in the second resource information.
  • processing module is also specifically used for:
  • processing module is also specifically used for:
  • processing module is also used for:
  • a second sub-time in the specified time interval is determined.
  • processing module is also specifically used for:
  • the second sub-time is proportional to the SCS in the first resource information and inversely proportional to the SCS in the third resource information;
  • the second sub-time is proportional to the SCS in the second resource information and inversely proportional to the SCS in the third resource information.
  • processing module is also specifically used for:
  • the DCI In response to the DCI is also used to indicate the second resource information of the PUCCH that sends the indication information, according to the second resource information and/or the third resource information of the PDCCH of the first carrier, determine the specified time interval.
  • processing module is also specifically used for:
  • processing module is also specifically used for:
  • determining the specified SCS according to the SCS in the second resource information and/or the SCS in the third resource information The first subtime in the interval.
  • processing module is also used for:
  • the second sub-time is proportional to the SCS in the second resource information and inversely proportional to the SCS in the third resource information.
  • the first carrier and the second carrier respectively correspond to different serving cells of the terminal device
  • the first carrier corresponds to a serving cell of the terminal device
  • the second carrier corresponds to a non-serving cell of the terminal device
  • the first carrier corresponds to a non-serving cell of the terminal device
  • the second carrier corresponds to a serving cell of the terminal device
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the above-mentioned first aspect is implemented. method.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a system for determining cross-carrier beam usage time, the system includes the communication device described in the second aspect, or, the system includes the communication device described in the third aspect, or, the The system includes the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions, and when the instructions are executed, the method described in the first aspect above is implemented.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, configured to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data and at least one of the information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by another embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by another embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by another embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • Fig. 11 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • PDCCH Physical downlink control channel
  • the PDCCH can be used to carry scheduling and other control information, specifically including transmission format, uplink and downlink resource allocation, uplink scheduling grant, power control, and retransmission information.
  • PUCCH Physical uplink control channel
  • PUCCH can be used by terminal equipment to send information related to uplink control to network equipment, such as scheduling request (scheduling request, SR), hybrid automatic repeat request (hybrid automatic repeat request, HARQ), and channel status information (channel status information) , CSI) and so on.
  • scheduling request scheduling request
  • SR scheduling request
  • hybrid automatic repeat request hybrid automatic repeat request
  • HARQ hybrid automatic repeat request
  • channel status information channel status information
  • PUSCH Physical uplink shared channel
  • PUSCH as the main uplink data bearing channel of the physical layer, can be used for the transmission of uplink data, and can carry control information, user service information and broadcast service information, etc.
  • a physical downlink shared channel (PDSCH) can be used for downlink data transmission.
  • PDSCH physical downlink shared channel
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • the designated resources may include at least one of channel resources and reference signal resources.
  • the channel resource may include at least one of the following: PDCCH, PDSCH, PUSCH, PUCCH, physical random access channel (physical random access channel, PRACH), physical broadcast channel (physical broadcast channel, PBCH).
  • the reference signal resource may include at least one of the following: channel state information (channel state information, CSI) reference signal (reference signal, RS), sounding reference signal (sounding reference signal, SRS), positioning reference signal (positioning reference signal, PRS), tracking reference signal (tracking reference signal, TRS), and synchronization block (synchronization signal block, SSB).
  • channel state information channel state information, CSI
  • reference signal reference signal
  • SRS sounding reference signal
  • SRS positioning reference signal
  • PRS positioning reference signal
  • TRS tracking reference signal
  • synchronization block synchronization signal block
  • the specified resource may be one or more of the above.
  • the specified resource may be PDCCH; or PDCCH and PDSCH; or PDCCHCH, PDSCH, and PUSCH; or PDCCHCH, PDSCH, PUSCH, CSIRS, PRS, and SSB, etc. Do limited.
  • the designated resource may be determined according to at least one of the following: the identifier of the control resource set; the identifier of the control resource set pool; the identifier of the semi-persistent PDSCH; the identifier of the resource corresponding to the PUCCH; identification; SSB index; reference signal resource identification; and reference signal resource set identification.
  • the specified resource is determined according to the identifier of the control resource set, that is, the specified resource may include at least one of the following: the PDCCH sent by the control resource set corresponding to the control resource set identifier, and the PDCCH sent by the control resource set corresponding to the control resource set identifier.
  • the PDSCH scheduled by the PDCCH, the PDCCH scheduled PUSCH sent by the control resource set corresponding to the control resource set identifier, the PUCCH scheduled by the PDCCH sent by the control resource set corresponding to the control resource set identifier, the control resource set corresponding to the control resource set identifier A reference signal for PDCCH scheduling sent by the resource set.
  • the reference signal may include any at least one reference signal described in the embodiments of the present disclosure. This disclosure does not limit
  • the specified resource is determined according to the identifier of the control resource set pool, that is, the specified resource may include at least one of the following items: the PDCCH sent by at least one control resource set in at least one control resource set corresponding to the control resource set pool identifier, through the control PDSCH scheduled by PDCCH sent by at least one control resource set in at least one control resource set corresponding to the resource set pool identifier, PUSCH scheduled by PDCCH sent by at least one control resource set in at least one control resource set corresponding to the control resource set pool identifier.
  • the PUCCH scheduled by the PDCCH that is sent by at least one control resource set in at least one control resource set corresponding to the control resource set pool identifier, and the PUCCH that is sent by at least one control resource set in the at least one control resource set corresponding to the control resource set pool identifier A reference signal for PDCCH scheduling.
  • the reference signal may include any at least one reference signal described in the embodiments of the present disclosure. This disclosure does not limit
  • an identifier of a control resource set (CORESET) used to transmit a PDCCH may be PDCCH CORESET#1, PDCCHCORESET#2, etc., which is not limited in the present disclosure.
  • the reference signal resources may be CSI RSs, or SRSs, or PRSs, or TRSs, or SSBs, etc., which are not limited in the present disclosure.
  • the reference signal resource may be the above one type, or may be multiple types, which is not limited in the present disclosure.
  • the reference signal resource may be a CSI RS, which may be used for channel state information measurement, or beam measurement, or path loss (pathloss) estimation, etc., which is not limited in the present disclosure.
  • SRS can be used for channel state information measurement based on codebook (codebook), or it can also be used for non-codebook (non-codebook) channel state information measurement, or it can also be used for beam measurement, or it can also be used It can be used for antenna switching, or can also be used for positioning measurement, etc., which is not limited in the present disclosure.
  • codebook codebook
  • non-codebook non-codebook channel state information measurement
  • beam measurement or it can also be used It can be used for antenna switching, or can also be used for positioning measurement, etc., which is not limited in the present disclosure.
  • the set of reference signal resources may be one reference signal resource, or may be multiple reference signal resources, which is not limited in the present disclosure.
  • Step 22 sending indication information, wherein the indication information is used to indicate the receiving state of the DCI.
  • the indication information can be hybrid automatic repeat request acknowledgment (hybrid automatic repeat request acknowledgment, HARQ ACK), or can also be hybrid automatic repeat request non-acknowledgment (hybrid automatic repeat request non acknowledgment, HARQ NACK), or also It may be any indication information that can indicate the DCI receiving state to the network device, and the present disclosure does not limit this.
  • Step 23 Determine the use time of the beam corresponding to the specified resource according to the sending time of the indication information.
  • the specified resources in the second carrier can use the beam indicated in the DCI at T seconds after the indication information is sent.
  • the sending time of the indication information is time t
  • the terminal device can determine that the usage time of the beam corresponding to the specified resource is t+T according to the protocol agreement or the configuration of the network device. The present disclosure does not limit this.
  • the terminal device can receive the DCI based on the PDCCH of the first carrier, so as to learn the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then can According to the sending time of the indication information, the use time of the beam corresponding to the specified resource is determined.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 3 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • the first carrier and the second carrier may respectively correspond to different serving cells (serving cells) of the terminal device.
  • the first carrier may also correspond to a serving cell of the terminal device
  • the second carrier may correspond to a non-serving cell (or coordinated cell) of the terminal device.
  • the first carrier may also correspond to a non-serving cell of the terminal device
  • the second carrier may correspond to a serving cell of the terminal device.
  • Step 32 sending indication information, wherein the indication information is used to indicate the receiving state of the DCI.
  • step 31 and step 32 reference may be made to the description of other embodiments of the present disclosure, and details are not repeated here.
  • Step 33 Determine the use time of the beam corresponding to the designated resource in the second carrier according to the sending time of the indication information and the designated time interval.
  • the specified time interval may be stipulated by a protocol, or may be configured by a network device, or may be determined by a terminal device, etc., which is not limited in the present disclosure.
  • the specified time interval is K
  • the sending time of the indication information is time t
  • the terminal device may determine that the usage time of the beam corresponding to the specified resource is t+K, and so on.
  • the present disclosure does not limit this.
  • the terminal device can receive the DCI based on the PDCCH of the first carrier, so as to learn the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then can According to the sending time of the indication information and the specified time interval, the usage time of the beam corresponding to the specified resource is determined.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 4 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • Step 42 sending indication information, wherein the indication information is used to indicate the receiving state of the DCI.
  • step 41 and step 42 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • Step 43 in response to the fact that the DCI is also used to indicate the first resource information of the PDSCH and/or PUSCH on the second carrier, and the second resource information of the PUCCH that sends the indication information, determine the designated time interval according to at least one of the following: First resource information, second resource information, and third resource information of the PDCCH of the first carrier.
  • the designated time interval may be determined according to the subcarrier interval in the first resource information of the PDSCH on the second carrier.
  • the subcarrier spacing (subcarrier spacing, SCS) may be 15 kilohertz (kilo hertz, kHz), 30 kHz, 60 kHz, 120 kHz, 240 kHz, etc., which is not limited in the present disclosure.
  • the terminal device can determine the corresponding designated time interval according to the SCS in the first resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval may also be determined according to the first resource information of the PUSCH on the second carrier; or, the specified time interval may also be determined according to the first resource information of the PDSCH and PUSCH on the second carrier, which specifically For the content and implementation manner, reference may be made to the descriptions of the embodiments of the present disclosure, and details are not repeated here.
  • the specified time interval may also be determined according to the SCS in the second resource information.
  • the terminal device can determine the corresponding specified time interval according to the SCS in the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval may also be determined according to the subcarrier spacing SCS in the first resource information and the SCS in the second resource information.
  • the terminal device can determine the corresponding designated time interval according to the SCS in the first resource information and the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval may also be determined according to the third resource information, and its specific content and implementation manner may refer to the descriptions of the embodiments of the present disclosure, which will not be repeated here.
  • one item may be used to determine the specified time interval, or the above multiple items may be used to determine the specified time interval, which is not limited in the present disclosure.
  • Step 44 Determine the use time of the beam corresponding to the designated resource in the second carrier according to the sending time of the indication information and the designated time interval.
  • the terminal device can receive DCI based on the PDCCH of the first carrier, so as to know the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then,
  • the specified time interval may be determined first according to the first resource information, the second resource information, and the third resource information of the PDCCH of the first carrier, and then the beam corresponding to the specified resource may be determined according to the sending time of the indication information and the specified time interval usage time.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 5 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 51 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • Step 52 sending indication information, where the indication information is used to indicate the receiving state of the DCI.
  • step 51 and step 52 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • Step 53 in response to the fact that the DCI is also used to indicate the first resource information of the PDSCH and/or PUSCH on the second carrier, and the second resource information of the PUCCH that sends the indication information, determine the designated time interval according to at least one of the following: The subcarrier spacing SCS in the first resource information and the SCS in the second resource information.
  • the specified time interval may be determined according to the SCS in the first resource information.
  • the SCS in the third resource information is greater than or equal to the SCS in the first resource information, that is, the SCS in the third resource information is not smaller than the SCS in the first resource information.
  • the specified time interval is related to the SCS in the first resource information.
  • the specified time interval is N symbols
  • the corresponding specified time interval is the time length occupied by N symbols when the SCS is 15KHz
  • the corresponding specified time interval is the time length occupied by N symbols when SCS is 30KHz.
  • the network device may also be stipulated in the agreement or configured by the network device that in the case that the SCS in the third resource information is greater than or equal to the SCS in the first resource information, the correspondence between the SCS in the first resource information and the specified time interval .
  • the terminal device can determine the corresponding designated time interval according to the SCS in the first resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval may be determined according to the SCS in the second resource information.
  • the specified time interval is related to the SCS in the second resource information.
  • the specified time interval is N symbols, when the SCS in the second resource information is 15kHz, the corresponding specified time interval is the time length occupied by N symbols when the SCS is 15KHz, when the SCS in the second resource information When it is 30kHz, the corresponding specified time interval is the time length occupied by N symbols when SCS is 30KHz.
  • the network device may also be stipulated in the agreement or configured by the network device that in the case that the SCS in the third resource information is greater than or equal to the SCS in the first resource information, the correspondence between the SCS in the second resource information and the specified time interval .
  • the terminal device can determine the corresponding specified time interval according to the SCS in the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval is determined according to the SCS in the first resource information.
  • the specified time interval is related to the SCS in the first resource information.
  • the specified time interval is N symbols, when the SCS in the first resource information is 15kHz, the corresponding specified time interval is the time length occupied by N symbols when the SCS is 15KHz, when the SCS in the first resource information When it is 30kHz, the corresponding specified time interval is the time length occupied by N symbols when SCS is 30KHz.
  • the network device may also be stipulated in the agreement or configured by the network device that, when the SCS in the third resource information is greater than or equal to the SCS in the second resource information, the correspondence between the SCS in the first resource information and the specified time interval .
  • the terminal device can determine the corresponding designated time interval according to the SCS in the first resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval is determined according to the SCS in the second resource information.
  • the specified time interval is related to the SCS in the second resource information.
  • the specified time interval is N symbols, when the SCS in the second resource information is 15kHz, the corresponding specified time interval is the time length occupied by N symbols when the SCS is 15KHz, when the SCS in the second resource information When it is 30kHz, the corresponding specified time interval is the time length occupied by N symbols when SCS is 30KHz.
  • the network device may also be stipulated in the agreement or configured by the network device that in the case that the SCS in the third resource information is greater than or equal to the SCS in the second resource information, the correspondence between the SCS in the second resource information and the specified time interval .
  • the terminal device can determine the corresponding designated time interval according to the SCS in the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval may be determined using one of the above methods, or the specified time interval may be determined using the above multiple methods, which is not limited in the present disclosure.
  • Step 54 Determine the use time of the beam corresponding to the designated resource in the second carrier according to the sending time of the indication information and the designated time interval.
  • step 54 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • the terminal device can receive DCI based on the PDCCH of the first carrier, so as to know the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then,
  • the specified time interval can be determined according to the subcarrier spacing SCS in the first resource information and/or the SCS in the second resource information, and then the beam corresponding to the specified resource can be determined according to the sending time of the indication information and the specified time interval usage time.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 6 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step 61 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • Step 62 sending indication information, where the indication information is used to indicate the receiving status of the DCI.
  • step 61 and step 62 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • Step 63 in response to the fact that the DCI is also used to indicate the first resource information of the PDSCH and/or PUSCH on the second carrier, and the second resource information of the PUCCH that sends the indication information, determine the specified time interval according to at least one of the following The first sub-time: the subcarrier spacing SCS in the first resource information and the SCS in the second resource information.
  • the first sub-time of the specified time interval may be determined according to the SCS in the first resource information.
  • the SCS may be 15kHz, 30kHz, 60kHz, 120kHz, 240kHz, etc., which is not limited in the present disclosure.
  • the interval between the SCS in the first resource information and the first sub-time in the specified time interval corresponding relationship when the SCS in the first resource information is 15kHz, the corresponding specified time interval is the time length occupied by N symbols when the SCS is 15KHz; when the SCS in the first resource information When it is 30kHz, the corresponding designated time interval is the time length occupied by N symbols when the SCS is 30KHz, etc., which is not limited in this disclosure.
  • the terminal device can determine the corresponding first sub-time in the designated time interval according to the SCS and the corresponding relationship in the first resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the first sub-time in the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the first sub-time in the specified time interval can be determined according to the SCS in the second resource information, and its specific content and for the implementation manner, reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • the SCS in the third resource information is smaller than the SCS in the second resource information, determine the first sub-time in the specified time interval according to the SCS in the first resource information, its specific content and implementation For the manner, reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • the SCS in the third resource information is smaller than the SCS in the second resource information, determine the first sub-time in the specified time interval according to the SCS in the second resource information, its specific content and implementation For the manner, reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • the specified time interval may be determined using one of the above methods, or the specified time interval may be determined using the above multiple methods, which is not limited in the present disclosure.
  • Step 64 Determine the second sub-time in the specified time interval according to the sub-carrier spacing SCS in the first resource information and/or the SCS in the second resource information.
  • the second sub-time in the specified time interval may be determined according to the SCS in the first resource information and the SCS in the third resource information.
  • the second sub-time in the corresponding specified time interval is T.
  • the network device may also be stipulated in the protocol or configured by the network device, the corresponding relationship between the SCS in the third resource information, the SCS in the first resource information, and the second sub-time in the specified time interval.
  • the terminal device can determine the corresponding second sub-time in the designated time interval according to the SCS in the third resource information, the SCS in the first resource information, and the corresponding relationship. Therefore, the terminal device and the network device can maintain a consistent understanding of the second sub-time in the specified time interval, thereby providing guarantee for beam-based transmission.
  • the second sub-time in the specified time interval may also be determined according to the SCS in the second resource and the SCS in the third resource information.
  • the corresponding relationship between the SCS in the third resource information, the SCS in the second resource information, and the second sub-time in the specified time interval may be stipulated in a protocol or configured by a network device. Therefore, the terminal device can determine the second sub-time in the corresponding designated time interval according to the SCS in the third resource information and the SCS in the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the second sub-time in the specified time interval, thereby providing guarantee for beam-based transmission.
  • the second sub-time in the specified time interval may also be determined according to the SCS in the first resource information, the SCS in the second resource, and the SCS in the third resource information.
  • the corresponding relationship between the SCS in the third resource information, the SCS in the second resource information, the SCS in the first resource information, and the second sub-time in the specified time interval may be stipulated in the agreement or configured by the network device. Therefore, the terminal device can determine the second sub-time in the corresponding designated time interval according to the SCS in the third resource information, the SCS in the second resource information, and the SCS in the first resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the second sub-time in the specified time interval, thereby providing guarantee for beam-based transmission.
  • the second sub-time may be directly proportional to the SCS in the first resource information, and inversely proportional to the SCS in the third resource information.
  • the larger the SCS in the first resource information the correspondingly the larger the second sub-time; the larger the SCS in the third resource information, the smaller the second sub-time.
  • the present disclosure does not limit this.
  • the second sub-time may also be proportional to the SCS in the second resource information, and inversely proportional to the SCS in the third resource information.
  • the greater the SCS in the second resource information the greater the second sub-time correspondingly; the greater the SCS in the third resource information, the smaller the second sub-time.
  • the present disclosure does not limit this.
  • the second sub-time may also be proportional to the SCS in the first resource information and the SCS in the second resource information, and inversely proportional to the SCS in the third resource information.
  • the first sub-time may be an integer number of time units
  • the second sub-time may also be an integer number of time units.
  • the time unit may be at least one of a slot (slot), a mini-slot (mini-slot) and a symbol (symbol), which is not limited in the present disclosure.
  • the first sub-time may include an integer number of time slots, or the first sub-time may include an integer number of mini-slots, or the first sub-time may include an integer number of symbols, or the first sub-time may include an integer number of time slots. slots and an integer number of mini-slots, or the first sub-time may include an integer number of time slots and an integer number of symbols, the first sub-time may include an integer number of mini-slots and an integer number of symbols; or the first sub-time may include an integer number of times slots, an integer number of minislots, and an integer number of symbols.
  • the second sub-time may contain an integer number of time slots, or the second sub-time may contain an integer number of mini-slots, or the second sub-time may contain an integer number of symbols, or the second sub-time may contain an integer number of time slots and an integer mini-slots, or the second sub-time may contain an integer number of time slots and an integer number of symbols, the second sub-time may contain an integer number of mini-slots and an integer number of symbols; or the second sub-time may contain an integer number of time slots, an integer minislots and an integer number of symbols.
  • the time units contained in the first sub-time and the second sub-time can be any combination of the above, for example, the first sub-time contains an integer number of symbols, and the second sub-time contains an integer number of symbols; another example is that the first sub-time contains An integer number of mini-slots, the second sub-time includes an integer number of symbols, etc., which are not limited in the present disclosure.
  • the specified time interval may also include at least one of an integer number of time slots, an integer number of mini-slots, and an integer number of symbols, which is not limited in the present disclosure.
  • Step 65 Determine the use time of the beam corresponding to the designated resource in the second carrier according to the sending time of the indication information and the designated time interval.
  • the specified time interval may be the sum of the first sub-time and the second sub-time.
  • the usage time of the beam corresponding to the designated resource in the second carrier may be t+T1+T2.
  • the present disclosure does not limit this.
  • the terminal device can receive DCI based on the PDCCH of the first carrier, so as to know the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then,
  • the first sub-time and the second sub-time in the specified time interval may be determined according to the subcarrier spacing SCS in the first resource information, the SCS in the second resource information, and/or the SCS in the third resource information, and then
  • the use time of the beam corresponding to the designated resource can be determined according to the sending time of the indication information and the designated time interval.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 7 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 71 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • Step 72 sending indication information, where the indication information is used to indicate the receiving status of the DCI.
  • step 71 and step 72 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • Step 73 In response to the second resource information of the PUCCH that the DCI is also used to indicate to send the indication information, determine a specified time interval according to the second resource information and/or the third resource information of the PDCCH of the first carrier.
  • the specified time interval may be determined according to the second resource information; or, the specified time interval may also be determined according to the third resource information; or, the specified time interval may also be determined according to the second resource information and the third resource information.
  • the specified time interval its specific content and implementation manner can refer to the descriptions of other embodiments of the present disclosure, and will not be repeated here.
  • Step 74 Determine the use time of the beam corresponding to the designated resource in the second carrier according to the sending time of the indication information and the designated time interval.
  • step 74 For the specific content and implementation manner of step 74, reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • the terminal device can receive DCI based on the PDCCH of the first carrier, so as to know the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then,
  • the designated time interval may be determined first according to the second resource information and the third resource information, and then the usage time of the beam corresponding to the designated resource may be determined according to the sending time of the indication information and the designated time interval.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 8 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 8, the method may include but not limited to the following steps:
  • Step 81 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • Step 82 sending indication information, where the indication information is used to indicate the receiving state of the DCI.
  • step 81 and step 82 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • Step 83 in response to the fact that the SCS in the third resource information is greater than or equal to the SCS in the second resource information, determine a specified time interval according to the SCS in the second resource information and/or the SCS in the third resource information.
  • the specified time interval may be determined according to the SCS in the second resource information.
  • the specified time interval is related to the SCS in the second resource information.
  • the specified time interval is N symbols, when the SCS in the second resource information is 15kHz, the corresponding specified time interval is the time length occupied by N symbols when the SCS is 15KHz, when the SCS in the second resource information When it is 60kHz, the corresponding specified time interval is the time length occupied by N symbols when SCS is 60KHz.
  • the network device may also be stipulated in the agreement or configured by the network device that in the case that the SCS in the third resource information is greater than or equal to the SCS in the second resource information, the correspondence between the SCS in the second resource information and the specified time interval .
  • the terminal device can determine the corresponding designated time interval according to the SCS in the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval can also be determined according to the SCS in the third resource information, and its specific content and implementation can be Reference is made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • the specified time interval may also be determined according to the SCS in the second resource information and the SCS in the third resource information.
  • Step 84 Determine the use time of the beam corresponding to the designated resource in the second carrier according to the sending time of the indication information and the designated time interval.
  • step 84 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • the terminal device can receive DCI based on the PDCCH of the first carrier, so as to learn the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device.
  • the SCS in the three resource information is greater than or equal to the SCS in the second resource information, determine the specified time interval according to the second resource information and/or the third resource information, and then according to the sending time of the indication information and the specified time Interval, which determines the usage time of the beam corresponding to the specified resource.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 9 is a schematic flowchart of a method for determining cross-carrier beam usage time provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 9, the method may include but not limited to the following steps:
  • Step 91 Receive DCI based on the PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • Step 92 sending indication information, where the indication information is used to indicate the receiving status of the DCI.
  • step 91 and step 92 reference may be made to the descriptions of other embodiments of the present disclosure, which will not be repeated here.
  • Step 93 In response to the fact that the SCS in the first resource information is smaller than the SCS in the second resource information, determine the first child in the specified time interval according to the SCS in the second resource information and/or the SCS in the third resource information. time.
  • the first sub-time in the specified time interval may be determined according to the SCS in the second resource information.
  • the terminal device can determine the first sub-time in the corresponding designated time interval according to the SCS in the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the first sub-time in the specified time interval, thereby providing a guarantee for beam-based transmission.
  • the specified time interval can also be determined according to the SCS in the third resource information, and its specific content and implementation can refer to this Descriptions of other embodiments are disclosed, and details are not repeated here.
  • the specified time interval may also be determined according to the SCS in the second resource information and the SCS in the third resource information, where For specific content and implementation manners, reference may be made to the descriptions of other embodiments of the present disclosure, and details are not repeated here.
  • Step 94 Determine the second sub-time in the specified time interval according to the SCS in the second resource information and the SCS in the third resource information.
  • the corresponding relationship between the SCS in the third resource information, the SCS in the second resource information, and the second sub-time in the specified time interval may be stipulated in a protocol or configured by a network device. Therefore, the terminal device can determine the second sub-time in the corresponding designated time interval according to the SCS in the third resource information and the SCS in the second resource information. Therefore, the terminal device and the network device can maintain a consistent understanding of the second sub-time in the specified time interval, thereby providing guarantee for beam-based transmission.
  • the second sub-time may be directly proportional to the SCS in the second resource information, and inversely proportional to the SCS in the third resource information.
  • the first sub-time may be an integer number of time units
  • the second sub-time may also be an integer number of time units.
  • the time unit may be at least one of a time slot, a mini-slot and a symbol, which is not limited in the present disclosure.
  • the first sub-time may include an integer number of time slots, or the first sub-time may include an integer number of mini-slots, or the first sub-time may include an integer number of symbols, or the first sub-time may include an integer number of time slots. slots and an integer number of mini-slots, or the first sub-time may include an integer number of time slots and an integer number of symbols, the first sub-time may include an integer number of mini-slots and an integer number of symbols; or the first sub-time may include an integer number of times slots, an integer number of minislots, and an integer number of symbols.
  • the second sub-time may contain an integer number of time slots, or the second sub-time may contain an integer number of mini-slots, or the second sub-time may contain an integer number of symbols, or the second sub-time may contain an integer number of time slots and an integer mini-slots, or the second sub-time may contain an integer number of time slots and an integer number of symbols, the second sub-time may contain an integer number of mini-slots and an integer number of symbols; or the second sub-time may contain an integer number of time slots, an integer minislots and an integer number of symbols.
  • the time units contained in the first sub-time and the second sub-time can be any combination of the above, for example, the first sub-time contains an integer number of symbols, and the second sub-time contains an integer number of symbols; another example is the first sub-time contains an integer number of mini-slots, the second sub-time contains an integer number of symbols, and so on.
  • the present disclosure does not limit this.
  • the specified time interval may also include at least one of an integer number of time slots, an integer number of mini-slots, and an integer number of symbols, which is not limited in the present disclosure.
  • Step 95 Determine the use time of the beam corresponding to the designated resource in the second carrier according to the sending time of the indication information and the designated time interval.
  • the terminal device can receive DCI based on the PDCCH of the first carrier, so as to learn the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device.
  • the SCS in the third resource information is smaller than the SCS in the second resource information, determine the first sub-time and the second sub-time in the specified time interval according to the SCS in the second resource information and/or the SCS in the third resource information Two sub-times, and then according to the sending time of the indication information and the specified time interval, determine the use time of the beam corresponding to the specified resource.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspective of a terminal device.
  • the terminal device may include a hardware structure and a software module, and realize the above various functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 10 is a schematic structural diagram of a communication device 100 provided by an embodiment of the present disclosure.
  • the communication device 100 shown in the figure may include a transceiver module 1001 and a processing module 1002 .
  • the transceiver module 1001 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 1001 can realize the sending function and/or the receiving function.
  • the communication device 100 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched with the terminal device.
  • Communication device 100 including:
  • the transceiver module 1001 is configured to receive downlink control information DCI based on the physical downlink control channel PDCCH of the first carrier, where the DCI is used to indicate a beam corresponding to a specified resource in the second carrier.
  • the transceiver module 1001 is further configured to send indication information, where the indication information is used to indicate the receiving state of the DCI.
  • the processing module 1002 is configured to determine the use time of the beam corresponding to the designated resource according to the sending time of the indication information.
  • the designated resources include at least one of channel resources and reference signal resources.
  • the specified resource includes at least one of the following:
  • PDCCH physical downlink shared channel PDSCH, physical uplink shared channel PUSCH, physical uplink control channel PUCCH, physical random access channel PRACH, physical broadcast channel PBCH, channel state information CSI reference signal RS, sounding reference signal SRS, positioning reference signal PRS, Tracking Reference Signal TRS, and Synchronization Block SSB.
  • the designated resource is determined based on at least one of the following:
  • Reference signal resource set identifier
  • processing module 1002 is specifically used for:
  • processing module 1002 is further configured to:
  • processing module 1002 is further specifically configured to:
  • the DCI is also used to indicate the first resource information of the PDSCH and/or PUSCH on the second carrier, and the second resource information of the PUCCH that sends the indication information, according to at least one of the following, the specified Time interval: the first resource information, the second resource information, and the third resource information of the PDCCH of the first carrier.
  • processing module 1002 is further specifically configured to:
  • the specified time interval is determined according to the subcarrier spacing SCS in the first resource information and/or the SCS in the second resource information.
  • processing module 1002 is further specifically configured to:
  • the specified time interval is determined according to the SCS in the second resource information.
  • processing module 1002 is further specifically configured to:
  • processing module 1002 is further specifically configured to:
  • processing module 1002 is further configured to:
  • a second sub-time in the specified time interval is determined.
  • processing module 1002 is further specifically configured to:
  • the second sub-time is proportional to the SCS in the first resource information and inversely proportional to the SCS in the third resource information;
  • the second sub-time is proportional to the SCS in the second resource information and inversely proportional to the SCS in the third resource information.
  • processing module 1002 is further specifically configured to:
  • the DCI In response to the DCI is also used to indicate the second resource information of the PUCCH that sends the indication information, according to the second resource information and/or the third resource information of the PDCCH of the first carrier, determine the specified time interval.
  • processing module 1002 is further specifically configured to:
  • processing module 1002 is further specifically configured to:
  • determining the specified SCS according to the SCS in the second resource information and/or the SCS in the third resource information The first subtime in the interval.
  • processing module 1002 is further configured to:
  • the second sub-time is proportional to the SCS in the second resource information and inversely proportional to the SCS in the third resource information.
  • the first carrier and the second carrier respectively correspond to different serving cells of the terminal device
  • the first carrier corresponds to a serving cell of the terminal device
  • the second carrier corresponds to a non-serving cell of the terminal device
  • the first carrier corresponds to a non-serving cell of the terminal device
  • the second carrier corresponds to a serving cell of the terminal device
  • the terminal device can receive the DCI based on the PDCCH of the first carrier, so as to know the beam corresponding to the specified resource in the second carrier, and then send indication information to indicate the receiving status of the DCI to the network device, and then can According to the sending time of the indication information, the use time of the beam corresponding to the specified resource is determined.
  • the terminal device and the network device can maintain a consistent understanding of the cross-carrier beam usage time, thereby ensuring beam consistency, reducing the impact on communication transmission, and improving the performance of beam-based transmission.
  • FIG. 11 is a schematic structural diagram of another communication device 110 provided by an embodiment of the present disclosure.
  • the communication device 110 may be a terminal device, or may be a chip, a chip system, or a processor that supports the terminal device to implement the foregoing method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 110 may include one or more processors 1101 .
  • the processor 1101 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 110 may further include one or more memories 1102, on which a computer program 1104 may be stored, and the processor 1101 executes the computer program 1104, so that the communication device 110 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 1102 .
  • the communication device 110 and the memory 1102 can be set separately or integrated together.
  • the communication device 110 may further include a transceiver 1105 and an antenna 1106 .
  • the transceiver 1105 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1105 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit, etc., for realizing a receiving function; the transmitter may be called a transmitter, or a sending circuit, for realizing a sending function.
  • the communication device 110 may further include one or more interface circuits 1107 .
  • the interface circuit 1107 is used to receive code instructions and transmit them to the processor 1101 .
  • the processor 1101 runs the code instructions to enable the communication device 110 to execute the methods described in the foregoing method embodiments.
  • the communication device 110 is a terminal device: the transceiver 1105 is used to execute step 21 in FIG. 2; step 22 in FIG. 2; step 31 in FIG. 3; step 32 in FIG. 3; step 41 in FIG. 4; Step 42 in Figure 5; Step 51 in Figure 5; Step 52 in Figure 5; Step 61 in Figure 6; Step 62 in Figure 6; Step 71 in Figure 7; Step 72 in Figure 7; Step 81 in FIG. 8; Step 82 in FIG. 8; Step 91 in FIG. 9; or Step 92 in FIG.
  • Processor 1101 is used to execute step 23 in Fig. 2; Step 33 in Fig. 3; Step 43 in Fig. 4; Step 44 in Fig. 4; Step 53 in Fig. 5; Step 54 in Fig.
  • the processor 1101 may include a transceiver for implementing receiving and sending functions.
  • the transceiver can be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 1101 may store a computer program 1103 , and the computer program 1103 runs on the processor 1101 to enable the communication device 110 to execute the methods described in the foregoing method embodiments.
  • the computer program 1103 may be solidified in the processor 1101, and in this case, the processor 1101 may be implemented by hardware.
  • the communication device 110 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 12 includes a processor 1201 and an interface 1202 .
  • the number of processors 1201 may be one or more, and the number of interfaces 1202 may be more than one.
  • Interface 1202 used to execute step 21 in Fig. 2; Step 22 in Fig. 2; Step 31 in Fig. 3; Step 32 in Fig. 3; Step 41 in Fig. 4; Step 42 in Fig. 4; Step 51 in Figure 5; Step 52 in Figure 5; Step 61 in Figure 6; Step 62 in Figure 6; Step 71 in Figure 7; Step 72 in Figure 7; Step 81 in Figure 8; Step 82 in FIG. 9 ; Step 91 in FIG. 9 ; or Step 92 in FIG. 9 .
  • the chip further includes a memory 1203 for storing necessary computer programs and data.
  • An embodiment of the present disclosure also provides a system for determining cross-carrier beam usage time, the system includes the communication device as the terminal device in the aforementioned embodiment of Figure 10, or the system includes the communication device as the terminal device in the aforementioned Figure 11 embodiment device.
  • the present disclosure also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device including a server, a data center, and the like integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used Wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)

Abstract

本公开实施例公开了一种跨载波的波束使用时间的确定方法及其装置,可应用于通信技术领域,其中,由终端设备执行的方法包括:基于第一载波的物理下行控制信道PDCCH,接收下行控制信息DCI,其中,所述DCI用于指示第二载波内指定资源对应的波束;发送指示信息,其中,所述指示信息用于指示所述DCI的接收状态;根据所述指示信息的发送时刻,确定所述指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少了对通信传输造成的影响,提高了基于波束传输的性能。

Description

一种跨载波的波束使用时间的确定方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种跨载波的波束使用时间的确定方法及其装置。
背景技术
通常,在新的无线技术(new radio,NR)中,由于高频信道衰减较快,为了保证覆盖范围,需要使用基于波束的发送和接收。终端设备可以基于第一载波接收第一载波对应的波束,也可以基于第一载波接收其他载波对应的波束。对于基于第一载波接收其他载波对应的波束的情况,终端设备可能无法准确地确定出其他载波对应的波束使用时间。目前,对于跨载波指示的波束,如何确定其使用时间,成为目前亟需解决的问题。
发明内容
本公开实施例提供一种跨载波的波束使用时间的确定方法及其装置,可应用于通信技术领域中。
第一方面,本公开实施例提供一种跨载波的波束使用时间的确定方法,所述方法由终端设备执行,该方法包括:
基于第一载波的物理下行控制信道PDCCH,接收下行控制信息DCI,其中,所述DCI用于指示第二载波内指定资源对应的波束;发送指示信息,其中,所述指示信息用于指示所述DCI的接收状态;根据所述指示信息的发送时刻,确定所述指定资源对应的波束的使用时间。
在该方案中,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后可以根据指示信息的发送时刻,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少了对通信传输造成的影响,提高了基于波束传输的性能。
可选的,所述指定资源包括信道资源和参考信号资源中的至少一个。
可选的,所述指定资源包括以下至少一项:
PDCCH,物理下行共享信道PDSCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH,物理广播信道PBCH,信道状态信息CSI参考信号RS,探测参考信号SRS,定位参考信号PRS,跟踪参考信号TRS,以及同步块SSB。
可选的,还包括:
根据以下至少一项确定所述指定资源:
控制资源集的标识;
控制资源集池标识;
半持续的PDSCH的标识;
PUCCH对应的资源的标识;
免授权配置的PUSCH的标识;
PRACH资源标识;
SSB索引;
参考信号资源标识;以及,
参考信号资源集标识。
可选的,所述根据所述指示信息的发送时刻,确定所述第二载波内指定资源对应的波束的使用时间,包括:
根据所述指示信息的发送时刻及指定的时间间隔,确定所述第二载波内指定资源对应的波束的使用时间。
可选的,还包括:
确定所述指定的时间间隔。
可选的,所述确定所述指定的时间间隔,包括:
响应于所述DCI还用于指示第二载波上的PDSCH和/或PUSCH的第一资源信息、及发送所述指示信息的PUCCH的第二资源信息,根据以下至少一项,确定所述指定的时间间隔:所述第一资源信息、所述第二资源信息,以及所述第一载波的PDCCH的第三资源信息。
可选的,所述根据以下至少一项,确定所述指定的时间间隔,包括:
根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔,包括:
响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述根据以下至少一项,确定所述指定的时间间隔,包括:
根据所述第一资源信息中的SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,所述根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间,包括:
响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,还包括:
确定所述指定的时间间隔中的第二子时间。
可选的,所述确定所述指定的时间间隔中的第二子时间,包括:
根据所述第一资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间;
和/或,
根据所述第二资源中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间。
可选的,所述第二子时间与所述第一资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比;
或者,
所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
可选的,所述确定所述指定的时间间隔,包括:
响应于所述DCI还用于指示发送所述指示信息的PUCCH的第二资源信息,根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔。
可选的,所述根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔,包括:
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS和/或所述第三资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔,包括:
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS 和/或所述第三资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,还包括:
根据所述第二资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定的时间间隔中的第二子时间。
可选的,所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
可选的,所述第一载波及所述第二载波分别对应所述终端设备的不同的服务小区;
或者,
所述第一载波对应所述终端设备的服务小区,所述第二载波对应所述终端设备的非服务小区;
或者,
所述第一载波对应所述终端设备的非服务小区,所述第二载波对应所述终端设备的服务小区。
第二方面,本公开实施例提供一种通信装置,所述装置包括:
收发模块,用于基于第一载波的物理下行控制信道PDCCH,接收下行控制信息DCI,其中,所述DCI用于指示第二载波内指定资源对应的波束。
收发模块,还用于发送指示信息,其中,所述指示信息用于指示所述DCI的接收状态。
处理模块,用于根据所述指示信息的发送时刻,确定所述指定资源对应的波束的使用时间。
可选的,所述指定资源包括信道资源和参考信号资源中的至少一个。
可选的,所述指定资源包括以下至少一项:
PDCCH,物理下行共享信道PDSCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH,物理广播信道PBCH,信道状态信息CSI参考信号RS,探测参考信号SRS,定位参考信号PRS,跟踪参考信号TRS,以及同步块SSB。
可选的,还包括:
根据以下至少一项确定所述指定资源:
控制资源集的标识;
控制资源集池标识;
半持续的PDSCH的标识;
PUCCH对应的资源的标识;
免授权配置的PUSCH的标识;
PRACH资源标识;
SSB索引;
参考信号资源标识;以及,
参考信号资源集标识。
可选的,所述处理模块,具体用于:
根据所述指示信息的发送时刻及指定的时间间隔,确定所述第二载波内指定资源对应的波束的使用时间。
可选的,所述处理模块,还用于:
确定所述指定的时间间隔。
可选的,所述处理模块,还具体用于:
响应于所述DCI还用于指示第二载波上的PDSCH和/或PUSCH的第一资源信息、及发送所述指示信息的PUCCH的第二资源信息,根据以下至少一项,确定所述指定的时间间隔:所述第一资源信息、所述第二资源信息,以及所述第一载波的PDCCH的第三资源信息。
可选的,所述处理模块,还具体用于:
根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述处理模块,还具体用于:
响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第一资源信息 中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述处理模块,还具体用于:
根据所述第一资源信息中的SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,所述处理模块,还具体用于:
响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,所述处理模块,还用于:
确定所述指定的时间间隔中的第二子时间。
可选的,所述处理模块,还具体用于:
根据所述第一资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间;
和/或,
根据所述第二资源中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间。
可选的,所述第二子时间与所述第一资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比;
或者,
所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
可选的,所述处理模块,还具体用于:
响应于所述DCI还用于指示发送所述指示信息的PUCCH的第二资源信息,根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔。
可选的,所述处理模块,还具体用于:
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS和/或所述第三资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述处理模块,还具体用于:
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS和/或所述第三资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,所述处理模块,还用于:
根据所述第二资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定的时间间隔中的第二子时间。
可选的,所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
可选的,所述第一载波及所述第二载波分别对应所述终端设备的不同的服务小区;
或者,
所述第一载波对应所述终端设备的服务小区,所述第二载波对应所述终端设备的非服务小区;
或者,
所述第一载波对应所述终端设备的非服务小区,所述第二载波对应所述终端设备的服务小区。
第三方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第四方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有 计算机程序;当所述计算机程序被处理器执行时,实现上述第一方面所述的方法。
第五方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种跨载波的波束使用时间的确定***,该***包括第二方面所述的通信装置,或者,该***包括第三方面所述的通信装置,或者,该***包括第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置。
第七方面,本发明实施例提供一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,实现上述第一方面所述的方法。
第八方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第九方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构示意图;
图2是本公开一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图3是本公开另一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图4是本公开另一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图5是本公开另一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图6是本公开一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图7是本公开另一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图8是本公开另一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图9是本公开另一实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图;
图10是本公开一实施例的通信装置的结构示意图;
图11是本公开另一实施例的通信装置的结构示意图;
图12是本公开一实施例的芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本公开涉及的术语。
1、物理下行控制信道(physical downlink control channel,PDCCH)
PDCCH,可以用于承载调度以及其他控制信息,具体可以包含传输格式、上下行资源分配、上行调度许可、功率控制以及重传信息等。
2、物理上行控制信道(physical uplink control channel,PUCCH)
PUCCH,可以用于终端设备向网络设备发送与上行控制相关的信息,如调度请求(scheduling request,SR)、混合自动重传请求(hybrid automatic repeat request,HARQ),以及信道状况信息(channel status information,CSI)等。
3、物理上行共享信道(physical uplink shared channel,PUSCH)
PUSCH,作为物理层主要的上行数据承载信道,可以用于上行数据的传输,可以承载控制信息、用户业务信息和广播业务信息等。
4、物理下行共享信道(physical downlink shared channel,PDSCH),可以用于下行数据的传输。
为了更好的理解本公开实施例公开的一种跨载波的波束使用时间的确定方法,下面首先对本公开实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于 一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的跨载波的波束使用时间的确定方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
可选的,指定资源可以包括信道资源和参考信号资源中的至少一个。
可选的,信道资源可以包括以下至少一项:PDCCH,PDSCH,PUSCH,PUCCH,物理随机接入信道(physical random access channel,PRACH),物理广播信道(physical broadcast channel,PBCH)。
可选的,参考信号资源可以包括以下至少一项:信道状态信息(channel state information,CSI)参考信号(reference signal,RS),探测参考信号(sounding reference signal,SRS),定位参考信号(positioning reference signal,PRS),跟踪参考信号(tracking reference signal,TRS),以及同步块(synchronization signalblock,SSB)。
可以理解的是,指定资源可以为上述一项或者多项。比如,指定资源可以为PDCCH;或者也可以为PDCCH和PDSCH;或者还可以为PDCCHCH、PDSCH、以及PUSCH;或者还可以为PDCCHCH、PDSCH、PUSCH、CSIRS、PRS以及SSB等等,本公开对此不做限定。
可选的,可以根据以下至少一项确定指定资源:控制资源集的标识;控制资源集池标识;半持续的PDSCH的标识;PUCCH对应的资源的标识;免授权配置的PUSCH的标识;PRACH资源标识;SSB索引;参考信号资源标识;以及,参考信号资源集标识。
比如,根据控制资源集的标识确定指定资源,即指定资源可以包括以下至少一项:通过该控制资源集标识对应的控制资源集发送的PDCCH,通过该控制资源集标识对应的控制资源集发送的PDCCH调度的PDSCH,通过该控制资源集标识对应的控制资源集发送的PDCCH调度的PUSCH,通过该控制资源集标识对应的控制资源集发送的PDCCH调度的PUCCH,通过该控制资源集标识对应的控制资源集发送的PDCCH调度的参考信号。其中,参考信号可以包括本公开实施例中所述任意至少一种参考信号。本公开对此不做限定
又比如,根据控制资源集池标识确定指定资源,即指定资源可以包括以下至少一项:通过该控制资源集池标识对应的至少一个控制资源集中的至少一个控制资源集发送的PDCCH,通过该控制资源集池标识对应的至少一个控制资源集中的至少一个控制资源集发送的PDCCH调度的PDSCH,通过该控制资源集 池标识对应的至少一个控制资源集中的至少一个控制资源集发送的PDCCH调度的PUSCH,通过该控制资源集池标识对应的至少一个控制资源集中的至少一个控制资源集发送的PDCCH调度的PUCCH,通过该控制资源集池标识对应的至少一个控制资源集中的至少一个控制资源集发送的PDCCH调度的参考信号。其中,参考信号可以包括本公开实施例中所述任意至少一种参考信号。本公开对此不做限定
其中,各标识的样式或者呈现形式,可以为提前约定好的。比如用于传输PDCCH的控制资源集(control resource set,CORESET)的标识,其可以为PDCCH CORESET#1、PDCCHCORESET#2等等,本公开对此不做限定。
另外,参考信号资源,可以为CSI RS,或者也可以为SRS,或者也可以为PRS,或者也可以为TRS,或者还可以为SSB等等,本公开对此不做限定。
可以理解的是,参考信号资源,可以为上述一种,或者也可以为多种,本公开对此不做限定。
比如,参考信号资源可以为CSI RS,其可以用于信道状态信息测量,或者也可以用于波束测量,或者也可以用于路径损失(pathloss)估计等等,本公开对此不做限定。
另外,SRS,可以用于基于码本(codebook)的信道状态信息测量,或者也可以用于非码本(non-codebook)的信道状态信息测量,或者也可以用于波束测量,或者还可以用于天线切换,或者还可以用于定位测量等等,本公开对此不做限定。
可以理解的是,参考信号资源集中可以为一个参考信号资源,或者也可以为多个参考信号资源,本公开的对此不做限定。
步骤22,发送指示信息,其中,指示信息用于指示DCI的接收状态。
其中,DCI的接收状态,可以有多种。比如,可以为正确接收,或者也可以为未正确接收等等,本公开对此不做限定。
可选的,指示信息可以为混合自动重传请求确认(hybrid automatic repeat request acknowledgement,HARQ ACK),或者也可以为混合自动重传请求非确认(hybrid automatic repeat request non acknowledgement,HARQ NACK),或者也可以为任意可向网络设备指示DCI接收状态的指示信息等等,本公开对此不做限定。
步骤23,根据指示信息的发送时刻,确定指定资源对应的波束的使用时间。
可选的,可以协议约定或者网络设备配置,指示信息发送后的第T秒,第二载波中的指定资源即可使用DCI中指示的波束。比如,指示信息的发送时刻为t时刻,则终端设备根据协议约定或者网络设备配置,即可确定指定资源对应的波束的使用时间为t+T。本公开对此不做限定。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后可以根据指示信息的发送时刻,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少了对通信传输造成的影响,提高了基于波束传输的性能。
请参见图3,图3是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
可选的,本公开中,第一载波及第二载波可以分别对应终端设备的不同的服务小区(servingcell)。
可选的,第一载波也可以对应终端设备的服务小区,第二载波对应终端设备的非服务小区(non-servingcell,或coordinated cell)。
可选的,第一载波还可以对应终端设备的非服务小区,第二载波对应终端设备的服务小区。
需要说明的是,指定资源的具体内容以及确定指定资源的方式等,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤32,发送指示信息,其中,指示信息用于指示DCI的接收状态。
需要说明的是,步骤31和步骤32的具体内容及实现方式,可以参照本公开其他实施例的说明,此处不再赘述。
步骤33,根据指示信息的发送时刻及指定的时间间隔,确定第二载波内指定资源对应的波束的使用时间。
其中,指定的时间间隔,可以为协议约定的,或者也可以为网络设备配置的,或者,也可以为终端设备确定的等等,本公开对此不做限定。
比如,指定的时间间隔为K,若指示信息的发送时刻为t时刻,则终端设备可以确定指定资源对应的波束的使用时间为t+K等等。本公开对此不做限定。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指 定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后可以根据指示信息的发送时刻及指定的时间间隔,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少对通信传输造成的影响,提高了基于波束传输的性能。
请参见图4,图4是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
需要说明的是,指定资源的具体内容以及确定指定资源的方式等,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤42,发送指示信息,其中,指示信息用于指示DCI的接收状态。
需要说明的是,步骤41和步骤42的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤43,响应于DCI还用于指示第二载波上的PDSCH和/或PUSCH的第一资源信息、及发送指示信息的PUCCH的第二资源信息,根据以下至少一项确定指定的时间间隔:第一资源信息、第二资源信息,以及第一载波的PDCCH的第三资源信息。
可选的,可以根据第二载波上的PDSCH的第一资源信息中的子载波间隔确定指定的时间间隔。其中,子载波间隔(subcarrier spacing,SCS),可以为15千赫兹(kilo hertz,kHz)、30kHz、60kHz、120kHz、240kHz等等,本公开对此不做限定。
比如,协议约定或者网络设备配置,第一资源信息中的SCS为15kHz时,对应的指定的时间间隔为T1;第一资源信息中的SCS为30kHz时,对应的指定的时间间隔为T2;第一资源信息中的SCS为60kHz时,对应的指定的时间间隔为T3等等。从而,终端设备根据第一资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
可选的,也可以根据第二载波上的PUSCH的第一资源信息确定指定的时间间隔;或者,还可以根据第二载波上的PDSCH和PUSCH的第一资源信息确定指定的时间间隔,其具体内容及实现方式,可以参照本公开各实施例的说明,此处不再赘述。
可选的,也可以根据第二资源信息中的SCS,确定指定的时间间隔。
比如,协议约定或者网络设备配置,第二资源信息中的SCS为15kHz时,对应的指定的时间间隔为T4;第二资源信息中的SCS为30kHz时,对应的指定的时间间隔为T5;第二资源信息中的SCS为60kHz时,对应的指定的时间间隔为T6等等。从而,终端设备根据第二资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
可选的,还可以根据第一资源信息中的子载波间隔SCS和第二资源信息中的SCS,确定指定的时间间隔。
比如,协议约定或者网络设备配置,第一资源信息和第二资源信息中的SCS相同时,对应的指定的时间间隔为T7;第一资源信息中的SCS大于第二资源信息中的SCS时,对应的指定的时间间隔为T8;第一资源信息中的SCS小于第二资源信息中的SCS时,对应的指定的时间间隔为T9等等。从而,终端设备根据第一资源信息及第二资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
需要说明的是,上述示例只是举例说明,不能作为对本公开实施例中,确定指定的时间间隔的方式等的限定。
可选的,也可以根据第三资源信息,确定指定的时间间隔,其具体内容及实现方式,可以参照本公开各实施例的说明,此处不再赘述。
可以理解的是,可以使用一项确定指定的时间间隔,或者也可以使用上述多项,确定指定的时间间隔,本公开对此不做限定。
步骤44,根据指示信息的发送时刻及指定的时间间隔,确定第二载波内指定资源对应的波束的使用时间。
需要说明的是,步骤44的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后,可以先根据第一资源信息、第二资源信息,以及第一载波的PDCCH的第三资源信息,确定指定的时间间隔,再根据指 示信息的发送时刻及指定的时间间隔,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少对通信传输造成的影响,提高了基于波束传输的性能。
请参见图5,图5是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤51,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
需要说明的是,指定资源的具体内容以及确定指定资源的方式等,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤52,发送指示信息,其中,指示信息用于指示DCI的接收状态。
需要说明的是,步骤51和步骤52的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤53,响应于DCI还用于指示第二载波上的PDSCH和/或PUSCH的第一资源信息、及发送指示信息的PUCCH的第二资源信息,根据以下至少一项确定指定的时间间隔:第一资源信息中的子载波间隔SCS以及第二资源信息中的SCS。
可选的,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,可以根据第一资源信息中的SCS,确定指定的时间间隔。
可以理解的是,第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况,也即第三资源信息中的SCS不小于第一资源信息中的SCS。
比如说,协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,指定的时间间隔与第一资源信息中的SCS相关。比如,指定的时间间隔为N个符号,当第一资源信息中的SCS为15kHz时,对应的指定的时间间隔为为SCS15KHz时的N个符号占用的时间长度,当第一资源信息中的SCS为30kHz时,对应的指定的时间间隔为SCS 30KHz时的N个符号占用的时间长度。
或者,也可以协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,第一资源信息中的SCS与指定的时间间隔之间的对应关系。
从而,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,终端设备根据第一资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
可选的,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,可以根据第二资源信息中的SCS,确定指定的时间间隔。
比如说,协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,指定的时间间隔与第二资源信息中的SCS相关。比如,指定的时间间隔为N个符号,当第二资源信息中的SCS为15kHz时,对应的指定的时间间隔为SCS 15KHz时的N个符号占用的时间长度,当第二资源信息中的SCS为30kHz时,对应的指定的时间间隔为SCS 30KHz时的N个符号占用的时间长度。
或者,也可以协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,第二资源信息中的SCS与指定的时间间隔之间的对应关系。
从而,在第三资源信息中的SCS大于或等于第一资源信息中的SCS的情况下,终端设备根据第二资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
可选的,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,根据第一资源信息中的SCS,确定指定的时间间隔。
比如说,协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,指定的时间间隔与第一资源信息中的SCS相关。比如,指定的时间间隔为N个符号,当第一资源信息中的SCS为15kHz时,对应的指定的时间间隔为SCS 15KHz时的N个符号占用的时间长度,当第一资源信息中的SCS为30kHz时,对应的指定的时间间隔为SCS 30KHz时的N个符号占用的时间长度。
或者,也可以协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,第一资源信息中的SCS与指定的时间间隔之间的对应关系。
从而,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,终端设备根据第一资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
可选的,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,根据第二资源信息中的SCS,确定指定的时间间隔。
比如说,协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,指定的时间间隔与第二资源信息中的SCS相关。比如,指定的时间间隔为N个符号,当第二资源信息中的SCS为15kHz时,对应的指定的时间间隔为SCS 15KHz时的N个符号占用的时间长度,当第二资源信息中的SCS为30kHz时,对应的指定的时间间隔为SCS 30KHz时的N个符号占用的时间长度。
或者,也可以协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,第二资源信息中的SCS与指定的时间间隔之间的对应关系。
从而,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,终端设备根据第二资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
需要说明的是,可以使用上述一种方式确定指定的时间间隔,或者也可以使用上述多种方式确定指定的时间间隔,本公开对此不做限定。
步骤54,根据指示信息的发送时刻及指定的时间间隔,确定第二载波内指定资源对应的波束的使用时间。
需要说明的是,步骤54的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后,可以根据第一资源信息中的子载波间隔SCS和/或第二资源信息中的SCS,确定指定的时间间隔,之后即可根据指示信息的发送时刻及指定的时间间隔,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少对通信传输造成的影响,提高了基于波束传输的性能。
请参见图6,图6是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤61,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
需要说明的是,指定资源的具体内容以及确定指定资源的方式等,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤62,发送指示信息,其中,指示信息用于指示DCI的接收状态。
需要说明的是,步骤61和步骤62的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤63,响应于DCI还用于指示第二载波上的PDSCH和/或PUSCH的第一资源信息、及发送指示信息的PUCCH的第二资源信息,根据以下至少一项确定指定的时间间隔中的第一子时间:第一资源信息中的子载波间隔SCS以及第二资源信息中的SCS。
可选的,在第三资源信息中的SCS小于第一资源信息中的SCS的情况下,可以根据第一资源信息中的SCS,确定指定的时间间隔的第一子时间。
其中,SCS可以为15kHz、30kHz、60kHz、120kHz、240kHz等等,本公开对此不做限定。
比如说,协议约定或者网络设备配置,在第三资源信息中的SCS小于第一资源信息中的SCS的情况下,第一资源信息中的SCS与指定的时间间隔中的第一子时间之间的对应关系。比如,指定的时间间隔为N个符号,当第一资源信息中的SCS为15kHz时,对应的指定的时间间隔为SCS 15KHz时的N个符号占用的时间长度;当第一资源信息中的SCS为30kHz时,对应的指定的时间间隔为SCS 30KHz时的N个符号占用的时间长度等等,本公开对此不做限定。
从而,终端设备根据第一资源信息中的SCS以及对应关系,即可确定出对应的指定的时间间隔中的第一子时间。从而,可以使终端设备与网络设备对指定的时间间隔中的第一子时间保持一致理解,从而为基于波束的传输,提供了保障。
可选的,在第三资源信息中的SCS小于第一资源信息中的SCS的情况下,可以根据第二资源信息中的SCS,确定指定的时间间隔中的第一子时间,其具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
可选的,在第三资源信息中的SCS小于第二资源信息中的SCS的情况下,根据第一资源信息中的SCS,确定指定的时间间隔中的第一子时间,其具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
可选的,在第三资源信息中的SCS小于第二资源信息中的SCS的情况下,根据第二资源信息中的SCS,确定指定的时间间隔中的第一子时间,其具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
需要说明的是,可以使用上述一种方式确定指定的时间间隔,或者也可以使用上述多种方式确定指定的时间间隔,本公开对此不做限定。
步骤64,根据第一资源信息中的子载波间隔SCS和/或第二资源信息中的SCS,确定指定的时间间隔中的第二子时间。
可选的,可以根据第一资源信息中的SCS及第三资源信息中的SCS,确定指定时间间隔中的第二子时间。
比如说,协议约定或者网络设备配置,第三资源信息中的SCS小于第一资源信息中的SCS时,对应的指定时间间隔中的第二子时间为T。
或者,也可以协议约定或者网络设备配置,第三资源信息中的SCS、第一资源信息中的SCS以及指定的时间间隔中的第二子时间的对应关系。
从而,终端设备根据第三资源信息中的SCS、第一资源信息中的SCS以及对应关系,即可确定出对应的指定的时间间隔中的第二子时间。从而,可以使终端设备与网络设备对指定的时间间隔中的第二子时间保持一致理解,从而为基于波束的传输,提供了保障。
可选的,本公开中,也可以根据第二资源中的SCS及第三资源信息中的SCS,确定指定时间间隔中的第二子时间。
比如说,可以协议约定或者网络设备配置,第三资源信息中的SCS、第二资源信息中的SCS以及指定的时间间隔中的第二子时间的对应关系。从而,终端设备根据第三资源信息中的SCS以及第二资源信息中的SCS,即可确定出对应的指定的时间间隔中的第二子时间。从而,可以使终端设备与网络设备对指定的时间间隔中的第二子时间保持一致理解,从而为基于波束的传输,提供了保障。
可选的,还可以根据第一资源信息中的SCS、第二资源中的SCS及第三资源信息中的SCS,确定指定时间间隔中的第二子时间。
比如说,可以协议约定或者网络设备配置,第三资源信息中的SCS、第二资源信息中的SCS、第一资源信息中的SCS以及指定的时间间隔中的第二子时间的对应关系。从而,终端设备根据第三资源信息中的SCS、第二资源信息中的SCS以及第一资源信息中的SCS,即可确定出对应的指定的时间间隔中的第二子时间。从而,可以使终端设备与网络设备对指定的时间间隔中的第二子时间保持一致理解,从而为基于波束的传输,提供了保障。
可选的,本公开中,第二子时间可以与第一资源信息中的SCS成正比,与第三资源信息中的SCS成反比。
比如说,第一资源信息中的SCS越大,相应的,第二子时间也越大;第三资源信息中的SCS越大,第二子时间越小。本公开对此不做限定。
可选的,本公开中,第二子时间也可以与第二资源信息中的SCS成正比,与第三资源信息中的SCS成反比。
比如说,第二资源信息中的SCS越大,相应的,第二子时间也越大;第三资源信息中的SCS越大,第二子时间越小。本公开对此不做限定。
可选的,本公开中,第二子时间还可以与第一资源信息中的SCS和第二资源信息中的SCS成正比,与第三资源信息中的SCS成反比。
可选的,第一子时间可以为整数个时间单元,第二子时间也可以整数个时间单元。
其中,时间单元可以为时隙(slot)、微时隙(mini-slot)和符号(symbol)中的至少一项,本公开对此不做限定。
可以理解的是,第一子时间可以包含整数个时隙,或第一子时间可以包含整数个微时隙,或第一子时间可以包含整数个符号,或第一子时间可以包含整数个时隙和整数个微时隙,或第一子时间可以包含整数个时隙和整数个符号,第一子时间可以包含整数个微时隙和整数个符号;或第一子时间可以包含整数个时隙、整数个微时隙和整数个符号。
另外,第二子时间可以包含整数个时隙,或第二子时间可以包含整数个微时隙,或第二子时间可以包含整数个符号,或第二子时间可以包含整数个时隙和整数个微时隙,或第二子时间可以包含整数个时隙和整数个符号,第二子时间可以包含整数个微时隙和整数个符号;或第二子时间可以包含整数个时隙、整数个微时隙和整数个符号。
可以理解的是,第一子时间和第二子时间包含的时间单元可以为上述任意组合,比如第一子时间包含整数个符号,第二子时间包含整数个符号;又比如第一子时间包含整数个微时隙,第二子时间包含整 数个符号等等,本公开对此不做限定。
从而,指定的时间间隔,也可以包含整数个时隙,整数个微时隙和整数个符号中的至少一项,本公开对此不做限定。
步骤65,根据指示信息的发送时刻及指定的时间间隔,确定第二载波内指定资源对应的波束的使用时间。
可以理解的是,本公开中,指定的时间间隔可以为第一子时间与第二子时间之和。
比如说,指示信息的发送时刻为t时刻,第一子时间为T1,第二子时间为T2,则第二载波内指定资源对应的波束的使用时间可以为t+T1+T2。本公开对此不做限定。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后,可以根据第一资源信息中的子载波间隔SCS、第二资源信息中的SCS和/或第三资源信息中的SCS,确定指定的时间间隔中的第一子时间和第二子时间,之后即可根据指示信息的发送时刻及指定的时间间隔,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少对通信传输造成的影响,提高了基于波束传输的性能。
请参见图7,图7是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤71,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
需要说明的是,指定资源的具体内容以及确定指定资源的方式等,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤72,发送指示信息,其中,指示信息用于指示DCI的接收状态。
需要说明的是,步骤71和步骤72的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤73,响应于DCI还用于指示发送指示信息的PUCCH的第二资源信息,根据第二资源信息和/或第一载波的PDCCH的第三资源信息,确定指定的时间间隔。
可以理解的是,可以根据第二资源信息,确定指定的时间间隔;或者,也可以根据第三资源信息,确定指定的时间间隔;或者,还可以根据第二资源信息和第三资源信息,确定指定的时间间隔,其具体内容及实现方式可参照本公开其他各实施例的说明,此处不再赘述。
步骤74,根据指示信息的发送时刻及指定的时间间隔,确定第二载波内指定资源对应的波束的使用时间。
需要说明的是,步骤74的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后,可以先根据第二资源信息和第三资源信息,确定指定的时间间隔,再根据指示信息的发送时刻及指定的时间间隔,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少对通信传输造成的影响,提高了基于波束传输的性能。
请参见图8,图8是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤81,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
需要说明的是,指定资源的具体内容以及确定指定资源的方式等,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤82,发送指示信息,其中,指示信息用于指示DCI的接收状态。
需要说明的是,步骤81和步骤82的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤83,响应于第三资源信息中的SCS大于或等于第二资源信息中的SCS,根据第二资源信息中的SCS和/或第三资源信息中的SCS,确定指定的时间间隔。
可选的,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,可以根据第二资源信息中的SCS,确定指定的时间间隔。
比如说,协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,指定的时间间隔与第二资源信息中的SCS相关。比如,指定的时间间隔为N个符号,当第二资源信息中的SCS为15kHz时,对应的指定的时间间隔为SCS 15KHz时的N个符号占用的时间长度,当第二资源信息中的SCS为60kHz时,对应的指定的时间间隔为SCS 60KHz时的N个符号占用的时间 长度。
或者,也可以协议约定或者网络设备配置,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,第二资源信息中的SCS与指定的时间间隔之间的对应关系。
从而,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,终端设备根据第二资源信息中的SCS,即可确定出对应的指定的时间间隔。从而,可以使终端设备与网络设备对指定的时间间隔保持一致理解,从而为基于波束的传输,提供了保障。
可选的,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,也可以根据第三资源信息中的SCS,确定指定的时间间隔,其具体内容及实现方式可以参照本公开其他各实施例的说明,此处不再赘述。
可选的,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,也可以根据第二资源信息中的SCS和第三资源信息中的SCS,确定指定的时间间隔,其具体内容及实现方式可以参照本公开其他各实施例的说明,此处不再赘述。
步骤84,根据指示信息的发送时刻及指定的时间间隔,确定第二载波内指定资源对应的波束的使用时间。
需要说明的是,步骤84的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,在第三资源信息中的SCS大于或等于第二资源信息中的SCS的情况下,根据第二资源信息和/或第三资源信息,确定指定的时间间隔,再根据指示信息的发送时刻及指定的时间间隔,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少对通信传输造成的影响,提高了基于波束传输的性能。
请参见图9,图9是本公开实施例提供的一种跨载波的波束使用时间的确定方法的流程示意图,该方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤91,基于第一载波的PDCCH,接收DCI,其中,DCI用于指示第二载波内指定资源对应的波束。
需要说明的是,指定资源的具体内容以及确定指定资源的方式等,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤92,发送指示信息,其中,指示信息用于指示DCI的接收状态。
需要说明的是,步骤91和步骤92的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
步骤93,响应于第一资源信息中的SCS小于第二资源信息中的SCS,根据第二资源信息中的SCS和/或第三资源信息中的SCS,确定指定的时间间隔中的第一子时间。
可选的,在第三资源信息中的SCS小于第二资源信息中的SCS的情况下,可以根据第二资源信息中的SCS,确定指定的时间间隔中的第一子时间。
比如说,协议约定或者网络设备配置,在第三资源信息中的SCS小于第二资源信息中的SCS的情况下,第二资源信息中的SCS与指定的时间间隔中的第一子时间之间的对应关系。从而,终端设备即可根据第二资源信息中的SCS,确定出对应的指定的时间间隔中的第一子时间。从而,可以使终端设备与网络设备对指定的时间间隔中的第一子时间保持一致理解,从而为基于波束的传输,提供了保障。
可选的,在第三资源信息中的SCS小于第二资源信息中的SCS的情况下,也可以根据第三资源信息中的SCS,确定指定的时间间隔,其具体内容及实现方式可以参照本公开其他各实施例的说明,此处不再赘述。
可选的,在第三资源信息中的SCS小于第二资源信息中的SCS的情况下,也可以根据第二资源信息中的SCS和第三资源信息中的SCS,确定指定的时间间隔,其具体内容及实现方式可以参照本公开其他各实施例的说明,此处不再赘述。
步骤94,根据第二资源信息中的SCS及第三资源信息中的SCS,确定指定的时间间隔中的第二子时间。
比如,可以协议约定或者网络设备配置,第三资源信息中的SCS、第二资源信息中的SCS以及指定的时间间隔中的第二子时间的对应关系。从而,终端设备根据第三资源信息中的SCS以及第二资源信息中的SCS,即可确定出对应的指定的时间间隔中的第二子时间。从而,可以使终端设备与网络设备对指定的时间间隔中的第二子时间保持一致理解,从而为基于波束的传输,提供了保障。
可选的,本公开中,第二子时间可以与第二资源信息中的SCS成正比,与第三资源信息中的SCS成反比。
可选的,第一子时间可以为整数个时间单元,第二子时间也可以为整数个时间单元。
其中,时间单元可以为时隙、微时隙和符号中的至少一项,本公开对此不做限定。
可以理解的是,第一子时间可以包含整数个时隙,或第一子时间可以包含整数个微时隙,或第一子时间可以包含整数个符号,或第一子时间可以包含整数个时隙和整数个微时隙,或第一子时间可以包含整数个时隙和整数个符号,第一子时间可以包含整数个微时隙和整数个符号;或第一子时间可以包含整数个时隙、整数个微时隙和整数个符号。
另外,第二子时间可以包含整数个时隙,或第二子时间可以包含整数个微时隙,或第二子时间可以包含整数个符号,或第二子时间可以包含整数个时隙和整数个微时隙,或第二子时间可以包含整数个时隙和整数个符号,第二子时间可以包含整数个微时隙和整数个符号;或第二子时间可以包含整数个时隙、整数个微时隙和整数个符号。
可以理解的是,第一子时间和第二子时间包含的时间单元可以为上述任意组合,比如,第一子时间包含整数个符号,第二子时间包含整数个符号;又比如第一子时间包含整数个微时隙,第二子时间包含整数个符号等等,。本公开对此不做限定。
从而,指定的时间间隔,也可以包含整数个时隙,整数个微时隙和整数个符号,中的至少一项,本公开对此不做限定。
步骤95,根据指示信息的发送时刻及指定的时间间隔,确定第二载波内指定资源对应的波束的使用时间。
需要说明的是,步骤95的具体内容及实现方式,可以参照本公开其他各实施例的说明,此处不再赘述。
通过实施本公开实施例,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,在第三资源信息中的SCS小于第二资源信息中的SCS的情况下,根据第二资源信息中的SCS和/或第三资源信息中的SCS,确定指定的时间间隔中的第一子时间和第二子时间,之后再根据指示信息的发送时刻及指定的时间间隔,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少对通信传输造成的影响,提高了基于波束传输的性能。
上述本公开提供的实施例中,从终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图10,为本公开实施例提供的一种通信装置100的结构示意图。图所示的通信装置100可包括收发模块1001和处理模块1002。
收发模块1001可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1001可以实现发送功能和/或接收功能。
可以理解的是,通信装置100可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置100,包括:
收发模块1001,用于基于第一载波的物理下行控制信道PDCCH,接收下行控制信息DCI,其中,所述DCI用于指示第二载波内指定资源对应的波束。
收发模块1001,还用于发送指示信息,其中,所述指示信息用于指示所述DCI的接收状态。
处理模块1002,用于根据所述指示信息的发送时刻,确定所述指定资源对应的波束的使用时间。
可选的,所述指定资源包括信道资源和参考信号资源中的至少一个。
可选的,所述指定资源包括以下至少一项:
PDCCH,物理下行共享信道PDSCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH,物理广播信道PBCH,信道状态信息CSI参考信号RS,探测参考信号SRS,定位参考信号PRS,跟踪参考信号TRS,以及同步块SSB。
可选的,还包括:
根据以下至少一项确定所述指定资源:
控制资源集的标识;
控制资源集池标识;
半持续的PDSCH的标识;
PUCCH对应的资源的标识;
免授权配置的PUSCH的标识;
PRACH资源标识;
SSB索引;
参考信号资源标识;以及,
参考信号资源集标识。
可选的,所述处理模块1002,具体用于:
根据所述指示信息的发送时刻及指定的时间间隔,确定所述第二载波内指定资源对应的波束的使用时间。
可选的,所述处理模块1002,还用于:
确定所述指定的时间间隔。
可选的,所述处理模块1002,还具体用于:
响应于所述DCI还用于指示第二载波上的PDSCH和/或PUSCH的第一资源信息、及发送所述指示信息的PUCCH的第二资源信息,根据以下至少一项,确定所述指定的时间间隔:所述第一资源信息、所述第二资源信息,以及所述第一载波的PDCCH的第三资源信息。
可选的,所述处理模块1002,还具体用于:
根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述处理模块1002,还具体用于:
响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔;
和/或,
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述处理模块1002,还具体用于:
根据所述第一资源信息中的SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,所述处理模块1002,还具体用于:
响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
和/或,
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,所述处理模块1002,还用于:
确定所述指定的时间间隔中的第二子时间。
可选的,所述处理模块1002,还具体用于:
根据所述第一资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间;
和/或,
根据所述第二资源中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间。
可选的,所述第二子时间与所述第一资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比;
或者,
所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
可选的,所述处理模块1002,还具体用于:
响应于所述DCI还用于指示发送所述指示信息的PUCCH的第二资源信息,根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔。
可选的,所述处理模块1002,还具体用于:
响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS和/或所述第三资源信息中的SCS,确定所述指定的时间间隔。
可选的,所述处理模块1002,还具体用于:
响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS和/或所述第三资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
可选的,所述处理模块1002,还用于:
根据所述第二资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定的时间间隔中的第二子时间。
可选的,所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
可选的,所述第一载波及所述第二载波分别对应所述终端设备的不同的服务小区;
或者,
所述第一载波对应所述终端设备的服务小区,所述第二载波对应所述终端设备的非服务小区;
或者,
所述第一载波对应所述终端设备的非服务小区,所述第二载波对应所述终端设备的服务小区。
本公开实施例中的上述各模块的功能及具体实现原理,可参照上述各方法实施例,此处不再赘述。
本公开提供的通信装置,终端设备可以基于第一载波的PDCCH,接收DCI,从而获知第二载波内指定资源对应的波束,之后可以发送指示信息,以向网络设备指示DCI的接收状态,之后可以根据指示信息的发送时刻,确定指定资源对应的波束的使用时间。由此,可使终端设备和网络设备对于跨载波的波束使用时间保持一致理解,从而保证了波束一致性,减少了对通信传输造成的影响,提高了基于波束传输的性能。
请参见图11,图11是本公开实施例提供的另一种通信装置110的结构示意图。通信装置110可以是终端设备,也可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置110可以包括一个或多个处理器1101。处理器1101可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置110中还可以包括一个或多个存储器1102,其上可以存有计算机程序1104,处理器1101执行所述计算机程序1104,以使得通信装置110执行上述方法实施例中描述的方法。
可选的,所述存储器1102中还可以存储有数据。通信装置110和存储器1102可以单独设置,也可以集成在一起。
可选的,通信装置110还可以包括收发器1105、天线1106。收发器1105可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1105可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置110中还可以包括一个或多个接口电路1107。接口电路1107用于接收代码指令并传输至处理器1101。处理器1101运行所述代码指令以使通信装置110执行上述方法实施例中描述的方法。
通信装置110为终端设备:收发器1105用于执行图2中的步骤21;图2中的步骤22;图3中的步骤31;图3中的步骤32;图4中的步骤41;图4中的步骤42;图5中的步骤51;图5中的步骤52;图6中的步骤61;图6中的步骤62;图7中的步骤71;图7中的步骤72;图8中的步骤81;图8中的步骤82;图9中的步骤91;或图9中的步骤92。处理器1101用于执行图2中的步骤23;图3中的步骤33;图4中的步骤43;图4中的步骤44;图5中的步骤53;图5中的步骤54;图6中的步骤63;图6中的步骤64;图6中的步骤65;图7中的步骤73;图7中的步骤74;图8中的步骤83;图8中的步骤84;图9中的步骤93;图9中的步骤94;或图9中的步骤95。
在一种实现方式中,处理器1101中可以包括用于实现接收和发送功能的收发器。例如该收发器可 以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1101可以存有计算机程序1103,计算机程序1103在处理器1101上运行,可使得通信装置110执行上述方法实施例中描述的方法。计算机程序1103可能固化在处理器1101中,该种情况下,处理器1101可能由硬件实现。
在一种实现方式中,通信装置110可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图12所示的芯片的结构示意图。图12所示的芯片包括处理器1201和接口1202。其中,处理器1201的数量可以是一个或多个,接口1202的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1202,用于执行图2中的步骤21;图2中的步骤22;图3中的步骤31;图3中的步骤32;图4中的步骤41;图4中的步骤42;图5中的步骤51;图5中的步骤52;图6中的步骤61;图6中的步骤62;图7中的步骤71;图7中的步骤72;图8中的步骤81;图8中的步骤82;图9中的步骤91;或图9中的步骤92。
可选的,芯片还包括存储器1203,存储器1203用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开实施例还提供一种跨载波的波束使用时间的确定***,该***包括前述图10实施例中作为终端设备的通信装置,或者,该***包括前述图11实施例中作为终端设备的通信装置。
本公开还提供一种计算机可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何 可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (24)

  1. 一种跨载波的波束使用时间的确定方法,其特征在于,由终端设备执行,所述方法包括:
    基于第一载波的物理下行控制信道PDCCH,接收下行控制信息DCI,其中,所述DCI用于指示第二载波内指定资源对应的波束;
    发送指示信息,其中,所述指示信息用于指示所述DCI的接收状态;
    根据所述指示信息的发送时刻,确定所述指定资源对应的波束的使用时间。
  2. 如权利要求1所述的方法,其特征在于,所述指定资源包括信道资源和参考信号资源中的至少一个。
  3. 如权利要求2所述的方法,其特征在于,所述指定资源包括以下至少一项:
    PDCCH,物理下行共享信道PDSCH,物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH,物理广播信道PBCH,信道状态信息CSI参考信号RS,探测参考信号SRS,定位参考信号PRS,跟踪参考信号TRS,以及同步块SSB。
  4. 如权利要求3所述的方法,其特征在于,还包括:
    根据以下至少一项确定所述指定资源:
    控制资源集的标识;
    控制资源集池标识;
    半持续的PDSCH的标识;
    PUCCH对应的资源的标识;
    免授权配置的PUSCH的标识;
    PRACH资源标识;
    SSB索引;
    参考信号资源标识;以及,
    参考信号资源集标识。
  5. 如权利要求1-4任一所述的方法,其特征在于,所述根据所述指示信息的发送时刻,确定所述第二载波内指定资源对应的波束的使用时间,包括:
    根据所述指示信息的发送时刻及指定的时间间隔,确定所述第二载波内指定资源对应的波束的使用时间。
  6. 如权利要求5所述的方法,其特征在于,还包括:
    确定所述指定的时间间隔。
  7. 如权利要求6所述的方法,其特征在于,所述确定所述指定的时间间隔,包括:
    响应于所述DCI还用于指示第二载波上的PDSCH和/或PUSCH的第一资源信息、及发送所述指示信息的PUCCH的第二资源信息,根据以下至少一项,确定所述指定的时间间隔:所述第一资源信息、所述第二资源信息,以及所述第一载波的PDCCH的第三资源信息。
  8. 如权利要求7所述的方法,其特征在于,所述根据以下至少一项,确定所述指定的时间间隔,包括:
    根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔。
  9. 如权利要求8所述的方法,其特征在于,所述根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔,包括:
    响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔;
    和/或,
    响应于所述第三资源信息中的SCS大于或等于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔;
    和/或,
    响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔;
    和/或,
    响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔。
  10. 如权利要求6或7所述的方法,其特征在于,所述根据以下至少一项,确定所述指定的时间间隔,包括:
    根据所述第一资源信息中的SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
  11. 如权利要求10所述的方法,其特征在于,所述根据所述第一资源信息中的子载波间隔SCS和/或所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间,包括:
    响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
    和/或,
    响应于所述第三资源信息中的SCS小于所述第一资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
    和/或,
    响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第一资源信息中的SCS,确定所述指定的时间间隔中的第一子时间;
    和/或,
    响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
  12. 如权利要求10所述的方法,其特征在于,还包括:
    确定所述指定的时间间隔中的第二子时间。
  13. 如权利要求12所述的方法,其特征在于,所述确定所述指定的时间间隔中的第二子时间,包括:
    根据所述第一资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间;
    和/或,
    根据所述第二资源中的SCS及所述第三资源信息中的SCS,确定所述指定时间间隔中的第二子时间。
  14. 如权利要求13所述的方法,其特征在于,
    所述第二子时间与所述第一资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比;
    和/或,
    所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
  15. 如权利要求6所述的方法,其特征在于,所述确定所述指定的时间间隔,包括:
    响应于所述DCI还用于指示发送所述指示信息的PUCCH的第二资源信息,根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔。
  16. 如权利要求15所述的方法,其特征在于,所述根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔,包括:
    响应于所述第三资源信息中的SCS大于或等于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS和/或所述第三资源信息中的SCS,确定所述指定的时间间隔。
  17. 如权利要求15所述的方法,其特征在于,所述根据所述第二资源信息和/或所述第一载波的PDCCH的第三资源信息,确定所述指定的时间间隔,包括:
    响应于所述第三资源信息中的SCS小于所述第二资源信息中的SCS,根据所述第二资源信息中的SCS和/或所述第三资源信息中的SCS,确定所述指定的时间间隔中的第一子时间。
  18. 如权利要求17所述的方法,其特征在于,还包括:
    根据所述第二资源信息中的SCS及所述第三资源信息中的SCS,确定所述指定的时间间隔中的第二子时间。
  19. 如权利要求18所述的方法,其特征在于,
    所述第二子时间与所述第二资源信息中的SCS成正比,与所述第三资源信息中的SCS成反比。
  20. 如权利要求1-19任一所述的方法,其特征在于,
    所述第一载波及所述第二载波分别对应所述终端设备的不同的服务小区;
    或者,
    所述第一载波对应所述终端设备的服务小区,所述第二载波对应所述终端设备的非服务小区;
    或者,
    所述第一载波对应所述终端设备的非服务小区,所述第二载波对应所述终端设备的服务小区。
  21. 一种通信装置,其特征在于,被配置在终端设备侧,所述装置包括:
    收发模块,用于基于第一载波的物理下行控制信道PDCCH,接收下行控制信息DCI,其中,所述DCI用于指示第二载波内指定资源对应的波束;
    所述收发模块,用于发送指示信息,其中,所述指示信息用于指示所述DCI的接收状态;
    处理模块,用于根据所述指示信息的发送时刻,确定所述指定资源对应的波束的使用时间。
  22. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,当所述计算机程序被处理器执行时,实现如权利要求1至20中任一项所述的方法。
  23. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至20中任一项所述的方法。
  24. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,实现如权利要求1至20中任一项所述的方法。
PCT/CN2021/102182 2021-06-24 2021-06-24 一种跨载波的波束使用时间的确定方法及其装置 WO2022266957A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
KR1020247002712A KR20240023176A (ko) 2021-06-24 2021-06-24 빔 사용 시간의 결정 방법 및 그 장치(method and apparatus for determining beam service time)
JP2023579247A JP2024523521A (ja) 2021-06-24 2021-06-24 ビーム使用時間の決定方法及びその装置
BR112023027315A BR112023027315A2 (pt) 2021-06-24 2021-06-24 Método para determinar um tempo de aplicação de um feixe, dispositivo de comunicação, e, meio de armazenamento legível por computador tendo instruções armazenadas no mesmo
PCT/CN2021/102182 WO2022266957A1 (zh) 2021-06-24 2021-06-24 一种跨载波的波束使用时间的确定方法及其装置
EP21946453.4A EP4362582A1 (en) 2021-06-24 2021-06-24 Method and apparatus for determining cross-carrier wave beam service time
CN202180001957.6A CN113597804B (zh) 2021-06-24 2021-06-24 一种跨载波的波束使用时间的确定方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/102182 WO2022266957A1 (zh) 2021-06-24 2021-06-24 一种跨载波的波束使用时间的确定方法及其装置

Publications (1)

Publication Number Publication Date
WO2022266957A1 true WO2022266957A1 (zh) 2022-12-29

Family

ID=78242918

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/102182 WO2022266957A1 (zh) 2021-06-24 2021-06-24 一种跨载波的波束使用时间的确定方法及其装置

Country Status (6)

Country Link
EP (1) EP4362582A1 (zh)
JP (1) JP2024523521A (zh)
KR (1) KR20240023176A (zh)
CN (1) CN113597804B (zh)
BR (1) BR112023027315A2 (zh)
WO (1) WO2022266957A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023178642A1 (en) * 2022-03-25 2023-09-28 Qualcomm Incorporated Beam application time with bandwidth part switching in wireless communications
WO2024000203A1 (zh) * 2022-06-28 2024-01-04 北京小米移动软件有限公司 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2024011612A1 (en) * 2022-07-15 2024-01-18 Zte Corporation Systems and methods for resource indication

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150180623A1 (en) * 2013-12-24 2015-06-25 Electronics And Telecommunications Research Institute Cross carrier scheduling method and apparatus
CN109474400A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 一种通信方法、网络设备及终端设备
CN112788754A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 信息传输方法及设备

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110098904B (zh) * 2018-01-30 2022-10-11 中兴通讯股份有限公司 信息的传输方法及装置、存储介质、电子装置
US11240841B2 (en) * 2018-08-10 2022-02-01 Qualcomm Incorporated Default communication configuration for communication across carriers
US11438887B2 (en) * 2019-01-11 2022-09-06 Qualcomm Incorporated Default beam identification and beam failure detection in cross carrier scheduling
CN110536463A (zh) * 2019-03-19 2019-12-03 中兴通讯股份有限公司 一种传输处理方法、装置和计算机可读存储介质
US11490410B2 (en) * 2019-09-30 2022-11-01 Qualcomm Incorporated Timing threshold for cross-carrier scheduling with different subcarrier spacings

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150180623A1 (en) * 2013-12-24 2015-06-25 Electronics And Telecommunications Research Institute Cross carrier scheduling method and apparatus
CN109474400A (zh) * 2017-09-08 2019-03-15 华为技术有限公司 一种通信方法、网络设备及终端设备
CN112788754A (zh) * 2019-11-07 2021-05-11 维沃移动通信有限公司 信息传输方法及设备

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
AD-HOC CHAIR (SAMSUNG): "Session notes for 8.1 (Further enhancements on MIMO for NR)", 3GPP DRAFT; R1-2106229, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 1 June 2021 (2021-06-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052018057 *
MODERATOR (SAMSUNG): "Moderator summary#2 for multi-beam enhancement: Round 1", 3GPP DRAFT; R1-2101856, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210125 - 20210205, 29 January 2021 (2021-01-29), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051975944 *

Also Published As

Publication number Publication date
EP4362582A1 (en) 2024-05-01
JP2024523521A (ja) 2024-06-28
BR112023027315A2 (pt) 2024-03-12
CN113597804B (zh) 2024-05-28
KR20240023176A (ko) 2024-02-20
CN113597804A (zh) 2021-11-02

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
US20240188054A1 (en) Method and device for time-domain resource allocation
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2022213295A1 (zh) 一种跳频方法及装置
WO2023010473A1 (zh) 一种波束应用的方法及其装置
WO2024000203A1 (zh) 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
WO2023004796A1 (zh) 混合自动重传请求反馈方法及装置
WO2023133742A1 (zh) 物理下行共享信道的处理时间参数的确定方法及装置
WO2023029058A1 (zh) 一种时间偏移量的确定方法及其装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2023151047A1 (zh) 一种终端设备调度方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023077463A1 (zh) 波束的确定方法及装置
US20240188052A1 (en) Method and device for determining time domain resources
WO2024000201A1 (zh) 一种指示方法及装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2022261915A1 (zh) 一种通信方法及其装置
WO2022213289A1 (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2024011637A1 (zh) 一种轨道角动量oam模态切换方法、装置、设备及存储介质
WO2023010475A1 (zh) 一种服务小区测量方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21946453

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18573047

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2023579247

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112023027315

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 20247002712

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247002712

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2021946453

Country of ref document: EP

Ref document number: 2024101528

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021946453

Country of ref document: EP

Effective date: 20240124

ENP Entry into the national phase

Ref document number: 112023027315

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20231222