WO2023010473A1 - 一种波束应用的方法及其装置 - Google Patents

一种波束应用的方法及其装置 Download PDF

Info

Publication number
WO2023010473A1
WO2023010473A1 PCT/CN2021/111038 CN2021111038W WO2023010473A1 WO 2023010473 A1 WO2023010473 A1 WO 2023010473A1 CN 2021111038 W CN2021111038 W CN 2021111038W WO 2023010473 A1 WO2023010473 A1 WO 2023010473A1
Authority
WO
WIPO (PCT)
Prior art keywords
symbols
transmission
downlink
dci
subcarrier spacing
Prior art date
Application number
PCT/CN2021/111038
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2021/111038 priority Critical patent/WO2023010473A1/zh
Priority to CN202180002441.3A priority patent/CN113785645B/zh
Priority to KR1020247007276A priority patent/KR20240042012A/ko
Priority to EP21952357.8A priority patent/EP4383879A1/en
Publication of WO2023010473A1 publication Critical patent/WO2023010473A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • H04B7/06952Selecting one or more beams from a plurality of beams, e.g. beam training, management or sweeping
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26025Numerology, i.e. varying one or more of symbol duration, subcarrier spacing, Fourier transform size, sampling rate or down-clocking
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • H04L5/001Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT the frequencies being arranged in component carriers
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling
    • H04W72/1263Mapping of traffic onto schedule, e.g. scheduled allocation or multiplexing of flows
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal

Definitions

  • the present application relates to the field of communication technologies, and in particular to a beam application method and device thereof.
  • beams usually use physical downlink control channel (physical downlink control channel, PDCCH), physical downlink shared channel (physical downlink share channel, PDSCH), physical uplink control channel (physical uplink control channel, PUCCH), physical uplink shared channel channel (physical uplink share channel, PUSCH) and/or reference signal (reference signal, RS) to indicate the application.
  • the PDCCH and PUCCH can use a medium access control (MAC) control element (CE) to activate or apply a beam.
  • MAC medium access control
  • CE control element
  • PDSCH and PUSCH can indicate or apply their respective beams according to DCI signaling. This approach results in skewed beams for network devices and end devices.
  • the embodiment of the present application provides a beam application method and device thereof, which can be applied to long term evolution (long term evolution, LTE) system, fifth generation (5th generation, 5G) mobile communication system, 5G new air interface (new radio, NR) ) system and other fields, according to the downlink control information (Downlink Control Information, DCI), determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission, and perform beam application. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • an embodiment of the present application provides a beam application method, which is applied to a terminal device, and the method includes:
  • the DCI includes or does not include downlink allocation indication information.
  • the beam application time of the uplink transmission and/or the beam application time of the downlink transmission are multiple symbols after the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time for the DCI, and the uplink transmission
  • the beam application time and/or the beam application time of the downlink transmission is the application time of the unified transmission configuration indication state.
  • the plurality of symbols is a first number of symbols, and the first number of symbols is determined based on the subcarrier spacing of the downlink transmission, where the beam application time is the beam application time of the downlink transmission; and / or
  • the plurality of symbols is a second number of symbols, and the second number of symbols is determined based on the subcarrier spacing of the uplink transmission, where the beam application time is the beam application time of the uplink transmission.
  • Optional include:
  • the time length of the plurality of symbols is a first time value
  • the plurality of symbols is a third number of symbols, and the third number of symbols is determined based on the subcarrier spacing of the uplink transmission or the downlink transmission, wherein the beam application time is the time for the uplink transmission and the downlink transmission Transmitted beam application time.
  • the DCI and the uplink transmission and/or downlink transmission correspond to a component carrier of the same carrier
  • the DCI and the uplink transmission and/or downlink transmission correspond to the carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is greater than or equal to the subcarrier spacing of the uplink transmission and/or the subcarrier spacing of the downlink transmission Carrier spacing.
  • Optional include:
  • the multiple symbols include a fourth number of symbols and a fifth number of symbols, the fourth number of symbols is determined based on the subcarrier spacing of the downlink transmission, and the fifth number of symbols is based on the subcarriers of the DCI
  • the interval and the subcarrier interval of the downlink transmission are determined, wherein the beam application time is the beam application time of the downlink transmission; and/or
  • the multiple symbols include a sixth number of symbols and a seventh number of symbols, the sixth number of symbols is determined based on the subcarrier spacing of the uplink transmission, and the seventh number of symbols is based on the subcarriers of the DCI interval and the subcarrier interval of the uplink transmission, wherein the beam application time is the beam application time of the uplink transmission.
  • Optional include:
  • the time length of the plurality of symbols is a second time value
  • the plurality of symbols includes an eighth number of symbols and a ninth number of symbols, the eighth number of symbols is determined based on the subcarrier spacing of the uplink transmission, and the ninth number of symbols is based on the subcarriers of the DCI
  • the spacing is determined based on the subcarrier spacing of the uplink transmission; or the eighth number of symbols is determined based on the subcarrier spacing of the downlink transmission, and the ninth number of symbols is based on the subcarrier spacing of the DCI and the downlink
  • the subcarrier interval of transmission is determined; wherein the beam application time is the beam application time of the uplink transmission and the downlink transmission.
  • the DCI and the uplink transmission and/or downlink transmission correspond to component carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the uplink transmission and/or downlink transmission Subcarrier spacing.
  • Optional include:
  • the downlink transmission includes a downlink channel and/or a downlink reference signal
  • the downlink channel includes at least one of the following: Physical Downlink Control Channel PDCCH, Physical Downlink Shared Channel PDSCH, Physical Broadcast Channel PBCH;
  • the downlink reference signal includes at least one of the following: a synchronization signal block SSB, a channel state information reference signal CSI-RS, a demodulation reference signal DMRS, and a positioning reference signal PRS.
  • Optional include:
  • the uplink transmission includes an uplink channel and/or an uplink reference signal
  • the uplink channel includes at least one of the following: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a physical random access channel PRACH;
  • the uplink reference signal includes at least one of the following: sounding reference signal SRS, DMRS.
  • the DCI and the uplink transmission and/or downlink transmission correspond to different carrier components, including:
  • the different carrier components correspond to different serving cells; or
  • the different carrier components correspond to serving cells and non-serving cells.
  • the embodiment of the present application provides another beam application method, which is characterized in that it is applied to a network device, and the method includes:
  • the embodiment of this application provides a communication device, which has some or all functions of the terminal equipment in the method described in the first aspect above, for example, the functions of the communication device may have part or all of the functions in this application
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present application.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other equipment.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes:
  • a receiving module configured to receive downlink control information DCI from a network device, where the DCI includes a unified transmission configuration indication state;
  • a determining module configured to determine the beam application time for uplink transmission and/or the beam application time for downlink transmission corresponding to the unified transmission configuration indication state.
  • the embodiment of the present application provides another communication device, which can implement some or all of the functions of the network equipment in the method example described in the second aspect above, for example, the functions of the communication device can have some of the functions in this application Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present application alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the structure of the communication device may include a transceiver module and a processing module, and the processing module is configured to support the communication device to perform corresponding functions in the foregoing method.
  • the transceiver module is used to support communication between the communication device and other devices.
  • the communication device may further include a storage module, which is used to be coupled with the transceiver module and the processing module, and stores necessary computer programs and data of the communication device.
  • the processing module may be a processor
  • the transceiver module may be a transceiver or a communication interface
  • the storage module may be a memory
  • the communication device includes:
  • a sending module configured to send downlink control information DCI to the terminal device, where the DCI includes a unified transmission configuration indication state;
  • An application module configured to apply a beam according to the downlink control information.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the first aspect above.
  • an embodiment of the present application provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • the embodiment of the present application provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • the embodiment of the present application provides a beam application system
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or, the system includes the communication device described in the fifth aspect
  • the communication device described in the sixth aspect or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect The communication device.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to realize the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to realize the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present application provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a beam application method provided in an embodiment of the present application
  • FIG. 3 is a schematic flowchart of a beam application method provided in an embodiment of the present application.
  • FIG. 4 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of a chip provided by an embodiment of the present application.
  • DCI Downlink control information
  • DCI is carried by a physical downlink control channel (physical downlink control channel, PDCCH), and DCI may include uplink and downlink resource allocation, hybrid automatic repeat request (hybrid automatic repeat request, HARQ) information, power control, etc.
  • PDCCH physical downlink control channel
  • HARQ hybrid automatic repeat request
  • the PDCCH is a physical channel used to carry the downlink control information.
  • physical downlink control channel (PDCCH), physical downlink shared channel (physical downlink share channel, PDSCH), physical uplink control channel (physical uplink control channel, PUCCH), physical uplink shared channel (physical uplink share channel, PUSCH) can be indicated ) and/or reference signal (reference signal, RS) and other corresponding beams.
  • PDCH physical downlink control channel
  • PUCCH physical uplink control channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • RS reference signal
  • the reference signal RS includes a channel state information reference signal (CSI-RS), a sounding reference signal (SRS), a positioning reference signal (PRS), a phase reference signal (tracking reference signal, TRS), etc.
  • CSI-RS includes CSI-RS for channel state information measurement, or CSI-RS for beam measurement, or CSI-RS for channel loss pathloss estimation
  • SRS includes for SRS for channel state information measurement based on codebook or non-codebook non-codebook or SRS for beam measurement or SRS for positioning measurement.
  • the beam described herein is also referred to as a transmission configuration indicator (TCI) state.
  • TCI state includes Quasi Co-location (QCL) Type D information.
  • QCL Quasi Co-location
  • the beam application time described in this article is also referred to as the application time of the TCI state.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present application.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and form of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiment of the application. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 101 and one terminal device 102 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • side link in this embodiment of the present application may also be referred to as a side link or a through link.
  • the network device 101 in this embodiment of the present application is an entity of a network for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present application may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), using CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 102 in the embodiment of the present application is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal device.
  • the beams of PDCCH, PDSCH, PUSCH, PUCCH and/or reference signals are indicated independently.
  • the reference signal includes CSI-RS, SRS, PRS, TRS, etc.
  • the CSI-RS includes CSI-RS for channel state information measurement or CSI-RS for beam measurement or CSI-RS for pathloss estimation;
  • SRS Including SRS for channel state information measurement based on codebook codebook or non-codebook non-codebook or SRS for beam measurement or SRS for positioning measurement
  • PDCCH and PUCCH use medium access control (medium access control, MAC) control element (control element, CE) to activate a beam.
  • the PDSCH and PUSCH indicate their respective beams according to the DCI signaling.
  • the common beam may be indicated by the independent uplink transmission configuration indication status separate UL TCI state for uplink transmission and the independent downlink transmission configuration indication status separate DL for downlink transmission.
  • the TCI state is indicated separately, or jointly indicated by the joint TCI state of the joint transmission configuration indication state of the uplink and downlink.
  • the common beam can be used for the PDSCH and part/all of the PDCCH of the terminal equipment, such as the user equipment UE-specific PDCCH; if the base station indicates a common beam for uplink, then the common beam The beam can be used for the terminal's PUSCH and some/all of the PUCCH.
  • the DCI can be used after T time after the Hybrid Automatic Repeat Request (HARQ) acknowledgment character (ACK) feedback for the DCI is sent.
  • HARQ Hybrid Automatic Repeat Request
  • ACK acknowledgment character
  • FIG. 2 is a schematic flowchart of a beam application method provided in an embodiment of the present application. The method is applied to terminal equipment. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step S201 Receive downlink control information DCI from the network device, the DCI includes a unified transmission configuration indication status;
  • the beam is indicated according to the unified TCI state or the common TCI state in the downlink control information DCI, and the beam may be a common beam.
  • the terminal device After receiving the unified TCI state or common TCI state in the DCI, the terminal device can apply the beam.
  • Step S202 Determine the beam application time for uplink transmission and/or the beam application time for downlink transmission corresponding to the unified transmission configuration indication state.
  • the beam application time is a time point when the beam is started to be applied. To ensure communication quality, it is necessary to make the beam application time of the network device and the terminal device consistent. After receiving the unified transmission configuration indication status in the DCI, the beam application time for uplink transmission and/or the beam application time for downlink transmission corresponding to the unified transmission configuration indication status can be determined. or
  • the beam application time is a time point when the beam is started to be applied. In order to ensure communication quality, it is necessary to make the beam application time of the network device and the terminal device consistent. After receiving the unified transmission configuration indication status in the DCI, the beam application time of the downlink transmission corresponding to the unified transmission configuration indication status can be determined.
  • the present application it is possible to determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the downlink control information DCI, and perform beam application. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the DCI includes or does not include downlink allocation indication information.
  • the DCI may include the downlink assignment indication information DL assignment, which is used to indicate the time-frequency resource of the PDSCH; or may not include the downlink assignment indication information DL assignment.
  • the beam application time of the uplink transmission and/or the beam application time of the downlink transmission are several symbols after the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time for the DCI.
  • the beam application time of the uplink transmission and/or the beam application time of the downlink transmission is the application time of the unified transmission configuration indication state.
  • hybrid automatic repeat request is a technology formed by combining forward error correction coding (forward error correction, FEC) and automatic repeat request (Automatic Repeat Request, ARQ).
  • FEC forward error correction
  • ARQ automatic repeat request
  • the basic principle is as follows: Use FEC technology at the receiving end to correct the correctable part of all errors; perform error detection and judge that the data packets cannot be corrected; discard the data packets that cannot be corrected, and request the sending end to resend the same data pack.
  • the acknowledgment character ACK in Hybrid Automatic Repeat Request (HARQ) is feedback information sent by the receiving end to the sending end.
  • the terminal device is the receiving end, and the time after the terminal device sends multiple symbols of the HARQ ACK time to the network device is the beam application time.
  • the embodiment of the present application it is realized to determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the HARQ ACK feedback transmission time for the downlink control information DCI. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the plurality of symbols is a first number of symbols, and the first number of symbols is determined based on the subcarrier spacing of the downlink transmission, where the beam application time is the beam application time of the downlink transmission; and / or
  • the plurality of symbols is a second number of symbols, and the second number of symbols is determined based on the subcarrier spacing of the uplink transmission, where the beam application time is the beam application time of the uplink transmission.
  • the beam application time is after the first number of symbols of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time.
  • the first number of symbols is determined based on downlink sub-carrier space (sub-carrier space, SCS), and the symbols are time symbols, where the beam application time is the beam application time of the downlink transmission.
  • the beam application time is after the second number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the second number of symbols is determined based on sub-carrier space (sub-carrier space, SCS) of uplink transmission, and the symbols are time symbols, wherein the beam application time is the beam application time of the uplink transmission.
  • SCS sub-carrier space
  • the first number of symbols is determined based on the subcarrier spacing of downlink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of downlink transmission. For example, if the subcarrier interval of downlink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where the value of N is 12 or 14; For another example, if the subcarrier interval of downlink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the second number of symbols is determined based on the subcarrier spacing of uplink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of uplink transmission. For example, if the subcarrier interval of uplink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where N takes a value of 12 or 14; For another example, if the subcarrier interval of uplink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the value of the first number and/or the value of the second number are configured by the network device.
  • the value of the first quantity and the value of the second quantity may or may not be the same.
  • the embodiment of the present application it is realized to determine the first number of symbols and/or the second number of symbols and the HARQ ACK feedback transmission time according to the subcarrier spacing to determine the beam application time and corresponding uplink transmission time. / or beam application time for downlink transmission. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • Optional include:
  • the time length of the plurality of symbols is a first time value
  • the plurality of symbols is a third number of symbols, and the third number of symbols is determined based on the subcarrier spacing of the uplink transmission or the downlink transmission, wherein the beam application time is the time for the uplink transmission and the downlink transmission Transmitted beam application time.
  • the time length of the plurality of symbols may be the first time value, and the first time value is an absolute value of time, not the number of symbols. That is, the beam application time is after the first time value of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time.
  • the specific value of the first time value can be adjusted by the implementer according to the actual implementation situation, and the present disclosure does not limit the specific value of the first time value.
  • the first time value is configured by a network device.
  • the beam application time is the beam application time of the uplink transmission and the downlink transmission. That is, regardless of the subcarrier spacing of the uplink transmission and the downlink transmission, both the uplink transmission and the downlink transmission adopt the TCI state indicated by the DCI after the first time value. or
  • the beam application time is after the third number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the third number of symbols is determined based on the subcarrier spacing SCS of the uplink transmission or the downlink transmission, and the symbols are time symbols, where the beam application time is the beam application of the uplink transmission and the downlink transmission time. That is, the time length occupied by the third number of symbols is determined by using the subcarrier spacing of one of the uplink transmission and the downlink transmission. In this case, if the subcarrier spacing of the uplink transmission and the downlink transmission are different, the uplink transmission and the downlink transmission also adopt the TCI state indicated by the DCI after the same time.
  • the value of the third quantity is configured by the network device.
  • the third number of symbols is determined based on the subcarrier spacing SCS of the uplink transmission or the downlink transmission, which means that the time length occupied by each symbol in the third number of symbols is determined by the uplink transmission or the downlink
  • the subcarrier spacing SCS for transmission is determined.
  • the determination of the third number of symbols and the HARQ ACK feedback transmission time determine the beam application time and/or corresponding uplink transmission.
  • the beam application time for downlink transmission or determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the first time value and the HARQ ACK feedback transmission time. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the DCI and the uplink transmission and/or downlink transmission correspond to a component carrier of the same carrier; that is, the DCI is used to indicate the TCI state of the uplink transmission and/or downlink transmission on the same carrier.
  • the DCI and the uplink transmission and/or downlink transmission correspond to the carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is greater than or equal to the subcarrier spacing of the uplink transmission and/or the subcarrier spacing of the downlink transmission Carrier spacing. That is, the DCI is used to indicate the TCI state of uplink transmission and/or downlink transmission on different carriers.
  • Optional include:
  • the multiple symbols include a fourth number of symbols and a fifth number of symbols, the fourth number of symbols is determined based on the subcarrier spacing of the downlink transmission, and the fifth number of symbols is based on the subcarriers of the DCI
  • the interval and the subcarrier interval of the downlink transmission are determined, wherein the beam application time is the beam application time of the downlink transmission; and/or
  • the multiple symbols include a sixth number of symbols and a seventh number of symbols, the sixth number of symbols is determined based on the subcarrier spacing of the uplink transmission, and the seventh number of symbols is based on the subcarriers of the DCI interval and the subcarrier interval of the uplink transmission, wherein the beam application time is the beam application time of the uplink transmission.
  • the DCI and the downlink transmission correspond to component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the downlink transmission, so that the terminal device cannot process data in time, An additional delay, ie an extra symbol, is required. Therefore, after the fourth number of symbols is determined based on the subcarrier spacing of the downlink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the downlink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the fifth number of symbols.
  • the plurality of symbols includes a fourth number of symbols and a fifth number of symbols, and the beam application time is the sum of the fourth number of symbols and the fifth number of symbols of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time after.
  • the symbol is a time symbol, where the beam application time is the beam application time of the downlink transmission. and / or
  • the DCI and the uplink transmission correspond to carrier component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the uplink transmission, so that the terminal device cannot process data in time, requiring additional delay, That is, extra symbols. Therefore, after the sixth number of symbols is determined based on the subcarrier spacing of the uplink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the uplink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the seventh number of symbols.
  • the beam application time is after the sum of the sixth number of symbols and the seventh number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the symbol is a time symbol, where the beam application time is the beam application time of the uplink transmission.
  • the fourth number of symbols is determined based on the subcarrier spacing of downlink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of downlink transmission. For example, if the subcarrier interval of downlink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where the value of N is 12 or 14; For another example, if the subcarrier interval of downlink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the fifth number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the downlink transmission means that the value of the fifth number is where d 1 is the number of symbols, is the subcarrier spacing of the downlink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the fifth number of symbols is the same as the time length occupied by each symbol in the fourth number of symbols, and is determined based on the subcarrier spacing of downlink transmission.
  • the sixth number of symbols is determined based on the subcarrier spacing of uplink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of uplink transmission. For example, if the subcarrier interval of uplink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where N takes a value of 12 or 14; For another example, if the subcarrier interval of uplink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the seventh number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the uplink transmission means that the value of the seventh number is where d 2 is the number of symbols, is the subcarrier spacing of the uplink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the seventh number of symbols is the same as the time length occupied by each symbol in the sixth number of symbols, and is determined based on the subcarrier spacing of uplink transmission.
  • the value of the fourth quantity and/or the value of the sixth quantity are configured by the network device.
  • the value of the fourth quantity and the value of the sixth quantity may be the same or different.
  • the values of d1 and/or d2 are configured by the network device, or determined by the terminal according to the subcarrier spacing of uplink transmission and/or downlink transmission and the mapping table between subcarrier spacing and d1 and/or d2 .
  • the seventh number of symbols and the HARQ ACK feedback transmission time determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • Optional include:
  • the time length of the plurality of symbols is a second time value
  • the plurality of symbols includes an eighth number of symbols and a ninth number of symbols, the eighth number of symbols is determined based on the subcarrier spacing of the uplink transmission, and the ninth number of symbols is based on the subcarriers of the DCI
  • the spacing is determined based on the subcarrier spacing of the uplink transmission; or the eighth number of symbols is determined based on the subcarrier spacing of the downlink transmission, and the ninth number of symbols is based on the subcarrier spacing of the DCI and the downlink
  • the subcarrier interval of transmission is determined; wherein the beam application time is the beam application time of the uplink transmission and the downlink transmission.
  • the DCI and the uplink transmission and/or downlink transmission correspond to component carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarriers of the uplink transmission and/or downlink transmission interval
  • the time length of the plurality of symbols may be the second time value
  • the second time value is an absolute value of time, not the number of symbols. That is, the beam application time is after the second time value of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time.
  • the specific value of the second time value can be adjusted by the implementer according to the actual implementation situation, and the present disclosure does not limit the specific value of the second time value.
  • the second time value is configured by a network device.
  • the unified transmission configuration indicates that the unified TCI state is used for uplink transmission and downlink transmission. That is, no matter what the subcarrier spacing between the uplink transmission and the downlink transmission is, both the uplink transmission and the downlink transmission adopt the TCI state indicated by the DCI after the second time value. or
  • the DCI and the downlink transmission correspond to component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the downlink transmission, so that the terminal device cannot process data in time and requires additional time delay. That is, extra symbols. Therefore, after the eighth number of symbols is determined based on the subcarrier spacing of the downlink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the downlink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the ninth number of symbols.
  • the beam application time is after the sum of the eighth number of symbols and the ninth number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the symbol is a time symbol
  • the unified transmission configuration indicates that the unified TCI state is used for uplink transmission and downlink transmission. That is, the subcarrier spacing of the downlink transmission is used to determine the time length occupied by the eighth number of symbols and the value of the ninth number. In this case, if the subcarrier spacing of the uplink transmission and the downlink transmission are different, the uplink transmission and the downlink transmission also adopt the TCI state indicated by the DCI after the same time. or
  • the DCI and the uplink transmission correspond to carrier component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the uplink transmission, so that the terminal device cannot process data in time, requiring additional delay, That is, extra symbols. Therefore, after the eighth number of symbols is determined based on the subcarrier spacing of the uplink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the uplink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the ninth number of symbols.
  • the beam application time is after the sum of the eighth number of symbols and the ninth number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the symbol is a time symbol
  • the unified transmission configuration indicates that the unified TCI state is used for uplink transmission and downlink transmission. That is, the subcarrier spacing of the uplink transmission is used to determine the time length occupied by the eighth number of symbols and the value of the ninth number. In this case, if the subcarrier spacing of the uplink transmission and the downlink transmission are different, the uplink transmission and the downlink transmission also adopt the TCI state indicated by the DCI after the same time.
  • the eighth number of symbols is determined based on the subcarrier spacing of uplink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of uplink transmission. For example, if the subcarrier interval of uplink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where N takes a value of 12 or 14; For another example, if the subcarrier interval of uplink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the ninth number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the uplink transmission means that the value of the ninth number is where d 3 is the number of symbols, is the subcarrier spacing of the uplink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the ninth number of symbols is the same as the time length occupied by each symbol in the eighth number of symbols, and is determined based on the subcarrier spacing of uplink transmission.
  • the eighth number of symbols is determined based on the subcarrier spacing of downlink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of downlink transmission. For example, if the subcarrier interval of downlink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where the value of N is 12 or 14; For another example, if the subcarrier interval of downlink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the ninth number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the downlink transmission means that the value of the ninth number is where d 4 is the number of symbols, is the subcarrier spacing of the downlink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the ninth number of symbols is the same as the time length occupied by each symbol in the eighth number of symbols, and is determined based on the subcarrier spacing of downlink transmission.
  • the value of the eighth quantity is configured by the network device.
  • the values of d3 and/or d4 are configured by the network device, or determined by the terminal according to the subcarrier spacing of uplink transmission and/or downlink transmission and the mapping table between subcarrier spacing and d3 and/or d4 .
  • the beam application of the corresponding uplink transmission is determined according to the subcarrier spacing of the uplink transmission and/or the downlink transmission and/or the subcarrier spacing of the DCI and the HARQ ACK feedback transmission time Time and/or beam application time for downlink transmission, or determine corresponding beam application time for uplink transmission and/or beam application time for downlink transmission according to the second time value and the HARQ ACK feedback transmission time. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the DCI and the uplink transmission and/or downlink transmission correspond to component carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the uplink transmission and/or downlink transmission Subcarrier spacing.
  • the DCI and the uplink transmission and/or downlink transmission correspond to component carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarriers of the uplink transmission and/or downlink transmission Interval, the terminal device cannot process the data in time, requiring additional delay, that is, additional symbols.
  • Optional include:
  • the downlink transmission includes a downlink channel and/or a downlink reference signal
  • the downlink channel includes at least one of the following: a physical downlink control channel PDCCH, a physical downlink shared channel PDSCH, and a physical broadcast channel (physical broadcast channel, PBCH);
  • the downlink reference signal includes at least one of the following: a synchronization signal block (Synchronization Signal Block, SSB), a channel state information reference signal CSI-RS, a demodulation reference signal (demodulation reference signal, DMRS), and a positioning reference signal PRS.
  • SSB Synchronization Signal Block
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • PRS positioning reference signal
  • Optional include:
  • the uplink transmission includes an uplink channel and/or an uplink reference signal
  • the uplink channel includes at least one of the following: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a physical random access channel PRACH;
  • the uplink reference signal includes at least one of the following: sounding reference signal SRS, DMRS.
  • the DCI and the uplink transmission and/or downlink transmission correspond to different carrier components, including:
  • the different carrier components correspond to different serving cells; or
  • the different carrier components correspond to serving cells and non-serving cells.
  • FIG. 3 is a schematic flowchart of a beam application method provided in an embodiment of the present application. The method is applied to network equipment. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step S301 sending downlink control information DCI to the terminal device, where the DCI includes a unified transmission configuration indication state;
  • the network device sends the downlink control signal DCI to the terminal device, where the DCI includes a unified transmission configuration indication state.
  • a beam is indicated according to a unified TCI state or a common TCI state in the downlink control information DCI, and the beam may be a common beam.
  • the terminal device After receiving the unified TCI state or common TCI state in the DCI, the terminal device can apply the beam.
  • Step S302 applying a beam according to the downlink control information.
  • the beam application time corresponding to the beam is obtained according to the DCI, and the beam application time is the time point when the beam is started to be applied. In order to ensure the communication quality, it is necessary to make the network device and the terminal device The beam application time is consistent. After receiving the unified transmission configuration indication status in the DCI, the beam application time for uplink transmission and/or the beam application time for downlink transmission corresponding to the unified transmission configuration indication status can be determined.
  • the present application it is possible to determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the downlink control information DCI, and perform beam application. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the methods provided in the embodiments of the present application are introduced from the perspectives of the network device and the terminal device respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and realize the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 4 is a schematic structural diagram of a communication device 40 provided in an embodiment of the present application.
  • the communication device 40 shown in FIG. 4 may include a transceiver module 401 and a processing module 402 .
  • the transceiver module 401 may include a sending module and/or a receiving module, the sending module is used to realize the sending function, the receiving module is used to realize the receiving function, and the sending and receiving module 401 can realize the sending function and/or the receiving function.
  • the communication device 40 may be a terminal device (such as the terminal device in the foregoing method embodiments), may also be a device in the terminal device, and may also be a device that can be matched with the terminal device.
  • the communication device 40 may be a network device, or a device in the network device, or a device that can be matched with the network device.
  • the communication device 40 When the communication device 40 is a terminal device (such as the terminal device in the foregoing method embodiments), the communication device includes:
  • a receiving module configured to receive downlink control information DCI from a network device, where the DCI includes a unified transmission configuration indication state;
  • the beam is indicated according to the unified TCI state or the common TCI state in the downlink control information DCI, and the beam may be a common beam.
  • the terminal device After receiving the unified TCI state or common TCI state in the DCI, the terminal device can apply the beam.
  • a determining module configured to determine the beam application time for uplink transmission and/or the beam application time for downlink transmission corresponding to the unified transmission configuration indication state.
  • the beam application time is a time point when the beam is started to be applied. In order to ensure communication quality, it is necessary to make the beam application time of the network device and the terminal device consistent. After receiving the unified transmission configuration indication status in the DCI, the beam application time for uplink transmission and/or the beam application time for downlink transmission corresponding to the unified transmission configuration indication status can be determined.
  • the present application it is possible to determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the downlink control information DCI, and perform beam application. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the DCI includes or does not include downlink allocation indication information.
  • the DCI may include the downlink assignment indication information DL assignment, which is used to indicate the time-frequency resource of the PDSCH; or may not include the downlink assignment indication information DL assignment.
  • the beam application time of the uplink transmission and/or the beam application time of the downlink transmission are multiple symbols after the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time for the DCI, the The beam application time for uplink transmission and/or the beam application time for downlink transmission is the application time of the unified transmission configuration indication state.
  • hybrid automatic repeat request is a technology formed by combining forward error correction coding (forward error correction, FEC) and automatic repeat request (Automatic Repeat Request, ARQ).
  • FEC forward error correction
  • ARQ automatic repeat request
  • the basic principle is as follows: Use FEC technology at the receiving end to correct the correctable part of all errors; perform error detection and judge that the data packets cannot be corrected; discard the data packets that cannot be corrected, and request the sending end to resend the same data pack.
  • the acknowledgment character ACK in Hybrid Automatic Repeat Request (HARQ) is feedback information sent by the receiving end to the sending end.
  • the terminal device is the receiving end, and the time after the terminal device sends multiple symbols of the HARQ ACK time to the network device is the beam application time.
  • the embodiment of the present application it is realized to determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the HARQ ACK feedback transmission time for the downlink control information DCI. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the plurality of symbols is a first number of symbols, and the first number of symbols is determined based on the subcarrier spacing of the downlink transmission, wherein the beam application time is the beam of the downlink transmission application time;
  • the plurality of symbols is a second number of symbols, and the second number of symbols is determined based on the subcarrier spacing of the uplink transmission, where the beam application time is the beam application time of the uplink transmission.
  • the beam application time is after the first number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the first number of symbols is determined based on downlink sub-carrier space (sub-carrier space, SCS), and the symbols are time symbols, where the beam application time is the beam application time of the downlink transmission.
  • the beam application time is after the second number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the second number of symbols is determined based on uplink sub-carrier space (sub-carrier space, SCS), and the symbols are time symbols, where the beam application time is the beam application time of the uplink transmission.
  • the first number of symbols is determined based on the subcarrier spacing of downlink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of downlink transmission. For example, if the subcarrier interval of downlink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where the value of N is 12 or 14; For another example, if the subcarrier interval of downlink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the second number of symbols is determined based on the subcarrier spacing of uplink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of uplink transmission. For example, if the subcarrier interval of uplink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where N takes a value of 12 or 14; For another example, if the subcarrier interval of uplink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the value of the first number and/or the value of the second number are configured by the network device.
  • the value of the first quantity and the value of the second quantity may or may not be the same.
  • the embodiment of the present application it is realized to determine the first number of symbols and/or the second number of symbols and the HARQ ACK feedback transmission time according to the subcarrier spacing to determine the beam application time and corresponding uplink transmission time. / or beam application time for downlink transmission. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • it includes:
  • the time length of the plurality of symbols is a first time value
  • the plurality of symbols is a third number of symbols, and the third number of symbols is determined based on the subcarrier spacing of the uplink transmission or the downlink transmission, wherein the beam application time is the time for the uplink transmission and the downlink transmission Transmitted beam application time.
  • the time length of the plurality of symbols may be the first time value, and the first time value is an absolute value of time, not the number of symbols. That is, the beam application time is after the first time value of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time.
  • the specific value of the first time value can be adjusted by the implementer according to the actual implementation situation, and the present disclosure does not limit the specific value of the first time value.
  • the first time value is configured by the network side.
  • the beam application time is the beam application time of the uplink transmission and the downlink transmission. That is, regardless of the subcarrier spacing of the uplink transmission and the downlink transmission, both the uplink transmission and the downlink transmission adopt the TCI state indicated by the DCI after the first time value. or
  • the beam application time is after the third number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the third number of symbols is determined based on the subcarrier spacing SCS of the uplink transmission or the downlink transmission, and the symbols are time symbols, where the beam application time is the beam application of the uplink transmission and the downlink transmission time. That is, the time length occupied by each symbol in the third number of symbols is determined by using the subcarrier spacing of one of the uplink transmission and the downlink transmission. In this case, if the subcarrier spacing of the uplink transmission and the downlink transmission are different, the uplink transmission and the downlink transmission also adopt the TCI state indicated by the DCI after the same time.
  • the value of the third quantity is configured by the network device.
  • the third number of symbols is determined based on the subcarrier spacing SCS of the uplink transmission or the downlink transmission, which means that the time length occupied by each symbol in the third number of symbols is determined by the uplink transmission or the downlink
  • the subcarrier spacing SCS for transmission is determined.
  • the determination of the third number of symbols and the HARQ ACK feedback transmission time determine the beam application time and/or corresponding uplink transmission.
  • the beam application time for downlink transmission or determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the first time value and the HARQ ACK feedback transmission time. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the DCI and the uplink transmission and/or downlink transmission correspond to a component carrier of the same carrier
  • the DCI and the uplink transmission and/or downlink transmission correspond to the carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is greater than or equal to the subcarrier spacing of the uplink transmission and/or the subcarrier spacing of the downlink transmission Carrier spacing.
  • it includes:
  • the multiple symbols include a fourth number of symbols and a fifth number of symbols, the fourth number of symbols is determined based on the subcarrier spacing of the downlink transmission, and the fifth number of symbols is based on the subcarriers of the DCI
  • the interval and the subcarrier interval of the downlink transmission are determined, wherein the beam application time is the beam application time of the downlink transmission; and/or
  • the multiple symbols include a sixth number of symbols and a seventh number of symbols, the sixth number of symbols is determined based on the subcarrier spacing of the uplink transmission, and the seventh number of symbols is based on the subcarriers of the DCI interval and the subcarrier interval of the uplink transmission, wherein the beam application time is the beam application time of the uplink transmission.
  • the DCI and the downlink transmission correspond to component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the downlink transmission, so that the terminal device cannot process data in time, An additional delay, ie an extra symbol, is required. Therefore, after the fourth number of symbols is determined based on the subcarrier spacing of the downlink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the downlink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the fifth number of symbols.
  • the plurality of symbols includes a fourth number of symbols and a fifth number of symbols, and the beam application time is the sum of the fourth number of symbols and the fifth number of symbols of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time after.
  • the symbol is a time symbol, where the beam application time is the beam application time of the downlink transmission. and / or
  • the DCI and the uplink transmission correspond to carrier component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the uplink transmission, so that the terminal device cannot process data in time, requiring additional delay, That is, extra symbols. Therefore, after the sixth number of symbols is determined based on the subcarrier spacing of the uplink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the uplink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the seventh number of symbols.
  • the beam application time is after the sum of the sixth number of symbols and the seventh number of symbols of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time.
  • the symbol is a time symbol, where the beam application time is the beam application time of the uplink transmission.
  • the fourth number of symbols is determined based on the subcarrier spacing of downlink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of downlink transmission. For example, if the subcarrier interval of downlink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where the value of N is 12 or 14; For another example, if the subcarrier interval of downlink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the fifth number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the downlink transmission means that the value of the fifth number is where d 1 is the number of symbols, is the subcarrier spacing of the downlink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the fifth number of symbols is the same as the time length occupied by each symbol in the fourth number of symbols, and is determined based on the subcarrier spacing of downlink transmission.
  • the sixth number of symbols is determined based on the subcarrier spacing of uplink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of uplink transmission. For example, if the subcarrier interval of uplink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where N takes a value of 12 or 14; For another example, if the subcarrier interval of uplink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the seventh number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the uplink transmission means that the value of the seventh number is where d 2 is the number of symbols, is the subcarrier spacing of the uplink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the seventh number of symbols is the same as the time length occupied by each symbol in the sixth number of symbols, and is determined based on the subcarrier spacing of uplink transmission.
  • the value of the fourth quantity and/or the value of the sixth quantity are configured by the network device.
  • the value of the fourth quantity and the value of the sixth quantity may be the same or different.
  • the values of d1 and/or d2 are configured by the network device, or determined by the terminal according to the subcarrier spacing of uplink transmission and/or downlink transmission and the mapping table between subcarrier spacing and d1 and/or d2 .
  • the seventh number of symbols and the HARQ ACK feedback transmission time determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • it includes:
  • the time length of the plurality of symbols is a second time value
  • the plurality of symbols includes an eighth number of symbols and a ninth number of symbols, the eighth number of symbols is determined based on the subcarrier spacing of the uplink transmission, and the ninth number of symbols is based on the subcarriers of the DCI
  • the spacing is determined based on the subcarrier spacing of the uplink transmission; or the eighth number of symbols is determined based on the subcarrier spacing of the downlink transmission, and the ninth number of symbols is based on the subcarrier spacing of the DCI and the downlink
  • the subcarrier interval of transmission is determined; wherein the beam application time is the beam application time of the uplink transmission and the downlink transmission.
  • the DCI and the downlink transmission correspond to component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the downlink transmission, and the time length of the multiple symbols It may be the second time value, and the second time value is an absolute value of time, not the number of symbols. That is, the beam application time is after the second time value of the hybrid automatic repeat request HARQ confirmation character ACK feedback transmission time.
  • the specific value of the second time value can be adjusted by the implementer according to the actual implementation situation, and the present disclosure does not limit the specific value of the second time value. In a possible implementation manner, the second time value is configured on the network side.
  • the unified transmission configuration indicates that the unified TCI state is used for uplink transmission and downlink transmission.
  • the DCI and the downlink transmission correspond to component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the downlink transmission, so that the terminal device cannot process data in time and requires additional time delay. That is, extra symbols. Therefore, after the eighth number of symbols is determined based on the subcarrier spacing of the downlink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the downlink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the ninth number of symbols.
  • the beam application time is after the sum of the eighth number of symbols and the ninth number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the symbol is a time symbol
  • the unified transmission configuration indicates that the unified TCI state is used for uplink transmission and downlink transmission. That is, the subcarrier spacing of the downlink transmission is used to determine the time length occupied by the eighth number of symbols and the value of the ninth number. In this case, if the subcarrier spacing of the uplink transmission and the downlink transmission are different, the uplink transmission and the downlink transmission also adopt the TCI state indicated by the DCI after the same time. or
  • the DCI and the uplink transmission correspond to carrier component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the uplink transmission, so that the terminal device cannot process data in time, requiring additional delay, That is, extra symbols. Therefore, after the eighth number of symbols is determined based on the subcarrier spacing of the uplink transmission, an additional number of symbols is determined.
  • the additional number of symbols is proportional to the subcarrier spacing of the uplink transmission and inversely proportional to the subcarrier spacing of the DCI.
  • the additional number of symbols is the ninth number of symbols.
  • the beam application time is after the sum of the eighth number of symbols and the ninth number of symbols of the hybrid automatic repeat request HARQ acknowledgment character ACK feedback transmission time.
  • the symbol is a time symbol
  • the unified transmission configuration indicates that the unified TCI state is used for uplink transmission and downlink transmission. That is, the subcarrier spacing of the uplink transmission is used to determine the time length occupied by the eighth number of symbols and the value of the ninth number. In this case, if the subcarrier spacing of the uplink transmission and the downlink transmission are different, the uplink transmission and the downlink transmission also adopt the TCI state indicated by the DCI after the same time.
  • the eighth number of symbols is determined based on the subcarrier spacing of uplink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of uplink transmission. For example, if the subcarrier interval of uplink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where N takes a value of 12 or 14; For another example, if the subcarrier interval of uplink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the ninth number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the uplink transmission means that the value of the ninth number is where d 3 is the number of symbols, is the subcarrier spacing of the uplink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the ninth number of symbols is the same as the time length occupied by each symbol in the eighth number of symbols, and is determined based on the subcarrier spacing of uplink transmission.
  • the eighth number of symbols is determined based on the subcarrier spacing of downlink transmission, which means that the time length occupied by each symbol is determined based on the subcarrier spacing of downlink transmission. For example, if the subcarrier interval of downlink transmission is 15KHz, then the time length of each time slot slot is 1ms. If a slot contains N symbols, the time length occupied by each symbol is 1/14ms, where the value of N is 12 or 14; For another example, if the subcarrier interval of downlink transmission is 30KHz, then the time length of each time slot slot is 0.5ms. If a slot contains N symbols, the time length occupied by each symbol is 1/28ms, where N is taken as Value is 12 or 14.
  • the determination of the ninth number of symbols based on the subcarrier spacing of the DCI and the subcarrier spacing of the downlink transmission means that the value of the ninth number is where d 4 is the number of symbols, is the subcarrier spacing of the downlink transmission, the is the subcarrier spacing of the DCI.
  • the time length occupied by each symbol in the ninth number of symbols is the same as the time length occupied by each symbol in the eighth number of symbols, and is determined based on the subcarrier spacing of downlink transmission.
  • the value of the eighth quantity is configured by the network device.
  • the values of d3 and/or d4 are configured by the network device, or determined by the terminal according to the subcarrier spacing of uplink transmission and/or downlink transmission and the mapping table between subcarrier spacing and d3 and/or d4 .
  • the beam application of the corresponding uplink transmission is determined according to the subcarrier spacing of the uplink transmission and/or the downlink transmission and/or the subcarrier spacing of the DCI and the HARQ ACK feedback transmission time Time and/or beam application time for downlink transmission, or determine corresponding beam application time for uplink transmission and/or beam application time for downlink transmission according to the second time value and the HARQ ACK feedback transmission time. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • the DCI and the uplink transmission and/or downlink transmission correspond to component carrier components of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing and/or the uplink transmission Subcarrier spacing for downlink transmission.
  • the DCI and the uplink transmission correspond to component carriers of different carriers, and the subcarrier spacing corresponding to the DCI is smaller than the subcarrier spacing of the uplink transmission, the terminal device cannot process data in time, and needs to The extra delay, that is, the extra symbol.
  • it includes:
  • the downlink transmission includes a downlink channel and/or a downlink reference signal
  • the downlink channel includes at least one of the following: Physical Downlink Control Channel PDCCH, Physical Downlink Shared Channel PDSCH, Physical Broadcast Channel PBCH;
  • the downlink reference signal includes at least one of the following: a synchronization signal block SSB, a channel state information reference signal CSI-RS, a demodulation reference signal DMRS, and a positioning reference signal PRS.
  • it includes:
  • the uplink transmission includes an uplink channel and/or an uplink reference signal
  • the uplink channel includes at least one of the following: a physical uplink shared channel PUSCH, a physical uplink control channel PUCCH, and a physical random access channel PRACH;
  • the uplink reference signal includes at least one of the following: sounding reference signal SRS, DMRS.
  • the DCI and the uplink transmission and/or downlink transmission correspond to different carrier components, including:
  • the different carrier components correspond to different serving cells; or
  • the different carrier components correspond to serving cells and non-serving cells.
  • the communication device 40 When the communication device 40 is a network device, it includes: a sending module, configured to send downlink control information DCI to the terminal device, where the DCI includes a unified transmission configuration indication state;
  • the network device sends the downlink control signal DCI to the terminal device, where the DCI includes a unified transmission configuration indication status.
  • a beam is indicated according to a unified TCI state or a common TCI state in the downlink control information DCI, and the beam may be a common beam.
  • the terminal device After receiving the unified TCI state or common TCI state in the DCI, the terminal device can apply the beam.
  • An application module configured to apply a beam according to the downlink control information.
  • the beam application time corresponding to the beam is obtained according to the DCI, and the beam application time is the time point when the beam is started to be applied. In order to ensure the communication quality, it is necessary to make the network device and the terminal device The beam application time is consistent. After receiving the unified transmission configuration indication status in the DCI, the beam application time for uplink transmission and/or the beam application time for downlink transmission corresponding to the unified transmission configuration indication status can be determined.
  • the present application it is possible to determine the corresponding beam application time for uplink transmission and/or the beam application time for downlink transmission according to the downlink control information DCI, and perform beam application. Therefore, it is ensured that the beams of the network device and the terminal device are consistent, and the transmission performance is improved.
  • FIG. 5 is a schematic structural diagram of another communication device 50 provided in an embodiment of the present application.
  • the communication device 50 may be a network device, or a terminal device (such as the terminal device in the foregoing method embodiments), or a chip, a chip system, or a processor that supports the network device to implement the above method, or it may be a terminal device that supports A device is a chip, a chip system, or a processor that implements the above method.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 50 may include one or more processors 501 .
  • the processor 501 may be a general purpose processor or a special purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 50 may further include one or more memories 502, on which a computer program 503 may be stored, and the processor 501 executes the computer program 503, so that the communication device 50 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 502 .
  • the communication device 50 and the memory 502 can be set separately or integrated together.
  • the communication device 50 may further include a transceiver 504 and an antenna 505 .
  • the transceiver 504 may be referred to as a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 504 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 50 may further include one or more interface circuits 506 .
  • the interface circuit 506 is used to receive code instructions and transmit them to the processor 501 .
  • the processor 501 runs the code instructions to enable the communication device 50 to execute the methods described in the foregoing method embodiments.
  • the communication device 50 is a terminal device (such as the terminal device in the aforementioned method embodiment): the processor 501 is used to execute step S202 in FIG. 2; execute step S302 in FIG. 3a; step S402 in FIG. 4; Step S502; or step S604 in FIG. 6 .
  • the transceiver 504 is used to execute step S601 in FIG. 6 .
  • the communication device 50 is a network device: the transceiver 504 is used to execute step S201 in FIG. 2 ; step S301 in FIG. 3 a ; step S401 in FIG. 4 ; step S501 in FIG. 5 ; or step S603 in FIG. 6 .
  • the processor 501 is configured to execute step S602 in FIG. 6 .
  • the processor 501 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for code/data reading and writing, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transmission.
  • the processor 501 may store a computer program 503 , and the computer program 503 runs on the processor 501 to enable the communication device 50 to execute the methods described in the foregoing method embodiments.
  • the computer program 503 may be solidified in the processor 501, and in this case, the processor 501 may be implemented by hardware.
  • the communication device 50 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this application can be implemented in integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed-signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device (such as the terminal device in the aforementioned method embodiments), but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be affected by Figure 5 Limitations.
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 6 includes a processor 601 and an interface 602 .
  • the number of processors 601 may be one or more, and the number of interfaces 602 may be more than one.
  • the chip For the case where the chip is used to implement the functions of the terminal device in the embodiment of the present application (such as the terminal device in the foregoing method embodiment), it can be implemented: receiving the downlink control information DCI from the network device, and the DCI includes a unified transmission configuration indication status ;
  • An interface 602 configured to send downlink control information DCI to the terminal device, where the DCI includes a unified transmission configuration indication state;
  • the chip further includes a memory 603, which is used to store necessary computer programs and data.
  • the embodiment of the present application also provides a beam application system, the system includes the communication device as the terminal device (such as the terminal device in the method embodiment above) and the communication device as the network device in the embodiment of Figure 4 above, or, the The system includes a communication device serving as a terminal device (such as the terminal device in the foregoing method embodiment) in the aforementioned embodiment of FIG. 5 and a communication device serving as a network device.
  • the present application also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present application also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present application will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in this application can also be described as one or more, and multiple can be two, three, four or more, and this application does not make a limitation.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • the corresponding relationships shown in the tables in this application can be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in this application.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefined in this application can be understood as defining, predefining, storing, prestoring, prenegotiating, preconfiguring, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种波束应用的方法及其装置,可以应用于长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***等***中,该方法包括:接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。通过实施本申请实施例,可以根据所述下行控制信息DCI确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,并进行波束应用。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。

Description

一种波束应用的方法及其装置 技术领域
本申请涉及通信技术领域,尤其涉及一种波束应用的方法及其装置。
背景技术
在无线通信中,通常波束用物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink share channel,PDSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink share channel,PUSCH)和/或参考信号(reference signal,RS)来指示应用。PDCCH和PUCCH可以使用媒体接入控制(medium access control,MAC)控制元素(control element,CE)来激活或应用一个波束。而PDSCH和PUSCH可以根据DCI信令来指示或应用其各自的波束。这种方法会导致网络设备和终端设备的波束出现偏差。
目前尚缺乏用于波束应用的有效手段。
发明内容
本申请实施例提供一种波束应用的方法及其装置,可以应用于长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***等领域,根据所述下行控制信息(Downlink Control Information,DCI)确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,并进行波束应用。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
第一方面,本申请实施例提供一种波束应用的方法,其特征在于,应用于终端设备,所述方法包括:
接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;
确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
可选的,所述DCI包含或不包含下行分配指示信息。
可选的,所述上行传输的波束应用时间和/或下行传输的波束应用时间在针对所述DCI的混合自动重传请求HARQ确认字符ACK反馈传输时间的多个符号之后,所述上行传输的波束应用时间和/或下行传输的波束应用时间为所述统一传输配置指示状态的应用时间。
可选的,所述多个符号为第一数量个符号,所述第一数量个符号基于所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
所述多个符号为第二数量个符号,所述第二数量个符号基于所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
可选的,包括:
所述多个符号的时间长度为第一时间值;或
所述多个符号为第三数量个符号,所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输和所述下行传输的波束应 用时间。
可选的,所述DCI与所述上行传输和/或下行传输对应同一载波的载波单元component carrier;
或所述DCI与所述上行传输和/或下行传输对应不同载波的所述载波单元,且所述DCI对应的子载波间隔大于或等于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
可选的,包括:
所述多个符号包括第四数量个符号和第五数量个符号,所述第四数量个符号基于所述下行传输的子载波间隔确定,所述第五数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
所述多个符号包括第六数量个符号和第七数量个符号,所述第六数量个符号基于所述上行传输的子载波间隔确定,所述第七数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
可选的,包括:
所述多个符号的时间长度为第二时间值;或
所述多个符号包括第八数量个符号和第九数量个符号,所述第八数量个符号基于所述上行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定;或所述第八数量个符号基于所述下行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定;其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
可选的,所述DCI与所述上行传输和/或下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
可选的,包括:
所述下行传输包括下行信道和/或下行参考信号;
所述下行信道包括以下至少之一:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理广播信道PBCH;
所述下行参考信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,定位参考信号PRS。
可选的,包括:
所述上行传输包括上行信道和/或上行参考信号;
所述上行信道包括以下至少之一:物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
所述上行参考信号包括以下至少之一:探测参考信号SRS,DMRS。
可选的,所述DCI与所述上行传输和/或下行传输对应不同载波单元,包括:
所述不同的载波单元对应不同的服务小区;或
所述不同的载波单元对应服务小区和非服务小区。
根据所述下行控制信息DCI确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,并进行波束应用。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
第二方面,本申请实施例提供另一种波束应用的方法,其特征在于,应用于网络设备, 所述方法包括:
向终端设备发送下行控制信息DCI,所述DCI包括统一传输配置指示状态;
根据所述下行控制信息应用波束。
第三方面,本申请实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,所述处理模块被配置为支持通信装置执行上述方法中相应的功能。所述收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:
接收模块,用于接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;
确定模块,用于确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
第四方面,本申请实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本申请中的部分或全部实施例中的功能,也可以具备单独实施本申请中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
在一种实现方式中,该通信装置的结构中可包括收发模块和处理模块,该处理模块被配置为支持通信装置执行上述方法中相应的功能。收发模块用于支持通信装置与其他设备之间的通信。所述通信装置还可以包括存储模块,所述存储模块用于与收发模块和处理模块耦合,其保存通信装置必要的计算机程序和数据。
作为示例,处理模块可以为处理器,收发模块可以为收发器或通信接口,存储模块可以为存储器。
在一种实现方式中,所述通信装置包括:
发送模块,用于向终端设备发送下行控制信息DCI,所述DCI包括统一传输配置指示状态;
应用模块,用于根据所述下行控制信息应用波束。
第五方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本申请实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装 置执行上述第一方面所述的方法。
第八方面,本申请实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本申请实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本申请实施例提供一种波束应用***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本申请还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本申请提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本申请提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本申请提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本申请实施例或背景技术中的技术方案,下面将对本申请实施例或 背景技术中所需要使用的附图进行说明。
图1是本申请实施例提供的一种通信***的架构示意图;
图2是本申请实施例提供的一种波束应用方法的流程示意图;
图3是本申请实施例提供的一种波束应用方法的流程示意图;
图4是本申请实施例提供的一种通信装置的结构示意图;
图5是本申请实施例提供的一种通信装置的结构示意图;
图6是本申请实施例提供的一种芯片的结构示意图。
具体实施方式
为了便于理解,首先介绍本申请涉及的术语。
1、下行控制信息(downlink control information,DCI)
DCI由物理下行控制信道(physical downlink control channel,PDCCH)承载,DCI可以包括上下行资源分配、混合自动重传请求(hybrid automatic repeat request,HARQ)信息、功率控制等。PDCCH是一种物理信道,用于承载所述下行控制信息。
2、波束beam指示
Rel-16中,可以指示物理下行控制信道PDCCH、物理下行共享信道(physical downlink share channel,PDSCH)、物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink share channel,PUSCH)和/或参考信号(reference signal,RS)等对应的波束。
所述参考信号RS包括信道状态信息参考信号(channel state information reference signal,CSI-RS),探测参考信号(sounding reference signal,SRS),定位参考信号(positioning reference signal,PRS),相位参考信号(tracking reference signal,TRS)等,所述CSI-RS包括用于信道状态信息测量的CSI-RS、或用于波束测量的CSI-RS、或用于信道损失pathloss估计的CSI-RS;SRS包括用于基于码本codebook或非码本non-codebook的信道状态信息测量的SRS或用于波束测量的SRS或用于定位测量的SRS。
本文所述的波束也称为传输配置指示(transmission configuration indicator,TCI)状态(state)。其中TCI state包含准共址(Quasi Co-location,QCL)Type D信息。本文所述的波束应用时间也称为TCI state的应用时间。
为了更好的理解本申请实施例公开的一种波束应用的方法,下面首先对本申请实施例适用的通信***进行描述。
请参见图1,图1为本申请实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本申请实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备101和一个终端设备102为例。
需要说明的是,本申请实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。还需要说明的是,本申请实施例中的侧链路还可以称为侧行链路或直通链路。
本申请实施例中的网络设备101是网络的一种用于发射或接收信号的实体。例如,网 络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本申请的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本申请实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本申请实施例中的终端设备102是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本申请的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
Rel-16中,PDCCH、PDSCH、PUSCH、PUCCH和/或参考信号等的波束都是独立指示的。所述参考信号包括CSI-RS,SRS,PRS,TRS等,CSI-RS包括用于信道状态信息测量的CSI-RS或用于波束测量的CSI-RS或用于pathloss估计的CSI-RS;SRS包括用于基于码本codebook或非码本non-codebook的信道状态信息测量的SRS或用于波束测量的SRS或用于定位测量的SRS,而且PDCCH和PUCCH使用媒体接入控制(medium access control,MAC)控制元素(control element,CE)来激活一个波束。而PDSCH和PUSCH是根据DCI信令来指示其各自的波束。目前为了减少信令开销,一种可能的方法是使用通用波束common beam,common beam目前可能是由上行传输的独立上行传输配置指示状态separate UL TCI state和下行传输的独立下行传输配置指示状态separate DL TCI state分开指示,或者由上下行的联合传输配置指示状态joint TCI state联合指示。即基站如果指示一个用于下行的common beam,那么该common beam可以用于终端设备的PDSCH和一部分/全部PDCCH,比如用户设备UE专用PDCCH;基站如果指示一个用于上行的common beam,那么该common beam可以用于终端的PUSCH和一部分/全部PUCCH。
对于DCI指示的unified TCI state,目前是提出在针对该DCI的混合自动重传请求(Hybrid Automatic Repeat Request,HARQ)确认字符(Acknowledge character,ACK)反馈发送后的T时间后,即可使用该DCI指示的unified TCI state,即波束应用时间beam application time为HARQ ACK反馈发送后的T时间后。但是目前尚缺乏对于跨载波指示时,beam application time的确定方法,无法在跨载波指示时保证所述网络设备和所述终端设备的波束一致。
可以理解的是,本申请实施例描述的通信***是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本申请所提供的波束应用的方法及其装置进行详细地介绍。
请参见图2,图2是本申请实施例提供的一种波束应用的方法的流程示意图。所述方法应用于终端设备。如图2所示,该方法可以包括但不限于如下步骤:
步骤S201:接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;
本公开实施例中,根据所述下行控制信息DCI中的统一传输配置指示状态unified TCI state或公共传输配置指示状态common TCI state来指示波束,所述波束可以为公共波束common beam。终端设备接收到所述DCI中的unified TCI state或common TCI state后,即可对波束进行应用。
步骤S202:确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
本公开实施例中,所述波束应用时间为开始应用所述波束的时间点,为了保证通信质量,需要使所述网络设备和所述终端设备的波束应用时间一致。在接收到所述DCI中的统一传输配置指示状态后即可确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。或
所述波束应用时间为开始应用所述波束的时间点,为了保证通信质量,需要使所述网络设备和所述终端设备的波束应用时间一致。在接收到所述DCI中的统一传输配置指示状态后即可确定所述统一传输配置指示状态对应的下行传输的波束应用时间。
通过本申请实施例,实现了根据所述下行控制信息DCI确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,并进行波束应用。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
可选的,所述DCI包含或不包含下行分配指示信息。
所述DCI中可以包含所述下行分配指示信息DL assignment,用于指示所述PDSCH的时频资源;或不包含所述下行分配指示信息DL assignment。
可选的,所述上行传输的波束应用时间和/或下行传输的波束应用时间在针对所述DCI的混合自动重传请求HARQ确认字符ACK反馈传输时间的多个符号之后。所述上行传输的波束应用时间和/或下行传输的波束应用时间为所述统一传输配置指示状态的应用时间。
本公开实施例中,混合自动重传请求HARQ是一种将前向纠错编码(forward error correction,FEC)和自动重传请求(Automatic Repeat Request,ARQ)相结合而形成的技术。基本原理如下所示:在接收端使用FEC技术纠正所有错误中能够纠正的那一部分;进行过错误检测判断不能纠正错误的数据包;丢弃不能纠错的数据包,向发送端请求重新发送相同的数据包。混合自动重传请求HARQ所述确认字符ACK为所述接收端向发送端发送的反馈信息。所述终端设备为接收端,终端设备在向网络设备发送所述HARQ ACK时间的多个符号之后的时间为所述波束应用时间。
通过本申请实施例,实现了根据针对所述下行控制信息DCI的所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
可选的,所述多个符号为第一数量个符号,所述第一数量个符号基于所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
所述多个符号为第二数量个符号,所述第二数量个符号基于所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
本公开实施例中,所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈 传输时间的第一数量个符号之后。所述第一数量个符号基于下行子载波间隔(sub-carrier space,SCS)确定,所述符号为时间符号,其中所述波束应用时间为所述下行传输的波束应用时间。
和/或
所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第二数量个符号之后。所述第二数量个符号基于上行传输的子载波间隔(sub-carrier space,SCS)确定,所述符号为时间符号,其中所述波束应用时间为所述上行传输的波束应用时间。
可选地,所述第一数量个符号基于下行传输的子载波间隔确定,是指每个符号占用的时间长度是基于下行传输的子载波间隔确定。比如下行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如下行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第二数量个符号基于上行传输的子载波间隔确定,是指每个符号占用的时间长度是基于上行传输的子载波间隔确定。比如上行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如上行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,第一数量的值和/或第二数量的值由网络设备配置。第一数量的值和第二数量的值可以一样或不一样。
通过本申请实施例,实现了根据所述子载波间隔确定所述第一数量个符号和/或所述第二数量个符号和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
可选的,包括:
所述多个符号的时间长度为第一时间值;或
所述多个符号为第三数量个符号,所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
本公开实施例中,所述多个符号的时间长度可以为所述第一时间值,所述第一时间值为时间绝对值,不是所述符号数。即所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第一时间值之后。所述第一时间值的具体数值可由实施者根据实施的实际情况调整,本公开不对所述第一时间值的具体数值进行限定。在一种可能的实施方式中,所述第一时间值由网络设备配置。其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。即不管上行传输和下行传输的子载波间隔是多少,上行传输和下行传输都在第一时间值之后采用DCI指示的TCI state。或
所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第三数量个符号之后。所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔SCS确定,所述符号为时间符号,其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。即使用上行传输和下行传输中其中一个的子载波间隔来确定第三数量个符号占用的时间长度。这种情况下,如果上行传输和下行传输的子载波间隔不一样,上行传输和下行传输也在同样的时间之后采用DCI指示的TCI state。
可选地,第三数量的值由网络设备配置。其中所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔SCS确定,是指第三数量个符号中每个符号占用的时间长度 是由所述上行传输或所述下行传输的子载波间隔SCS确定。
通过本申请实施例,实现了根据所述上行传输或所述下行传输的子载波间隔确定所述第三数量个符号和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,或根据所述第一时间值和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
可选的,所述DCI与所述上行传输和/或下行传输对应同一载波的载波单元component carrier;即所述DCI用于指示同一载波上的上行传输和/或下行传输的TCI state。
或所述DCI与所述上行传输和/或下行传输对应不同载波的所述载波单元,且所述DCI对应的子载波间隔大于或等于所述上行传输的子载波间隔和/或下行传输的子载波间隔。即即所述DCI用于指示不同载波上的上行传输和/或下行传输的TCI state。
可选的,包括:
所述多个符号包括第四数量个符号和第五数量个符号,所述第四数量个符号基于所述下行传输的子载波间隔确定,所述第五数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
所述多个符号包括第六数量个符号和第七数量个符号,所述第六数量个符号基于所述上行传输的子载波间隔确定,所述第七数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
本公开实施例中,所述DCI与所述下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述下行传输的子载波间隔,这样终端设备无法及时处理数据,需要额外的时延,也即额外符号。所以基于所述下行传输的子载波间隔确定所述第四数量个符号后,确定额外数量个符号。所述额外数量个符号与所述下行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第五数量个符号。所述多个符号包括第四数量个符号和第五数量个符号,所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第四数量个符号和第五数量个符号之和之后。所述符号为时间符号,其中所述波束应用时间为所述下行传输的波束应用时间。和/或
所述DCI与所述上行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔,这样终端设备无法及时处理数据,需要额外的时延,也即额外符号。所以基于所述上行传输的子载波间隔确定所述第六数量个符号后,确定额外数量个符号。所述额外数量个符号与所述上行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第七数量个符号。所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第六数量个符号和第七数量个符号之和之后。所述符号为时间符号,其中所述波束应用时间为所述上行传输的波束应用时间。
可选地,所述第四数量个符号基于下行传输的子载波间隔确定,是指每个符号占用的时间长度是基于下行传输的子载波间隔确定。比如下行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如下行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第五数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定是指所述第五数量的值为
Figure PCTCN2021111038-appb-000001
其中d 1为符号个数值,
Figure PCTCN2021111038-appb-000002
为所述下行传输的子载 波间隔,所述
Figure PCTCN2021111038-appb-000003
为所述DCI的子载波间隔。第五数量的值确定后,第五数量个符号中每个符号占用的时间长度与第四数量个符号中每个符号占用的时间长度一样,基于下行传输的子载波间隔确定。
可选地,所述第六数量个符号基于上行传输的子载波间隔确定,是指每个符号占用的时间长度是基于上行传输的子载波间隔确定。比如上行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如上行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第七数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定是指所述第七数量的值为
Figure PCTCN2021111038-appb-000004
其中d 2为符号个数值,
Figure PCTCN2021111038-appb-000005
为所述上行传输的子载波间隔,所述
Figure PCTCN2021111038-appb-000006
为所述DCI的子载波间隔。第七数量的值确定后,第七数量个符号中每个符号占用的时间长度与第六数量个符号中每个符号占用的时间长度一样,基于上行传输的子载波间隔确定。
可选地,第四数量的值和/或第六数量的值由网络设备配置。第四数量的值和第六数量的值可以一样或不一样。
可选地,d 1和/或d 2的值由网络设备配置,或终端根据上行传输和/或下行传输的子载波间隔以及子载波间隔与d 1和/或d 2的映射表格确定。
通过本申请实施例,实现了根据所述上行和/或下行传输的子载波间隔和所述DCI的子载波间隔确定所述第四数量和/或第五数量和/或第六数量和/或第七数量个符号和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
可选的,包括:
所述多个符号的时间长度为第二时间值;或
所述多个符号包括第八数量个符号和第九数量个符号,所述第八数量个符号基于所述上行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定;或所述第八数量个符号基于所述下行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定;其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
本公开实施例中,所述DCI与所述上行传输和/或下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输和/或下行传输的子载波间隔,所述多个符号的时间长度可以为所述第二时间值,所述第二时间值为时间绝对值,不是所述符号数。即所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第二时间值之后。所述第二时间值的具体数值可由实施者根据实施的实际情况调整,本公开不对所述第二时间值的具体数值进行限定。在一种可能的实施方式中,所述第二时间值由网络设备配置。所述统一传输配置指示状态unified TCI state用于上行传输和下行传输。即不管上行传输和下行传输的子载波间隔是多少,上行传输和下行传输都在第二时间值之后采用DCI指示的TCI state。或
所述DCI与所述下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述下行传输的子载波间隔,这样终端设备无法及时处理数据,需要 额外的时延,也即额外符号。所以基于所述下行传输的子载波间隔确定所述第八数量个符号后,确定额外数量个符号。所述额外数量个符号与所述下行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第九数量个符号。所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第八数量个符号和第九数量个符号之和之后。所述符号为时间符号,所述统一传输配置指示状态unified TCI state用于上行传输和下行传输。即使用下行传输的子载波间隔来确定第八数量个符号占用的时间长度和第九数量的取值。这种情况下,如果上行传输和下行传输的子载波间隔不一样,上行传输和下行传输也在同样的时间之后采用DCI指示的TCI state。或
所述DCI与所述上行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔,这样终端设备无法及时处理数据,需要额外的时延,也即额外符号。所以基于所述上行传输的子载波间隔确定所述第八数量个符号后,确定额外数量个符号。所述额外数量个符号与所述上行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第九数量个符号。所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的所述第八数量个符号和第九数量个符号之和之后。所述符号为时间符号,所述统一传输配置指示状态unified TCI state用于上行传输和下行传输。即使用上行传输的子载波间隔来确定第八数量个符号占用的时间长度和第九数量的取值。这种情况下,如果上行传输和下行传输的子载波间隔不一样,上行传输和下行传输也在同样的时间之后采用DCI指示的TCI state。
可选地,所述第八数量个符号基于上行传输的子载波间隔确定,是指每个符号占用的时间长度是基于上行传输的子载波间隔确定。比如上行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如上行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第九数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定是指所述第九数量的值为
Figure PCTCN2021111038-appb-000007
其中d 3为符号个数值,
Figure PCTCN2021111038-appb-000008
为所述上行传输的子载波间隔,所述
Figure PCTCN2021111038-appb-000009
为所述DCI的子载波间隔。第九数量的值确定后,第九数量个符号中每个符号占用的时间长度与第八数量个符号中每个符号占用的时间长度一样,基于上行传输的子载波间隔确定。
可选地,所述第八数量个符号基于下行传输的子载波间隔确定,是指每个符号占用的时间长度是基于下行传输的子载波间隔确定。比如下行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如下行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第九数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定是指所述第九数量的值为
Figure PCTCN2021111038-appb-000010
其中d 4为符号个数值,
Figure PCTCN2021111038-appb-000011
为所述下行传输的子载波间隔,所述
Figure PCTCN2021111038-appb-000012
为所述DCI的子载波间隔。第九数量的值确定后,第九数量个符号中每个符号占用的时间长度与第八数量个符号中每个符号占用的时间长度一样,基于下行传输的子载波间隔确定。
可选地,第八数量的值由网络设备配置。
可选地,d 3和/或d 4的值由网络设备配置,或终端根据上行传输和/或下行传输的子载波间隔以及子载波间隔与d 3和/或d 4的映射表格确定。
通过本申请实施例,实现了根据所述上行传输和/或所述下行传输的子载波间隔和/或所述DCI的子载波间隔和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,或根据所述第二时间值和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
可选的,所述DCI与所述上行传输和/或下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
本公开实施例中,所述DCI与所述上行传输和/或下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输和/或下行传输的子载波间隔,终端设备无法及时处理数据,需要额外的时延,也即额外符号。
可选的,包括:
所述下行传输包括下行信道和/或下行参考信号;
所述下行信道包括以下至少之一:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理广播信道(physical broadcast channel,PBCH);
所述下行参考信号包括以下至少之一:同步信号块(Synchronization Signal Block,SSB),信道状态信息参考信号CSI-RS,解调参考信号(demodulation reference signal,DMRS),定位参考信号PRS。
可选的,包括:
所述上行传输包括上行信道和/或上行参考信号;
所述上行信道包括以下至少之一:物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
所述上行参考信号包括以下至少之一:探测参考信号SRS,DMRS。
可选的,所述DCI与所述上行传输和/或下行传输对应不同载波单元,包括:
所述不同的载波单元对应不同的服务小区;或
所述不同的载波单元对应服务小区和非服务小区。
请参见图3,图3是本申请实施例提供的一种波束应用的方法的流程示意图。所述方法应用于网络设备。如图3所示,该方法可以包括但不限于如下步骤:
步骤S301,向终端设备发送下行控制信息DCI,所述DCI包括统一传输配置指示状态;
在本公开实施例中,所述网络设备向所述终端设备发送所述下行控制信号DCI,所述DCI包括统一传输配置指示状态。根据所述下行控制信息DCI中的统一传输配置指示状态unified TCI state或公共传输配置指示状态common TCI state来指示波束,所述波束可以为公共波束common beam。终端设备接收到所述DCI中的unified TCI state或common TCI state后,即可对波束进行应用。
步骤S302,根据所述下行控制信息应用波束。
在本公开实施例中,根据所述DCI获取波束对应的波束应用时间,所述波束应用时间为开始应用所述波束的时间点,为了保证通信质量,需要使所述网络设备和所述终端设备的波束应用时间一致。在接收到所述DCI中的统一传输配置指示状态后即可确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
通过本申请实施例,实现了根据所述下行控制信息DCI确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,并进行波束应用。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
上述本申请提供的实施例中,分别从网络设备、终端设备的角度对本申请实施例提供的方法进行了介绍。为了实现上述本申请实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图4,为本申请实施例提供的一种通信装置40的结构示意图。图4所示的通信装置40可包括收发模块401和处理模块402。收发模块401可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块401可以实现发送功能和/或接收功能。
通信装置40可以是终端设备(如前述方法实施例中的终端设备),也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。或者,通信装置40可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置40为终端设备(如前述方法实施例中的终端设备)时,所述通信装置包括:
接收模块,用于接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;
本公开实施例中,根据所述下行控制信息DCI中的统一传输配置指示状态unified TCI state或公共传输配置指示状态common TCI state来指示波束,所述波束可以为公共波束common beam。终端设备接收到所述DCI中的unified TCI state或common TCI state后,即可对波束进行应用。
确定模块,用于确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
本公开实施例中,所述波束应用时间为开始应用所述波束的时间点,为了保证通信质量,需要使所述网络设备和所述终端设备的波束应用时间一致。在接收到所述DCI中的统一传输配置指示状态后即可确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
通过本申请实施例,实现了根据所述下行控制信息DCI确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,并进行波束应用。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
在一种实现方式中,所述DCI包含或不包含下行分配指示信息。
所述DCI中可以包含所述下行分配指示信息DL assignment,用于指示所述PDSCH的时频资源;或不包含所述下行分配指示信息DL assignment。
在一种实现方式中,所述上行传输的波束应用时间和/或下行传输的波束应用时间在针对所述DCI的混合自动重传请求HARQ确认字符ACK反馈传输时间的多个符号之后,所述上行传输的波束应用时间和/或下行传输的波束应用时间为所述统一传输配置指示状态的应用时间。
本公开实施例中,混合自动重传请求HARQ是一种将前向纠错编码(forward error correction,FEC)和自动重传请求(Automatic Repeat Request,ARQ)相结合而形成的技术。基本原理如下所示:在接收端使用FEC技术纠正所有错误中能够纠正的那一部分;进行 过错误检测判断不能纠正错误的数据包;丢弃不能纠错的数据包,向发送端请求重新发送相同的数据包。混合自动重传请求HARQ所述确认字符ACK为所述接收端向发送端发送的反馈信息。所述终端设备为接收端,终端设备在向网络设备发送所述HARQ ACK时间的多个符号之后的时间为所述波束应用时间。
通过本申请实施例,实现了根据针对所述下行控制信息DCI的所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
在一种实现方式中,所述多个符号为第一数量个符号,所述第一数量个符号基于所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
所述多个符号为第二数量个符号,所述第二数量个符号基于所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
本公开实施例中,所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第一数量个符号之后。所述第一数量个符号基于下行子载波间隔(sub-carrier space,SCS)确定,所述符号为时间符号,其中所述波束应用时间为所述下行传输的波束应用时间。
和/或
所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第二数量个符号之后。所述第二数量个符号基于上行子载波间隔(sub-carrier space,SCS)确定,所述符号为时间符号,其中所述波束应用时间为所述上行传输的波束应用时间。
可选地,所述第一数量个符号基于下行传输的子载波间隔确定,是指每个符号占用的时间长度是基于下行传输的子载波间隔确定。比如下行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如下行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第二数量个符号基于上行传输的子载波间隔确定,是指每个符号占用的时间长度是基于上行传输的子载波间隔确定。比如上行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如上行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,第一数量的值和/或第二数量的值由网络设备配置。第一数量的值和第二数量的值可以一样或不一样。
通过本申请实施例,实现了根据所述子载波间隔确定所述第一数量个符号和/或所述第二数量个符号和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
在一种实现方式中,包括:
所述多个符号的时间长度为第一时间值;或
所述多个符号为第三数量个符号,所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
本公开实施例中,所述多个符号的时间长度可以为所述第一时间值,所述第一时间值为时间绝对值,不是所述符号数。即所述波束应用时间为混合自动重传请求HARQ确认 字符ACK反馈传输时间的第一时间值之后。所述第一时间值的具体数值可由实施者根据实施的实际情况调整,本公开不对所述第一时间值的具体数值进行限定。在一种可能的实施方式中,所述第一时间值由网络侧配置。其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。即不管上行传输和下行传输的子载波间隔是多少,上行传输和下行传输都在第一时间值之后采用DCI指示的TCI state。或
所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第三数量个符号之后。所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔SCS确定,所述符号为时间符号,其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。即使用上行传输和下行传输中其中一个的子载波间隔来确定第三数量个符号中每个符号占用的时间长度。这种情况下,如果上行传输和下行传输的子载波间隔不一样,上行传输和下行传输也在同样的时间之后采用DCI指示的TCI state。
可选地,第三数量的值由网络设备配置。其中所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔SCS确定,是指第三数量个符号中每个符号占用的时间长度是由所述上行传输或所述下行传输的子载波间隔SCS确定。
通过本申请实施例,实现了根据所述上行传输或所述下行传输的子载波间隔确定所述第三数量个符号和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,或根据所述第一时间值和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
在一种实现方式中,所述DCI与所述上行传输和/或下行传输对应同一载波的载波单元component carrier;
或所述DCI与所述上行传输和/或下行传输对应不同载波的所述载波单元,且所述DCI对应的子载波间隔大于或等于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
在一种实现方式中,包括:
所述多个符号包括第四数量个符号和第五数量个符号,所述第四数量个符号基于所述下行传输的子载波间隔确定,所述第五数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
所述多个符号包括第六数量个符号和第七数量个符号,所述第六数量个符号基于所述上行传输的子载波间隔确定,所述第七数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
本公开实施例中,所述DCI与所述下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述下行传输的子载波间隔,这样终端设备无法及时处理数据,需要额外的时延,也即额外符号。所以基于所述下行传输的子载波间隔确定所述第四数量个符号后,确定额外数量个符号。所述额外数量个符号与所述下行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第五数量个符号。所述多个符号包括第四数量个符号和第五数量个符号,所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第四数量个符号和第五数量个符号之和之后。所述符号为时间符号,其中所述波束应用时间为所述下行传输的波束应用时间。和/或
所述DCI与所述上行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔,这样终端设备无法及时处理数据,需要额外的时延,也即额外符号。所以基于所述上行传输的子载波间隔确定所述第六数量个符号后,确定额外数量个符号。所述额外数量个符号与所述上行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第七数量个符号。所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第六数量个符号和 第七数量个符号之和之后。所述符号为时间符号,其中所述波束应用时间为所述上行传输的波束应用时间。
可选地,所述第四数量个符号基于下行传输的子载波间隔确定,是指每个符号占用的时间长度是基于下行传输的子载波间隔确定。比如下行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如下行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第五数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定是指所述第五数量的值为
Figure PCTCN2021111038-appb-000013
其中d 1为符号个数值,
Figure PCTCN2021111038-appb-000014
为所述下行传输的子载波间隔,所述
Figure PCTCN2021111038-appb-000015
为所述DCI的子载波间隔。第五数量的值确定后,第五数量个符号中每个符号占用的时间长度与第四数量个符号中每个符号占用的时间长度一样,基于下行传输的子载波间隔确定。
可选地,所述第六数量个符号基于上行传输的子载波间隔确定,是指每个符号占用的时间长度是基于上行传输的子载波间隔确定。比如上行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如上行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第七数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定是指所述第七数量的值为
Figure PCTCN2021111038-appb-000016
其中d 2为符号个数值,
Figure PCTCN2021111038-appb-000017
为所述上行传输的子载波间隔,所述
Figure PCTCN2021111038-appb-000018
为所述DCI的子载波间隔。第七数量的值确定后,第七数量个符号中每个符号占用的时间长度与第六数量个符号中每个符号占用的时间长度一样,基于上行传输的子载波间隔确定。
可选地,第四数量的值和/或第六数量的值由网络设备配置。第四数量的值和第六数量的值可以一样或不一样。
可选地,d 1和/或d 2的值由网络设备配置,或终端根据上行传输和/或下行传输的子载波间隔以及子载波间隔与d 1和/或d 2的映射表格确定。
通过本申请实施例,实现了根据所述上行和/或下行传输的子载波间隔和所述DCI的子载波间隔确定所述第四数量和/或第五数量和/或第六数量和/或第七数量个符号和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
在一种实现方式中,包括:
所述多个符号的时间长度为第二时间值;或
所述多个符号包括第八数量个符号和第九数量个符号,所述第八数量个符号基于所述上行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定;或所述第八数量个符号基于所述下行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定;其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
本公开实施例中,所述DCI与所述下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述下行传输的子载波间隔,所述多个符号的时间长度可以为所述第二时间值,所述第二时间值为时间绝对值,不是所述符号数。即所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第二时间值之后。所述第二时间值的具体数值可由实施者根据实施的实际情况调整,本公开不对所述第二时间值的具体数值进行限定。在一种可能的实施方式中,所述第二时间值网络侧配置。即不管上行传输和下行传输的子载波间隔是多少,上行传输和下行传输都在第二时间值之后采用DCI指示的TCI state。所述统一传输配置指示状态unified TCI state用于上行传输和下行传输。或
所述DCI与所述下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述下行传输的子载波间隔,这样终端设备无法及时处理数据,需要额外的时延,也即额外符号。所以基于所述下行传输的子载波间隔确定所述第八数量个符号后,确定额外数量个符号。所述额外数量个符号与所述下行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第九数量个符号。所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第八数量个符号和第九数量个符号之和之后。所述符号为时间符号,所述统一传输配置指示状态unified TCI state用于上行传输和下行传输。即使用下行传输的子载波间隔来确定第八数量个符号占用的时间长度和第九数量的取值。这种情况下,如果上行传输和下行传输的子载波间隔不一样,上行传输和下行传输也在同样的时间之后采用DCI指示的TCI state。或
所述DCI与所述上行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔,这样终端设备无法及时处理数据,需要额外的时延,也即额外符号。所以基于所述上行传输的子载波间隔确定所述第八数量个符号后,确定额外数量个符号。所述额外数量个符号与所述上行传输的子载波间隔成正比,与所述DCI的子载波间隔成反比。所述额外数量个符号即为所述第九数量个符号。所述波束应用时间为混合自动重传请求HARQ确认字符ACK反馈传输时间的第八数量个符号和第九数量个符号之和之后。所述符号为时间符号,所述统一传输配置指示状态unified TCI state用于上行传输和下行传输。即使用上行传输的子载波间隔来确定第八数量个符号占用的时间长度和第九数量的取值。这种情况下,如果上行传输和下行传输的子载波间隔不一样,上行传输和下行传输也在同样的时间之后采用DCI指示的TCI state。
可选地,所述第八数量个符号基于上行传输的子载波间隔确定,是指每个符号占用的时间长度是基于上行传输的子载波间隔确定。比如上行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如上行传输的子载波间隔为30KHz,那么每个时隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第九数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定是指所述第九数量的值为
Figure PCTCN2021111038-appb-000019
其中d 3为符号个数值,
Figure PCTCN2021111038-appb-000020
为所述上行传输的子载波间隔,所述
Figure PCTCN2021111038-appb-000021
为所述DCI的子载波间隔。第九数量的值确定后,第九数量个符号中每个符号占用的时间长度与第八数量个符号中每个符号占用的时间长度一样,基于上行传输的子载波间隔确定。
可选地,所述第八数量个符号基于下行传输的子载波间隔确定,是指每个符号占用的时间长度是基于下行传输的子载波间隔确定。比如下行传输的子载波间隔为15KHz,那么每个时隙slot的时间长度为1ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/14ms,其中N取值为12或14;又比如下行传输的子载波间隔为30KHz,那么每个时 隙slot的时间长度为0.5ms,若一个slot包含N个符号,则每个符号占用的时间长度为1/28ms,其中N取值为12或14。
可选地,所述第九数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定是指所述第九数量的值为
Figure PCTCN2021111038-appb-000022
其中d 4为符号个数值,
Figure PCTCN2021111038-appb-000023
为所述下行传输的子载波间隔,所述
Figure PCTCN2021111038-appb-000024
为所述DCI的子载波间隔。第九数量的值确定后,第九数量个符号中每个符号占用的时间长度与第八数量个符号中每个符号占用的时间长度一样,基于下行传输的子载波间隔确定。
可选地,第八数量的值由网络设备配置。
可选地,d 3和/或d 4的值由网络设备配置,或终端根据上行传输和/或下行传输的子载波间隔以及子载波间隔与d 3和/或d 4的映射表格确定。
通过本申请实施例,实现了根据所述上行传输和/或所述下行传输的子载波间隔和/或所述DCI的子载波间隔和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,或根据所述第二时间值和所述HARQ ACK反馈传输时间确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
在一种实现方式中,所述DCI与所述上行传输和/或下行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
本公开实施例中,所述DCI与所述上行传输对应不同载波的载波单元component carrier,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔,终端设备无法及时处理数据,需要额外的时延,也即额外符号。
在一种实现方式中,包括:
所述下行传输包括下行信道和/或下行参考信号;
所述下行信道包括以下至少之一:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理广播信道PBCH;
所述下行参考信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,定位参考信号PRS。
在一种实现方式中,包括:
所述上行传输包括上行信道和/或上行参考信号;
所述上行信道包括以下至少之一:物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
所述上行参考信号包括以下至少之一:探测参考信号SRS,DMRS。
在一种实现方式中,所述DCI与所述上行传输和/或下行传输对应不同载波单元,包括:
所述不同的载波单元对应不同的服务小区;或
所述不同的载波单元对应服务小区和非服务小区。
通信装置40为网络设备时,包括:发送模块,用于向终端设备发送下行控制信息DCI,所述DCI包括统一传输配置指示状态;
在本公开实施例中,所述网络设备向所述终端设备发送所述下行控制信号DCI,所述DCI包括统一传输配置指示状态。根据所述下行控制信息DCI中的统一传输配置指示状态unified TCI state或公共传输配置指示状态common TCI state来指示波束,所述波束可以为 公共波束common beam。终端设备接收到所述DCI中的unified TCI state或common TCI state后,即可对波束进行应用。
应用模块,用于根据所述下行控制信息应用波束。
在本公开实施例中,根据所述DCI获取波束对应的波束应用时间,所述波束应用时间为开始应用所述波束的时间点,为了保证通信质量,需要使所述网络设备和所述终端设备的波束应用时间一致。在接收到所述DCI中的统一传输配置指示状态后即可确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
通过本申请实施例,实现了根据所述下行控制信息DCI确定对应的上行传输的波束应用时间和/或下行传输的波束应用时间,并进行波束应用。从而保证所述网络设备和所述终端设备的波束一致,提高传输性能。
请参见图5,图5是本申请实施例提供的另一种通信装置50的结构示意图。通信装置50可以是网络设备,也可以是终端设备(如前述方法实施例中的终端设备),也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置50可以包括一个或多个处理器501。处理器501可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置50中还可以包括一个或多个存储器502,其上可以存有计算机程序503,处理器501执行所述计算机程序503,以使得通信装置50执行上述方法实施例中描述的方法。可选的,所述存储器502中还可以存储有数据。通信装置50和存储器502可以单独设置,也可以集成在一起。
可选的,通信装置50还可以包括收发器504、天线505。收发器504可以称为收发单元、收发机或收发电路等,用于实现收发功能。收发器504可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置50中还可以包括一个或多个接口电路506。接口电路506用于接收代码指令并传输至处理器501。处理器501运行所述代码指令以使通信装置50执行上述方法实施例中描述的方法。
通信装置50为终端设备(如前述方法实施例中的终端设备):处理器501用于执行图2中的步骤S202;执行图3a中的步骤S302;图4中的步骤S402;图5中的步骤S502;或图6中的步骤S604。收发器504用于执行图6中的步骤S601。
通信装置50为网络设备:收发器504用于执行图2中的步骤S201;执行图3a中的步骤S301;图4中的步骤S401;图5中的步骤S501;或图6中的步骤S603。处理器501用于执行图6中的步骤S602。
在一种实现方式中,处理器501中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传 输或传递。
在一种实现方式中,处理器501可以存有计算机程序503,计算机程序503在处理器501上运行,可使得通信装置50执行上述方法实施例中描述的方法。计算机程序503可能固化在处理器501中,该种情况下,处理器501可能由硬件实现。
在一种实现方式中,通信装置50可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备(如前述方法实施例中的终端设备),但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图5的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图6所示的芯片的结构示意图。图6所示的芯片包括处理器601和接口602。其中,处理器601的数量可以是一个或多个,接口602的数量可以是多个。
对于芯片用于实现本申请实施例中终端设备(如前述方法实施例中的终端设备)的功能的情况,可以实现:接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;
确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
对于芯片用于实现本申请实施例中网络设备的功能的情况:
接口602,用于向终端设备发送下行控制信息DCI,所述DCI包括统一传输配置指示状态;
根据所述下行控制信息应用波束。
可选的,芯片还包括存储器603,存储器603用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这 样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请实施例还提供一种波束应用的***,该***包括前述图4实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置,或者,该***包括前述图5实施例中作为终端设备(如前述方法实施例中的终端设备)的通信装置和作为网络设备的通信装置。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种波束应用的方法,其特征在于,应用于终端设备,所述方法包括:
    接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;
    确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
  2. 根据权利要求1所述的方法,其特征在于,所述上行传输的波束应用时间和/或下行传输的波束应用时间在针对所述DCI的混合自动重传请求确认HARQ ACK反馈传输时间的多个符号之后。
  3. 根据权利要求2所述的方法,其特征在于,所述多个符号为第一数量个符号,所述第一数量个符号基于所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
    所述多个符号为第二数量个符号,所述第二数量个符号基于所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
  4. 根据权利要求2所述的方法,其特征在于,包括:
    所述多个符号的时间长度为第一时间值;或
    所述多个符号为第三数量个符号,所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
  5. 根据权利要求3或4所述的方法,其特征在于,所述DCI与所述上行传输和/或下行传输对应同一载波的载波单元;
    或所述DCI与所述上行传输和/或下行传输对应不同载波的所述载波单元,且所述DCI对应的子载波间隔大于或等于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
  6. 根据权利要求2所述的方法,其特征在于,包括:
    所述多个符号包括第四数量个符号和第五数量个符号,所述第四数量个符号基于所述下行传输的子载波间隔确定,所述第五数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
    所述多个符号包括第六数量个符号和第七数量个符号,所述第六数量个符号基于所述上行传输的子载波间隔确定,所述第七数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
  7. 根据权利要求2所述的方法,其特征在于,包括:
    所述多个符号的时间长度为第二时间值;或
    所述多个符号包括第八数量个符号和第九数量个符号,所述第八数量个符号基于所述上行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定;或所述第八数量个符号基于所述下行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定;其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
  8. 根据权利要求6或7所述的方法,其特征在于,所述DCI与所述上行传输和/或下行传输对应不同载波的载波单元,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
  9. 根据权利要求1所述的方法,其特征在于,包括:
    所述下行传输包括下行信道和/或下行参考信号;
    所述下行信道包括以下至少之一:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理广播信道PBCH;
    所述下行参考信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号 CSI-RS,解调参考信号DMRS,定位参考信号PRS。
  10. 根据权利要求1所述的方法,其特征在于,包括:
    所述上行传输包括上行信道和/或上行参考信号;
    所述上行信道包括以下至少之一:物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
    所述上行参考信号包括以下至少之一:探测参考信号SRS,DMRS。
  11. 根据权利要求5所述的方法,其特征在于,所述DCI与所述上行传输和/或下行传输对应不同载波单元,包括:
    所述不同的载波单元对应不同的服务小区;或
    所述不同的载波单元对应服务小区和非服务小区。
  12. 一种波束应用的方法,其特征在于,应用于网络设备,所述方法包括:
    向终端设备发送下行控制信息DCI,所述DCI包括统一传输配置指示状态;
    根据所述下行控制信息应用波束。
  13. 一种波束应用的装置,其特征在于,包括:
    接收模块,用于接收来自网络设备的下行控制信息DCI,所述DCI包括统一传输配置指示状态;
    确定模块,用于确定所述统一传输配置指示状态对应的上行传输的波束应用时间和/或下行传输的波束应用时间。
  14. 根据权利要求13所述的装置,其特征在于,所述上行传输的波束应用时间和/或下行传输的波束应用时间在针对所述DCI的混合自动重传请求确认HARQ ACK反馈传输时间的多个符号之后。上行传输的波束应用时间和/或下行传输的波束应用时间
  15. 根据权利要求14所述的装置,其特征在于,所述多个符号为第一数量个符号,所述第一数量个符号基于所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
    所述多个符号为第二数量个符号,所述第二数量个符号基于所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
  16. 根据权利要求14所述的装置,其特征在于,包括:
    所述多个符号的时间长度为第一时间值;或
    所述多个符号为第三数量个符号,所述第三数量个符号基于所述上行传输或所述下行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
  17. 根据权利要求15或16所述的装置,其特征在于,所述DCI与所述上行传输和/或下行传输对应同一载波的载波单元;
    或所述DCI与所述上行传输和/或下行传输对应不同载波的所述载波单元,且所述DCI对应的子载波间隔大于或等于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
  18. 根据权利要求14所述的装置,其特征在于,包括:
    所述多个符号包括第四数量个符号和第五数量个符号,所述第四数量个符号基于所述下行传输的子载波间隔确定,所述第五数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定,其中所述波束应用时间为所述下行传输的波束应用时间;和/或
    所述多个符号包括第六数量个符号和第七数量个符号,所述第六数量个符号基于所述上行传输的子载波间隔确定,所述第七数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定,其中所述波束应用时间为所述上行传输的波束应用时间。
  19. 根据权利要求14所述的装置,其特征在于,包括:
    所述多个符号的时间长度为第二时间值;或
    所述多个符号包括第八数量个符号和第九数量个符号,所述第八数量个符号基于所述 上行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述上行传输的子载波间隔确定;或所述第八数量个符号基于所述下行传输的子载波间隔确定,所述第九数量个符号基于所述DCI的子载波间隔和所述下行传输的子载波间隔确定;其中所述波束应用时间为所述上行传输和所述下行传输的波束应用时间。
  20. 根据权利要求18或19所述的装置,其特征在于,所述DCI与所述上行传输和/或下行传输对应不同载波的载波单元,且所述DCI对应的子载波间隔小于所述上行传输的子载波间隔和/或下行传输的子载波间隔。
  21. 根据权利要求13所述的装置,其特征在于,包括:
    所述下行传输包括下行信道和/或下行参考信号;
    所述下行信道包括以下至少之一:物理下行控制信道PDCCH、物理下行共享信道PDSCH、物理广播信道PBCH;
    所述下行参考信号包括以下至少之一:同步信号块SSB,信道状态信息参考信号CSI-RS,解调参考信号DMRS,定位参考信号PRS。
  22. 根据权利要求13所述的装置,其特征在于,包括:
    所述上行传输包括上行信道和/或上行参考信号;
    所述上行信道包括以下至少之一:物理上行共享信道PUSCH,物理上行控制信道PUCCH,物理随机接入信道PRACH;
    所述上行参考信号包括以下至少之一:探测参考信号SRS,DMRS。
  23. 根据权利要求17所述的装置,其特征在于,所述DCI与所述上行传输和/或下行传输对应不同载波单元,包括:
    所述不同的载波单元对应不同的服务小区;或
    所述不同的载波单元对应服务小区和非服务小区。
  24. 一种波束应用的装置,其特征在于,所述装置包括:
    发送模块,用于向终端设备发送下行控制信息DCI,所述DCI包括统一传输配置指示状态;
    应用模块,用于根据所述下行控制信息应用波束。
  25. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至11中任一项所述的方法。
  26. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求12所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至11中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求12所述的方法。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至11中任一项所述的方法被实现。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求12所述的方法被实现。
PCT/CN2021/111038 2021-08-05 2021-08-05 一种波束应用的方法及其装置 WO2023010473A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2021/111038 WO2023010473A1 (zh) 2021-08-05 2021-08-05 一种波束应用的方法及其装置
CN202180002441.3A CN113785645B (zh) 2021-08-05 一种波束应用的方法及其装置
KR1020247007276A KR20240042012A (ko) 2021-08-05 2021-08-05 빔 적용 방법 및 그의 장치
EP21952357.8A EP4383879A1 (en) 2021-08-05 2021-08-05 Beam application method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/111038 WO2023010473A1 (zh) 2021-08-05 2021-08-05 一种波束应用的方法及其装置

Publications (1)

Publication Number Publication Date
WO2023010473A1 true WO2023010473A1 (zh) 2023-02-09

Family

ID=78873897

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/111038 WO2023010473A1 (zh) 2021-08-05 2021-08-05 一种波束应用的方法及其装置

Country Status (3)

Country Link
EP (1) EP4383879A1 (zh)
KR (1) KR20240042012A (zh)
WO (1) WO2023010473A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112771814A (zh) * 2020-12-29 2021-05-07 北京小米移动软件有限公司 波束指示方法、波束指示装置及存储介质
US20210144563A1 (en) * 2019-11-08 2021-05-13 Qualcomm Incorporated Reference signal update timing for uplink signals
CN113170335A (zh) * 2021-03-04 2021-07-23 北京小米移动软件有限公司 波束配置方法、波束配置装置及存储介质

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210144563A1 (en) * 2019-11-08 2021-05-13 Qualcomm Incorporated Reference signal update timing for uplink signals
CN112771814A (zh) * 2020-12-29 2021-05-07 北京小米移动软件有限公司 波束指示方法、波束指示装置及存储介质
CN113170335A (zh) * 2021-03-04 2021-07-23 北京小米移动软件有限公司 波束配置方法、波束配置装置及存储介质

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
SONY: "Further enhancement on multi-beam operation", 3GPP DRAFT; R1-2103287, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. E-meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052178054 *
VIVO: "Further discussion on multi beam enhancement", 3GPP DRAFT; R1-2104343, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 11 May 2021 (2021-05-11), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052006097 *
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2102660, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177668 *
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2104585, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210510 - 20210527, 12 May 2021 (2021-05-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052010879 *

Also Published As

Publication number Publication date
EP4383879A1 (en) 2024-06-12
KR20240042012A (ko) 2024-04-01
CN113785645A (zh) 2021-12-10

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
US20240188054A1 (en) Method and device for time-domain resource allocation
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
EP4322443A1 (en) Frequency hopping method and apparatus
WO2023164952A1 (zh) 一种智能中继的控制方法及其装置
WO2023070586A1 (zh) 物理下行共享信道pdsch配置方法及装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2022198413A1 (zh) 一种上行控制信息uci的资源映射方法及其装置
WO2023010473A1 (zh) 一种波束应用的方法及其装置
CN113785645B (zh) 一种波束应用的方法及其装置
WO2023133742A1 (zh) 物理下行共享信道的处理时间参数的确定方法及装置
WO2023151047A1 (zh) 一种终端设备调度方法及其装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
WO2023004796A1 (zh) 混合自动重传请求反馈方法及装置
WO2022266948A1 (zh) 一种物理上行控制信道波束恢复的方法及其装置
WO2022266926A1 (zh) 一种定时关系调整方法及其装置
WO2023029058A1 (zh) 一种时间偏移量的确定方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2023044804A1 (zh) 载波切换方法及装置
WO2022213289A1 (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024021130A1 (zh) 一种信道估计方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21952357

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507035

Country of ref document: JP

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112024002264

Country of ref document: BR

WWE Wipo information: entry into national phase

Ref document number: 2024105540

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021952357

Country of ref document: EP

Effective date: 20240305

ENP Entry into the national phase

Ref document number: 112024002264

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20240202