WO2024000201A1 - 一种指示方法及装置 - Google Patents

一种指示方法及装置 Download PDF

Info

Publication number
WO2024000201A1
WO2024000201A1 PCT/CN2022/102071 CN2022102071W WO2024000201A1 WO 2024000201 A1 WO2024000201 A1 WO 2024000201A1 CN 2022102071 W CN2022102071 W CN 2022102071W WO 2024000201 A1 WO2024000201 A1 WO 2024000201A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission
cell
cells
transmission parameters
scheduling instruction
Prior art date
Application number
PCT/CN2022/102071
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002436.7A priority Critical patent/CN115316023A/zh
Priority to PCT/CN2022/102071 priority patent/WO2024000201A1/zh
Publication of WO2024000201A1 publication Critical patent/WO2024000201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0002Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate
    • H04L1/0003Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the transmission rate by switching between different modulation schemes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0009Systems modifying transmission characteristics according to link quality, e.g. power backoff by adapting the channel coding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0023Systems modifying transmission characteristics according to link quality, e.g. power backoff characterised by the signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to an indication method and device.
  • Embodiments of the present disclosure provide an indication method and device.
  • embodiments of the present disclosure provide an instruction method, which is executed by a terminal device.
  • the method includes:
  • the transmission parameters of each of the scheduled cells are determined according to the transmission configuration information.
  • the terminal device can first receive the scheduling instruction, and then obtain the transmission configuration information from the scheduling instruction, and determine the transmission parameters of each of the multiple scheduled cells according to the transmission configuration information, thereby supporting multiple cells.
  • the signaling overhead of indication information can be effectively reduced.
  • the transmission configuration information includes:
  • a plurality of first indication information, the plurality of first indication information are respectively used to indicate a plurality of transmission parameters of the cells.
  • determining the transmission parameters of each of the multiple cells according to the transmission configuration information includes:
  • Transmission parameters of the other cells are determined according to the reference transmission parameters and the second indication information.
  • determining the transmission parameters of each of the multiple cells according to the transmission configuration information includes:
  • the transmission parameters of each cell are determined according to the transmission configuration information and the transmission parameter configuration table.
  • the transmission parameter configuration table includes reference transmission parameters and offset values.
  • the scheduling instruction is a scheduling instruction for one cell among the plurality of scheduled cells.
  • the transmission parameters include at least one of the following:
  • Modulation coding method MCS Modulation coding method
  • Time domain resource allocation TDRA Time domain resource allocation
  • Frequency domain resource allocation FDRA Frequency domain resource allocation
  • the scheduling instruction is downlink control information DCI.
  • embodiments of the present disclosure provide an instruction method, which is executed by a network device.
  • the method includes:
  • the network device can send a scheduling instruction to the terminal device, and the scheduling instruction can include transmission configuration information. Then the terminal device can determine each of the multiple cells to be scheduled based on the transmission configuration information included in the scheduling instruction.
  • the transmission parameters that is, in one scheduling instruction, the transmission mechanism of multiple different cells that are jointly scheduled can be implemented, so that when multi-cell scheduling is supported, the signaling overhead of the indication information can be effectively reduced.
  • the transmission configuration information includes:
  • a plurality of first indication information, the plurality of first indication information are respectively used to indicate a plurality of transmission parameters of the cells.
  • sending scheduling instructions to the terminal device includes:
  • the scheduling instruction including the reference cell, the transmission parameters of the reference cell and the transmission configuration information, wherein the transmission configuration information includes second indication information , the second indication information is used to indicate offset values of other cells among the plurality of cells.
  • sending scheduling instructions to the terminal device includes:
  • the transmission parameter configuration table includes reference transmission parameters and offset values.
  • the scheduling instruction is a scheduling instruction for one cell among the plurality of scheduled cells.
  • the transmission parameters include at least one of the following:
  • Modulation coding method MCS Modulation coding method
  • Time domain resource allocation TDRA Time domain resource allocation
  • Frequency domain resource allocation FDRA Frequency domain resource allocation
  • the scheduling instruction is downlink control information DCI.
  • an embodiment of the present disclosure provides a terminal device, including:
  • Transceiver module used to receive scheduling instructions
  • a processing module configured to obtain transmission configuration information from the scheduling instructions
  • the processing module is further configured to determine the transmission parameters of each of the multiple scheduled cells according to the transmission configuration information.
  • the scheduling instruction can be received first, and then the transmission configuration information can be obtained from the scheduling instruction, and the transmission parameters of each of the multiple scheduled cells can be determined based on the transmission configuration information, thereby supporting multi-cell scheduling.
  • the signaling overhead of the indication information can be effectively reduced.
  • the transmission configuration information includes:
  • a plurality of first indication information, the plurality of first indication information are respectively used to indicate a plurality of transmission parameters of the cells.
  • processing module is specifically used for:
  • Transmission parameters of the other cells are determined according to the reference transmission parameters and the second indication information.
  • processing module is specifically used for:
  • the transmission parameters of each cell are determined according to the transmission configuration information and the transmission parameter configuration table.
  • the transmission parameter configuration table includes reference transmission parameters and offset values.
  • the scheduling instruction is a scheduling instruction for one cell among the plurality of scheduled cells.
  • the transmission parameters include at least one of the following:
  • Modulation coding method MCS Modulation coding method
  • Time domain resource allocation TDRA Time domain resource allocation
  • Frequency domain resource allocation FDRA Frequency domain resource allocation
  • the scheduling instruction is downlink control information DCI.
  • an embodiment of the present disclosure provides a network device, including:
  • the transceiver module is configured to send a scheduling instruction to a terminal device, where the terminal device determines the transmission parameters of each of the multiple scheduled cells according to the transmission configuration information contained in the scheduling instruction.
  • the transmission configuration information includes:
  • a plurality of first indication information, the plurality of first indication information are respectively used to indicate a plurality of transmission parameters of the cells.
  • processing modules are also included:
  • the processing module is used to determine a reference cell among the plurality of cells
  • the processing module is also used to determine the transmission parameters of the reference cell
  • the transceiver module is specifically configured to send the scheduling instruction to the terminal device.
  • the scheduling instruction includes the reference cell, the transmission parameters of the reference cell, and the transmission configuration information, wherein the transmission configuration
  • the information includes second indication information, and the second indication information is used to indicate offset values of other cells among the plurality of cells.
  • the transceiver module is specifically used for:
  • the transmission parameter configuration table includes reference transmission parameters and offset values.
  • the scheduling instruction is a scheduling instruction for one cell among the plurality of scheduled cells.
  • the transmission parameters include at least one of the following:
  • Modulation coding method MCS Modulation coding method
  • Time domain resource allocation TDRA Time domain resource allocation
  • Frequency domain resource allocation FDRA Frequency domain resource allocation
  • the scheduling instruction is downlink control information DCI.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present disclosure provide a communication system that includes the terminal device described in the third aspect and the network device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect and the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect and the communication device according to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to execute the above-mentioned second aspect. method.
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting a terminal device to implement the functions involved in the first aspect, for example, determining or processing data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting a network device to implement the functions involved in the second aspect, for example, determining or processing data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • Figure 2 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure.
  • Figure 4 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure.
  • Figure 5 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure.
  • Figure 6 is a schematic flowchart of an indication method provided by an embodiment of the present disclosure.
  • Figure 7 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure.
  • Figure 8 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure.
  • Figure 9 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure.
  • Figure 10 is a schematic structural diagram of a terminal device provided by an embodiment of the present disclosure.
  • Figure 11 is a schematic structural diagram of a network device provided by an embodiment of the present disclosure.
  • Figure 12 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • DCI Downlink control information
  • DCI can include uplink and downlink resource allocation, hybrid automatic repeat request (HARQ) information, power control and other indication information.
  • HARQ hybrid automatic repeat request
  • Modulation and coding scheme (MCS)
  • MCS defines the effective number of bits that a resource element (RE) can carry.
  • RE resource element
  • MCS can define two parts: modulation and code rate.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to one network device and one terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. In actual applications, two or more devices may be included. Network equipment, two or more terminal devices.
  • the communication system shown in Figure 1 includes a network device 11 and a terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • Figure 2 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step 201 Receive scheduling instructions.
  • the terminal device can obtain scheduling instructions and the like by receiving DCI carried on the physical downlink control channel (PDCCH), and this disclosure does not limit this.
  • PDCCH physical downlink control channel
  • the scheduling instruction can be downlink control information (DCI), so that when the terminal device receives DCI, it can determine that it has received the scheduling instruction, etc.
  • DCI downlink control information
  • Step 202 Obtain transmission configuration information from the scheduling instruction.
  • Step 203 Determine the transmission parameters of each cell among the multiple scheduled cells according to the transmission configuration information.
  • the transmission configuration information may include transmission information corresponding to each scheduled cell, or may include transmission information corresponding to a reference cell among multiple scheduled cells, etc., which is not limited in this disclosure.
  • the transmission parameters may include at least one of the following: modulation and coding scheme MCS, time domain resource allocation (TDRA), and frequency domain resource allocation (FDRA).
  • MCS modulation and coding scheme
  • TDRA time domain resource allocation
  • FDRA frequency domain resource allocation
  • the transmission parameter can be MCS, or it can be TDRA, or it can be FDRA, or it can be MCS and TDRA, or it can be MCS and FDRA, or it can be TDRA and FDRA, or it can be MCS, TDRA, FDRA, etc., this disclosure does not limit this.
  • the terminal device may first receive the scheduling instruction, and then obtain the transmission configuration information from the scheduling instruction, and determine the transmission parameters of each of the multiple scheduled cells based on the transmission configuration information. Therefore, by parsing the received scheduling instructions, the transmission configuration information can be determined, and then based on the transmission configuration information, the transmission parameters of each of the multiple scheduled cells can be determined, that is, one schedule can be implemented In the instruction, the transmission mechanism of multiple jointly scheduled different cells is indicated, so that when multi-cell scheduling is supported, the signaling overhead of the indication information can be effectively reduced.
  • Figure 3 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 Receive scheduling instructions.
  • the scheduling instruction can be DCI.
  • Step 302 Obtain a plurality of first indication information from the scheduling instructions.
  • Step 303 Determine the transmission parameters of each cell among the multiple scheduled cells according to the plurality of first indication information.
  • the transmission configuration information may include a plurality of first indication information, and the plurality of first indication information may be respectively used to indicate transmission parameters of multiple scheduled cells.
  • the first indication information 1 can be used to indicate the transmission parameters of cell 1 among the multiple scheduled cells
  • the first indication information 2 can be used to indicate the transmission parameters of cell 2 among the multiple scheduled cells, etc., this disclosure There is no restriction on this.
  • the terminal device after receiving the scheduling instruction, the terminal device can determine the plurality of first indication information contained therein by parsing the scheduling instruction, and then according to the indication of each first indication information, The transmission parameters of each of the multiple scheduled cells may be determined, and the present disclosure does not limit this.
  • the transmission parameters may include at least one of MCS, TDRA and FDRA.
  • the multiple cells to be scheduled are: cell 1, cell 2, cell 3 and cell 4, if the plurality of first indication information obtained from the scheduling instruction are analyzed, the : MCS1, MCS2, MCS3, MCS4, then it can be determined that among the multiple scheduled cells, the transmission parameters of cell 1 are MCS1, the transmission parameters of cell 2 are MCS2, the transmission parameters of cell 3 are MCS3, and the transmission parameters of cell 4 are MCS4.
  • the multiple cells to be scheduled are: cell 1, cell 2 and cell 3, if the plurality of first indication information obtained from the scheduling instruction are analyzed, it is obtained: FDRA1, FDRA2, FDRA3 , then it can be determined that among the multiple scheduled cells, the transmission parameter of cell 1 is FDRA1, the transmission parameter of cell 2 is FDRA2, and the transmission parameter of cell 3 is FDRA3.
  • the multiple cells to be scheduled are: cell 1, cell 2 and cell 3, if the plurality of first indication information obtained from the scheduling instruction are analyzed to obtain: TDRA1, TDRA2, TDRA3 , then it can be determined that among the multiple scheduled cells, the transmission parameter of cell 1 is TDRA1, the transmission parameter of cell 2 is TDRA2, and the transmission parameter of cell 3 is TDRA3.
  • different information fields in the scheduling instructions can carry the transmission configurations of different cells.
  • information domain 1 can be used to carry the transmission configuration of cell 1; information domain 2 can be used to carry the transmission configuration of cell 2, etc. , this disclosure does not limit this.
  • the terminal device can first receive the scheduling instruction, and then can obtain a plurality of first indication information from the scheduling instruction, and determine the transmission parameters of each cell among the multiple scheduled cells according to the plurality of first indication information. . Therefore, by parsing the received scheduling instruction, the plurality of first indication information contained can be determined, and then based on each first indication information, the transmission parameters of each of the multiple scheduled cells can be determined. , thus when supporting multi-cell scheduling, the signaling overhead of the indication information can be effectively reduced.
  • Figure 4 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step 401 Receive scheduling instructions.
  • the scheduling instruction can be DCI.
  • Step 402 Determine a reference cell among multiple cells.
  • a reference cell among the multiple cells may be determined first.
  • the received scheduling instruction may be parsed to determine the reference cell among the multiple scheduled cells.
  • the reference cell among multiple cells may also be determined based on protocol agreement, network device configuration, etc., which is not limited in this disclosure.
  • Step 403 Obtain the transmission parameters of the reference cell and use them as reference transmission parameters.
  • the transmission parameter may be at least one of MCS, FDRA and TDRA.
  • the received scheduling instructions can be analyzed to determine the transmission parameters of the reference cell among the multiple cells, and then the transmission parameters of the reference cell can be used as reference transmission parameters corresponding to the multiple scheduled cells. For example, if the reference cell is cell 1 among multiple cells to be scheduled, and its corresponding transmission parameter is: TDRA1, then "TDRA1" can be used as the reference transmission parameter, etc. This disclosure does not limit this.
  • Step 404 Obtain second indication information from the transmission configuration information.
  • the second indication information is used to indicate offset values of other cells among multiple cells.
  • the terminal device can obtain the transmission configuration information by parsing the scheduling instructions, and then based on the instructions of the second indication information in the transmission configuration information, can obtain the relative offset values of other cells among the multiple cells. That is, the offset value of the transmission parameters of other cells relative to the reference transmission parameters, etc. This disclosure does not limit this.
  • the offset value may be an offset value between starting positions allocated in the frequency domain, etc., which is not limited in this disclosure.
  • the terminal device parses the scheduling instruction, it obtains the second indication information indication: offset value 1, Offset value 2 and offset value 3, then it can be determined that: the offset value of cell 2 is offset value 1, the offset value of cell 3 is offset value 2, and the offset value of cell 4 is offset value 3. Etc., this disclosure does not limit this.
  • Step 405 Determine transmission parameters of other cells based on the reference transmission parameters and the second indication information.
  • the sum of the offset value of any other cell indicated by the second indication information and the reference transmission parameter may be used as the transmission parameter of any other cell. This disclosure does not limit this.
  • the transmission parameters of the other cell 1 can be determined It is: MCS1+offset value 2.
  • the reference transmission parameter is FDRA2 and the offset value of other cell 2 among the multiple cells to be scheduled indicated by the second indication information is: offset value 3 then it can be determined that the transmission parameter of the other cell 2 is: FDRA2+ Offset value 3. This disclosure does not limit this.
  • the terminal device can determine the correspondence between the offset value and the information domain value through high-level signaling or physical layer signaling of the network device. Later, the transmission parameters of other cells can be determined through the corresponding relationship, the information field value in the scheduling instruction, and the reference transmission parameters of the reference cell.
  • the reference cell among the multiple cells to be scheduled is: cell 5
  • the reference transmission parameter of cell 5 is: MCS2
  • the information field value "00" carries the information among the multiple cells to be scheduled
  • the transmission configuration of cell 1 then it can be determined that the offset value corresponding to cell 1 is "offset value 1", and the transmission parameter of cell 1 is: MCS2 + offset value 1.
  • the information field value "01" carries the transmission configuration of cell 2 among the multiple cells to be scheduled, then it can be determined that the offset value corresponding to cell 2 is "offset value 2", and the transmission parameters of cell 2 It is: MCS2+offset value 2.
  • each element and each corresponding relationship in Table 1 exists independently; these elements and corresponding relationships are exemplarily listed in the same table, but do not represent all elements and corresponding relationships in the table. Correspondences must exist simultaneously as shown in Table 1. The value of each element and each corresponding relationship are not dependent on any other element value or corresponding relationship in Table 1. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 1 are each an independent embodiment.
  • the terminal device can also obtain the relationship between the transmission information of the cell and the bearer information domain value through protocol agreement or network device configuration, etc. This disclosure does not limit this.
  • the terminal device can first receive the scheduling instruction, and then determine the reference cell among multiple cells, obtain the transmission parameters of the reference cell, and use it as the reference transmission parameter, and then obtain the second instruction from the transmission configuration information.
  • the second indication information is used to indicate offset values of other cells among the plurality of cells, and then the transmission parameters of other cells are determined based on the reference transmission parameters and the second indication information. Therefore, by parsing the received scheduling instruction, the reference cell and the reference transmission parameters can be obtained, and then based on the offset value indicated by the second indication information, the transmission parameters of other cells among the multiple scheduled cells can be determined. , thus when supporting multi-cell scheduling, the signaling overhead of the indication information can be effectively reduced.
  • Figure 5 is a schematic flowchart of an instruction method provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step 501 Receive scheduling instructions.
  • the scheduling instruction can be DCI.
  • the scheduling instruction may be a scheduling instruction for one cell among multiple scheduled cells.
  • the scheduling instruction received by the terminal device may be the scheduling instruction of cell 1, or it may also be the scheduling instruction of cell 2. Or it may be a scheduling instruction of cell 3, or it may be a scheduling instruction of cell 4, etc., which is not limited in this disclosure.
  • Step 502 Obtain the transmission parameter configuration table.
  • the transmission parameter configuration table may include transmission parameters of each of the multiple cells to be scheduled.
  • the obtained transmission parameter configuration table can be shown in Table 2 below:
  • the transmission parameter configuration table may also include reference transmission parameters, offset values, etc., which is not limited in this disclosure.
  • the obtained transmission parameter configuration table can be shown in Table 3 below.
  • Step 503 Determine the transmission parameters of each cell according to the transmission configuration information and the transmission parameter configuration table.
  • the transmission parameters may include at least one of MCS, TDRA and FDRA.
  • the transmission parameter configuration table is as shown in Table 2, if it is determined by parsing the transmission configuration information that the information field value "00" carries the transmission configuration information of cell 1, cell 2, and cell 3, then It can be determined that the transmission parameter of cell 1 is MCS1, the transmission parameter of cell 2 is MCS2, and the transmission parameter of cell 3 is MCS3. Or, in the case where the transmission parameter configuration table is as shown in Table 3, if it is determined that the information field value "00" carries the transmission configuration information of cell 1 and cell 2 by parsing the transmission configuration information, then it can be determined that the information field value "00" carries the transmission configuration information of cell 1 and cell 2.
  • the transmission parameters are: MCS1+offset value 1, and the transmission parameters of cell 2 are: MCS2+offset value 2. Or, if the information field value "11" carries the transmission configuration information of cell 3, then it can be determined that the transmission parameter of cell 3 is: MC2.
  • the FDRA configuration table for multi-carrier (MC) scheduling can also be pre-configured. Different values in the table can represent the FDRA selection situation for multi-cell scheduling.
  • the FDRA configuration table may contain FDRA, or may contain reference FDRA and offset values, etc. For specific content and implementation methods, please refer to the descriptions in Table 2 and Table 3 above, which will not be described again here.
  • a transmission parameter configuration table including TDRA, or TDRA and offset value can also be pre-configured.
  • TDRA transmission parameter configuration table
  • offset value can also be pre-configured.
  • the terminal device can first receive the scheduling instruction, and then obtain the transmission parameter configuration table, and then determine the transmission parameters of each cell based on the transmission configuration information and the transmission parameter configuration table. Therefore, by parsing the received scheduling instructions, the transmission parameter configuration table can be obtained, and combined with the configuration information, the transmission parameters of each of the multiple scheduled cells can be determined, thereby supporting multi-cell scheduling. In this case, the signaling overhead of the indication information can be effectively reduced.
  • Figure 6 is a schematic flowchart of an indication method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step 601 Send a scheduling instruction to the terminal device, where the terminal device determines the transmission parameters of each of the multiple scheduled cells according to the transmission configuration information contained in the scheduling instruction.
  • the network device can add the transmission configuration information of multiple scheduled cells in the scheduling instruction, and then can send the scheduling instruction to the terminal device. Then, after receiving the scheduling instruction, the terminal device can obtain the transmission configuration information contained in the scheduling instruction by parsing it, and then based on the transmission configuration information, it can determine each of the multiple scheduled cells.
  • the transmission parameters of a cell can be implemented in one scheduling instruction to indicate the transmission mechanisms of multiple jointly scheduled different cells. Thus, when multi-cell scheduling is supported, the signaling overhead of the indication information can be effectively reduced.
  • the scheduling instruction can be downlink control information (DCI), so that when the terminal device receives DCI, it can determine that it has received the scheduling instruction, etc.
  • DCI downlink control information
  • the transmission parameters may include at least one of the following: modulation and coding scheme MCS, time domain resource allocation (TDRA), and frequency domain resource allocation (FDRA).
  • MCS modulation and coding scheme
  • TDRA time domain resource allocation
  • FDRA frequency domain resource allocation
  • the transmission parameter can be MCS, or it can be TDRA, or it can be FDRA, or it can be MCS and TDRA, or it can be MCS and FDRA, or it can be TDRA and FDRA, or it can be MCS, TDRA, FDRA, etc., this disclosure does not limit this.
  • the network device can send a scheduling instruction to the terminal device, and the scheduling instruction can include transmission configuration information. Then the terminal device can determine each of the multiple scheduled cells according to the transmission configuration information included in the scheduling instruction.
  • the transmission parameters of a cell, that is, in one scheduling instruction can be implemented to indicate the transmission mechanism of multiple different cells that are jointly scheduled. Therefore, when multi-cell scheduling is supported, the signaling overhead of the indication information can be effectively reduced.
  • Figure 7 is a schematic flowchart of an indication method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step 701 Send a scheduling instruction to the terminal device.
  • the scheduling instruction includes a plurality of first indication information.
  • the plurality of first indication information is used to indicate the transmission parameters of multiple cells to be scheduled.
  • the terminal device sends a scheduling instruction according to the scheduling instruction.
  • the multiple first indication information determines the transmission parameters of each cell among the multiple scheduled cells.
  • the scheduling instruction can be DCI.
  • the transmission configuration information of the scheduling instruction may include a plurality of first indication information, and the plurality of first indication information may be respectively used to indicate transmission parameters of multiple scheduled cells.
  • the first indication information 1 can be used to indicate the transmission parameters of cell 1 among the multiple scheduled cells
  • the first indication information 2 can be used to indicate the transmission parameters of cell 2 among the multiple scheduled cells, etc.
  • the network device can send a scheduling instruction containing a plurality of first indication information to the terminal device. Then, after receiving the scheduling instruction, the terminal device can determine the scheduling instruction contained therein by parsing the scheduling instruction. Multiple first indication information, and then the transmission parameters of each of the multiple scheduled cells can be determined based on the indication of each first indication information, thereby realizing instructing multiple jointly scheduled cells in one scheduling instruction.
  • the transmission mechanism of different cells effectively reduces the signaling overhead of indication information when supporting multi-cell scheduling.
  • the transmission parameters may include at least one of MCS, TDRA and FDRA.
  • the multiple cells being scheduled are: cell 1, cell 2, cell 3 and cell 4, if the transmission parameter of cell 1 is MCS1, the transmission parameter of cell 2 is MCS2, the transmission parameter of cell 3 is The parameter is MCS3 and the transmission parameter of cell 4 is MCS4. Then the above four cell transmission parameters can be indicated through the first indication information 1, the first indication information 2, the first indication information 3 and the first indication information 4. Then, after receiving the scheduling instruction, the terminal device can determine that among the multiple scheduled cells, the transmission parameters of cell 1 are MCS1, and the transmission parameters of cell 2 are by parsing the multiple first indication information obtained in the scheduling instructions.
  • the parameter is MCS2, the transmission parameter of cell 3 is MCS3, and the transmission parameter of cell 4 is MCS4.
  • the multiple cells being scheduled are: cell 1, cell 2 and cell 3
  • the transmission parameter of cell 1 is FDRA1, the transmission parameter of cell 2 is FDRA2, and the transmission parameter of cell 3 is FDRA3, then
  • the above three cell transmission parameters can be indicated by adding three pieces of first indication information to the scheduling instruction.
  • the terminal device can determine that among the multiple scheduled cells, the transmission parameter of cell 1 is FDRA1, and the transmission parameter of cell 2 is by parsing the three first indication information obtained in the scheduling instruction.
  • the parameter is FDRA2, and the transmission parameter of cell 3 is FDRA3.
  • the multiple cells being scheduled are: cell 1, cell 2 and cell 3
  • the transmission parameter of cell 1 is TDRA1, the transmission parameter of cell 2 is TDRA2, and the transmission parameter of cell 3 is TDRA3, then
  • the transmission parameters of the above three cells can be indicated by adding three pieces of first indication information to the scheduling instruction.
  • the terminal device can determine that among the multiple scheduled cells, the transmission parameter of cell 1 is TDRA1, and the transmission parameter of cell 2 is TDRA1 by parsing the three first indication information obtained in the scheduling instruction.
  • the parameter is TDRA2, and the transmission parameter of cell 3 is TDRA3.
  • different information fields in the scheduling instructions can carry the transmission configurations of different cells respectively.
  • information domain 1 can be used to carry the transmission configuration of cell 1;
  • information domain 2 can be used to carry the transmission configuration of cell 2, etc. This disclosure does not limit this.
  • the network device can send a scheduling instruction containing multiple first indication information to the terminal device. Then, after receiving the scheduling instruction, the terminal device can determine the multiple first indication information contained therein by parsing the scheduling instruction. One indication information, and then the transmission parameters of each of the multiple scheduled cells can be determined according to the indication of each first indication information, thereby realizing instructing multiple different cells that are jointly scheduled in one scheduling instruction.
  • the transmission mechanism effectively reduces the signaling overhead of indication information when supporting multi-cell scheduling.
  • Figure 8 is a schematic flowchart of an indication method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 8, the method may include but is not limited to the following steps:
  • Step 801 Determine a reference cell among multiple scheduled cells.
  • the network device can determine the reference cell from among the multiple scheduled cells according to the protocol; or, it can also determine any cell among the multiple scheduled cells as the reference cell, etc. , this disclosure does not limit this.
  • Step 802 Determine the transmission parameters of the reference cell.
  • the network device may further determine the transmission parameters of the reference cell.
  • the transmission parameters of the reference cell may be determined according to the agreement, and this disclosure does not limit this.
  • Step 803 Send a scheduling instruction to the terminal device.
  • the scheduling instruction includes the reference cell, the transmission parameters of the reference cell, and the transmission configuration information.
  • the transmission configuration information includes second indication information, and the second indication information is used to indicate multiple cells. Based on the offset values of other cells, the terminal device determines the transmission parameters of each of the multiple scheduled cells according to the scheduling instructions.
  • the scheduling instruction can be DCI.
  • the network device can add the reference cell, the transmission parameters and transmission configuration information of the reference cell to a scheduling instruction, and send the scheduling instruction to the terminal device so that the The terminal device can determine the transmission parameters of each of the multiple scheduled cells based on the reference cell, the transmission parameters of the reference cell, and the offset values of other cells among the multiple cells indicated by the second indication information, thereby achieving This method indicates the transmission mechanism of multiple jointly scheduled cells in one scheduling instruction, thereby effectively reducing the signaling overhead of the indication information when multi-cell scheduling is supported.
  • the transmission parameter may be at least one of MCS, FDRA and TDRA.
  • the scheduling instruction may be a scheduling instruction for one cell among multiple scheduled cells.
  • the scheduling instruction sent by the network device to the terminal device may be the scheduling instruction of cell 1, or it may also be the scheduling instruction of cell 2. , or it can also be the scheduling instruction of cell 3, etc., which is not limited in this disclosure.
  • the offset values corresponding to the above other cells are: offset value 1, offset value 2 and offset value respectively. If the shift value is 3, then the second indication information may be used to indicate the offset values of other cells 2, 3 and 4 among the multiple scheduled cells, etc. This disclosure does not limit this.
  • the offset value may be an offset value between starting positions allocated in the frequency domain, etc., which is not limited in this disclosure.
  • the network device can add a correspondence between the offset value and the information field value in the scheduling instruction.
  • the correspondence between the information domain value and the offset value is as shown in Table 1, then the correspondence can be added to the scheduling command, and by sending the scheduling command to the terminal device, the terminal device can obtain
  • the disclosure does not limit the correspondence between the information domain value and the offset value, etc.
  • the network device can first determine a reference cell among multiple scheduled cells, and then determine the transmission parameters of the reference cell, and then send a scheduling instruction to the terminal device.
  • the scheduling instruction includes the reference cell and the transmission of the reference cell. Parameters and transmission configuration information, wherein the transmission configuration information includes second indication information, and the second indication information is used to indicate offset values of other cells among multiple cells.
  • the terminal equipment according to the transmission configuration information included in the scheduling instruction, Transmission parameters for each of the plurality of scheduled cells are determined.
  • the network device can send a scheduling instruction to the terminal device, so that the terminal device can make the terminal device perform the operation based on the reference cell contained in the scheduling instruction, the transmission parameters of the reference cell, and other cells among the multiple cells indicated by the second indication information in the transmission configuration information.
  • the offset value of the cell determines the transmission parameters of each cell among the multiple scheduled cells. That is, in one scheduling instruction, it is possible to indicate the transmission mechanism of multiple different cells that are jointly scheduled, thereby supporting multiple In the case of cell scheduling, the signaling overhead of indication information can be effectively reduced.
  • FIG. 9 is a schematic flowchart of an indication method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 9, the method may include but is not limited to the following steps:
  • Step 901 Send a transmission parameter configuration table to the terminal device, so that the terminal device determines the transmission parameters of each cell among the multiple scheduled cells based on the transmission configuration information and the transmission parameter configuration table.
  • the transmission parameter configuration table may include transmission parameters of each of the multiple cells to be scheduled.
  • the obtained transmission parameter configuration table can be as shown in Table 2, then the transmission parameter configuration table can be added to the scheduling command, and then the scheduling command can be sent to the terminal device, so that the terminal device can perform the configuration according to the scheduling command.
  • the transmission configuration information and transmission parameter configuration table determine the transmission parameters of each cell among the multiple scheduled cells, etc. This disclosure does not limit this.
  • the transmission parameter configuration table can also include reference transmission parameters, offset values, etc.
  • the transmission parameter configuration table can be as shown in Table 3, then the transmission parameter configuration table can be added to the scheduling instruction, The scheduling instruction can then be sent to the terminal device, so that the terminal device determines the transmission parameters of each of the multiple scheduled cells according to the reference transmission parameters and offset values in the scheduling instruction, etc.
  • the transmission parameters may include at least one of MCS, TDRA and FDRA.
  • an FDRA configuration table for multicarrier (MC) scheduling can also be pre-configured. Different values in the table can represent FDRA selection for multi-cell scheduling.
  • the FDRA configuration table may contain FDRA, or may contain reference FDRA and offset values, etc. For specific content and implementation methods, please refer to the descriptions in Table 2 and Table 3 above, which will not be described again here.
  • a transmission parameter configuration table including TDRA, or TDRA and offset value can also be pre-configured.
  • TDRA transmission parameter configuration table
  • offset value can also be pre-configured.
  • the network device sends a transmission parameter configuration table to the terminal device, so that the terminal device determines the transmission parameters of each of the multiple scheduled cells based on the transmission configuration information and the transmission parameter configuration table in the scheduling instruction. , thereby realizing the transmission mechanism of multiple jointly scheduled different cells in one scheduling instruction.
  • the signaling overhead of the indication information is effectively reduced.
  • FIG. 10 is a schematic structural diagram of a terminal device 1000 provided by an embodiment of the present disclosure.
  • the terminal device 1000 shown in FIG. 10 may include a transceiver module 1001 and a processing module 1002.
  • the transceiving module 1001 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1001 may implement the sending function and/or the receiving function.
  • Terminal equipment 1000 includes:
  • Transceiver module 1001 used to receive scheduling instructions.
  • Processing module 1002 configured to obtain transmission configuration information from the scheduling instructions
  • the processing module 1002 is further configured to determine the transmission parameters of each of the multiple scheduled cells according to the transmission configuration information.
  • the transmission configuration information includes:
  • a plurality of first indication information, the plurality of first indication information are respectively used to indicate a plurality of transmission parameters of the cells.
  • processing module 1002 is specifically used for:
  • Transmission parameters of the other cells are determined according to the reference transmission parameters and the second indication information.
  • processing module 1002 is specifically used for:
  • the transmission parameters of each cell are determined according to the transmission configuration information and the transmission parameter configuration table.
  • the transmission parameter configuration table includes reference transmission parameters and offset values.
  • the scheduling instruction is a scheduling instruction for one cell among the plurality of scheduled cells.
  • the transmission parameters include at least one of the following:
  • Modulation coding method MCS Modulation coding method
  • Time domain resource allocation TDRA Time domain resource allocation
  • Frequency domain resource allocation FDRA Frequency domain resource allocation
  • the scheduling instruction is downlink control information DCI.
  • the terminal device may first receive the scheduling instruction, and then obtain the transmission configuration information from the scheduling instruction, and determine the transmission parameters of each of the multiple scheduled cells according to the transmission configuration information. Therefore, by parsing the received scheduling instructions, the transmission configuration information can be determined, and then based on the transmission configuration information, the transmission parameters of each of the multiple scheduled cells can be determined, thereby supporting multi-cell scheduling. In this case, the signaling overhead of the indication information can be effectively reduced. The signaling overhead of indication information can be effectively reduced.
  • FIG. 11 is a schematic structural diagram of a network device 1100 provided by an embodiment of the present disclosure.
  • the network device 1100 shown in FIG. 11 may include a transceiver module 1101 and a processing module 1102.
  • the transceiving module 1101 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1101 may implement the sending function and/or the receiving function.
  • Network equipment 1100 including:
  • the transceiver module 1101 is configured to send a scheduling instruction to a terminal device, where the terminal device determines the transmission parameters of each of the multiple scheduled cells according to the transmission configuration information contained in the scheduling instruction.
  • the transmission configuration information includes:
  • a plurality of first indication information, the plurality of first indication information are respectively used to indicate a plurality of transmission parameters of the cells.
  • a processing module 1102 is also included:
  • the processing module 1102 is used to determine a reference cell among the plurality of cells
  • the processing module 1102 is also used to determine the transmission parameters of the reference cell
  • the transceiver module 1101 is specifically configured to send the scheduling instruction to the terminal device.
  • the scheduling instruction includes the reference cell, the transmission parameters of the reference cell, and the transmission configuration information, wherein the transmission
  • the configuration information includes second indication information, and the second indication information is used to indicate offset values of other cells among the plurality of cells.
  • the transceiver module 1101 is specifically used for:
  • the transmission parameter configuration table includes reference transmission parameters and offset values.
  • the scheduling instruction is a scheduling instruction for one cell among the plurality of scheduled cells.
  • the transmission parameters include at least one of the following:
  • Modulation coding method MCS Modulation coding method
  • Time domain resource allocation TDRA Time domain resource allocation
  • Frequency domain resource allocation FDRA Frequency domain resource allocation
  • the scheduling instruction is downlink control information DCI.
  • the network device can send a scheduling instruction to the terminal device, and the scheduling instruction can include transmission configuration information. Then the terminal device can determine each of the multiple cells to be scheduled based on the transmission configuration information included in the scheduling instruction.
  • the transmission parameters that is, in one scheduling instruction, the transmission mechanism of multiple different cells that are jointly scheduled can be implemented, so that when multi-cell scheduling is supported, the signaling overhead of the indication information can be effectively reduced.
  • FIG 12 is a schematic structural diagram of another communication device 1200 provided by an embodiment of the present disclosure.
  • the communication device 1200 may be a terminal device, a network device, a chip, a chip system, or a processor that supports a terminal device to implement the above method, or a chip, a chip system, or a processor that supports a network device to implement the above method.
  • Devices etc. The device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1200 may include one or more processors 1201.
  • the processor 1201 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1200 may also include one or more memories 1202, on which a computer program 1204 may be stored.
  • the processor 1201 executes the computer program 1204, so that the communication device 1200 performs the steps described in the above method embodiments. method.
  • the memory 1202 may also store data.
  • the communication device 1200 and the memory 1202 can be provided separately or integrated together.
  • the communication device 1200 may also include a transceiver 1205 and an antenna 1206.
  • the transceiver 1205 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1205 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1200 may also include one or more interface circuits 1207.
  • the interface circuit 1207 is used to receive code instructions and transmit them to the processor 1201 .
  • the processor 1201 executes the code instructions to cause the communication device 1200 to perform the method described in the above method embodiment.
  • the communication device 1200 is a terminal device: the processor 1201 is used to execute steps 202 and 203 in Figure 2; steps 302 and 303 in Figure 3; steps 402, 403, 404 and 405 in Figure 4; Figure Step 502 and step 503 in 5, etc.
  • the transceiver 705 is used to perform step 201 in Figure 2; step 301 in Figure 3; step 401 in Figure 4; step 501 in Figure 5, etc.
  • the communication device 1200 is a network device: the processor 1201 is used to execute step 801, step 802, etc. in FIG. 8 .
  • the transceiver 705 is used to perform step 601 in Figure 6; step 701 in Figure 7; step 803 in Figure 8; step 901 in Figure 9, etc.
  • the processor 1201 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1201 may store a computer program 1203, and the computer program 1203 runs on the processor 1201, causing the communication device 1200 to perform the method described in the above method embodiment.
  • the computer program 1203 may be solidified in the processor 1201, in which case the processor 1201 may be implemented by hardware.
  • the communication device 1200 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 12 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 13 refer to the schematic structural diagram of the chip shown in FIG. 13 .
  • the chip shown in Figure 13 includes a processor 1301 and an interface 1302.
  • the number of processors 1301 may be one or more, and the number of interfaces 1302 may be multiple.
  • Interface 1302 is used to execute step 201 in Figure 2; step 301 in Figure 3; step 401 in Figure 4; step 501 in Figure 5, etc.
  • the interface 1302 is used to execute step 601 in Figure 6; step 701 in Figure 7; step 803 in Figure 8; step 901 in Figure 9, etc.
  • the chip also includes a memory 1303, which is used to store necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种指示方法,可应用于通信技术领域,其中,由终端设备执行的方法包括:接收调度指令;从所述调度指令之中获取传输配置信息,并根据所述传输配置信息确定被调度的多个小区之中每个所述小区的传输参数,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。

Description

一种指示方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种指示方法及装置。
背景技术
在通信***中,对于多小区联合调度的情况,不同的场景或者不同的信息域,通常可能需要不同的信令,才能进行小区调度机制的指示,从而可能造成大量的信令开销。由此,如何降低多小区联合调度时所需的信令开销,显得至关重要。
发明内容
本公开实施例提供一种指示方法及装置。
第一方面,本公开实施例提供一种指示方法,该方法由终端设备执行,方法包括:
接收调度指令;
从所述调度指令之中获取传输配置信息;
根据所述传输配置信息确定被调度的多个小区之中每个所述小区的传输参数。
本公开中,终端设备可以先接收调度指令,之后可以从调度指令之中获取传输配置信息,并根据传输配置信息确定被调度的多个小区之中每个小区的传输参数,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
可选的,所述传输配置信息包括:
多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
可选的,所述根据所述传输配置信息确定多个小区之中每个所述小区的传输参数,包括:
确定所述多个小区之中的参考小区;
获取所述参考小区的传输参数,并作为参考传输参数;
从所述传输配置信息之中获取第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值;
根据所述参考传输参数和所述第二指示信息确定所述其他小区的传输参数。
可选的,所述根据所述传输配置信息确定多个小区之中每个所述小区的传输参数,包括:
获取传输参数配置表;
根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
可选的,所述传输参数配置表包括参考传输参数和偏移值。
可选的,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
可选的,所述传输参数包括以下之中的至少一项:
调制编码方式MCS;
时域资源分配TDRA;
频域资源分配FDRA。
可选的,所述调度指令为下行控制信息DCI。
第二方面,本公开实施例提供一种指示方法,该方法由网络设备执行,方法包括:
向终端设备发送调度指令,其中,所述终端设备根据所述调度指令中包含的传输配置信息,确定被调度的多个小区之中每个所述小区的传输参数。
本公开中,网络设备可以向终端设备发送调度指令,该调度指令中可以包含传输配置信息,那么终端设备可以根据调度指令中包含的传输配置信息,确定被调度的多个小区之中每个小区的传输参数,也即在一条调度指令中,可以实现指示多个被联合调度的不同小区的传输机制,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
可选的,所述传输配置信息包括:
多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
可选的,所述向终端设备发送调度指令,包括:
确定所述多个小区之中的参考小区;
确定所述参考小区的传输参数;
向所述终端设备发送所述调度指令,所述调度指令中包含所述参考小区、所述参考小区的传输参数及所述传输配置信息,其中,所述传输配置信息之中包含第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值。
可选的,所述向终端设备发送调度指令,包括:
向所述终端设备发送传输参数配置表,以使所述终端设备根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
可选的,所述传输参数配置表包括参考传输参数和偏移值。
可选的,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
可选的,所述传输参数包括以下之中的至少一项:
调制编码方式MCS;
时域资源分配TDRA;
频域资源分配FDRA。
可选的,所述调度指令为下行链路控制信息DCI。
第三方面,本公开实施例提供一种终端设备,包括:
收发模块,用于接收调度指令;
处理模块,用于从所述调度指令之中获取传输配置信息;
所述处理模块,还用于根据所述传输配置信息确定被调度的多个小区之中每个所述小区的传输参数。
本公开中,可以先接收调度指令,之后可以从调度指令之中获取传输配置信息,并根据传输配置信息确定被调度的多个小区之中每个小区的传输参数,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
可选的,所述传输配置信息包括:
多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
可选的,所述处理模块,具体用于:
确定所述多个小区之中的参考小区;
获取所述参考小区的传输参数,并作为参考传输参数;
从所述传输配置信息之中获取第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值;
根据所述参考传输参数和所述第二指示信息确定所述其他小区的传输参数。
可选的,所述处理模块,具体用于:
获取传输参数配置表;
根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
可选的,所述传输参数配置表包括参考传输参数和偏移值。
可选的,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
可选的,所述传输参数包括以下之中的至少一项:
调制编码方式MCS;
时域资源分配TDRA;
频域资源分配FDRA。
可选的,所述调度指令为下行控制信息DCI。
第四方面,本公开实施例提供一种网络设备,包括:
收发模块,用于向终端设备发送调度指令,其中,所述终端设备根据所述调度指令中包含的传输配置信息,确定被调度的多个小区之中每个所述小区的传输参数。
可选的,所述传输配置信息包括:
多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
可选的,还包括处理模块:
所述处理模块,用于确定所述多个小区之中的参考小区;
所述处理模块,还用于确定所述参考小区的传输参数;
所述收发模块,具体用于向所述终端设备发送所述调度指令,所述调度指令中包含所述参考小区、所述参考小区的传输参数及所述传输配置信息,其中,所述传输配置信息之中包含第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值。
可选的,所述收发模块,具体用于:
向所述终端设备发送传输参数配置表,以使所述终端设备根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
可选的,所述传输参数配置表包括参考传输参数和偏移值。
可选的,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
可选的,所述传输参数包括以下之中的至少一项:
调制编码方式MCS;
时域资源分配TDRA;
频域资源分配FDRA。
可选的,所述调度指令为下行链路控制信息DCI。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执 行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信***,该***包括第三方面所述的终端设备和第四方面所述的网络设备,或者,该***包括第五方面所述的通信装置和第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置和第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置和第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构示意图;
图2是本公开实施例提供的一种指示方法的流程示意图;
图3是本公开实施例提供的一种指示方法的流程示意图;
图4是本公开实施例提供的一种指示方法的流程示意图;
图5是本公开实施例提供的一种指示方法的流程示意图;
图6是本公开实施例提供的一种指示方法的流程示意图;
图7是本公开实施例提供的一种指示方法的流程示意图;
图8是本公开实施例提供的一种指示方法的流程示意图;
图9是本公开实施例提供的一种指示方法的流程示意图;
图10是本公开实施例提供的一种终端设备的结构示意图;
图11是本公开实施例提供的一种网络设备的结构示意图;
图12是本公开实施例提供的另一种通信装置的结构示意图;
图13是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
取决于语境,如在此所使用的词语“如果”及“响应于”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本公开涉及的术语。
1、下行控制信息(downlink control information,DCI)
DCI可以包括上下行资源分配、混合自动重传请求(hybrid automatic repeat request,HARQ)信息、功率控制等指示信息。
2、调制编码方式(modulation and coding ccheme,MCS)
通常,MCS定义了一个资源单位(resource element,RE)可以承载的有效比特数。具体的,MCS可以定义调制方案(modulation)与码率(code rate)两个部分。
为了更好的理解本公开实施例公开的一种指示方法,下面首先对本公开实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception  point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
需要说明的是,本公开中,任一个实施例提供的一种指示方法可以单独执行,或是结合其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。下面结合附图对本公开所提供的一种指示方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种指示方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,接收调度指令。
通常,终端设备可以通过接收物理下行控制信道(physical downlink control channel,PDCCH)上承载的DCI,获取到调度指令等等,本公开对此不做限定。
可选的,调度指令可以为下行控制信息(downlink control information,DCI),从而终端设备在接收到DCI的情况下,可以确定接收到调度指令等等,本公开对此不做限定。
步骤202,从调度指令之中获取传输配置信息。
步骤203,根据传输配置信息确定被调度的多个小区之中每个小区的传输参数。
其中,传输配置信息可以包括每个被调度小区对应的传输信息,或者,可以包括多个被调度小区中的参考小区对应的传输信息等,本公开对此不做限定。
可选的,传输参数可以包括以下之中的至少一项:调制编码方式MCS、时域资源分配(time domain resource allocation,TDRA)及频域资源分配(frequency domain resource allocation,FDRA)。
比如,传输参数可以为MCS,或者也可以为TDRA,或者也可以为FDRA,或者也可以为MCS及TDRA,或者还可以为MCS及FDRA,或者还可以为TDRA及FDRA,或者还可以为MCS、 TDRA及FDRA等等,本公开对此不做限定。
本公开实施例,终端设备可以先接收调度指令,之后可以从调度指令之中获取传输配置信息,并根据传输配置信息确定被调度的多个小区之中每个小区的传输参数。由此,通过对接收的调度指令进行解析,可以确定出传输配置信息,之后基于传输配置信息,可以确定出被调度的多个小区之中每个小区的传输参数,也即可以实现在一条调度指令中,指示多个被联合调度的不同小区的传输机制,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
请参见图3,图3是本公开实施例提供的一种指示方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,接收调度指令。
可选的,调度指令可以为DCI。
步骤302,从调度指令之中获取多个第一指示信息。
步骤303,根据多个第一指示信息确定被调度的多个小区之中每个小区的传输参数。
可选的,传输配置信息可以包括多个第一指示信息,多个第一指示信息可以分别用于指示被调度的多个小区的传输参数。比如,第一指示信息1可以用于指示被调度的多个小区中小区1的传输参数、第一指示信息2可以用于指示被调度的多个小区中小区2的传输参数等等,本公开对此不做限定。
从而,本公开实施例中,终端设备在接收到调度指令后,通过对该调度指令进行解析,可以确定出其中包含的多个第一指示信息,之后可以根据每个第一指示信息的指示,可以确定出被调度的多个小区中每个小区的传输参数等等,本公开对此不做限定。
可选的,传输参数可以包括MCS、TDRA及FDRA中的至少一项。
举例来说,在被调度的多个小区分别为:小区1、小区2、小区3和小区4的情况下,若通过对从调度指令之中获取的多个第一指示信息,进行解析后得到:MCS1、MCS2、MCS3、MCS4,那么可以确定被调度的多个小区中,小区1的传输参数为MCS1,小区2的传输参数为MCS2,小区3的传输参数为MCS3,小区4的传输参数为MCS4。
或者,在被调度的多个小区分别为:小区1、小区2和小区3的情况下,若通过对从调度指令之中获取的多个第一指示信息进行解析后得到:FDRA1、FDRA2、FDRA3,那么可以确定被调度的多个小区中,小区1的传输参数为FDRA1,小区2的传输参数为FDRA2,小区3的传输参数为FDRA3。
或者,在被调度的多个小区分别为:小区1、小区2和小区3的情况下,若通过对从调度指令之中获取的多个第一指示信息进行解析后得到:TDRA1、TDRA2、TDRA3,那么可以确定被调度的多个小区中,小区1的传输参数为TDRA1,小区2的传输参数为TDRA2,小区3的传输参数为TDRA3。
需要说明的是,上述示例只是示意性说明,不能作为对本公开实施例中被调度的小区及传输参数等的限定。
可选的,在调度指令中不同的信息域,可以分别承载不同小区的传输配置,比如信息域1可以用于承载小区1的传输配置;信息域2可以用于承载小区2的传输配置等等,本公开对此不做限定。
本公开实施例,终端设备可以先接收调度指令,之后可以从调度指令中获取多个第一指示信息,并根据多个第一指示信息确定被调度的多个小区之中每个小区的传输参数。由此,通过对接收的调度指令进行解析,可以确定出包含的多个第一指示信息,进而基于每个第一指示信息,可以确定出被调度的多个小区之中每个小区的传输参数,从而在支持多 小区调度的情况下,可以有效降低指示信息的信令开销。
请参见图4,图4是本公开实施例提供的一种指示方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,接收调度指令。
可选的,调度指令可以为DCI。
步骤402,确定多个小区之中的参考小区。
可以理解的是,对于被调度的多个小区,可以先确定出多个小区之中的参考小区。比如可以通过对接收的调度指令进行解析,以确定被调度的多个小区之中的参考小区。或者,也可以基于协议约定,或者网络设备配置等,确定多个小区之中的参考小区,本公开对此不做限定。
步骤403,获取参考小区的传输参数,并作为参考传输参数。
可选的,传输参数可以为MCS、FDRA及TDRA之中的至少一项。
其中,可以通过对接收的调度指令进行解析,以确定出多个小区之中的参考小区的传输参数,之后可以将该参考小区的传输参数,作为被调度的多个小区对应的参考传输参数。比如,参考小区为待调度的多个小区中的小区1,其对应的传输参数为:TDRA1,那么可以将“TDRA1”作为参考传输参数等等,本公开对此不做限定。
步骤404,从传输配置信息之中获取第二指示信息,第二指示信息用于指示多个小区之中其他小区的偏移值。
可以理解的是,终端设备通过对调度指令进行解析,可以获取传输配置信息,之后基于传输配置信息中第二指示信息的指示,可以获取到多个小区之中其他小区相对于的偏移值,也即其他小区的传输参数相对于参考传输参数的偏移值等等,本公开对此不做限定。
另外,在传输参数为FDRA的情况下,偏移值可以为频域分配的起始位置之间的偏移值等等,本公开对此不做限定。
举例来说,若被调度的多个小区之中其他小区分别为:小区2、小区3和小区4,若终端设备通过对调度指令进行解析,获取到第二指示信息指示:偏移值1、偏移值2和偏移值3,那么可以确定出:小区2的偏移值为偏移值1、小区3的偏移值为偏移值2、小区4的偏移值为偏移值3等等,本公开对此不做限定。
步骤405,根据参考传输参数和第二指示信息确定其他小区的传输参数。
其中,可以将第二指示信息指示的任一其他小区的偏移值与参考传输参数间的和,作为该任一其他小区的传输参数。本公开对此不做限定。
举例来说,若参考传输参数为:MCS1,第二指示信息指示的待调度的多个小区之中其他小区1的偏移值为:偏移值2,那么可以确定该其他小区1的传输参数为:MCS1+偏移值2。或者,若参考传输参数为FDRA2,第二指示信息指示的待调度的多个小区之中其他小区2的偏移值为:偏移值3,那么可以确定该其他小区2的传输参数为:FDRA2+偏移值3。本公开对此不做限定。
可选的,在不同信息域上承载不同小区的传输配置的情况下,终端设备可以通过网络设备的高层信令或物理层信令,确定偏移值和信息域值间的对应关系。之后可以通过对应关系、调度指令中的信息域值以及参考小区的参考传输参数,确定其他小区的传输参数。
举例来说,调度指令中的信息域值与偏移值间的对应关系,可以如下表1所示:
表1
信息域值 偏移值
00 偏移值1
01 偏移值2
10 偏移值3
11 偏移值4
比如,在待调度的多个小区中的参考小区为:小区5,小区5的参考传输参数为:MCS2的情况下,若信息域值“00”上承载的是待调度的多个小区中的小区1的传输配置,那么可以确定该小区1对应的偏移值为“偏移值1”,该小区1的传输参数为:MCS2+偏移值1。若信息域值“01”上承载的是待调度的多个小区中的小区2的传输配置,那么可以确定该小区2对应的偏移值为“偏移值2”,该小区2的传输参数为:MCS2+偏移值2。
需要说明的是,上述示例只是示意性说明,不能作为对本公开实施例中信息域值、偏移值、参考传输参数、小区的传输参数等的限定。
可以理解的是,表1中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表1中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表1中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表1中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
可选的,终端设备也可以通过协议约定,或者网络设备配置,获取小区的传输信息与承载的信息域值间的关系等等,本公开对此不做限定。
可选的,也可以针对聚合场景,设置不同的偏移值,以更好的适配链路的传输配置。比如,在频带内intra-band的聚合情况,和频带间inter-band的聚合情况下,可以设置不同的偏移值范围等等,本公开对此不做限定。
本公开实施例,终端设备可以先接收调度指令,之后可以确定多个小区之中的参考小区,获取参考小区的传输参数,并作为参考传输参数,之后可以从传输配置信息之中获取第二指示信息,第二指示信息用于指示多个小区之中其他小区的偏移值,再根据参考传输参数和第二指示信息确定其他小区的传输参数。由此,通过对接收的调度指令进行解析,可以获取到参考小区及参考传输参数,之后基于第二指示信息指示的偏移值,可以确定出被调度的多个小区之中其他小区的传输参数,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
请参见图5,图5是本公开实施例提供的一种指示方法的流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,接收调度指令。
可选的,调度指令可以为DCI。
可选的,调度指令可以为多个被调度的小区之中的一个小区的调度指令。
举例来说,若多个被调度小区分别为:小区1、小区2、小区3和小区4,那么终端设备接收的调度指令可以为小区1的调度指令,或者也可以为小区2的调度指令,或者也可以为小区3的调度指令,或者还可以为小区4的调度指令等等,本公开对此不做限定。
步骤502,获取传输参数配置表。
其中,传输参数配置表,可以包括待调度的多个小区中每个小区的传输参数。比如,获取的传输参数配置表,可以如下表2所示:
表2
信息域值 MCS
00 MCS1,MCS2,MCS3
01 MCS1
10 MCS1,MCS2
11 MCS2
需要说明的是,上述表2只是示例性说明,不能作为对本公开实施例中信息域值、MCS以及信息域值与MCS间对应关系等的限定。
可选的,传输参数配置表,也可以包括参考传输参数和偏移值等等,本公开对此不做限定。
举例来说,获取的传输参数配置表,可以如下表3所示,
表3
信息域值 MCS
00 MCS1,偏移值1,偏移值2
01 MCS1
10 MCS1,偏移值1
11 MCS2
需要说明的是,上述表3只是示例性说明,不能作为对本公开实施例中信息域值、MCS、偏移值等的限定。
步骤503,根据传输配置信息和传输参数配置表确定每个小区的传输参数。
可选的,传输参数可以包括MCS、TDRA及FDRA中的至少一项。
举例来说,在传输参数配置表如表2所示的情况下,若通过对传输配置信息进行解析,确定出信息域值“00”承载小区1、小区2、小区3的传输配置信息,那么可以确定小区1的传输参数为MCS1、小区2的传输参数为MCS2、小区3的传输参数为MCS3。或者,在传输参数配置表如表3所示的情况下,若通过对传输配置信息进行解析,确定出信息域值“00”承载小区1和小区2的传输配置信息,那么可以确定小区1的传输参数为:MCS1+偏移值1、小区2的传输参数为:MCS2+偏移值2。或者,若信息域值“11”承载小区3的传输配置信息,那么可以确定小区3的传输参数为:MC2。
需要说明的是,上述示例只是示意性说明,不能作为对本公开实施例中确定每个小区的传输参数的方式等的限定。
可选的,在传输参数为FDRA的情况下,也可以预先配置多载波(mu lt icarr ier,MC)调度的FDRA配置表,表格中的不同值可以代表多小区调度的FDRA选择的情况。FDRA配置表中可以包含FDRA,或者也可以包含参考FDRA和偏移值等等,具体内容及实现方式可以参照上述表2和表3的说明,此处不再赘述。
可选的,在传输参数为TDRA的情况下,也可以预先配置包含TDRA,或者TDRA和偏移值的传输参数配置表,具体内容及实现方式可以参照上述表2和表3的说明,此处不再赘述。
本公开实施例,终端设备可以先接收调度指令,之后可以获取传输参数配置表,之后可以根据传输配置信息和传输参数配置表确定每个小区的传输参数。由此,通过对接收的调度指令进行解析,可以获取到传输参数配置表,再结合配置信息,可以确定出被调度的多个小区之中每个小区的传输参数,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
请参见图6,图6是本公开实施例提供的一种指示方法的流程示意图,该方法由网络设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤601,向终端设备发送调度指令,其中,终端设备根据调度指令中包含的传输配置信息,确定被调度的多个小区之中每个小区的传输参数。
可以理解的是,网络设备可以在调度指令中添加被调度的多个小区的传输配置信息,之后可以将该调度指令发送给终端设备。那么终端设备在接收到该调度指令后,通过对其进行解析,可以获取到该调度指令中包含的传输配置信息,进而根据该传输配置信息,可以确定出被调度的多个小区之中每个小区的传输参数,也即可以实现在一条调度指令中,指示多个被联合调度的不同小区的传输机制,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
可选的,调度指令可以为下行控制信息(downlink control information,DCI),从而终端设备在接收到DCI的情况下,可以确定接收到调度指令等等,本公开对此不做限定。
可选的,传输参数可以包括以下之中的至少一项:调制编码方式MCS、时域资源分配(time domain resource allocation,TDRA)及频域资源分配(frequency domain resource allocation,FDRA)。
比如,传输参数可以为MCS,或者也可以为TDRA,或者也可以为FDRA,或者也可以为MCS及TDRA,或者还可以为MCS及FDRA,或者还可以为TDRA及FDRA,或者还可以为MCS、TDRA及FDRA等等,本公开对此不做限定。
本公开实施例,网络设备可以向终端设备发送调度指令,该调度指令中可以包含传输配置信息,那么终端设备可以根据调度指令中包含的传输配置信息,确定被调度的多个小区之中每个小区的传输参数,也即在一条调度指令中,可以实现指示多个被联合调度的不同小区的传输机制,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
请参见图7,图7是本公开实施例提供的一种指示方法的流程示意图,该方法由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,向终端设备发送调度指令,调度指令中包括多个第一指示信息,多个第一指示信息分别用于指示待调度的多个小区的传输参数,其中,终端设备根据调度指令中包含的多个第一指示信息,确定被调度的多个小区之中每个小区的传输参数。
可选的,调度指令可以为DCI。
可选的,调度指令的传输配置信息中,可以包括多个第一指示信息,多个第一指示信息可以分别用于指示被调度的多个小区的传输参数。比如,可以用第一指示信息1指示被调度的多个小区中小区1的传输参数、可以用第一指示信息2指示被调度的多个小区中小区2的传输参数等等,本公开对此不做限定。
从而,本公开实施例中,网络设备可以向终端设备发送包含多个第一指示信息的调度指令,那么终端设备在接收到调度指令后,通过对该调度指令进行解析,可以确定出其中包含的多个第一指示信息,之后可以根据每个第一指示信息的指示,确定出被调度的多个小区中每个小区的传输参数,从而实现了在一条调度指令中,指示多个被联合调度的不同小区的传输机制,在支持多小区调度的情况下,有效降低了指示信息的信令开销。
可选的,传输参数可以包括MCS、TDRA及FDRA中的至少一项。
举例来说,在被调度的多个小区分别为:小区1、小区2、小区3和小区4的情况下,若小区1的传输参数为MCS1,小区2的传输参数为MCS2,小区3的传输参数为MCS3,小区4的传输参数为MCS4,那么可以通过第一指示信息1、第一指示信息2、第一指示信息3及第一指示信息4,进行上述4个小区传输参数的指示。那么终端设备在接收到该调度指令后,通过对调度指令之中获取的多个第一指示信息进行解析,可以确定被调度的多个 小区中,小区1的传输参数为MCS1,小区2的传输参数为MCS2,小区3的传输参数为MCS3,小区4的传输参数为MCS4。
或者,在被调度的多个小区分别为:小区1、小区2和小区3的情况下,若小区1的传输参数为FDRA1,小区2的传输参数为FDRA2,小区3的传输参数为FDRA3,那么可以通过在调度指令中添加三个第一指示信息,进行上述三个小区传输参数的指示。那么终端设备在接收到该调度指令后,通过对调度指令之中获取的三个第一指示信息进行解析,可以确定被调度的多个小区中,小区1的传输参数为FDRA1,小区2的传输参数为FDRA2,小区3的传输参数为FDRA3。
或者,在被调度的多个小区分别为:小区1、小区2和小区3的情况下,若小区1的传输参数为TDRA1,小区2的传输参数为TDRA2,小区3的传输参数为TDRA3,那么可以通过在调度指令中添加三个第一指示信息,指示上述三个小区的传输参数。那么终端设备在接收到该调度指令后,通过对调度指令之中获取的三个第一指示信息进行解析,可以确定被调度的多个小区中,小区1的传输参数为TDRA1,小区2的传输参数为TDRA2,小区3的传输参数为TDRA3。
需要说明的是,上述示例只是示意性说明,不能作为对本公开实施例中被调度的小区及传输参数等的限定。
可选的,调度指令中不同的信息域,可以分别承载不同小区的传输配置,比如信息域1可以用于承载小区1的传输配置;信息域2可以用于承载小区2的传输配置等等,本公开对此不做限定。
本公开实施例,网络设备可以向终端设备发送包含多个第一指示信息的调度指令,那么终端设备在接收到调度指令后,通过对该调度指令进行解析,可以确定出其中包含的多个第一指示信息,之后可以根据每个第一指示信息的指示,确定出被调度的多个小区中每个小区的传输参数,从而实现了在一条调度指令中,指示多个被联合调度的不同小区的传输机制,在支持多小区调度的情况下,有效降低了指示信息的信令开销。
请参见图8,图8是本公开实施例提供的一种指示方法的流程示意图,该方法由网络设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤801,确定被调度的多个小区之中的参考小区。
可选的,网络设备可以按照协议约定,从被调度的多个小区之中,确定出参考小区;或者,也可以将被调度的多个小区之中的任一小区,确定为参考小区等等,本公开对此不做限定。
步骤802,确定参考小区的传输参数。
可以理解的是,网络设备在确定在从待调度的多个小区之中确定出参考小区后,可以进一步确定该参考小区的传输参数。比如,可以按照协议约定,确定参考小区的传输参数等等,本公开对此不做限定。
步骤803,向终端设备发送调度指令,调度指令中包含参考小区、参考小区的传输参数及传输配置信息,其中,传输配置信息之中包含第二指示信息,第二指示信息用于指示多个小区之中其他小区的偏移值,终端设备根据调度指令,确定被调度的多个小区之中每个小区的传输参数。
可选的,调度指令可以为DCI。
其中,网络设备在确定出参考小区、参考小区的传输参数后,可以将参考小区、参考小区的传输参数及传输配置信息添加至一条调度指令中,并将该调度指令发送给终端设备,以使终端设备可以基于参考小区、参考小区的传输参数及第二指示信息指示的多个小区之 中其他小区的偏移值,确定出被调度的多个小区之中每个小区的传输参数,从而实现了在一条调度指令中,指示多个被联合调度的不同小区的传输机制,进而在支持多小区调度的情况下,有效降低了指示信息的信令开销。
可选的,传输参数可以为MCS、FDRA及TDRA之中的至少一项。
可选的,调度指令可以为多个被调度的小区之中的一个小区的调度指令。
举例来说,若多个被调度小区分别为:小区1、小区2、和小区3,那么网络设备向终端设备发送的调度指令可以为小区1的调度指令,或者也可以为小区2的调度指令,或者也可以为小区3的调度指令等等,本公开对此不做限定。
举例来说,若被调度的多个小区之中其他小区分别为:小区2、小区3和小区4,上述各其他小区对应的偏移值分别为:偏移值1、偏移值2和偏移值3,那么可以通过第二指示信息指示被调度的多个小区之中其他小区2、3和4的偏移值等等,本公开对此不做限定。
另外,在传输参数为FDRA的情况下,偏移值可以为频域分配的起始位置之间的偏移值等等,本公开对此不做限定。
可选的,在不同信息域上承载不同小区的传输配置的情况下,网络设备可以在调度指令之中添加偏移值和信息域值间的对应关系。
举例来说,若信息域值与偏移值间的对应关系,如表1所示,那么可以将该对应关系添加至调度指令中,通过向终端设备发送该调度指令,可以使终端设备获取到信息域值与偏移值间的对应关系等等,本公开对此不做限定。
可选的,也可以针对聚合场景,设置不同的偏移值,以更好的适配链路的传输配置。比如,在频带内intra-band的聚合情况,和频带间inter-band的聚合情况下,可以设置不同的偏移值范围等等,本公开对此不做限定。
本公开实施例,网络设备可以先确定被调度的多个小区之中的参考小区,之后可以确定参考小区的传输参数,之后向终端设备发送调度指令,调度指令中包含参考小区、参考小区的传输参数及传输配置信息,其中,传输配置信息之中包含第二指示信息,第二指示信息用于指示多个小区之中其他小区的偏移值,终端设备根据调度指令中包含的传输配置信息,确定被调度的多个小区之中每个小区的传输参数。由此,网络设备可以通过向终端设备发送调度指令,可使得终端设备基于调度指令中包含的参考小区、参考小区的传输参数,及传输配置信息中第二指示信息指示的多个小区之中其他小区的偏移值,确定出被调度的多个小区之中每个小区的传输参数,也即在一条调度指令中,可以实现指示多个被联合调度的不同小区的传输机制,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
请参见9,图9是本公开实施例提供的一种指示方法的流程示意图,该方法由网络设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,向终端设备发送传输参数配置表,以使终端设备根据传输配置信息和传输参数配置表确定被调度的多个小区之中每个小区的传输参数。
其中,传输参数配置表,可以包括待调度的多个小区中每个小区的传输参数。比如,获取的传输参数配置表,可以如表2所示,那么可以将该传输参数配置表添加至调度指令中,之后可以向终端设备发送该调度指令,以使终端设备根据调度指令之中的传输配置信息和传输参数配置表,确定被调度的多个小区之中每个小区的传输参数等等,本公开对此不做限定。
可选的,传输参数配置表,也可以包括参考传输参数和偏移值等等,比如该传输参数 配置表,可以如表3所示,那么可以将该传输参数配置表添加至调度指令中,之后可以向终端设备发送该调度指令,以使终端设备根据调度指令之中的参考传输参数和偏移值,确定被调度的多个小区之中每个小区的传输参数等等,本公开对此不做限定。
可选的,传输参数可以包括MCS、TDRA及FDRA中的至少一项。
可选的,在传输参数为FDRA的情况下,也可以预先配置多载波(multicarrier,MC)调度的FDRA配置表,表格中的不同值可以代表多小区调度的FDRA选择的情况。FDRA配置表中可以包含FDRA,或者也可以包含参考FDRA和偏移值等等,具体内容及实现方式可以参照上述表2和表3的说明,此处不再赘述。
可选的,在传输参数为TDRA的情况下,也可以预先配置包含TDRA,或者TDRA和偏移值的传输参数配置表,具体内容及实现方式可以参照上述表2和表3的说明,此处不再赘述。
本公开实施例,网络设备向终端设备发送传输参数配置表,以使终端设备根据调度指令之中的传输配置信息和传输参数配置表,确定出被调度的多个小区中每个小区的传输参数,从而实现了在一条调度指令中,指示多个被联合调度的不同小区的传输机制,在支持多小区调度的情况下,有效降低了指示信息的信令开销。
请参见图10,为本公开实施例提供的一种终端设备1000的结构示意图。图10所示的终端设备1000可包括收发模块1001和处理模块1002。收发模块1001可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1001可以实现发送功能和/或接收功能。
终端设备1000包括:
收发模块1001,用于接收调度指令。
处理模块1002,用于从所述调度指令之中获取传输配置信息;
所述处理模块1002,还用于根据所述传输配置信息确定被调度的多个小区之中每个所述小区的传输参数。
可选的,所述传输配置信息包括:
多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
可选的,所述处理模块1002,具体用于:
确定所述多个小区之中的参考小区;
获取所述参考小区的传输参数,并作为参考传输参数;
从所述传输配置信息之中获取第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值;
根据所述参考传输参数和所述第二指示信息确定所述其他小区的传输参数。
可选的,所述处理模块1002,具体用于:
获取传输参数配置表;
根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
可选的,所述传输参数配置表包括参考传输参数和偏移值。
可选的,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
可选的,所述传输参数包括以下之中的至少一项:
调制编码方式MCS;
时域资源分配TDRA;
频域资源分配FDRA。
可选的,所述调度指令为下行控制信息DCI。
本公开中,终端设备可以先接收调度指令,之后可以从调度指令之中获取传输配置信息,并根据传输配置信息确定被调度的多个小区之中每个小区的传输参数。由此,通过对接收的调度指令进行解析,可以确定出传输配置信息,之后基于传输配置信息,可以确定出被调度的多个小区之中每个小区的传输参数,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。可以有效降低指示信息的信令开销。
请参见图11,为本公开实施例提供的一种网络设备1100的结构示意图。图11所示的网络设备1100可包括收发模块1101和处理模块1102。收发模块1101可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1101可以实现发送功能和/或接收功能。网络设备1100,包括:
收发模块1101,用于向终端设备发送调度指令,其中,所述终端设备根据所述调度指令中包含的传输配置信息,确定被调度的多个小区之中每个所述小区的传输参数。
可选的,所述传输配置信息包括:
多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
可选的,还包括处理模块1102:
所述处理模块1102,用于确定所述多个小区之中的参考小区;
所述处理模块1102,还用于确定所述参考小区的传输参数;
所述收发模块1101,具体用于向所述终端设备发送所述调度指令,所述调度指令中包含所述参考小区、所述参考小区的传输参数及所述传输配置信息,其中,所述传输配置信息之中包含第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值。
可选的,所述收发模块1101,具体用于:
向所述终端设备发送传输参数配置表,以使所述终端设备根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
可选的,所述传输参数配置表包括参考传输参数和偏移值。
可选的,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
可选的,所述传输参数包括以下之中的至少一项:
调制编码方式MCS;
时域资源分配TDRA;
频域资源分配FDRA。
可选的,所述调度指令为下行链路控制信息DCI。
本公开中,网络设备可以向终端设备发送调度指令,该调度指令中可以包含传输配置信息,那么终端设备可以根据调度指令中包含的传输配置信息,确定被调度的多个小区之中每个小区的传输参数,也即在一条调度指令中,可以实现指示多个被联合调度的不同小区的传输机制,从而在支持多小区调度的情况下,可以有效降低指示信息的信令开销。
请参见图12,图12是本公开实施例提供的另一种通信装置1200的结构示意图。通信装置1200可以是终端设备,还可以是网络设备,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器,还可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1200可以包括一个或多个处理器1201。处理器1201可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、 终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1200中还可以包括一个或多个存储器1202,其上可以存有计算机程序1204,处理器1201执行所述计算机程序1204,以使得通信装置1200执行上述方法实施例中描述的方法。可选的,所述存储器1202中还可以存储有数据。通信装置1200和存储器1202可以单独设置,也可以集成在一起。
可选的,通信装置1200还可以包括收发器1205、天线1206。收发器1205可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1205可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1200中还可以包括一个或多个接口电路1207。接口电路1207用于接收代码指令并传输至处理器1201。处理器1201运行所述代码指令以使通信装置1200执行上述方法实施例中描述的方法。
通信装置1200为终端设备:处理器1201用于执行图2中的步骤202、步骤203;图3中的步骤302、步骤303;图4中的步骤402、步骤403、步骤404及步骤405;图5中的步骤502及步骤503等。收发器705用于执行图2中的步骤201;图3中的步骤301;图4中的步骤401;图5中的步骤501等。
通信装置1200为网络设备:处理器1201用于执行图8中的步骤801及步骤802等。收发器705用于执行图6中的步骤601;图7中的步骤701;图8中的步骤803;图9中的步骤901等。
在一种实现方式中,处理器1201中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1201可以存有计算机程序1203,计算机程序1203在处理器1201上运行,可使得通信装置1200执行上述方法实施例中描述的方法。计算机程序1203可能固化在处理器1201中,该种情况下,处理器1201可能由硬件实现。
在一种实现方式中,通信装置1200可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图12的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图13所示的芯片的结构示意图。图13所示的芯片包括处理器1301和接口1302。其中,处理器1301的数量可以是一个或多个,接口1302的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口1302,用于执行图2中的步骤201;图3中的步骤301;图4中的步骤401;图5中的步骤501等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口1302,用于执行图6中的步骤601;图7中的步骤701;图8中的步骤803;图9中的步骤901等。
可选的,芯片还包括存储器1303,存储器1303用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、 “第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种指示方法,其特征在于,所述方法由终端设备执行,所述方法包括:
    接收调度指令;
    从所述调度指令之中获取传输配置信息;
    根据所述传输配置信息确定被调度的多个小区之中每个所述小区的传输参数。
  2. 如权利要求1所述的方法,其特征在于,所述传输配置信息包括:
    多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
  3. 如权利要求1所述的方法,其特征在于,所述根据所述传输配置信息确定多个小区之中每个所述小区的传输参数,包括:
    确定所述多个小区之中的参考小区;
    获取所述参考小区的传输参数,并作为参考传输参数;
    从所述传输配置信息之中获取第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值;
    根据所述参考传输参数和所述第二指示信息确定所述其他小区的传输参数。
  4. 如权利要求1所述的方法,其特征在于,所述根据所述传输配置信息确定多个小区之中每个所述小区的传输参数,包括:
    获取传输参数配置表;
    根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
  5. 如权利要求4所述的方法,其特征在于,所述传输参数配置表包括参考传输参数和偏移值。
  6. 如权利要求1所述的方法,其特征在于,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
  7. 如权利要求1-6任一项所述的方法,其特征在于,所述传输参数包括以下之中的至少一项:
    调制编码方式MCS;
    时域资源分配TDRA;
    频域资源分配FDRA。
  8. 如权利要求1-6任一项所述的方法,其特征在于,所述调度指令为下行控制信息DCI。
  9. 一种指示方法,其特征在于,所述方法由网络设备执行,所述方法包括:
    向终端设备发送调度指令,其中,所述终端设备根据所述调度指令中包含的传输配置信息,确定被调度的多个小区之中每个所述小区的传输参数。
  10. 如权利要求9所述的方法,其特征在于,所述传输配置信息包括:
    多个第一指示信息,所述多个第一指示信息分别用于指示多个所述小区的传输参数。
  11. 如权利要求9所述的方法,其特征在于,所述向终端设备发送调度指令,包括:
    确定所述多个小区之中的参考小区;
    确定所述参考小区的传输参数;
    向所述终端设备发送所述调度指令,所述调度指令中包含所述参考小区、所述参考小区的传输参数及所述传输配置信息,其中,所述传输配置信息之中包含第二指示信息,所述第二指示信息用于指示所述多个小区之中其他小区的偏移值。
  12. 如权利要求9所述的方法,其特征在于,所述向终端设备发送调度指令,包括:
    向所述终端设备发送传输参数配置表,以使所述终端设备根据所述传输配置信息和所述传输参数配置表确定每个所述小区的传输参数。
  13. 如权利要求12所述的方法,其特征在于,所述传输参数配置表包括参考传输参数和偏移值。
  14. 如权利要求9所述的方法,其特征在于,所述调度指令为所述多个被调度的小区之中的一个小区的调度指令。
  15. 如权利要求9-14任一项所述的方法,其特征在于,所述传输参数包括以下之中的至少一项:
    调制编码方式MCS;
    时域资源分配TDRA;
    频域资源分配FDRA。
  16. 如权利要求9-14任一项所述的方法,其特征在于,所述调度指令为下行链路控制信息DCI。
  17. 一种终端设备,其特征在于,所述终端设备包括:
    收发模块,用于接收调度指令;
    处理模块,用于从所述调度指令之中获取传输配置信息;
    所述处理模块,还用于根据所述传输配置信息确定被调度的多个小区之中每个所述小区的传输参数。
  18. 一种网络设备,其特征在于,所述网络设备包括:
    收发模块,用于向终端设备发送调度指令,其中,所述终端设备根据所述调度指令中包含的传输配置信息,确定被调度的多个小区之中每个所述小区的传输参数。
  19. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权 利要求1至8中任一项所述的方法。
  20. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求9至16中任一项所述的方法。
  21. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至8中任一项所述的方法被实现。
  22. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求9至16中任一项所述的方法被实现。
PCT/CN2022/102071 2022-06-28 2022-06-28 一种指示方法及装置 WO2024000201A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002436.7A CN115316023A (zh) 2022-06-28 2022-06-28 一种指示方法及装置
PCT/CN2022/102071 WO2024000201A1 (zh) 2022-06-28 2022-06-28 一种指示方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102071 WO2024000201A1 (zh) 2022-06-28 2022-06-28 一种指示方法及装置

Publications (1)

Publication Number Publication Date
WO2024000201A1 true WO2024000201A1 (zh) 2024-01-04

Family

ID=83867902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102071 WO2024000201A1 (zh) 2022-06-28 2022-06-28 一种指示方法及装置

Country Status (2)

Country Link
CN (1) CN115316023A (zh)
WO (1) WO2024000201A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134771A1 (en) * 2020-01-03 2021-07-08 Qualcomm Incorporated Using time offset in downlink control information that schedules multiple cells
WO2021162858A1 (en) * 2020-02-13 2021-08-19 Qualcomm Incorporated Time domain resource assignment for multiple cells scheduled by a single downlink control information message
WO2021246711A1 (ko) * 2020-06-05 2021-12-09 삼성전자 주식회사 무선 통신 시스템에서 데이터 채널들을 스케줄하는 하향링크 제어 정보의 송수신 방법 및 장치
CN115299095A (zh) * 2022-06-22 2022-11-04 北京小米移动软件有限公司 一种控制资源的位置信息的确定方法及其装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021134771A1 (en) * 2020-01-03 2021-07-08 Qualcomm Incorporated Using time offset in downlink control information that schedules multiple cells
WO2021162858A1 (en) * 2020-02-13 2021-08-19 Qualcomm Incorporated Time domain resource assignment for multiple cells scheduled by a single downlink control information message
WO2021246711A1 (ko) * 2020-06-05 2021-12-09 삼성전자 주식회사 무선 통신 시스템에서 데이터 채널들을 스케줄하는 하향링크 제어 정보의 송수신 방법 및 장치
CN115299095A (zh) * 2022-06-22 2022-11-04 北京小米移动软件有限公司 一种控制资源的位置信息的确定方法及其装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
FUJITSU: "Considerations on multi-PDSCH/PUSCH with a single DCI and HARQ for NR from 52.6 GHz to 71 GHz", 3GPP DRAFT; R1-2102716, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 6 April 2021 (2021-04-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051993186 *

Also Published As

Publication number Publication date
CN115316023A (zh) 2022-11-08

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
CN113273286B (zh) 一种时域资源分配的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
CN115004835A (zh) 一种终端设备调度方法及其装置
CN114208239A (zh) 一种新空口和新空口侧行链路切换的方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024000203A1 (zh) 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2023231036A1 (zh) 一种传输块的处理方法及其装置
WO2023010474A1 (zh) 一种多播广播服务mbs的半持续调度方法及其装置
WO2024124562A1 (zh) 一种混合自动重传请求harq的配置方法及装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2023231037A1 (zh) 一种数据链路层l2的缓冲器大小的确定方法及其装置
WO2023004653A1 (zh) 一种时隙结构的配置方法及其装置
WO2023050211A1 (zh) 一种混合自动重传请求进程号的确定方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2024000200A1 (zh) 一种混合自动重传请求harq反馈的确定方法及其装置
CN113261235B (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2023133742A1 (zh) 物理下行共享信道的处理时间参数的确定方法及装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024086979A1 (zh) 一种传输配置指示tci状态的确定方法及装置
WO2024045078A1 (zh) 一种终端处理能力的上报方法、数据处理方法及其装置
WO2024077619A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023050213A1 (zh) 通信方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948321

Country of ref document: EP

Kind code of ref document: A1