WO2022198413A1 - 一种上行控制信息uci的资源映射方法及其装置 - Google Patents

一种上行控制信息uci的资源映射方法及其装置 Download PDF

Info

Publication number
WO2022198413A1
WO2022198413A1 PCT/CN2021/082185 CN2021082185W WO2022198413A1 WO 2022198413 A1 WO2022198413 A1 WO 2022198413A1 CN 2021082185 W CN2021082185 W CN 2021082185W WO 2022198413 A1 WO2022198413 A1 WO 2022198413A1
Authority
WO
WIPO (PCT)
Prior art keywords
pusch
uci
dmrs
symbol
resource mapping
Prior art date
Application number
PCT/CN2021/082185
Other languages
English (en)
French (fr)
Inventor
李媛媛
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180000747.5A priority Critical patent/CN113169831B/zh
Priority to US18/550,796 priority patent/US20240188086A1/en
Priority to PCT/CN2021/082185 priority patent/WO2022198413A1/zh
Publication of WO2022198413A1 publication Critical patent/WO2022198413A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • H04L5/0055Physical resource allocation for ACK/NACK
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a resource mapping method and device for uplink control information (Uplink Control Information, UCI).
  • UCI Uplink Control Information
  • the data transmission is generally improved by reducing the density of the demodulation reference signal.
  • the demodulation reference signal (DMRS) needs to be used to assist the uplink
  • the control information UCI is mapped and transmitted in the PUSCH, but in the case where there is no DRMS in the PUSCH, there is no mature solution in the related art.
  • the embodiments of the present application propose a UCI resource mapping method and apparatus, which can be used to solve the problem that UCI cannot be mapped to PUSCH when PUCCH and PUSCH overlap and there is no DMRS signal in PUSCH in the related art.
  • an embodiment of the present application proposes a UCI resource mapping method, which is applied to a terminal device.
  • the method includes: the terminal device determines that the physical uplink control channel PUCCH and the physical uplink shared channel PUSCH overlap, and the current first physical uplink shared channel.
  • the demodulation reference signal DMRS is not carried on the PUSCH; the terminal device performs resource mapping on the UCI according to the target resource mapping mode of the UCI, and sends the UCI to the network device through the mapped resources; wherein, the target resource mapping mode is used to map the UCI to the PUCSH resource .
  • the terminal device determines that the current PUCCH and PUSCH overlap, and the current first PUSCH does not carry DMRS, and the UCI is mapped to the PUSCH according to the target resource mapping mode for transmission.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate.
  • the transmission code rate thereby improving the receiving signal-to-noise ratio and network coverage.
  • the performing resource mapping on the uplink control information UCI according to the target resource mapping mode of the UCI further includes: the terminal device determines, from the repeatedly transmitted PUSCH adjacent to the first PUSCH, the first DMRS-bearing PUSCH. Two PUSCH transmissions; the terminal equipment maps the UCI to the candidate symbols of the first PUSCH and/or the second PUSCH.
  • the mapping of the UCI to the candidate symbols of the first PUSCH and/or the second PUSCH further includes: the terminal device mapping the hybrid automatic repeat request response information HARQ-ACK to the position of the first candidate symbol of the second PUSCH; and/or the terminal device maps the channel state information CSI to the position of the second candidate symbol of the first PUSCH.
  • the first candidate symbol is the first symbol not bearing DMRS after the earliest target symbol bearing DMRS on the second PUSCH.
  • the second candidate symbol is a symbol that can be used to carry DMRS on the first PUSCH.
  • the second candidate symbol is the first symbol on the first PUSCH.
  • the performing resource mapping on the uplink control information UCI according to the target resource mapping mode of the UCI further includes: the terminal device determines a symbol on the first PUSCH that can be used to carry the DMRS; the terminal device maps the UCI on the available At the position of the symbol carrying the DMRS, the UCI includes HARQ-ACK and/or CSI.
  • an embodiment of the present application further proposes a UCI resource mapping method, which is executed by a network device, including:
  • the network device receives the UCI sent by the terminal device on the mapped resource, where the PUCCH and the PUSCH overlap, and the current first PUSCH does not carry the demodulation reference signal DMRS, and the UCI is mapped to the PUSCH resource according to the target resource mapping mode.
  • the network device receives the UCI at the position of the candidate symbol of the first PUSCH and/or the second PUSCH, where the second PUSCH is a repeated transmission adjacent to the first PUSCH and carrying DMRS PUSCH.
  • the network device receives the hybrid automatic repeat request acknowledgement information HARQ-ACK at the position of the first candidate symbol of the second PUSCH; and/or,
  • the network device receives the channel state information CSI at the position of the second candidate symbol of the first PUSCH.
  • the first symbol that does not carry the DMRS after the earliest target symbol carrying the DMRS on the second PUSCH is the first candidate symbol.
  • the symbol that can be used to carry the DMRS on the first PUSCH is the second candidate symbol.
  • the first symbol of the first PUSCH is a second candidate symbol.
  • the network device receives UCI at a position of the first PUSCH at a location that can be used to carry a DMRS symbol, where the UCI includes HARQ-ACK and/or CSI.
  • an embodiment of the present application proposes a communication device, which has part or all of the functions of the terminal device in the method described in the first aspect above.
  • the function of the communication device may have some or all of the functions of the present application.
  • the functions in the examples may also have the functions of independently implementing any one of the embodiments of the present application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform the corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module for coupling with the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, which has part or all of the functions of the network device in the method described in the second aspect above.
  • the function of the communication device may have some or all of the functions of the present application.
  • the functions in the examples may also have the functions of independently implementing any one of the embodiments of the present application.
  • the functions can be implemented by hardware, or can be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the resource mapping apparatus for the uplink control information UCI may include a transceiver module and a processing module, and the processing module is configured to support the communication apparatus to perform the corresponding functions in the above method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module for coupling with the transceiver module and the processing module, which stores necessary computer programs and data for the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor calls a computer program in a memory, the method described in the first aspect is executed.
  • an embodiment of the present application provides a communication device, the communication device includes a processor, and when the processor invokes a computer program in a memory, the method described in the second aspect above is executed.
  • an embodiment of the present application provides a communication device, the device includes a processor and a memory, where a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The apparatus performs the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, the device includes a processor and a memory, a computer program is stored in the memory, and the processor executes the computer program stored in the memory, so that the The apparatus performs the method described in the second aspect above.
  • an embodiment of the present application provides a communication device, including: a processor and an interface circuit; the interface circuit is configured to receive code instructions and transmit them to the processor; the processor is configured to run the Code instructions to perform the method described in the first aspect above.
  • the present application provides a communication device, comprising: a processor and an interface circuit; the interface circuit is configured to receive a code instruction and transmit it to the processor; the processor is configured to execute the code instruction to perform the method described in the second aspect above.
  • an embodiment of the present application provides a communication system, where the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device of the sixth aspect, or the system includes the communication device of the seventh aspect and the communication device of the eighth aspect, or the system includes the communication device of the ninth aspect and the tenth aspect. the communication device described.
  • an embodiment of the present application provides a computer-readable storage medium for storing instructions, and when the instructions are executed, the method described in the first aspect above is implemented.
  • an embodiment of the present application provides a computer-readable storage medium for storing instructions, and when the instructions are executed, the method described in the second aspect above is implemented.
  • the present application further provides a computer program product comprising a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present application further provides a computer program product comprising a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface for supporting a terminal device to implement the functions involved in the first aspect, for example, determining or processing data involved in the above method and at least one of information.
  • the chip system further includes a memory for storing necessary computer programs and data of the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface for supporting a network device to implement the functions involved in the second aspect, for example, determining or processing data involved in the above method and at least one of information.
  • the chip system further includes a memory for storing necessary computer programs and data of the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when executed on a computer, causes the computer to execute the method described in the first aspect.
  • the present application provides a computer program that, when executed on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic diagram of the architecture of a communication system proposed by an embodiment of the present application
  • FIG. 2 is a schematic flowchart of a resource mapping method for UCI according to an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a resource mapping method for UCI according to another embodiment of the present application.
  • FIG. 4 is a schematic flowchart of a resource mapping method for UCI according to another embodiment of the present application.
  • FIG. 5 is a schematic flowchart of a resource mapping method for UCI according to another embodiment of the present application.
  • FIG. 6 is a schematic flowchart of a resource mapping method for UCI according to another embodiment of the present application.
  • FIG. 7 is a schematic flowchart of a resource mapping method for UCI according to another embodiment of the present application.
  • FIG. 8 is a schematic flowchart of a resource mapping method for UCI according to another embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the application.
  • FIG. 10 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 11 is a schematic structural diagram of a chip according to an embodiment of the present application.
  • UCI Uplink Control Information
  • UCI contains information related to the current terminal equipment status, such as whether the current terminal equipment needs to request uplink resources, the downlink quality detected by the current terminal equipment, and the number of transport layers that the terminal equipment can distinguish.
  • PUCCH Physical Uplink Control Channel
  • the PUCCH is used by the terminal equipment to send information related to uplink scheduling to the base station, such as scheduling request and channel status information.
  • the PUSCH is used to carry uplink services related to long-term evolution users and upper-layer signaling data.
  • DMRS Demodulation Reference Signal
  • Hybrid Automatic Repeat Request ACK (HARQ-ACK)
  • HARQ is a combination of forward error correction code (Forward Error Correction, FEC) and automatic repeat request (Automatic Repeat-reQuest, ARQ), which is called hybrid automatic repeat request.
  • FEC Forward Error Correction
  • ARQ Automatic Repeat-reQuest
  • HARQ-ACK is HARQ acknowledgment or feedback information.
  • CSI is the channel attribute of the communication link. It describes the attenuation factor of the signal on each transmission path, that is, the value of each element in the channel gain matrix H, such as signal scattering (Scattering), environmental attenuation (fading, multipath fading or shadowing fading), distance attenuation (power decay) of distance) and other information.
  • CSI can make the communication system adapt to the current channel conditions, and provide a guarantee for high-reliability and high-rate communication in a multi-antenna system.
  • FIG. 1 is a schematic structural diagram of a communication system proposed by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and shape of the devices shown in FIG. 1 are only for examples and do not constitute limitations to the embodiments of the present application. In practical applications, two or more devices may be included. network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes a network device 101 and a terminal device 102 as an example.
  • LTE long term evolution
  • 5G fifth generation
  • NR 5G new radio
  • the network device 101 in this embodiment of the present application is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • WiFi wireless fidelity
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided in this embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), where the CU may also be called a control unit (control unit), and a CU-DU is adopted.
  • the structure of the network equipment such as the protocol layer of the base station, can be split, and the functions of some protocol layers are centrally controlled by the CU, and the functions of the remaining part or all of the protocol layers are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in this embodiment of the present application is an entity on the user side that is used to receive or transmit signals, such as a mobile phone.
  • a terminal device may also be referred to as a terminal device (terminal), a user equipment (UE), a mobile station (mobile station, MS), a mobile terminal device (mobile terminal, MT), and the like.
  • the terminal device can be a car with a communication function, a smart car, a mobile phone (mobile phone), a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (virtual reality, VR) terminal device, augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid), wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present application do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a UCI resource mapping method according to an embodiment of the present application. The method is applied to a terminal device. As shown in FIG. 2 , the method includes:
  • the terminal device determines that the physical uplink control channel PUCCH and the physical uplink shared channel PUSCH overlap, and the demodulation reference signal DMRS is not currently carried on the first physical uplink shared channel PUSCH.
  • the terminal device transmits uplink information or data with the network device through the physical uplink channel.
  • the physical uplink channel includes a physical uplink control channel (Physical Uplink Control Channel, PUCCH) and a physical downlink shared channel (Physical Uplink Shared Channel, PUSCH).
  • the uplink information may be an uplink control channel (Uplink Control Information, UCI).
  • UCI Uplink Control Information
  • the terminal device may carry the UCI in the PUCCH for transmission, or may carry the UCI in the PUSCH for transmission.
  • the UCI information may include hybrid automatic repeat request acknowledgement information (Hybrid Automatic Repeat Request ACK, HARQ-ACK) and/or channel state information (Channel State Information, CSI).
  • Hybrid Automatic Repeat Request ACK Hybrid Automatic Repeat Request ACK
  • CSI Channel State Information
  • PUCCH and PUSCH using multiple timeslot repeated transmission may have PUCCH and physical uplink shared channel PUSCH Overlapping, when a demodulation reference signal (Demodulation Reference Signal, DMRS) symbol is carried on the PUSCH, the UCI can be mapped to the PUSCH overlapping with the PUCCH for transmission.
  • DMRS Demodulation Reference Signal
  • the terminal device first detects the current channel state. If the current channel state indicates that the PUCCH and the PUSCH overlap, and the current first PUSCH does not carry DMRS, the terminal device may perform step S202.
  • the UCI may be transmitted on the PUSCH that overlaps with the PUCCH.
  • the UCI resource is mapped on the PUSCH for transmission, it cannot be mapped on the DMRS symbol of the PUSCH.
  • the HARQ-ACK information must be mapped on the first symbol that does not carry DMRS after the earliest DMRS on the PUSCH. The first symbol that does not carry DMRS starts to perform resource mapping.
  • the terminal device performs resource mapping on the UCI according to the target resource mapping mode of the UCI, and sends the UCI to the network device through the mapped resources; wherein the target resource mapping mode is used to map the UCI to the PUCSH resource.
  • the terminal device When the terminal device determines that the current channel state satisfies the overlap of PUCCH and PUSCH, and the current first PUSCH does not carry DMRS, in order to transmit UCI to the network device, the terminal device needs to perform resource mapping on UCI according to the target resource mapping mode of UCI.
  • the target resource mapping mode is used to indicate that the UCI is mapped to the PUCSH resource.
  • the terminal device may map the UCI on the currently transmitted first PUSCH resource. In other implementations, the terminal device may select a PUSCH that satisfies the condition from the repeatedly transmitted PUSCH, and map the UCI to the PUSCH resource that satisfies the condition.
  • the selected PUSCH needs to satisfy that the DMRS is carried on the PUSCH and/or the selected PUSCH needs to be adjacent to the first PUSCH.
  • the terminal device may perform resource mapping according to the respective requirements of the information based on the information included in the UCI.
  • the terminal device may be configured with one resource mapping mode, or may be configured with multiple resource mapping modes.
  • the terminal device may determine a target resource mapping mode to be used from multiple resource mapping modes based on a protocol agreement or an indication from the network side.
  • the terminal device may send the UCI to the network device through the mapped resource.
  • the terminal device determines that the current PUCCH and PUSCH overlap, and the current first PUSCH does not carry DMRS, and the UCI is mapped to the PUSCH according to the target resource mapping mode for transmission.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate.
  • the transmission code rate thereby improving the receiving signal-to-noise ratio and network coverage.
  • FIG. 3 is a schematic flowchart of a UCI resource mapping method according to another embodiment of the present application. The method is applied to a terminal device. As shown in FIG. 3 , the method includes:
  • the terminal device determines that the PUCCH and the PUSCH overlap, and the DMRS is not currently carried on the first PUSCH.
  • step S301 For the specific introduction of step S301, you can refer to the description of the relevant content in the above-mentioned embodiment, which will not be repeated this time.
  • the terminal device determines, from the repeatedly transmitted PUSCH adjacent to the first PUSCH, to transmit the second PUSCH carrying the DMRS.
  • the terminal device can determine the transmission time or transmission time slot of the first PUSCH, and then can determine the transmission time or transmission time slot of the first PUSCH according to the transmission time or transmission time slot of the first PUSCH.
  • a repeatedly transmitted PUSCH and based on the configuration information of the PUSCH, it can be determined whether at least one repeatedly transmitted PUSCH carries a DMRS.
  • the terminal device may finally determine the second PUSCH transmission carrying the DMRS from the repeatedly transmitted PUSCH adjacent to the first PUSCH.
  • the terminal device maps the UCI to the candidate symbols of the first PUSCH and/or the second PUSCH.
  • the terminal device may determine candidate symbols suitable for mapping the UCI from the first PUSCH and/or the second PUSCH, and map the UCI to partial symbols or complete symbols among these candidate symbols.
  • the target resource mapping mode may include that the terminal device may map the UCI to the candidate symbols of the first PUSCH; in other implementations, the target resource mapping mode may include that the terminal device may map the UCI portion to the first PUSCH. Some of the candidate symbols are also mapped to the candidate symbols of the second PUSCH. In still other embodiments, the target resource mapping mode may include that the terminal device may map the UCI to the candidate symbols of the second PUSCH.
  • the UCI includes hybrid automatic repeat request acknowledgement information HARQ-ACK and/or channel state information CSI.
  • the target resource mapping mode may include mapping the hybrid automatic repeat request response information HARQ-ACK to the position of the first candidate symbol of the second PUSCH; and/or, the terminal device maps the channel state information CSI Mapped on the position of the second candidate symbol of the first PUSCH.
  • the terminal device determines that the current PUCCH and PUSCH overlap, and the current first PUSCH does not carry DMRS, and the UCI is mapped to the PUSCH according to the target resource mapping mode for transmission.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate.
  • the transmission code rate thereby improving the receiving signal-to-noise ratio and network coverage.
  • FIG. 4 is a schematic flowchart of a UCI resource mapping method according to another embodiment of the present application. The method is applied to a terminal device. As shown in FIG. 4 , the method includes:
  • the terminal device determines that the PUCCH and the PUSCH overlap, and the DMRS is not currently carried on the first PUSCH.
  • the terminal device determines, from the repeatedly transmitted PUSCH adjacent to the first PUSCH, to transmit the second PUSCH carrying the DMRS.
  • the terminal device maps the HARQ-ACK to the position of the first candidate symbol of the second PUSCH and/or maps the CSI to the position of the second candidate symbol of the first PUSCH.
  • the target resource mapping mode may include that the terminal device may use the first symbol not bearing DMRS after the earliest target symbol bearing DMRS on the second PUSCH as the first candidate symbol of the second PUSCH.
  • the terminal device may map the HARQ-ACK to the position of the first candidate symbol, that is, map the HARQ-ACK to the first symbol that does not carry DMRS after the earliest target symbol carrying DMRS on the second PUSCH.
  • the terminal device may determine the first symbol of the first PUSCH or a symbol on the first PUSCH that can be used to carry the DMRS as the second candidate symbol of the first PUSCH.
  • the terminal device may map the CSI to the position of the second candidate symbol, and map the CSI to the position of the symbol that can be used to carry the DMRS on the first PUSCH.
  • the terminal device maps the CSI to the position of the first symbol on the first PUSCH.
  • the target resource mapping mode may include that the terminal device maps the HARQ-ACK to the first symbol that does not carry DMRS after the earliest target symbol carrying DMRS on the second PUSCH, and/or maps CSI to the first PUSCH It can be used at the location of the symbol carrying the DMRS.
  • the target resource mapping mode may include that the terminal device maps HARQ-ACK to the first symbol that does not carry DMRS after the earliest target symbol carrying DMRS on the second PUSCH, and/or maps CSI to the first symbol on the first PUSCH on the symbol.
  • the terminal device determines that in the current communication scenario, the PUCCH and PUSCH overlap, and the current first PUSCH does not carry DMRS, and the UCI is mapped to the PUSCH according to the target resource mapping mode for transmission. , while reducing the DMRS on transmission and the density of DMRS, the data transmission volume is increased, and the code rate of data transmission is reduced, thereby improving the receiving signal-to-noise ratio and network coverage.
  • FIG. 5 is a schematic flowchart of a UCI resource mapping method according to another embodiment of the present application. The method is applied to a terminal device. As shown in FIG. 5 , the method includes:
  • the terminal device determines that the PUCCH and the PUSCH overlap, and the DMRS is not currently carried on the first PUSCH.
  • step S501 For the specific introduction of step S501, you can refer to the description of the relevant content in the above-mentioned embodiment, which will not be repeated here.
  • the terminal device determines a symbol on the first PUSCH that can be used to carry the DMRS.
  • the terminal device maps the UCI to the position of the symbol that can be used to carry the DMRS.
  • UCI includes HARQ-ACK and/or CSI.
  • the terminal device may determine the symbol that can be used to carry the DMRS based on the configuration information of the symbol on the first PUSCH. Further, the terminal device can use the symbol that can be used to carry the DMRS as a candidate symbol, and map the UCI to the position on the candidate symbol on the first PUSCH, that is, map the UCI to the symbol that can be used to carry the DMRS on the first PUSCH. position.
  • the HARQ-ACK in response to the UCI including the HARQ-ACK, is mapped to the first PUSCH for transmission; in response to the UCI including the HARQ-ACK and the CSI, both the HARQ-ACK and the CSI may be mapped to the first PUSCH for transmission. Transmission; in response to the UCI including CSI, the CSI may be mapped to the first PUSCH for transmission.
  • the target resource mapping mode may include that the terminal device maps HARQ-ACK and/or CSI to the positions of the symbols on the first PUSCH that can be used to carry DMRS.
  • the terminal device determines that the current PUCCH and PUSCH overlap, and the current first PUSCH does not carry DMRS, and the UCI is mapped to the PUSCH according to the target resource mapping mode for transmission.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate.
  • the transmission code rate thereby improving the receiving signal-to-noise ratio and network coverage.
  • FIG. 6 is a schematic flowchart of a UCI resource mapping method according to another embodiment of the present application. The method is applied to a network device. As shown in FIG. 6 , the method includes:
  • the network device receives the UCI sent by the terminal device on the mapped resource, wherein the PUCCH and the PUSCH overlap, and the current first PUSCH does not carry the demodulation reference signal DMRS, and the UCI is mapped to the PUSCH resource according to the target resource mapping mode.
  • the terminal device may detect the current channel state.
  • the terminal device needs to follow the UCI method.
  • the target resource mapping mode of the UCI performs resource mapping.
  • the target resource mapping mode is used to indicate that the UCI is mapped to the PUCSH resource.
  • the set resource is the PUSCH resource mapped to the UCI according to the target resource mapping mode.
  • the terminal device can send the UCI to the network device through the mapped resources, and correspondingly, the network device can receive the UCI sent by the terminal device based on the mapped PUSCH resources.
  • the network device can receive that the terminal device is mapped to the PUSCH resource to send UCI.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate. The transmission code rate, thereby improving the receiving signal-to-noise ratio and network coverage.
  • FIG. 7 is a schematic flowchart of a UCI resource mapping method according to another embodiment of the present application. The method is applied to a network device. As shown in FIG. 7 , the method includes:
  • the network device receives the UCI at the position of the candidate symbol of the first PUSCH and/or the second PUSCH, where the second PUSCH is a PUSCH adjacent to the first PUSCH and carrying the repeated transmission of the DMRS.
  • the terminal device may determine candidate symbols suitable for mapping the UCI from the first PUSCH and/or the second PUSCH, and map the UCI to partial symbols or complete symbols among these candidate symbols.
  • the target resource mapping mode may include that the terminal device may map the UCI to the candidate symbols of the first PUSCH; in other implementations, the target resource mapping mode may include that the terminal device may map the UCI portion to the first PUSCH. Some of the candidate symbols are also mapped to the candidate symbols of the second PUSCH. In still other embodiments, the target resource mapping mode may include that the terminal device may map the UCI to the candidate symbols of the second PUSCH.
  • the UCI includes hybrid automatic repeat request acknowledgement information HARQ-ACK and/or channel state information CSI.
  • the target resource mapping mode may include mapping the hybrid automatic repeat request response information HARQ-ACK to the position of the first candidate symbol of the second PUSCH; and/or, the terminal device maps the channel state information CSI Mapped on the position of the second candidate symbol of the first PUSCH.
  • the network device receives the HARQ-ACK at the position of the first candidate symbol of the second PUSCH; and/or the network device receives the channel status at the position of the second candidate symbol of the first PUSCH Information CSI.
  • the first candidate symbol is the first symbol not bearing DMRS after the earliest target symbol bearing DMRS on the second PUSCH.
  • the second candidate symbol is a symbol that can be used to carry DMRS on the first PUSCH.
  • the second candidate symbol is the first symbol of the first PUSCH.
  • the network device can receive that the terminal device is mapped to the PUSCH resource to send UCI.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate. The transmission code rate, thereby improving the receiving signal-to-noise ratio and network coverage.
  • FIG. 8 is a schematic flowchart of a UCI resource mapping method according to another embodiment of the present application. The method is applied to a network device. As shown in FIG. 8 , the method includes:
  • the network device receives UCI at a position of the first PUSCH at a position that can be used to carry a DMRS symbol, where the UCI includes HARQ-ACK and/or CSI.
  • the terminal device may determine the symbol that can be used to carry the DMRS based on the configuration information of the symbol on the first PUSCH. Further, the terminal device can use the symbol that can be used to carry the DMRS as a candidate symbol, and map the UCI to the position on the candidate symbol on the first PUSCH, that is, map the UCI to the symbol that can be used to carry the DMRS on the first PUSCH. position.
  • the HARQ-ACK in response to the UCI including the HARQ-ACK, is mapped to the first PUSCH for transmission; in response to the UCI including the HARQ-ACK and the CSI, both the HARQ-ACK and the CSI may be mapped to the first PUSCH for transmission. Transmission; in response to the UCI including CSI, the CSI may be mapped to the first PUSCH for transmission.
  • the target resource mapping mode may include that the terminal device maps HARQ-ACK and/or CSI to the positions of the symbols on the first PUSCH that can be used to carry DMRS.
  • the network device receives the UCI at the position of the symbol of the first PUSCH that can be used to carry the DMRS.
  • the network device can receive that the terminal device is mapped to the PUSCH resource to send UCI.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate. The transmission code rate, thereby improving the receiving signal-to-noise ratio and network coverage.
  • the first candidate symbol of the second PUSCH and/or the second candidate symbol of the first PUSCH may be Orthogonal Frequency Division Multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbols.
  • the methods for implementing the proposed application in this application are respectively introduced from the perspectives of network equipment and terminal equipment.
  • the network device and the terminal device may include hardware structures and software modules, and implement the above functions in the form of hardware structures, software modules, or hardware structures plus software modules.
  • a certain function among the above functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • Embodiments of the present application further provide a communication device, which may be a terminal device (such as the terminal device in the foregoing method embodiments), a device in a terminal device, or a device that can be matched with the terminal device. device.
  • the communication device may be a network device, a device in the network device, or a device that can be used in matching with the network device.
  • FIG. 9 is a schematic structural diagram of a communication apparatus according to an embodiment of the present application.
  • the resource mapping communication apparatus 90 of UCI when it is a terminal device, includes a transceiver module 901 and a processing module 902, wherein:
  • the transceiver module 901 is configured to determine that the physical uplink control channel PUCCH and the physical uplink shared channel PUSCH overlap, and the demodulation reference signal DMRS is not currently carried on the first physical uplink shared channel PUSCH.
  • the processing module 902 is configured to perform resource mapping on the UCI according to the target resource mapping mode of the UCI, and send the UCI to the network device through the mapped resources; wherein the target resource mapping mode is used to map the UCI to the PUCSH resource.
  • the processing module 902 is further configured to: determine the second PUSCH transmission carrying the DMRS from the repeatedly transmitted PUSCH adjacent to the first PUSCH; and map the UCI to the candidate symbols of the first PUSCH and/or the second PUSCH.
  • the processing module 902 is further configured to: map the hybrid automatic repeat request response information HARQ-ACK to the position of the first candidate symbol of the second PUSCH; and/or map the channel state information CSI to the second symbol of the first PUSCH the position of the candidate symbol.
  • the first candidate symbol is the first symbol not bearing DMRS after the earliest target symbol bearing DMRS on the second PUSCH.
  • the second candidate symbol is a symbol that can be used to carry DMRS on the first PUSCH.
  • the second candidate symbol is the first symbol on the first PUSCH.
  • the processing module 902 is further configured to: determine the symbols on the first PUSCH that can be used to carry the DMRS; and map the UCI on the position of the symbols that can be used to carry the DMRS, where the UCI includes HARQ-ACK and/or CSI.
  • the communication device proposed in the embodiment of the present application can determine that in the current communication scenario, the PUCCH and PUSCH overlap, and the current first PUSCH does not carry DMRS, and the UCI is mapped to the PUSCH according to the target resource mapping mode for transmission.
  • the DMRS on transmission reduces the density of DMRS, increases the amount of data transmission, and reduces the code rate of data transmission, thereby improving the receiving signal-to-noise ratio and network coverage.
  • the communication device 90 is a network device, it includes:
  • the receiving module 901 is configured to receive the UCI sent on the mapped resource, wherein the PUCCH and the PUSCH overlap, and the demodulation reference signal DMRS is not carried on the current first PUSCH, and the UCI is mapped to the PUSCH resource according to the target resource mapping mode.
  • the receiving module 901 is further configured to receive UCI at positions of candidate symbols of the first PUSCH and/or the second PUSCH, where the second PUSCH is a PUSCH adjacent to the first PUSCH and carrying repeated transmissions of DMRS.
  • the receiving module 901 is further configured to receive hybrid automatic repeat request response information HARQ-ACK at the position of the first candidate symbol of the second PUSCH; and/or, receive the channel status at the position of the second candidate symbol of the first PUSCH Information CSI.
  • the first symbol not bearing DMRS after the earliest target symbol bearing DMRS on the second PUSCH is the first candidate symbol.
  • the symbol that can be used to carry the DMRS on the first PUSCH is the second candidate symbol.
  • the first symbol of the first PUSCH is the second candidate symbol.
  • the receiving module 901 is further configured to receive UCI at a position of the first PUSCH that can be used to carry symbols of the DMRS, where the UCI includes HARQ-ACK and/or CSI.
  • the communication apparatus proposed in the embodiment of the present application can receive the UCI sent by the terminal device by mapping to the PUSCH resource when the terminal device determines that the current PUCCH and the PUSCH overlap, and the current first PUSCH does not carry a DMRS.
  • the UCI not only can the UCI be mapped to the PUSCH resource in the absence of DMRS, but also the DMRS on transmission can be reduced, the DMRS density can be reduced, and the data transmission volume can be increased, reducing the data transmission rate.
  • the transmission code rate thereby improving the receiving signal-to-noise ratio and network coverage.
  • FIG. 10 is a schematic structural diagram of another communication apparatus 1000 provided by an embodiment of the present application.
  • the communication apparatus 1000 may be a network device, a terminal device, a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the apparatus can be used to implement the methods described in the foregoing method embodiments, and for details, reference may be made to the descriptions in the foregoing method embodiments.
  • the Communication apparatus 1000 may include one or more processors 1001 .
  • the processor 1001 may be a general-purpose processor or a special-purpose processor, or the like.
  • it may be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.), execute computer programs, etc. , which processes data from computer programs.
  • the communication apparatus 1000 may further include one or more memories 1002 on which a computer program 1004 may be stored, and the processor 1001 executes the computer program 1004, so that the communication apparatus 1000 executes the methods described in the above method embodiments.
  • data may also be stored in the memory 1002 .
  • the communication device 1000 and the memory 1002 may be provided separately or integrated together.
  • the communication apparatus 1000 may further include a transceiver 1005 and an antenna 1006 .
  • the transceiver 1005 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 1005 may include a receiver and a transmitter, the receiver may be called a receiver or a receiving circuit, etc., for implementing the receiving function; the transmitter may be called a transmitter or a transmitting circuit, etc., for implementing the transmitting function.
  • the communication apparatus 1000 may further include one or more interface circuits 1007 .
  • the interface circuit 1007 is used to receive code instructions and transmit them to the processor 1001 .
  • the processor 1001 executes the code instructions to cause the communication apparatus 1000 to perform the methods described in the above method embodiments.
  • the communication device 1000 is a terminal device: the transceiver 1005 is used to perform step S201 in FIG. 2 , steps S301 and S302 in FIG. 3 , steps S401 and S402 in FIG. 4 , steps S501 and S502 in FIG. 5 , and so on.
  • the processor 1001 is configured to execute step S202 in FIG. 2 , step S303 in FIG. 3 , step S403 in FIG. 4 , step S503 in FIG. 5 , etc.;
  • the communication apparatus 1000 is a network device: the transceiver 1005 is configured to perform step S601 in FIG. 6 , step S701 in FIG. 7 , step S801 in FIG. 8 , etc.;
  • the processor 1001 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • Transceiver circuits, interfaces or interface circuits used to implement receiving and transmitting functions may be separate or integrated.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 1001 may store a computer program 1003, and the computer program 1003 runs on the processor 1001 to enable the communication apparatus 1000 to execute the methods described in the above method embodiments.
  • the computer program 1003 may be embodied in the processor 1001, in which case the processor 1001 may be implemented by hardware.
  • the communication apparatus 1000 may include a circuit, and the circuit may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the first terminal device in the foregoing method embodiments), but the scope of the communication device described in this application is not limited to this, and the structure of the communication device may be Not limited by Figure 10.
  • the communication apparatus may be a stand-alone device or may be part of a larger device.
  • the communication means may be:
  • the IC set can also include a storage component for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 11 includes a processor 1101 and an interface 1102 .
  • the number of processors 1101 may be one or more, and the number of interfaces 1102 may be multiple.
  • the interface 1102 is used to execute step S201 in FIG. 2 , steps S301 and S302 in FIG. 3 , steps S401 and S402 in FIG. 4 , steps S501 and S502 in FIG. 5 , and so on.
  • the interface 1102 is used to execute step S601 in FIG. 6 , step S701 in FIG. 7 , step S801 in FIG. 8 , and so on.
  • the chip further includes a memory 1103, and the memory 1103 is used to store necessary computer programs and data.
  • An embodiment of the present application further provides a communication system, where the system includes the communication device as a terminal device (such as the terminal device in the foregoing method embodiment) in the foregoing embodiment of FIG. 9 and a communication device as a network device, or the system includes
  • the communication apparatus is used as a terminal device (such as the terminal apparatus in the foregoing method embodiment) and the communication apparatus is used as a network apparatus.
  • the present application further provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, implement the functions of any of the foregoing method embodiments.
  • the present application further provides a computer program product, which implements the functions of any of the above method embodiments when the computer program product is executed by a computer.
  • a computer program product includes one or more computer programs.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, or other programmable device.
  • the computer program can be stored on or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be transferred from a website site, computer, server, or data center over a wire (e.g.
  • coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless means to transmit to another website site, computer, server or data center.
  • a computer-readable storage medium can be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes an integration of one or more available media.
  • Useful media may be magnetic media (eg, floppy disk, hard disk, magnetic tape), optical media (eg, high-density digital video disc (DVD)), or semiconductor media (eg, solid state disk (SSD)) )Wait.
  • At least one in this application may also be described as one or more, and the multiple may be two, three, four or more, which is not limited in this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” described technical features in no order or order of magnitude.
  • the corresponding relationships shown in each table in this application may be configured or predefined.
  • the values of the information in each table are only examples, and can be configured with other values, which are not limited in this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the headings in the above tables may also adopt other names that can be understood by the communication device, and the values or representations of the parameters may also be other values or representations that the communication device can understand.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables, or hash tables. Wait.
  • Predefined in this application may be understood as defining, predefining, storing, pre-storing, pre-negotiating, pre-configuring, curing, or pre-firing.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提出一种UCI的资源映射方法及装置,其中,上行控制信息UCI的资源映射方法由终端设备执行,包括:终端设备确定物理上行控制信道PUCCH和物理上行共享信道PUSCH重叠,且当前第一物理上行共享信道PUSCH上未承载解调参考信号DMRS;终端设备按照UCI的目标资源映射模式对UCI进行资源映射,并通过映射的资源向网络设备发送UCI;其中,目标资源映射模式用于将UCI映射到PUSCH资源。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。

Description

一种上行控制信息UCI的资源映射方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种上行控制信息(Uplink Control Information,UCI)的资源映射方法及其装置。
背景技术
相关技术中,蜂窝网络的工作频率越高,其无线信道的路径损耗也越大,为了提高新空口(New Radio,NR)的上行覆盖,一般通过降低解调参考信号密度来提高数据的传输。当在通信过程中,物理上行控制信道(Physical Uplink Control Channel,PUCCH)与物理上行共享信道(Physical Uplink Share CHannel,PUSCH)重叠时,需要利用解调参考信号(Demodulation Reference Signal,DMRS)来辅助上行控制信息UCI映射在PUSCH中进行传输,但在PUSCH中未DRMS的情况下,相关技术还未有成熟的解决方案。
发明内容
本申请实施例提出一种UCI资源映射方法及其装置,可以用于解决相关技术中在PUCCH与PUSCH重叠,且PUSCH中未DMRS信号时,UCI无法映射到PUSCH上的问题。
第一方面,本申请实施例提出一种UCI的资源映射方法,应用于终端设备,该方法包括:终端设备确定物理上行控制信道PUCCH和物理上行共享信道PUSCH重叠,且当前第一物理上行共享信道PUSCH上未承载解调参考信号DMRS;终端设备按照UCI的目标资源映射模式对UCI进行资源映射,并通过映射的资源向网络设备发送UCI;其中,目标资源映射模式用于将UCI映射到PUCSH资源。
本申请实施例提出的UCI的资源映射方法,终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,按照目标资源映射模式将UCI映射到PUSCH上进行传输。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
在一种实现方式中,所述按照UCI的目标资源映射模式对上行控制信息UCI进行资源映射,还包括:终端设备从与第一PUSCH相邻的重复传输的PUSCH中,确定承载有DMRS的第二PUSCH传输;终端设备将UCI映射到第一PUSCH和/或第二PUSCH的候选符号上。
在一种实现方式中,所述将所述UCI映射到所述第一PUSCH和/或所述第二PUSCH的候选符号上,还包括:终端设备将混合自动重传请求应答信息HARQ-ACK映射到第二PUSCH的第一候选符号的位置上;和/或终端设备将信道状态信息CSI映射在第一PUSCH的第二候选符号的位置上。
在一种实现方式中,所述第一候选符号为第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号。
在一种实现方式中,所述第二候选符号为第一PUSCH上可用于承载DMRS的符号。
在一种实现方式中,所述第二候选符号为所述第一PUSCH上的第一个符号。
在一种实现方式中,所述按照UCI的目标资源映射模式对上行控制信息UCI进行资源映射,还包括:终端设备确定第一PUSCH上的可用于承载DMRS的符号;终端设备将UCI映射在可用于承载DMRS 的符号的位置上,其中,UCI包括HARQ-ACK和/或CSI。
第二方面,本申请实施例还提出一种UCI的资源映射方法,该方法由网络设备执行,包括:
网络设备接收终端设备在映射资源上发送的UCI,其中,PUCCH和PUSCH重叠,且当前第一PUSCH上未承载解调参考信号DMRS,所述UCI是按照目标资源映射模式映射到PUSCH资源上的。
在一种实现方式中,所述网络设备在第一PUSCH和/或第二PUSCH的候选符号的位置上接收UCI,其中,第二PUSCH是与第一PUSCH相邻的且承载有DMRS的重复传输的PUSCH。
在一种实现方式中,所述网络设备在第二PUSCH的第一候选符号的位置上接收混合自动重传请求应答信息HARQ-ACK;和/或,
网络设备在第一PUSCH的第二候选符号的位置上接收信道状态信息CSI。
在一种实现方式中,所述第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号为第一候选符号。
在一种实现方式中,所述第一PUSCH上可用于承载DMRS的符号为第二候选符号。
在一种实现方式中,所述第一PUSCH的第一个符号为第二候选符号。
在一种实现方式中,所述网络设备在第一PUSCH的可用于承载DMRS的符号的位置上接收UCI,其中,UCI包括HARQ-ACK和/或CSI。
第三方面,本申请实施例提出一种通信装置,该装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第四方面,本申请实施例提出一种通信装置,该装置具有实现上述第二方面所述的方法中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该上行控制信息UCI的资源映射装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提出一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第一方面所述的方法。
第八方面,本申请实施例提出一种通信装置,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行上述第二方面所述的方法。
第九方面,本申请实施例提出一种通信装置,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行上述第一方面所述的方法。
第十方面,本申请提出一种通信装置,包括:处理器和接口电路;所述接口电路,用于接收代码指令并传输至所述处理器;所述处理器,用于运行所述代码指令以执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种通信***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本申请实施例提出一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本申请实施例提出一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或背景技术中所 需要使用的附图进行说明。
图1是本申请实施例提出的一种通信***的架构示意图;
图2为本申请一实施例的UCI的资源映射方法的流程示意图;
图3为本申请另一实施例的UCI的资源映射方法的流程示意图;
图4为本申请另一实施例的UCI的资源映射方法的流程示意图;
图5为本申请另一实施例的UCI的资源映射方法的流程示意图;
图6为本申请另一实施例的UCI的资源映射方法的流程示意图;
图7为本申请另一实施例的UCI的资源映射方法的流程示意图;
图8为本申请另一实施例的UCI的资源映射方法的流程示意图;
图9为本申请一实施例的通信装置的结构示意图;
图10是本申请一实施例的通信装置的结构示意图;
图11是本申请一实施例的芯片的结构示意图。
具体实施方式
下面详细描述本申请的实施例,实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的元件或具有相同或类似功能的元件。下面通过参考附图描述的实施例是示例性的,旨在用于解释本申请,而不能理解为对本申请的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、上行控制信息(Uplink Control Information,UCI)
UCI包含的内容都是与当前终端设备状态相关的信息,例如当前终端设备是否需要请求上行资源、当前终端设备检测到的下行链路质量,终端设备能够区分出来的传输层个数等信息。
2、物理上行控制信道(Physical Uplink Control Channel,PUCCH)
PUCCH用于终端设备向基站发送与上行调度相关的信息,如调度请求、信道状况信息等。
3、物理上行共享信道(Physical Uplink Share CHannel,PUSCH)
PUSCH用于承载长期演进用户相关的上行业务以及上层信令数据。作为物理层主要的上行数据承载信道,可以调度传输上行数据,也可以承载控制信息。
4、解调参考信号(Demodulation Reference Signal,DMRS)
在通信技术中用于PUSCH和PUCCH信道的相关解调。
5、混合自动重传请求应答信息(Hybrid Automatic Repeat Request ACK,HARQ-ACK)
HARQ是将前向纠错码(Forward Error Correction,FEC)与自动重传请求(Automatic Repeat-reQuest,ARQ)结合起来使用,称为混合自动重传请求。HARQ-ACK为HARQ的应答或反馈信息。
6、信道状态信息(Channel State Information,CSI)
在无线通信领域,所谓的CSI,就是通信链路的信道属性。它描述了信号在每条传输路径上的衰弱因子,即信道增益矩阵H中每个元素的值,如信号散射(Scattering),环境衰弱(fading,multipath fading or shadowing fading),距离衰减(power decay of distance)等信息。CSI可以使通信***适应当前的信道条件,在多天线***中为高可靠性高速率的通信提供了保障。
为了更好的理解本申请实施例提出的一种UCI的资源映射方法,下面首先对本申请实施例使用的 通信***进行描述。
如图1所示,图1为本申请实施例提出的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本申请实施例中的网络设备101是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本申请实施例描述的通信***是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提出的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本申请实施例提出的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提出的一种上行控制信息UCI的资源映射方法及装置进行详细的介绍。
图2为本申请一实施例的UCI的资源映射方法的流程示意图,该方法应用于终端设备,如图2所示,该方法包括:
S201,终端设备确定物理上行控制信道PUCCH和物理上行共享信道PUSCH重叠,且当前第一物理上行共享信道PUSCH上未承载解调参考信号DMRS。
终端设备通过物理上行信道与网络设备传输上行信息或数据。其中,物理上行信道包括物理上行控制信道(Physical Uplink Control Channel,PUCCH)和物理下行共享信道(Physical Uplink Shared Channel,PUSCH)。实现中上行信息可以为上行控制信道(Uplink Control Information,UCI)终端设备可以将UCI携带在PUCCH中传输,也可以携带在PUSCH中传输。
可选地,UCI信息可以包括混合自动重传请求应答信息(Hybrid Automatic Repeat Request ACK,HARQ-ACK)和/或信道状态信息(Channel State Information,CSI)。
在PUCCH中传输UCI时,同一个终端设备在同一个上行子帧,不能同时在PUCCH和PUSCH信道中传输信息,相关技术中PUCCH和采用多时隙重复传输的PUSCH可能存在PUCCH和物理上行共享信道PUSCH重叠,当PUSCH上承载有解调参考信号(Demodulation Reference Signal,DMRS)符号时,可以将UCI映射到与PUCCH存在重叠的PUSCH上传输。但是,在确定PUCCH和PUSCH重叠,且PUSCH上未承载有DMRS符号这一场景下,并未给出UCI进行资源映射方案,本申请实施例中,为PUCCH存在重叠的PUSCH,且PUSCH上未承载有DMRS符号这一场景,给出了下述UCI资源映射方案。
本申请实施例中,终端设备首先对当前信道状态进行检测,若当前信道状态指示PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS,终端设备可以执行步骤S202。
可选地,若PUCCH与PUSCH未发生重叠和/或当前第一PUSCH上承载DMRS时,可能在与PUCCH存在重叠的PUSCH上传输UCI。例如,UCI资源映射在PUSCH上进行传输时,不能映射在PUSCH的DMRS符号上,HARQ-ACK信息要映射在从PUSCH上最早的DMRS之后的第一个不承载DMRS的符号上,CSI可以从PUSCH上第一个不承载DMRS的符号开始进行资源映射。
S202,终端设备按照UCI的目标资源映射模式对UCI进行资源映射,并通过映射的资源向网络设备发送UCI;其中,目标资源映射模式用于将UCI映射到PUCSH资源。
在终端设备确定当前信道状态满足PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS,终端设备为了实现向网络设备传输UCI,需要按照UCI的目标资源映射模式对UCI进行资源映射。本申请实施例中,目标资源映射模式,用于指示将UCI映射到PUCSH资源上。在一些实现中,终端设备可以将UCI映射在当前传输的第一PUSCH资源上。在另一些实现中,终端设备可以将从重复传输的PUSCH中选取一个满足条件的PUSCH,将UCI映射到该满足条件的PUSCH资源上。例如选取的PUSCH需要满足该PUSCH上承载有DMRS和/或该选取的PUSCH需要与第一PUSCH相邻。可选地,终端设备在向PUSCH资源上映射UCI时,可以基于UCI包括的信息,分别按照信息各自的需求进行资源映射。
在一些实现中,终端设备可以配置有一种资源映射模式,也可以配置有多种资源映射模式。可选地,终端设备可以基于协议约定或者网络侧指示,从多个资源映射模式中确定出待使用的目标资源映射模式。
可选地,终端设备在完成UCI的资源映射后,可以通过映射的资源向网络设备发送UCI。
本申请实施例提出的UCI的资源映射方法,终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,按照目标资源映射模式将UCI映射到PUSCH上进行传输。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
图3为本申请另一实施例的UCI的资源映射方法的流程示意图,该方法应用于终端设备,如图3所示,该方法包括:
S301,终端设备确定PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS。
关于步骤S301的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
S302,终端设备从与第一PUSCH相邻的重复传输的PUSCH中,确定承载有DMRS的第二PUSCH 传输。
可选地,终端设备可以确定第一PUSCH的传输时刻或传输时隙,进而可以根据该第一PUSCH的传输时刻或者传输时隙,能够确定出位于该第一PUSCH的传输时刻或传输之后的至少一个重复传输的PUSCH,而且可以基于该PUSCH的配置信息,确定至少一个重复传输的PUSCH上是否承载有DMRS。终端设备可以从与第一PUSCH相邻的重复传输的PUSCH中,最终确定出承载有DMRS的第二PUSCH传输。
S303,终端设备将UCI映射到第一PUSCH和/或第二PUSCH的候选符号上。
可选地,终端设备可以从第一PUSCH和/或第二PUSCH上确定出适合映射UCI的候选符号,并将UCI映射到这些候选符号中的部分符号或完全符号上。
在一些实现中,目标资源映射模式可以包括终端设备可以将UCI映射到第一PUSCH的候选符号上;在另一些实现中,目标资源映射模式可以包括终端设备可以将UCI部分映射到第一PUSCH的候选符号上,还有部分映射到第二PUSCH的候选符号上。在又一些实施例中,目标资源映射模式可以包括终端设备可以将UCI映射到第二PUSCH的候选符号上。
可选地,UCI包括混合自动重传请求应答信息HARQ-ACK和/或信道状态信息CSI。作为一种可能的实现方式,目标资源映射模式可以包括将混合自动重传请求应答信息HARQ-ACK映射到第二PUSCH的第一候选符号的位置上;和/或,终端设备将信道状态信息CSI映射在第一PUSCH的第二候选符号的位置上。
本申请实施例提出的UCI的资源映射方法,终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,按照目标资源映射模式将UCI映射到PUSCH上进行传输。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
图4为本申请另一实施例的UCI的资源映射方法的流程示意图,该方法应用于终端设备,如图4所示,该方法包括:
S401,终端设备确定PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS。
S402,终端设备从与第一PUSCH相邻的重复传输的PUSCH中,确定承载有DMRS的第二PUSCH传输。
关于步骤S401~402的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
S403,终端设备将HARQ-ACK映射到第二PUSCH的第一候选符号的位置上和/或将CSI映射在第一PUSCH的第二候选符号的位置上。
可选地,目标资源映射模式可以包括终端设备可以将第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号,作为第二PUSCH的第一候选符号。终端设备可以将HARQ-ACK映射到第一候选符号的位置上,即将HARQ-ACK映射到第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号。
可选地,终端设备可以确定第一PUSCH的第一个符号或者第一PUSCH上可用于承载DMRS的符号,作为第一PUSCH的第二候选符号。终端设备可以将CSI映射到第二候选符号的位置上,将CSI映射到第一PUSCH上可用于承载DMRS的符号的位置上。再例如终端设备将CSI映射到第一PUSCH 上第一个符号的位置上。
也就是说,目标资源映射模式可以包括终端设备将HARQ-ACK映射到第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号,和/或将CSI映射到第一PUSCH上可用于承载DMRS的符号的位置上。
目标资源映射模式可以包括终端设备将HARQ-ACK映射到第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号,和/或将CSI映射到第一PUSCH上的第一个符号上。
本申请实施例提出的UCI的资源映射方法,终端设备确定当前所处通信场景中,PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS,按照目标资源映射模式将UCI映射到PUSCH上进行传输,在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
图5为本申请另一实施例的UCI的资源映射方法的流程示意图,该方法应用于终端设备,如图5所示,该方法包括:
S501,终端设备确定PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS。
关于步骤S501的具体介绍,可参加上述实施例中相关内容的记载,此次不再赘述。
S502,终端设备确定第一PUSCH上的可用于承载DMRS的符号。
S503,终端设备将UCI映射在可用于承载DMRS的符号的位置上。
其中,UCI包括HARQ-ACK和/或CSI。
终端设备可以基于第一PUSCH上的符号的配置信息,确定出能够用于承载DMRS的符号。进一步地,终端设备可以将该可用于承载DMRS的符号作为候选符号,将UCI映射到第一PUSCH上的候选符号上的位置上,即将UCI映射到第一PUSCH上的可用于承载DMRS的符号的位置上。
可选地,响应于UCI包括HARQ-ACK,将HARQ-ACK映射到第一PUSCH上进行传输;响应于UCI包括HARQ-ACK和CSI,可以将HARQ-ACK和CSI均映射到第一PUSCH上进行传输;响应于UCI包括CSI,可以将CSI映射到第一PUSCH上进行传输。
也就是说,目标资源映射模式可以包括终端设备将HARQ-ACK和/或将CSI映射到第一PUSCH上的可用于承载DMRS的符号的位置上。
本申请实施例提出的UCI的资源映射方法,终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,按照目标资源映射模式将UCI映射到PUSCH上进行传输。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
图6为本申请另一实施例的UCI的资源映射方法的流程示意图,该方法应用于网络设备,如图6所示,该方法包括:
S601,网络设备接收终端设备在映射资源上发送的UCI,其中,PUCCH和PUSCH重叠,且当前第一PUSCH上未承载解调参考信号DMRS,UCI是按照目标资源映射模式映射到PUSCH资源上的。
本申请实施例中,终端设备可以对当前信道状态进行检测,当检测当前信道状态满足PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS,终端设备为了实现向网络设备传输UCI,需要按照UCI的目标资源映射模式对UCI进行资源映射。其中目标资源映射模式,用于指示将UCI映射到 PUCSH资源上。关于目标资源映射模式的介绍可参见上述实施例中相关内容的记载,此次不再赘述。其中设定资源即为按照目标资源映射模式UCI映射到的PUSCH资源。
可选地,终端设备在完成UCI的资源映射后,可以通过映射的资源向网络设备发送UCI,相应地网络设备可以接收到终端设备基于映射到的PUSCH资源发送的UCI。
本申请实施例提出的UCI的资源映射方法,网络设备在终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,可以接收到终端设备通过映射到PUSCH资源发送的UCI。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
图7为本申请另一实施例的UCI的资源映射方法的流程示意图,该方法应用于网络设备,如图7所示,该方法包括:
S701,网络设备在第一PUSCH和/或第二PUSCH的候选符号的位置上接收UCI,其中,第二PUSCH是与第一PUSCH相邻的且承载有DMRS的重复传输的PUSCH。
可选地,终端设备可以从第一PUSCH和/或第二PUSCH上确定出适合映射UCI的候选符号,并将UCI映射到这些候选符号中的部分符号或完全符号上。
在一些实现中,目标资源映射模式可以包括终端设备可以将UCI映射到第一PUSCH的候选符号上;在另一些实现中,目标资源映射模式可以包括终端设备可以将UCI部分映射到第一PUSCH的候选符号上,还有部分映射到第二PUSCH的候选符号上。在又一些实施例中,目标资源映射模式可以包括终端设备可以将UCI映射到第二PUSCH的候选符号上。
可选地,UCI包括混合自动重传请求应答信息HARQ-ACK和/或信道状态信息CSI。作为一种可能的实现方式,目标资源映射模式可以包括将混合自动重传请求应答信息HARQ-ACK映射到第二PUSCH的第一候选符号的位置上;和/或,终端设备将信道状态信息CSI映射在第一PUSCH的第二候选符号的位置上。
相应地,网络设备在第二PUSCH的第一候选符号的位置上接收混合自动重传请求应答信息HARQ-ACK;和/或,网络设备在第一PUSCH的第二候选符号的位置上接收信道状态信息CSI。可选地,第一候选符号为第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号。可选地,第二候选符号为第一PUSCH上可用于承载DMRS的符号。第二候选符号为第一PUSCH的第一个符号。
本申请实施例提出的UCI的资源映射方法,网络设备在终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,可以接收到终端设备通过映射到PUSCH资源发送的UCI。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
图8为本申请另一实施例的UCI的资源映射方法的流程示意图,该方法应用于网络设备,如图8所示,该方法包括:
S801,网络设备在第一PUSCH的可用于承载DMRS的符号的位置上接收UCI,其中,UCI包括HARQ-ACK和/或CSI。
终端设备可以基于第一PUSCH上的符号的配置信息,确定出能够用于承载DMRS的符号。进一步地,终端设备可以将该可用于承载DMRS的符号作为候选符号,将UCI映射到第一PUSCH上的候选符号上的位置上,即将UCI映射到第一PUSCH上的可用于承载DMRS的符号的位置上。
可选地,响应于UCI包括HARQ-ACK,将HARQ-ACK映射到第一PUSCH上进行传输;响应于UCI包括HARQ-ACK和CSI,可以将HARQ-ACK和CSI均映射到第一PUSCH上进行传输;响应于UCI包括CSI,可以将CSI映射到第一PUSCH上进行传输。
也就是说,目标资源映射模式可以包括终端设备将HARQ-ACK和/或将CSI映射到第一PUSCH上的可用于承载DMRS的符号的位置上。
相应地,网络设备在第一PUSCH的可用于承载DMRS的符号的位置上接收UCI。
本申请实施例提出的UCI的资源映射方法,网络设备在终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,可以接收到终端设备通过映射到PUSCH资源发送的UCI。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
需要说明的是,本申请上述实施例中,该第二PUSCH的第一候选符号和/或第一PUSCH的第二候选符号可以为正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施提出的方法进行了介绍。为了实现上述本申请实施例提出的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
本申请实施例还提供了一种通信装置,该通信装置可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
图9为本申请一实施例的通信装置的结构示意图,如图9所示,UCI的资源映射通信装置90,为终端设备时,包括收发模块901和处理模块902,其中:
收发模块901用于确定物理上行控制信道PUCCH和物理上行共享信道PUSCH重叠,且当前第一物理上行共享信道PUSCH上未承载解调参考信号DMRS。
处理模块902用于按照UCI的目标资源映射模式对UCI进行资源映射,并通过映射的资源向网络设备发送UCI;其中,目标资源映射模式用于将UCI映射到PUCSH资源。
处理模块902,还用于:从与第一PUSCH相邻的重复传输的PUSCH中,确定承载有DMRS的第二PUSCH传输;将UCI映射到第一PUSCH和/或第二PUSCH的候选符号上。
处理模块902,还用于:将混合自动重传请求应答信息HARQ-ACK映射到第二PUSCH的第一候选符号的位置上;和/或,将信道状态信息CSI映射在第一PUSCH的第二候选符号的位置上。
可选地,第一候选符号为第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号。
可选地,第二候选符号为第一PUSCH上可用于承载DMRS的符号。
可选地,第二候选符号为第一PUSCH上的第一个符号。
处理模块902,还用于:确定第一PUSCH上的可用于承载DMRS的符号;将UCI映射在可用于承载DMRS的符号的位置上,其中,UCI包括HARQ-ACK和/或CSI。
本申请实施例提出的通信装置,可以确定当前所处通信场景中,PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS,按照目标资源映射模式将UCI映射到PUSCH上进行传输,在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
通信装置90,为网络设备时,包括:
接收模块901,用于接收在映射资源上发送的UCI,其中,PUCCH和PUSCH重叠,且当前第一PUSCH上未承载解调参考信号DMRS,UCI是按照目标资源映射模式映射到PUSCH资源上的。
接收模块901,还用于在第一PUSCH和/或第二PUSCH的候选符号的位置上接收UCI,其中,第二PUSCH是与第一PUSCH相邻的且承载有DMRS的重复传输的PUSCH。
接收模块901,还用于在第二PUSCH的第一候选符号的位置上接收混合自动重传请求应答信息HARQ-ACK;和/或,在第一PUSCH的第二候选符号的位置上接收信道状态信息CSI。
可选地,第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号为第一候选符号。
可选地,第一PUSCH上可用于承载DMRS的符号为第二候选符号。
可选地,第一PUSCH的第一个符号为第二候选符号。
接收模块901,还用于在第一PUSCH的可用于承载DMRS的符号的位置上接收UCI,其中,UCI包括HARQ-ACK和/或CSI。
本申请实施例提出的通信装置,在终端设备确定当前所处于PUCCH和PUSCH重叠,且当前第一PUSCH上未承载DMRS的场景下,可以接收到终端设备通过映射到PUSCH资源发送的UCI。本申请中,不仅可以实现在DMRS缺失的情况下,实现对UCI在PUSCH资源上的映射,而且可以在减小传输上的DMRS,降低DMRS密度的同时,提高了数据的传输量,降低了数据传输的码率,从而提高了接收信噪比及网络覆盖。
图10是本申请实施例提供的另一种通信装置1000的结构示意图。通信装置1000可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1000可以包括一个或多个处理器1001。处理器1001可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1000中还可以包括一个或多个存储器1002,其上可以存有计算机程序1004,处理器1001执行计算机程序1004,以使得通信装置1000执行上述方法实施例中描述的方法。可选的,存储器1002中还可以存储有数据。通信装置1000和存储器1002可以单独设置,也可以集成在一起。
可选的,通信装置1000还可以包括收发器1005、天线1006。收发器1005可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1005可以包括接收器和发送器,接收器可以称为接 收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1000中还可以包括一个或多个接口电路1007。接口电路1007用于接收代码指令并传输至处理器1001。处理器1001运行代码指令以使通信装置1000执行上述方法实施例中描述的方法。
通信装置1000为终端设备:收发器1005用于执行图2中的步骤S201、图3中的步骤S301及S302、图4中的步骤S401及S402、图5中的步骤S501及S502等等。处理器1001用于执行图2中的步骤S202、图3中的步骤S303、图4中的步骤S403、图5中的步骤S503等等;
通信装置1000为网络设备:收发器1005用于执行图6中的步骤S601、图7中的步骤S701、图8中的步骤S801等等;
在一种实现方式中,处理器1001中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1001可以存有计算机程序1003,计算机程序1003在处理器1001上运行,可使得通信装置1000执行上述方法实施例中描述的方法。计算机程序1003可能固化在处理器1001中,该种情况下,处理器1001可能由硬件实现。
在一种实现方式中,通信装置1000可以包括电路,电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的第一终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图10的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图11所示的芯片的结构示意图。图11所示的芯片包括处理器1101和接口1102。其中,处理器1101的数量可以是一个或多个,接口1102的数量可 以是多个。
对于芯片用于实现本申请实施例中终端设备的功能的情况:
接口1102,用于执行图2中的步骤S201、图3中的步骤S301及S302、图4中的步骤S401及S402、图5中的步骤S501及S502等等。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口1102,用于执行图6中的步骤S601、图7中的步骤S701、图8中的步骤S801等等。
可选的,芯片还包括存储器1103,存储器1103用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种通信***,该***包括前述图9实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括前述图10实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行计算机程序时,全部或部分地产生按照本申请实施例的流程或功能。计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表 中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以权利要求的保护范围为准。

Claims (34)

  1. 一种上行控制信息UCI的资源映射方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    所述终端设备确定物理上行控制信道PUCCH和物理上行共享信道PUSCH重叠,且当前第一物理上行共享信道PUSCH上未承载解调参考信号DMRS;
    所述终端设备按照UCI的目标资源映射模式对所述UCI进行资源映射,并通过映射的资源向网络设备发送所述UCI;其中,所述目标资源映射模式用于将所述UCI映射到PUCSH资源。
  2. 根据权利要求1所述的方法,其特征在于,所述按照UCI的目标资源映射模式对上行控制信息UCI进行资源映射,包括:
    所述终端设备从与所述第一PUSCH相邻的重复传输的PUSCH中,确定承载有DMRS的第二PUSCH传输;
    所述终端设备将所述UCI映射到所述第一PUSCH和/或所述第二PUSCH的候选符号上。
  3. 根据权利要求2所述的方法,其特征在于,所述将所述UCI映射到所述第一PUSCH和/或所述第二PUSCH的候选符号上,包括:
    所述终端设备将混合自动重传请求应答信息HARQ-ACK映射到所述第二PUSCH的第一候选符号的位置上;和/或,
    所述终端设备将信道状态信息CSI映射在所述第一PUSCH的第二候选符号的位置上。
  4. 根据权利要求3所述的方法,其特征在于,所述第一候选符号为所述第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第二候选符号为所述第一PUSCH上可用于承载DMRS的符号。
  6. 根据权利要求3或4所述的方法,其特征在于,所述第二候选符号为所述第一PUSCH上的第一个符号。
  7. 根据权利要求1所述的方法,其特征在于,所述按照UCI的目标资源映射模式对上行控制信息UCI进行资源映射,包括:
    所述终端设备确定所述第一PUSCH上的可用于承载DMRS的符号;
    所述终端设备将所述UCI映射在所述可用于承载DMRS的符号的位置上,其中,所述UCI包括HARQ-ACK和/或CSI。
  8. 一种UCI的资源映射方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    所述网络设备接收终端设备在映射资源上发送的UCI,其中,PUCCH和PUSCH重叠,且当前第 一PUSCH上未承载解调参考信号DMRS,所述UCI是按照目标资源映射模式映射到PUSCH资源上的。
  9. 根据权利要求8所述的方法,其特征在于,还包括:
    所述网络设备在所述第一PUSCH和/或第二PUSCH的候选符号的位置上接收所述UCI,其中,所述第二PUSCH是与所述第一PUSCH相邻的且承载有DMRS的重复传输的PUSCH。
  10. 根据权利要求9所述的方法,其特征在于,还包括:
    所述网络设备在所述第二PUSCH的第一候选符号的位置上接收混合自动重传请求应答信息HARQ-ACK;和/或,
    所述网络设备在所述第一PUSCH的第二候选符号的位置上接收信道状态信息CSI。
  11. 根据权利要求10所述的方法,其特征在于,所述第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号为所述第一候选符号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述第一PUSCH上可用于承载DMRS的符号为所述第二候选符号。
  13. 根据权利要求10或11所述的方法,其特征在于,所述第一PUSCH的第一个符号为所述第二候选符号。
  14. 根据权利要求9所述的方法,其特征在于,还包括:
    所述网络设备在所述第一PUSCH的可用于承载DMRS的符号的位置上接收所述UCI,其中,所述UCI包括HARQ-ACK和/或CSI。
  15. 一种通信装置,其特征在于,包括:
    收发模块,用于确定物理上行控制信道PUCCH和物理上行共享信道PUSCH重叠,且当前第一物理上行共享信道PUSCH上未承载解调参考信号DMRS;
    处理模块,用于按照UCI的目标资源映射模式对所述UCI进行资源映射,并通过映射的资源向网络设备发送所述UCI;其中,所述目标资源映射模式用于将所述UCI映射到PUCSH资源。
  16. 根据权利要求15所述的通信装置,其特征在于,所述处理模块,还用于:
    从与所述第一PUSCH相邻的重复传输的PUSCH中,确定承载有DMRS的第二PUSCH传输;以及
    将所述UCI映射到所述第一PUSCH和/或所述第二PUSCH的候选符号上。
  17. 根据权利要求16所述的通信装置,其特征在于,所述处理模块,还用于:
    将混合自动重传请求应答信息HARQ-ACK映射到所述第二PUSCH的第一候选符号的位置上;和/ 或,
    将信道状态信息CSI映射在所述第一PUSCH的第二候选符号的位置上。
  18. 根据权利要求17所述的通信装置,其特征在于,所述第一候选符号为所述第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号。
  19. 根据权利要求17或18所述的通信装置,其特征在于,所述第二候选符号为所述第一PUSCH上可用于承载DMRS的符号。
  20. 根据权利要求17或18所述的通信装置,其特征在于,所述第二候选符号为所述第一PUSCH上的第一个符号。
  21. 根据权利要求15所述的通信装置,其特征在于,所述处理模块,还用于:
    确定所述第一PUSCH上的可用于承载DMRS的符号;以及
    将所述UCI映射在所述可用于承载DMRS的符号的位置上,其中,所述UCI包括HARQ-ACK和/或CSI。
  22. 一种通信装置,其特征在于,包括:
    接收模块,用于接收终端设备在映射资源上发送的UCI,其中,PUCCH和PUSCH重叠,且当前第一PUSCH上未承载解调参考信号DMRS,所述UCI是按照目标资源映射模式映射到PUSCH资源上的。
  23. 根据权利要求22所述的通信装置,其特征在于,所述接收模块,还用于:
    在所述第一PUSCH和/或第二PUSCH的候选符号的位置上接收所述UCI,其中,所述第二PUSCH是与所述第一PUSCH相邻的且承载有DMRS的重复传输的PUSCH。
  24. 根据权利要求23所述的通信装置,其特征在于,所述接收模块,还用于:
    在所述第二PUSCH的第一候选符号的位置上接收混合自动重传请求应答信息HARQ-ACK;和/或,
    在所述第一PUSCH的第二候选符号的位置上接收信道状态信息CSI。
  25. 根据权利要求24所述的通信装置,其特征在于,所述第二PUSCH上最早承载DMRS的目标符号之后的第一个不承载DMRS的符号为所述第一候选符号。
  26. 根据权利要求24或25所述的通信装置,其特征在于,所述第一PUSCH上可用于承载DMRS的符号为所述第二候选符号。
  27. 根据权利要求24或25所述的装置,其特征在于,所述第一PUSCH的第一个符号为所述第二 候选符号。
  28. 根据权利要求23所述的装置,其特征在于,所述接收模块,还用于:
    在所述第一PUSCH的可用于承载DMRS的符号的位置上接收所述UCI,其中,所述UCI包括HARQ-ACK和/或CSI。
  29. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至7中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求8至14中任一项所述的方法。
  31. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至7中任一项所述的方法。
  32. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求8至14中任一项所述的方法。
  33. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至7中任一项所述的方法被实现。
  34. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求8至14中任一项所述的方法被实现。
PCT/CN2021/082185 2021-03-22 2021-03-22 一种上行控制信息uci的资源映射方法及其装置 WO2022198413A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180000747.5A CN113169831B (zh) 2021-03-22 2021-03-22 一种上行控制信息uci的资源映射方法及其装置
US18/550,796 US20240188086A1 (en) 2021-03-22 2021-03-22 Resource mapping method and communication device for uplink control information (uci)
PCT/CN2021/082185 WO2022198413A1 (zh) 2021-03-22 2021-03-22 一种上行控制信息uci的资源映射方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/082185 WO2022198413A1 (zh) 2021-03-22 2021-03-22 一种上行控制信息uci的资源映射方法及其装置

Publications (1)

Publication Number Publication Date
WO2022198413A1 true WO2022198413A1 (zh) 2022-09-29

Family

ID=76875960

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/082185 WO2022198413A1 (zh) 2021-03-22 2021-03-22 一种上行控制信息uci的资源映射方法及其装置

Country Status (3)

Country Link
US (1) US20240188086A1 (zh)
CN (1) CN113169831B (zh)
WO (1) WO2022198413A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115314172A (zh) * 2021-05-07 2022-11-08 华为技术有限公司 一种上行控制信息uci发送方法及通信装置

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474747A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 一种信号传输方法和装置、及终端
WO2020261713A1 (en) * 2019-06-26 2020-12-30 Sharp Kabushiki Kaisha MAPPING METHODS FOR URLLC HARQ-ACK MULTIPLEXING ON eMBB PUSCH

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110474747A (zh) * 2018-05-11 2019-11-19 中兴通讯股份有限公司 一种信号传输方法和装置、及终端
WO2020261713A1 (en) * 2019-06-26 2020-12-30 Sharp Kabushiki Kaisha MAPPING METHODS FOR URLLC HARQ-ACK MULTIPLEXING ON eMBB PUSCH

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "UCI on sPUSCH", 3GPP DRAFT; R1-166154, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Gothenburg, Sweden; 20160822 - 20160826, 21 August 2016 (2016-08-21), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051125247 *
NOKIA, NOKIA SHANGHAI BELL: "Remaining open items on UCI multiplexing", 3GPP DRAFT; R1-1802025_UCI_MULTIPLEXING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Athens, Greece; 20180226 - 20180302, 16 February 2018 (2018-02-16), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051397451 *
QUALCOMM INCORPORATED: "Summary of remaining issues for UCI piggyback on PUSCH", 3GPP DRAFT; R1-1801092 SUMMARY OF REMAINING ISSUES FOR UCI MULTIPLEXING ON PUSCH - TUE V3, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Vancouver, Canada; 20180122 - 20180126, 24 January 2018 (2018-01-24), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051385312 *

Also Published As

Publication number Publication date
US20240188086A1 (en) 2024-06-06
CN113169831A (zh) 2021-07-23
CN113169831B (zh) 2023-04-04

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2022213294A1 (zh) 一种时域资源分配的方法及装置
CN115004617A (zh) 一种终端设备调度方法及其装置
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
EP4322443A1 (en) Frequency hopping method and apparatus
CN115004835A (zh) 一种终端设备调度方法及其装置
CN113785645B (zh) 一种波束应用的方法及其装置
WO2023164952A1 (zh) 一种智能中继的控制方法及其装置
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
WO2023133742A1 (zh) 物理下行共享信道的处理时间参数的确定方法及装置
WO2022217448A1 (zh) 一种上行控制信息的复用方法及其装置
WO2024124562A1 (zh) 一种混合自动重传请求harq的配置方法及装置
WO2023044804A1 (zh) 载波切换方法及装置
WO2022213289A1 (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
EP4319323A1 (en) Method and apparatus for determining power parameter
WO2022217425A1 (zh) 确定harq反馈信息的定时方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2022266926A1 (zh) 一种定时关系调整方法及其装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2023151047A1 (zh) 一种终端设备调度方法及其装置
WO2023029058A1 (zh) 一种时间偏移量的确定方法及其装置
WO2023050392A1 (zh) 混合自动重传请求harq的发送方法、接收方法及装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21932046

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18550796

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21932046

Country of ref document: EP

Kind code of ref document: A1