WO2023029058A1 - 一种时间偏移量的确定方法及其装置 - Google Patents

一种时间偏移量的确定方法及其装置 Download PDF

Info

Publication number
WO2023029058A1
WO2023029058A1 PCT/CN2021/116797 CN2021116797W WO2023029058A1 WO 2023029058 A1 WO2023029058 A1 WO 2023029058A1 CN 2021116797 W CN2021116797 W CN 2021116797W WO 2023029058 A1 WO2023029058 A1 WO 2023029058A1
Authority
WO
WIPO (PCT)
Prior art keywords
time offset
rnti
user group
network device
value
Prior art date
Application number
PCT/CN2021/116797
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202180002828.9A priority Critical patent/CN116097845A/zh
Priority to EP21955589.3A priority patent/EP4401495A1/en
Priority to PCT/CN2021/116797 priority patent/WO2023029058A1/zh
Publication of WO2023029058A1 publication Critical patent/WO2023029058A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/12Wireless traffic scheduling

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular, to a method and device for determining a time offset.
  • Embodiments of the present disclosure provide a method and device for determining a time offset, which can be applied in the field of communication technologies.
  • an embodiment of the present disclosure provides a method for determining a time offset, the method is executed by a terminal device, and the method includes: according to the value of the wireless network temporary identifier TC-RNTI in message 2 MSG2, determine the current target Beam or first time offset for user group.
  • the determining the current first time offset for the beam or for the user group according to the value of the wireless network temporary identifier TC-RNTI in MSG2 includes:
  • the correspondence between the TC-RNTI and the first time offset includes:
  • the determining whether the network device supports the first time offset for the beam or for the user group includes:
  • the network device determines whether the network device supports the first time offset for the beam or for the user group; or,
  • the first time offset is any of the following:
  • the number of predefined time units between uplink transmission and downlink transmission is the number of predefined time units between uplink transmission and downlink transmission.
  • an embodiment of the present disclosure provides another method for determining a time offset, the method is executed by a network device, and the method includes: determining the message according to the current first time offset for a beam or for a user group 2 The value of the radio network temporary identifier TC-RNTI in MSG2.
  • the determining the value of the wireless network temporary identifier TC-RNTI in MSG2 according to the current first time offset for the beam or for the user group includes:
  • the value of the TC-RNTI corresponding to the current first time offset in the MSG2 is determined.
  • the correspondence between the TC-RNTI and the first time offset includes:
  • the indicating to the terminal device whether the network device supports the first time offset for the beam or for the user group includes:
  • the first time offset is any of the following:
  • the number of predefined time units between uplink transmission and downlink transmission is the number of predefined time units between uplink transmission and downlink transmission.
  • the embodiment of the present disclosure provides a communication device, which has part or all of the functions of the terminal device in the method described in the first aspect above, for example, the communication device may have part or all of the functions in the present disclosure
  • the functions in the embodiments may also have the functions of independently implementing any one of the embodiments in the present disclosure.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • the embodiment of the present disclosure provides another communication device, which has some or all functions of the network device in the method example described in the second aspect above, for example, the function of the communication device may have some of the functions in the present disclosure Or the functions in all the embodiments may also have the function of implementing any one embodiment in the present disclosure alone.
  • the functions described above may be implemented by hardware, or may be implemented by executing corresponding software on the hardware.
  • the hardware or software includes one or more units or modules corresponding to the above functions.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; when the computer program is executed by the processor, the communication device executes the above-mentioned The method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned terminal device, and when the instructions are executed, the method described in the above-mentioned first aspect is implemented.
  • an embodiment of the present invention provides a computer-readable storage medium for storing instructions used by the above-mentioned network device, and when the instructions are executed, the method described in the above-mentioned second aspect is implemented.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining a time offset provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of a method for determining a time offset provided by another embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of a method for determining a time offset provided by another embodiment of the present disclosure
  • Fig. 5 is a schematic flowchart of a method for determining a time offset provided by another embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for determining a time offset provided by another embodiment of the present disclosure.
  • FIG. 7 is a schematic structural diagram of a communication device according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a communication device according to another embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of a chip according to an embodiment of the present disclosure.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device, a terminal device, and a satellite.
  • the number and shape of the devices shown in FIG. Two or more network devices, two or more terminal devices.
  • the communication system shown in FIG. 1 includes a network device 11 , a terminal device 12 and a satellite 13 as an example.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • gNB next generation NodeB
  • WiFi wireless fidelity
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the satellite provided in the embodiment of the present disclosure may be a low-orbit satellite, or may also be a high-orbit satellite, which is not limited in the present disclosure.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • FIG. 2 is a schematic flowchart of a method for determining a time offset provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 21 according to the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2, determine the current first time offset for the beam or for the user group.
  • the message 2 MSG2 is a response message returned by the network device to the terminal device during the random access process.
  • MSG2 can include the value of Temporary Cell-Radio Network Temporary Identifier (TC-RNTI), Timing Advance Command (TA), Uplink Scheduling Grant (Up-Link, UL Grant), etc., The present disclosure does not limit this.
  • each satellite in satellite communication, can provide multiple service beams, and the transmission delay corresponding to each service beam is also different.
  • each cell may contain multiple service beams at the same time, and information transmission between terminal equipment and network equipment can be performed through one or more service beams. Therefore, it is necessary to determine the first time offset corresponding to the beam currently used to transmit information.
  • the first time offsets corresponding to different terminal devices may be different within the coverage of the same beam. Therefore, the first time offsets corresponding to different user groups may be further determined.
  • the user group is a collection of users, and the network device can divide the users according to needs to determine different user groups.
  • the first time offset Koffset can be any of the following:
  • the number of predefined time units between uplink transmission and downlink transmission is the number of predefined time units between uplink transmission and downlink transmission.
  • the time difference between the uplink transmission and the downlink transmission may be an absolute time difference.
  • the time difference between uplink transmission and downlink transmission may be 10 ms, 5 ms, etc., which is not limited in the present disclosure.
  • the predefined time unit may be a time slot, a mini-slot, etc., which is not limited in the present disclosure.
  • the first time offset can be applied to various information transmissions, such as: physical uplink control channel (Physical Uplink Shared CHannel, PUSCH) transmission scheduled by downlink control information (Downlink Control Information, DCI); The transmission of the feedback information of the transmission request (Hybrid Automatic Repeat reQuest, HARQ); and the transmission of the Media Access Control (Media Access Control, MAC) control element (Control Element, CE), etc., are not limited in this disclosure.
  • Physical Uplink control channel Physical Uplink Shared CHannel, PUSCH
  • DCI Downlink Control Information
  • DCI Downlink Control Information
  • the transmission of the feedback information of the transmission request Hybrid Automatic Repeat reQuest, HARQ
  • MAC Media Access Control
  • Control Element, CE Control Element, etc.
  • the terminal device determines the current first time offset for the beam or user group according to the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2. Therefore, the terminal device can determine the first time offset for the beam or user group according to the value of TC-RNTI, and compensate the data transmitted between the terminal device and the network device, thereby solving the problem caused by the high-speed movement of the satellite.
  • the problem of inaccurate adjustment of the timing relationship between terminal equipment and network equipment ensures the reliability of data interaction.
  • FIG. 3 is a schematic flowchart of a method for determining a time offset provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 31 determine the corresponding relationship between the TC-RNTI and the first time offset.
  • the corresponding relationship between the TC-RNTI and the first time offset may be as shown in Table 1.
  • multiple values of TC-RNTI may correspond to the same first time offset.
  • Table 1 is only a schematic illustration of the correspondence between TC-RNTI and the first time offset, and cannot be used as a specific limitation of the correspondence between TC-RNTI and the first time offset in the present disclosure.
  • each element and each corresponding relationship in Table 1 exists independently; these elements and corresponding relationships are exemplarily listed in the same table, but it does not represent all elements, Correspondence must exist simultaneously according to those shown in Table 1.
  • the value of each element and each corresponding relationship does not depend on any other element value or corresponding relationship in Table 1. Therefore, those skilled in the art can understand that the value of each element and each corresponding relationship in Table 1 is an independent embodiment.
  • Step 32 according to the value of the specified information field in the system information, determine whether the network device supports the first time offset for the beam or for the user group.
  • the system information is information sent by the network device to the terminal device.
  • the network device may indicate to the terminal device in the system information whether it supports the first time offset for a beam or for a user group.
  • the number of bits included in the specified information field can be set as required.
  • the specified information field contains 1 bit.
  • the value of this bit is "0", which can indicate that the network device does not support the first time offset for the beam or user group.
  • the value of "1” can indicate that the network The device supports a first time offset for a beam or for a user group.
  • the specified information field contains 2 bits, and the value of this bit is "00", which can indicate that the network device does not support the first time offset for beams and user groups, and the value of "01” can indicate The network device supports the first time offset for the beam.
  • the value "10” can indicate that the network device supports the first time offset for the user group, and "11” can indicate that the network device supports the first time offset for the beam and user group.
  • a time offset and the like are not limited in this disclosure.
  • Step 33 in the case that the network device supports the first time offset for the beam or for the user group, determine the value of the TC-RNTI in MSG2 according to the corresponding relationship between the TC-RNTI and the first time offset The corresponding first time offset.
  • the terminal device does not need to determine the first time offset corresponding to the value of TC-RNTI every time it receives MSG2, only when the network device supports the first time offset for the beam or for the user group Next, according to the corresponding relationship between the TC-RNTI and the first time offset, the first time offset is determined, which saves the cost of the terminal equipment and reduces resource waste.
  • the terminal device first determines the corresponding relationship between the TC-RNTI and the first time offset according to the protocol or receives the signaling sent by the base station, and then determines the corresponding relationship between the TC-RNTI and the first time offset according to the value of the specified information field in the system information. Whether the network device supports the first time offset for the beam or for the user group, and finally, if the network device supports the first time offset for the beam or for the user group, according to the TC-RNTI and the first time offset Quantity correspondence, determine the first time offset corresponding to the value of the TC-RNTI in MSG2.
  • the terminal device determines the first time offset according to the value of the TC-RNTI in MSG2, which not only solves the problem caused by the satellite.
  • the problem of inaccurate adjustment of the transmission delay between the terminal device and the network device caused by the high-speed movement of the network ensures the reliability of data interaction, saves the cost of the terminal device, and reduces the waste of resources.
  • FIG. 4 is a schematic flowchart of a method for determining a time offset provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 41 according to the instruction of the network device, determine the corresponding relationship between the TC-RNTI and the first time offset.
  • Step 42 determine whether the network device supports the first time offset for the beam or for the user group.
  • the number of bits contained in the reserved information field can be set as required.
  • the reserved information field contains 1 bit, and the value of this bit is "0", which can indicate that the network device does not support the first time offset for the beam or user group, and the value of "1" can be Indicates that the network device supports the first time offset for beams or for user groups.
  • the reserved information field contains 2 bits, and the value of the bit is "00", which can indicate that the network device does not support the first time offset for the beam and the user group, and the value is "01".
  • the network device supports the first time offset for the beam
  • the value "10” can indicate that the network device supports the first time offset for the user group
  • “11” can indicate that the network device supports the first time offset for the beam and user group The first time offset and so on, which are not limited in the present disclosure.
  • the information field reserved in MSG2 can be at a predefined position in the entire information field of MSG2, such as the first information bit in the entire information field, so that the terminal device can, according to the value of the reserved information field, It is determined whether the network device supports a first time offset for a beam or for a user group.
  • the present disclosure does not limit this.
  • the network device directly uses the information field reserved in MSG2 to transmit to the terminal device whether it supports the first time offset for the beam or user group, without using other information for transmission, reducing resource waste .
  • the terminal device can determine whether the network device supports the first time offset for the beam or for the user group only after receiving MSG2, and determine whether the network device supports the first time offset for the beam or for the user group After the amount, the first time offset corresponding to the value of the TC-RNTI in MSG2 is determined, which further saves the overhead of the terminal device.
  • Step 43 in the case that the network device supports the first time offset for the beam or for the user group, determine the value of the TC-RNTI in MSG2 according to the corresponding relationship between the TC-RNTI and the first time offset The corresponding first time offset.
  • step 43 for the specific implementation form of step 43, reference may be made to the detailed descriptions in other embodiments of the present disclosure, and details will not be repeated here.
  • the terminal device first determines the correspondence between the TC-RNTI and the first time offset according to the instruction of the network device, and then determines whether the network device supports targeting The beam or the first time offset for the user group. Finally, when the network device supports the first time offset for the beam or the user group, according to the correspondence between TC-RNTI and the first time offset, Determine the first time offset corresponding to the value of the TC-RNTI in MSG2.
  • the terminal device determines the first time offset according to the value of TC-RNTI in MSG2, which not only solves the problem of terminal equipment
  • the transmission delay problem with network equipment ensures the reliability of data interaction, saves the cost of terminal equipment, and reduces the waste of resources.
  • FIG. 5 is a schematic flowchart of a method for determining a time offset provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 51 according to the current first time offset for the beam or for the user group, determine the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2.
  • the message 2 MSG2 is a response message returned by the network device to the terminal device during the random access process.
  • MSG2 can include the value of Temporary community-Radio Network Tempory Identity (TC-RNTI), Timing Advance Command (TA), Uplink Scheduling Grant (Up-Link, UL Grant), etc. The present disclosure does not limit this.
  • the user group is a collection of users, and the network device can divide the users according to needs to determine different user groups.
  • the first time offset Koffset may be any of the following:
  • the number of predefined time units between uplink transmission and downlink transmission is the number of predefined time units between uplink transmission and downlink transmission.
  • the time difference between the uplink transmission and the downlink transmission may be an absolute time difference.
  • the time difference between uplink transmission and downlink transmission may be 10 ms, 5 ms, etc., which is not limited in the present disclosure.
  • the predefined time unit may be a time slot, a mini-slot, etc., which is not limited in the present disclosure.
  • the first time offset can be applied to various information transmissions, such as: physical uplink control channel (Physical Uplink Shared CHannel, PUSCH) transmission scheduled by downlink control information (Downlink Control Information, DCI); The transmission of the feedback information of the transmission request (Hybrid Automatic Repeat reQuest, HARQ); and the transmission of the Media Access Control (Media Access Control, MAC) control element (Control Element, CE), etc., are not limited in this disclosure.
  • Physical Uplink control channel Physical Uplink Shared CHannel, PUSCH
  • DCI Downlink Control Information
  • DCI Downlink Control Information
  • the transmission of the feedback information of the transmission request Hybrid Automatic Repeat reQuest, HARQ
  • MAC Media Access Control
  • Control Element, CE Control Element, etc.
  • the network device determines the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2 according to the current first time offset for the beam or for the user group. Therefore, the network device can determine the value of the TC-RNTI according to the current first time offset for the beam or the user group, so that the terminal device can determine the first time according to the value of the TC-RNTI in MSG2
  • the offset compensates the data transmitted between the terminal device and the network device, thereby solving the problem of inaccurate adjustment of the timing relationship between the terminal device and the network device due to the high-speed movement of the satellite, and ensuring the reliability of data interaction.
  • FIG. 6 is a schematic flowchart of a method for determining a time offset provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 6, the method may include but not limited to the following steps:
  • Step 61 Indicate to the terminal device whether the network device supports the first time offset for beams or for user groups.
  • the network device may indicate to the terminal device whether the network device supports the first time offset for a beam or for a user group through a designated information field in the system information.
  • the number of bits included in the specified information field can be set as required.
  • the specified information field contains 1 bit.
  • the value of this bit is "0", which can indicate that the network device does not support the first time offset for the beam or user group.
  • the value of "1” can indicate that the network The device supports a first time offset for a beam or for a user group.
  • the specified information field contains 2 bits, and the value of this bit is "00", which can indicate that the network device does not support the first time offset for beams and user groups, and the value of "01” can indicate The network device supports the first time offset for the beam.
  • the value "10” can indicate that the network device supports the first time offset for the user group, and "11” can indicate that the network device supports the first time offset for the beam and user group.
  • a time offset and the like are not limited in this disclosure.
  • the network device may also indicate to the terminal device whether the network device supports the first time offset for the beam or for the user group through the information field reserved in MSG2.
  • the number of bits contained in the reserved information field can be set as required.
  • the reserved information field contains 1 bit, and the value of this bit is "0", which can indicate that the network device does not support the first time offset for the beam or user group, and the value of "1" can be Indicates that the network device supports the first time offset for beams or for user groups.
  • the reserved information field contains 2 bits, and the value of the bit is "00", which can indicate that the network device does not support the first time offset for the beam and the user group, and the value is "01".
  • the network device supports the first time offset for the beam
  • the value "10” can indicate that the network device supports the first time offset for the user group
  • “11” can indicate that the network device supports the first time offset for the beam and user group The first time offset and so on, which are not limited in the present disclosure.
  • Step 62 In the case of supporting the first time offset for the beam or for the user group, determine the corresponding relationship between the TC-RNTI and the first time offset according to the agreement.
  • the corresponding relationship between the TC-RNTI and the first time offset may be as shown in Table 1. No more details here.
  • Step 63 Determine the value of the TC-RNTI corresponding to the current first time offset in MSG2 according to the correspondence between the TC-RNTI and the first time offset.
  • the network device determines the corresponding relationship between TC-RNTI and the first time offset according to the agreement only when it supports the first time offset for the beam or for the user group, and then determines the MSG2 The value of the TC-RNTI corresponding to the current first time offset in . Therefore, there is no need to determine the value of the TC-RNTI corresponding to the first time offset in each MSG2, which saves the overhead of network equipment.
  • the network device first indicates to the terminal device whether the network device supports the first time offset for the beam or for the user group, and then supports the first time offset for the beam or for the user group Next, according to the agreement, determine the corresponding relationship between TC-RNTI and the first time offset, and finally determine the correspondence between MSG2 and the current first time offset according to the corresponding relationship between TC-RNTI and the first time offset.
  • the value of the TC-RNTI is the value of the TC-RNTI.
  • the value of the TC-RNTI is determined according to the first time offset, so that the terminal device can use the TC-RNTI in MSG2
  • the value of RNTI determines the first time offset, which not only solves the problem of inaccurate adjustment of the timing relationship between terminal equipment and network equipment due to high-speed satellite movement, but also ensures the reliability of data interaction and saves network equipment.
  • the overhead reduces the waste of resources.
  • the methods provided in the embodiments of the present disclosure are introduced from the perspectives of network devices and terminal devices respectively.
  • the network device and the terminal device may include a hardware structure and a software module, and implement the above functions in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • a certain function among the above-mentioned functions may be implemented in the form of a hardware structure, a software module, or a hardware structure plus a software module.
  • FIG. 7 is a schematic structural diagram of a communication device 70 provided by an embodiment of the present disclosure.
  • the communication device 70 shown in FIG. 7 may include a processing module 701 and a transceiver module 702 .
  • the transceiver module 702 may include a sending module and/or a receiving module, the sending module is used to implement a sending function, the receiving module is used to implement a receiving function, and the transceiver module 702 may implement a sending function and/or a receiving function.
  • the communication device 70 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched and used with the terminal device.
  • the communication device 70 on the side of the terminal device, the device includes:
  • the processing module 701 is configured to determine the current first time offset for the beam or for the user group according to the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2.
  • processing module 701 is specifically used for:
  • processing module 701 is specifically used for:
  • processing module 701 is further specifically configured to:
  • processing module 701 is further specifically configured to:
  • the network device determines whether the network device supports the first time offset for the beam or for the user group; or,
  • the first time offset is any of the following:
  • the number of predefined time units between uplink transmission and downlink transmission is the number of predefined time units between uplink transmission and downlink transmission.
  • the terminal device determines the current first time offset for the beam or user group according to the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2. Therefore, the terminal device can determine the first time offset for the beam or user group according to the value of TC-RNTI, and compensate the data transmitted between the terminal device and the network device, thereby solving the problem caused by the high-speed movement of the satellite.
  • the problem of inaccurate adjustment of the timing relationship between terminal equipment and network equipment ensures the reliability of data interaction.
  • the communication device 70 may be a network device, may also be a device in the network device, and may also be a device that can be matched and used with the network device.
  • the communication device 70 on the network device side, the device includes:
  • the processing module 701 is configured to determine the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2 according to the current first time offset for the beam or for the user group.
  • processing module 701 is specifically used for:
  • the value of the TC-RNTI corresponding to the current first time offset in the MSG2 is determined.
  • processing module 701 is further specifically configured to:
  • processing module 701 is further specifically configured to:
  • processing module 701 is further specifically configured to:
  • the first time offset is any of the following:
  • the number of predefined time units between uplink transmission and downlink transmission is the number of predefined time units between uplink transmission and downlink transmission.
  • the network device determines the value of the wireless network temporary identifier TC-RNTI in the message 2 MSG2 according to the current first time offset for the beam or for the user group. Therefore, the network device can determine the value of the TC-RNTI according to the current first time offset for the beam or the user group, so that the terminal device can determine the first time according to the value of the TC-RNTI in MSG2
  • the offset compensates the data transmitted between the terminal device and the network device, thereby solving the problem of inaccurate adjustment of the timing relationship between the terminal device and the network device due to the high-speed movement of the satellite, and ensuring the reliability of data interaction.
  • FIG. 8 is a schematic structural diagram of another communication device 80 provided by an embodiment of the present disclosure.
  • the communication device 80 may be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 80 may include one or more processors 801 .
  • the processor 801 may be a general-purpose processor or a special-purpose processor. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processing unit can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 80 may further include one or more memories 802, on which a computer program 804 may be stored, and the processor 801 executes the computer program 804, so that the communication device 80 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 802 .
  • the communication device 80 and the memory 802 can be set separately or integrated together.
  • the communication device 80 may further include a transceiver 805 and an antenna 806 .
  • the transceiver 805 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 805 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 80 may further include one or more interface circuits 807 .
  • the interface circuit 807 is used to receive code instructions and transmit them to the processor 801 .
  • the processor 801 runs the code instructions to enable the communication device 80 to execute the methods described in the foregoing method embodiments.
  • the communication device 80 is a terminal device: the processor 801 is used to execute step 21 in FIG. 2; step 31, step 32, and step 33 in FIG. 3; step 41, step 42, step 43 in FIG. 4, and so on.
  • the communication device 80 is a network device: the processor 801 is configured to execute step 51 in FIG. 5 ; step 61 , step 62 , step 63 in FIG. 6 , and so on.
  • the processor 801 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 801 may store a computer program 803, and the computer program 803 runs on the processor 801, and may cause the communication device 80 to execute the methods described in the foregoing method embodiments.
  • the computer program 803 may be solidified in the processor 801, and in this case, the processor 801 may be implemented by hardware.
  • the communication device 80 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 11 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 9 refer to the schematic structural diagram of the chip shown in FIG. 9 .
  • the chip shown in FIG. 9 includes a processor 901 and an interface 902 .
  • the number of processors 901 may be one or more, and the number of interfaces 902 may be more than one.
  • the processor 901 is configured to execute step 21 in FIG. 2; step 31, step 32, and step 33 in FIG. 3; step 41, step 42, and step 43 in FIG. 4, and so on.
  • Processor 901 configured to execute step 51 in FIG. 5; step 61, step 62, step 63 in FIG. 6, and so on.
  • the chip further includes a memory 903 for storing necessary computer programs and data.
  • the embodiment of the present disclosure also provides a communication system, the system includes the communication device as the terminal device and the communication device as the network device in the embodiment of Figure 7, or the system includes the communication device as the terminal device in the embodiment of Figure 8 devices and communication devices as network devices.
  • the present disclosure also provides a computer-readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when the computer program product is executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种时间偏移量的确定方法及其装置,可应用于通信技术领域,其中,由终端设备(12)执行的方法包括:根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量(21)。由此,终端设备(12)可以根据TC-RNTI的取值确定针对波束或者用户组的第一时间偏移量,对终端设备(12)与网络设备(11)之间传输的数据进行补偿,从而解决了由于卫星(13)高速移动导致的终端设备(12)与网络设备(11)间的定时关系调整不准确的问题,保证了数据交互的可靠性。

Description

一种时间偏移量的确定方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种时间偏移量的确定方法及其装置。
背景技术
随着无线通信技术的发展,卫星通信成为未来无线通信技术发展的重要方向。在卫星通信场景中,由于发送端与接收端存在较长的信号传输距离,导致数据传输过程中有较大的时间延迟。而且,每个卫星可以提供多种波束,不同的波束覆盖不同的区域,在一个小区包含多种波束的情况下,每个波束的传输时延不同。因此,如何在卫星高速移动的情况下,确定终端设备与网络设备之间的时间偏移量成为目前重要的研究方向。
发明内容
本公开实施例提供一种时间偏移量的确定方法及其装置,可应用于通信技术领域中。
第一方面,本公开实施例提供一种时间偏移量的确定方法,所述方法由终端设备执行,该方法包括:根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。
可选的,所述根据MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量,包括:
根据TC-RNTI与第一时间偏移量的对应关系,确定与所述MSG2中的TC-RNTI的取值对应的第一时间偏移量。
可选的,所述根据TC-RNTI与第一时间偏移量的对应关系,包括:
根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系;或者,
根据网络设备的指示,确定所述TC-RNTI与第一时间偏移量的对应关系。
可选的,其特征在于,还包括:
确定网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
可选的,所述确定网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量,包括:
根据***信息中指定信息域的取值,确定所述网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量;或者,
根据所述MSG2中预留的信息域的取值,确定所述网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
可选的,所述第一时间偏移量为以下任一项:
上行传输与下行传输间的时间差值;
上行传输与下行传输间隔的预定义时间单元的数量。
第二方面,本公开实施例提供另一种时间偏移量的确定方法,所述方法由 网络设备执行,该方法包括:根据当前针对波束或者针对用户组的第一时间偏移量,确定消息2 MSG2中无线网络临时标识TC-RNTI的取值。
可选的,所述根据当前针对波束或者针对用户组的第一时间偏移量,确定MSG2中无线网络临时标识TC-RNTI的取值,包括:
根据TC-RNTI与第一时间偏移量的对应关系,确定所述MSG2中与当前的第一时间偏移量对应的TC-RNTI的取值。
可选的,所述根据TC-RNTI与第一时间偏移量的对应关系,包括:
根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系。
可选的,还包括:
向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
可选的,所述向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量,包括:
通过***信息中的指定信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量;或者,
通过所述MSG2中预留的信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
可选的,所述第一时间偏移量以下任一项:
上行传输与下行传输间的时间差值;
上行传输与下行传输间隔的预定义时间单元的数量。
第三方面,本公开实施例提供一种通信装置,该通信装置具有实现上述第一方面所述的方法中终端设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第四方面,本公开实施例提供另一种通信装置,该通信装置具有实现上述第二方面所述的方法示例中网络设备的部分或全部功能,比如通信装置的功能可具备本公开中的部分或全部实施例中的功能,也可以具备单独实施本公开中的任一个实施例的功能。所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的单元或模块。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;当所述计算机程序被所述处理器执行时,使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使上述第一方面所述的方法被实现。
第十三方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使上述第二方面所述的方法被实现。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构示意图;
图2是本公开一实施例提供的一种时间偏移量的确定方法的流程示意图;
图3是本公开另一实施例提供的一种时间偏移量的确定方法的流程示意图;
图4是本公开另一实施例提供的一种时间偏移量的确定方法的流程示意图;
图5是本公开另一实施例提供的一种时间偏移量的确定方法的流程示意图;
图6是本公开另一实施例提供的一种时间偏移量的确定方法的流程示意图;
图7是本公开一实施例的通信装置的结构示意图;
图8是本公开另一实施例的通信装置的结构示意图;
图9是本公开一实施例的芯片的结构示意图。
具体实施方式
为了更好的理解本公开实施例公开的一种时间偏移量的确定方法,下面首先对本公开实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备、一个终端设备和一个卫星,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11、一个终端设备12和一个卫星13为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在 CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。本公开实施例提供的卫星,可以为低轨道卫星,或者,还可以为高轨道卫星,本公开对此不做限定。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面结合附图对本公开所提供的时间偏移量的确定方法及其装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种时间偏移量的确定方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤21,根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。
其中,消息2 MSG2是在随机接入过程中,网络设备向终端设备返回的响应消息。MSG2中可以包含无线网络临时标识(Temporary Cell-Radio Network Temporary Identifier,TC-RNTI)的取值、定时提前命令(Timing Advance Command,TA)、上行调度准许(Up-Link,UL Grant)等等,本公开对此不做限定。
可以理解的是,在卫星通信中,每个卫星可以提供多个服务波束,每个服务波束对应的传输时延也不尽相同。在卫星高速运动的过程中,由于每个服务波束的覆盖范围不同,每个小区可能同时包含多个服务波束,终端设备与网络设备之间可以通过一个或是多个服务波束进行信息传输。因此,需要确定当前用于传输信息的波束对应的第一时间偏移量。
或者,由于卫星通信的覆盖范围较大,同一波束覆盖范围内,不同终端设备之间对应的第一时间偏移量可能不同,因此,可以进一步确定不同用户组对 应的第一时间偏移量。
其中,用户组是针对用户的集合,网络设备可以根据需要,将用户进行划分,以确定不同的用户组。
可选的,第一时间偏移量Koffset可以为以下任一项:
上行传输与下行传输间的时间差值;
上行传输与下行传输间隔的预定义时间单元的数量。
其中,上行传输与下行传输间的时间差值可以为绝对的时间差值。比如,上行传输与下行传输间的时间差值可以为10ms、5ms等等,本公开对此不做限定。
可选的,预定义时间单元可以为时隙、微时隙等等,本公开对此不做限定。
可选的,第一时间偏移量可应用于多种信息传输中,比如:下行控制信息(Downlink Control Information,DCI)调度的物理上行控制信道(Physical Uplink Shared CHannel,PUSCH)传输;混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息的传输;以及,媒体访问控制(Media Access Control,MAC)控制单元(Control Element,CE)的传输等等,本公开对此不做限定。
通过实施本公开实施例,终端设备根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。由此,终端设备可以根据TC-RNTI的取值确定针对波束或者用户组的第一时间偏移量,对终端设备与网络设备之间传输的数据进行补偿,从而解决了由于卫星高速移动导致的终端设备与网络设备间的定时关系调整不准确的问题,保证了数据交互的可靠性。
请参见图3,图3是本公开实施例提供的一种时间偏移量的确定方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤31,根据协议约定,确定TC-RNTI与第一时间偏移量的对应关系。
其中,TC-RNTI与第一时间偏移量的对应关系可以如表1所示。
表1
TC-RNTI的取值 第一时间偏移量
0001–0FFF Koffset 1
1001-1FFF Koffset 2
FFF3–FFFD Koffset N
如表1所示,多个TC-RNTI的取值可以对应同一个第一时间偏移量。
需要说明的是,表1只是TC-RNTI与第一时间偏移量的对应关系的示意性说明,不能做为本公开中TC-RNTI与第一时间偏移量的对应关系的具体限定。
可以理解的是,表1中的每一个元素、每一条对应关系,都是独立存在的;这些元素、对应关系被示例性的列在同一张表格中,但是并不代表表格中的所有元素、对应关系必须根据表1中所示的同时存在。其中每一个元素的值和每一对应关系,是不依赖于表1中任何其他元素值或对应关系。因此本领域内技术人员可以理解,该表1中的每一个元素的取值、每一条对应关系,各种都是一个独立的实施例。
步骤32,根据***信息中指定信息域的取值,确定网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
其中,***信息为网络设备向终端设备发送的信息。网络设备可以在***信息中向终端设备指示自己是否支持针对波束或者针对用户组的第一时间偏移量。
其中,指定信息域中包含的比特位的数量,可以根据需要设置。比如指定信息域中包含1个比特位,该比特位取值为“0”,可以表示网络设备不支持针对波束或者针对用户组的第一时间偏移量,取值为“1”可以表示网络设备支持针对波束或者针对用户组的第一时间偏移量。或者,指定信息域中包含2个比特位,该比特位取值为“00”,可以表示网络设备不支持针对波束及针对用户组的第一时间偏移量,取值为“01”可以表示网络设备支持针对波束的第一时间偏移量,取值为“10”可以表示网络设备支持针对用户组的第一时间偏移量,“11”可以表示网络设备支持针对波束及用户组的第一时间偏移量等等,本公开对此不做限定。
步骤33,在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,根据TC-RNTI与第一时间偏移量的对应关系,确定与MSG2中的TC-RNTI的取值对应的第一时间偏移量。
可以理解的是,在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,再根据MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。由此,终端设备无需每次接收到MSG2之后,均确定TC-RNTI的取值对应的第一时间偏移量,仅在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,再去根据TC-RNTI与第一时间偏移量的对应关系,确定第一时间偏移量,节省了终端设备的开销,减少资源浪费。
通过实施本公开实施例,终端设备首先根据协议约定或是接收基站发送的信令,确定TC-RNTI与第一时间偏移量的对应关系,之后根据***信息中指定信息域的取值,确定网络设备是否支持针对波束或者针对用户组的第一时间偏移量,最后在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,根据TC-RNTI与第一时间偏移量的对应关系,确定与MSG2中的TC-RNTI的取值对应的第一时间偏移量。由此,终端设备在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,根据MSG2中的TC-RNTI的取值,确定第一时间偏移量,不仅解决了由于卫星的高速移动导致的终端设备与网络设 备之间的传输时延调整不准确的问题,保证了数据交互的可靠性,还节省了终端设备的开销,减少了资源浪费。
请参见图4,图4是本公开实施例提供的一种时间偏移量的确定方法的流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤41,根据网络设备的指示,确定TC-RNTI与第一时间偏移量的对应关系。
步骤42,根据MSG2中预留的信息域的取值,确定网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
其中,预留的信息域中包含的比特位的数量,可以根据需要设置。比如预留的信息域中包含1个比特位,该比特位取值为“0”,可以表示网络设备不支持针对波束或者针对用户组的第一时间偏移量,取值为“1”可以表示网络设备支持针对波束或者针对用户组的第一时间偏移量。或者,预留的信息域中包含2个比特位,该比特位取值为“00”,可以表示网络设备不支持针对波束及针对用户组的第一时间偏移量,取值为“01”可以表示网络设备支持针对波束的第一时间偏移量,取值为“10”可以表示网络设备支持针对用户组的第一时间偏移量,“11”可以表示网络设备支持针对波束及用户组的第一时间偏移量等等,本公开对此不做限定。
可选的,MSG2中预留的信息域可以在MSG2整个信息域预定义的位置上,比如在整个信息域的第一个信息比特位,以方便终端设备根据预留的信息域的取值,确定网络设备是否支持针对波束或者针对用户组的第一时间偏移量。本公开对此不做限定。
可以理解的是,网络设备直接利用在MSG2中预留的信息域,向终端设备传输自己是否支持针对波束或者针对用户组的第一时间偏移量,无需利用其他信息进行传输,减少了资源浪费。且终端设备只需在接收到MSG2之后,即可确定网络设备是否支持针对波束或者针对用户组的第一时间偏移量,并在确定网络设备支持针对波束或者针对用户组的第一时间偏移量之后,确定MSG2中的TC-RNTI的取值对应的第一时间偏移量,进一步节省了终端设备的开销。
步骤43,在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,根据TC-RNTI与第一时间偏移量的对应关系,确定与MSG2中的TC-RNTI的取值对应的第一时间偏移量。
其中,步骤43的具体实现形式,可参照本公开中其他各实施例中的详细描述,此处不再详细赘述。
通过实施本公开实施例,终端设备首先根据网络设备的指示,确定TC-RNTI与第一时间偏移量的对应关系,之后根据MSG2中预留的信息域的取值,确定网络设备是否支持针对波束或者针对用户组的第一时间偏移量,最后在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,根据 TC-RNTI与第一时间偏移量的对应关系,确定与MSG2中的TC-RNTI的取值对应的第一时间偏移量。由此,终端设备在网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,根据MSG2中的TC-RNTI的取值,确定第一时间偏移量,不仅解决了终端设备与网络设备之间的传输时延问题,保证了数据交互的可靠性,还节省了终端设备的开销,减少了资源浪费。
请参见图5,图5是本公开实施例提供的一种时间偏移量的确定方法的流程示意图,该方法由网络设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤51,根据当前针对波束或者针对用户组的第一时间偏移量,确定消息2 MSG2中无线网络临时标识TC-RNTI的取值。
其中,消息2 MSG2是在随机接入过程中,网络设备向终端设备返回的响应消息。MSG2中可以包含无线网络临时标识(Temporary community-Radio Network Tempory Identity,TC-RNTI)的取值、定时提前命令(Timing Advance Command,TA)、上行调度准许(Up-Link,UL Grant)等等,本公开对此不做限定。
其中,用户组是针对用户的集合,网络设备可以根据需要,将用户进行划分,以确定不同的用户组。
可选的,第一时间偏移量Koffset可以为以下任一项:
上行传输与下行传输间的时间差值;
上行传输与下行传输间隔的预定义时间单元的数量。
其中,上行传输与下行传输间的时间差值可以为绝对的时间差值。比如,上行传输与下行传输间的时间差值可以为10ms、5ms等等,本公开对此不做限定。
可选的,预定义时间单元可以为时隙、微时隙等等,本公开对此不做限定。
可选的,第一时间偏移量可应用于多种信息传输中,比如:下行控制信息(Downlink Control Information,DCI)调度的物理上行控制信道(Physical Uplink Shared CHannel,PUSCH)传输;混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)反馈信息的传输;以及,媒体访问控制(Media Access Control,MAC)控制单元(Control Element,CE)的传输等等,本公开对此不做限定。
通过实施本公开实施例,网络设备根据当前针对波束或者针对用户组的第一时间偏移量,确定消息2 MSG2中无线网络临时标识TC-RNTI的取值。由此,网络设备可以根据当前针对波束或者针对用户组的第一时间偏移量,确定TC-RNTI的取值,以使终端设备可以根据MSG2中的TC-RNTI的取值,确定第一时间偏移量,对终端设备与网络设备之间传输的数据进行补偿,从而解决了由于卫星高速移动导致的终端设备与网络设备间的定时关系调整不准确的问题,保证了数据交互的可靠性。
请参见图6,图6是本公开实施例提供的一种时间偏移量的确定方法的流程示意图,该方法由网络设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤61,向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
可选的,网络设备可以通过***信息中的指定信息域,向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
其中,指定信息域中包含的比特位的数量,可以根据需要设置。比如指定信息域中包含1个比特位,该比特位取值为“0”,可以表示网络设备不支持针对波束或者针对用户组的第一时间偏移量,取值为“1”可以表示网络设备支持针对波束或者针对用户组的第一时间偏移量。或者,指定信息域中包含2个比特位,该比特位取值为“00”,可以表示网络设备不支持针对波束及针对用户组的第一时间偏移量,取值为“01”可以表示网络设备支持针对波束的第一时间偏移量,取值为“10”可以表示网络设备支持针对用户组的第一时间偏移量,“11”可以表示网络设备支持针对波束及用户组的第一时间偏移量等等,本公开对此不做限定。
可选的,网络设备也可以通过MSG2中预留的信息域,向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
其中,预留的信息域中包含的比特位的数量,可以根据需要设置。比如预留的信息域中包含1个比特位,该比特位取值为“0”,可以表示网络设备不支持针对波束或者针对用户组的第一时间偏移量,取值为“1”可以表示网络设备支持针对波束或者针对用户组的第一时间偏移量。或者,预留的信息域中包含2个比特位,该比特位取值为“00”,可以表示网络设备不支持针对波束及针对用户组的第一时间偏移量,取值为“01”可以表示网络设备支持针对波束的第一时间偏移量,取值为“10”可以表示网络设备支持针对用户组的第一时间偏移量,“11”可以表示网络设备支持针对波束及用户组的第一时间偏移量等等,本公开对此不做限定。
步骤62,在支持针对波束或者针对用户组的第一时间偏移量的情况下,根据协议约定,确定TC-RNTI与第一时间偏移量的对应关系。
其中,TC-RNTI与第一时间偏移量的对应关系可以如表1所示。此处不再详细赘述。
步骤63,根据TC-RNTI与第一时间偏移量的对应关系,确定MSG2中与当前的第一时间偏移量对应的TC-RNTI的取值。
可以理解的是,网络设备仅在自己支持针对波束或者针对用户组的第一时间偏移量的情况下,根据协议约定,确定TC-RNTI与第一时间偏移量的对应关系,进而确定MSG2中与当前的第一时间偏移量对应的TC-RNTI的取值。由此,无需确定每个MSG2中第一时间偏移量对应的TC-RNTI的取值,节省了网络设 备的开销。
通过实施本公开实施例,网络设备首先向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量,之后在支持针对波束或者针对用户组的第一时间偏移量的情况下,根据协议约定,确定TC-RNTI与第一时间偏移量的对应关系,最后根据TC-RNTI与第一时间偏移量的对应关系,确定MSG2中与当前的第一时间偏移量对应的TC-RNTI的取值。由此,网络设备支持针对波束或者针对用户组的第一时间偏移量的情况下,根据第一时间偏移量,确定TC-RNTI的取值,以使终端设备可以根据MSG2中的TC-RNTI的取值,确定第一时间偏移量,不仅解决了由于卫星高速移动导致的终端设备与网络设备间的定时关系调整不准确的问题,保证了数据交互的可靠性,还节省了网络设备的开销,减少了资源浪费。
上述本公开提供的实施例中,分别从网络设备、终端设备的角度对本公开实施例提供的方法进行了介绍。为了实现上述本公开实施例提供的方法中的各功能,网络设备和终端设备可以包括硬件结构、软件模块,以硬件结构、软件模块、或硬件结构加软件模块的形式来实现上述各功能。上述各功能中的某个功能可以以硬件结构、软件模块、或者硬件结构加软件模块的方式来执行。
请参见图7,为本公开实施例提供的一种通信装置70的结构示意图。图7所示的通信装置70可包括处理模块701和收发模块702。
收发模块702可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块702可以实现发送功能和/或接收功能。
可以理解的是,通信装置70可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置70,在终端设备侧,该装置,包括:
处理模块701,用于根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。
可选的,所述处理模块701,具体用于:
根据TC-RNTI与第一时间偏移量的对应关系,确定与所述MSG2中的TC-RNTI的取值对应的第一时间偏移量。
可选的,所述处理模块701,具体用于:
根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系;
或者,
根据网络设备的指示,确定所述TC-RNTI与第一时间偏移量的对应关系。
可选的,所述处理模块701,还具体用于:
确定网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
可选的,所述处理模块701,还具体用于:
根据***信息中指定信息域的取值,确定所述网络设备是否支持针对波束 或者针对所述用户组的第一时间偏移量;或者,
根据所述MSG2中预留的信息域的取值,确定所述网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
可选的,所述第一时间偏移量为以下任一项:
上行传输与下行传输间的时间差值;
上行传输与下行传输间隔的预定义时间单元的数量。
本公开提供的通信装置,终端设备根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。由此,终端设备可以根据TC-RNTI的取值确定针对波束或者用户组的第一时间偏移量,对终端设备与网络设备之间传输的数据进行补偿,从而解决了由于卫星高速移动导致的终端设备与网络设备间的定时关系调整不准确的问题,保证了数据交互的可靠性。
可以理解的是,通信装置70可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置70,在网络设备侧,该装置,包括:
处理模块701,用于根据当前针对波束或者针对用户组的第一时间偏移量,确定消息2 MSG2中无线网络临时标识TC-RNTI的取值。
可选的,所述处理模块701,具体用于:
根据TC-RNTI与第一时间偏移量的对应关系,确定所述MSG2中与当前的第一时间偏移量对应的TC-RNTI的取值。
可选的,所述所述处理模块701,还具体用于:
根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系。
可选的,所述处理模块701,还具体用于:
向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
可选的,所述处理模块701,还具体用于:
通过***信息中的指定信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量;
或者,
通过所述MSG2中预留的信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
可选的,所述第一时间偏移量以下任一项:
上行传输与下行传输间的时间差值;
上行传输与下行传输间隔的预定义时间单元的数量。
本公开提供的通信装置,网络设备根据当前针对波束或者针对用户组的第一时间偏移量,确定消息2 MSG2中无线网络临时标识TC-RNTI的取值。由此,网络设备可以根据当前针对波束或者针对用户组的第一时间偏移量,确定TC-RNTI的取值,以使终端设备可以根据MSG2中的TC-RNTI的取值,确定第 一时间偏移量,对终端设备与网络设备之间传输的数据进行补偿,从而解决了由于卫星高速移动导致的终端设备与网络设备间的定时关系调整不准确的问题,保证了数据交互的可靠性。
请参见图8,图8是本公开实施例提供的另一种通信装置80的结构示意图。通信装置80可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置80可以包括一个或多个处理器801。处理器801可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置80中还可以包括一个或多个存储器802,其上可以存有计算机程序804,处理器801执行所述计算机程序804,以使得通信装置80执行上述方法实施例中描述的方法。可选的,所述存储器802中还可以存储有数据。通信装置80和存储器802可以单独设置,也可以集成在一起。
可选的,通信装置80还可以包括收发器805、天线806。收发器805可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器805可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置80中还可以包括一个或多个接口电路807。接口电路807用于接收代码指令并传输至处理器801。处理器801运行所述代码指令以使通信装置80执行上述方法实施例中描述的方法。
通信装置80为终端设备:处理器801用于执行图2中的步骤21;图3中的步骤31、步骤32、步骤33;图4中的步骤41、步骤42、步骤43等等。
通信装置80为网络设备:处理器801用于执行图5中的步骤51;图6中的步骤61、步骤62、步骤63等等。
在一种实现方式中,处理器801中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器801可以存有计算机程序803,计算机程序803在处理器801上运行,可使得通信装置80执行上述方法实施例中描述的方法。计算机程序803可能固化在处理器801中,该种情况下,处理器801可能由硬件实现。
在一种实现方式中,通信装置80可以包括电路,所述电路可以实现前述 方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图11的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图9所示的芯片的结构示意图。图9所示的芯片包括处理器901和接口902。其中,处理器901的数量可以是一个或多个,接口902的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
处理器901,用于执行执行图2中的步骤21;图3中的步骤31、步骤32、步骤33;图4中的步骤41、步骤42、步骤43等等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
处理器901,用于执行图5中的步骤51;图6中的步骤61、步骤62、步骤63等等。
可选的,芯片还包括存储器903,存储器903用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施 例保护的范围。
本公开实施例还提供一种通信***,该***包括前述图7实施例中作为终端设备的通信装置和作为网络设备的通信装置,或者,该***包括前述图8实施例中作为终端设备的通信装置和作为网络设备的通信装置。
本公开还提供一种计算机可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可 以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (30)

  1. 一种时间偏移量的确定方法,其特征在于,由终端设备执行,所述方法包括:
    根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。
  2. 如权利要求1所述的方法,其特征在于,所述根据MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量,包括:
    根据TC-RNTI与第一时间偏移量的对应关系,确定与所述MSG2中的TC-RNTI的取值对应的第一时间偏移量。
  3. 如权利要求2所述的方法,其特征在于,所述根据TC-RNTI与第一时间偏移量的对应关系,包括:
    根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系;
    或者,
    根据网络设备的指示,确定所述TC-RNTI与第一时间偏移量的对应关系。
  4. 如权利要求1所述的方法,其特征在于,还包括:
    确定网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
  5. 如权利要求4所述的方法,其特征在于,所述确定网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量,包括:
    根据***信息中指定信息域的取值,确定所述网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量;或者,
    根据所述MSG2中预留的信息域的取值,确定所述网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述第一时间偏移量为以下任一项:
    上行传输与下行传输间的时间差值;
    上行传输与下行传输间隔的预定义时间单元的数量。
  7. 一种时间偏移量的确定方法,其特征在于,由网络设备执行,所述方法包括:
    根据当前针对波束或者针对用户组的第一时间偏移量,确定消息2 MSG2中无线网络临时标识TC-RNTI的取值。
  8. 如权利要求7所述的方法,其特征在于,所述根据当前针对波束或者针对用户组的第一时间偏移量,确定MSG2中无线网络临时标识TC-RNTI的取值,包括:
    根据TC-RNTI与第一时间偏移量的对应关系,确定所述MSG2中与当前的第一时间偏移量对应的TC-RNTI的取值。
  9. 如权利要求8所述的方法,其特征在于,所述根据TC-RNTI与第一时间偏移量的对应关系,包括:
    根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系。
  10. 如权利要求7所述的方法,其特征在于,还包括:
    向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
  11. 如权利要求10所述的方法,其特征在于,所述向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量,包括:
    通过***信息中的指定信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量;
    或者,
    通过所述MSG2中预留的信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
  12. 如权利要求7-11任一所述的方法,其特征在于,所述第一时间偏移量为以下任一项:
    上行传输与下行传输间的时间差值;
    上行传输与下行传输间隔的预定义时间单元的数量。
  13. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于根据消息2 MSG2中无线网络临时标识TC-RNTI的取值,确定当前针对波束或者针对用户组的第一时间偏移量。
  14. 如权利要求13所述的装置,其特征在于,所述处理模块,具体用于:
    根据TC-RNTI与第一时间偏移量的对应关系,确定与所述MSG2中的TC-RNTI的取值对应的第一时间偏移量。
  15. 如权利要求14所述的装置,其特征在于,所述处理模块,还用于:
    根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系;或者,
    根据网络设备的指示,确定所述TC-RNTI与第一时间偏移量的对应关系。
  16. 如权利要求15所述的装置,其特征在于,所述处理模块,还用于:
    确定网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
  17. 如权利要求16所述的装置,其特征在于,所述处理模块,还用于:
    根据***信息中指定信息域的取值,确定所述网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量;或者,
    根据所述MSG2中预留的信息域的取值,确定所述网络设备是否支持针对波束或者针对所述用户组的第一时间偏移量。
  18. 如权利要求13-17任一所述的装置,其特征在于,所述第一时间偏移量为以下任一项:
    上行传输与下行传输间的时间差值;
    上行传输与下行传输间隔的预定义时间单元的数量。
  19. 一种通信装置,其特征在于,所述装置包括:
    处理模块,用于根据当前针对波束或者针对用户组的第一时间偏移量,确定消息2 MSG2中无线网络临时标识TC-RNTI的取值。
  20. 如权利要求19所述的装置,其特征在于,所述处理模块,具体用于:
    根据TC-RNTI与第一时间偏移量的对应关系,确定所述MSG2中与当前的第一时间偏移量对应的TC-RNTI的取值。
  21. 如权利要求20所述的装置,其特征在于,所述所述处理模块,还用于:
    根据协议约定,确定所述TC-RNTI与第一时间偏移量的对应关系。
  22. 如权利要求19所述的装置,其特征在于,所述处理模块,还用于:
    向终端设备指示网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块,还用于:
    通过***信息中的指定信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量;或者,
    通过所述MSG2中预留的信息域,向所述终端设备指示所述网络设备是否支持针对波束或者针对用户组的第一时间偏移量。
  24. 如权利要求19-23任一所述的装置,其特征在于,所述第一时间偏移量为以下任一项:
    上行传输与下行传输间的时间差值;
    上行传输与下行传输间隔的预定义时间单元的数量。
  25. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至6中任一项所述的方法。
  26. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7至12中任一项所述的方法。
  27. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至6中任一项所述的方法。
  28. 一种通信装置,其特征在于,包括:处理器和接口电路;
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求7至12中任一项所述的方法。
  29. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至6中任一项所述的方法被实现。
  30. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求7至12中任一项所述的方法被实现。
PCT/CN2021/116797 2021-09-06 2021-09-06 一种时间偏移量的确定方法及其装置 WO2023029058A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN202180002828.9A CN116097845A (zh) 2021-09-06 2021-09-06 一种时间偏移量的确定方法及其装置
EP21955589.3A EP4401495A1 (en) 2021-09-06 2021-09-06 Method and apparatus for determining time offset
PCT/CN2021/116797 WO2023029058A1 (zh) 2021-09-06 2021-09-06 一种时间偏移量的确定方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2021/116797 WO2023029058A1 (zh) 2021-09-06 2021-09-06 一种时间偏移量的确定方法及其装置

Publications (1)

Publication Number Publication Date
WO2023029058A1 true WO2023029058A1 (zh) 2023-03-09

Family

ID=85411877

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116797 WO2023029058A1 (zh) 2021-09-06 2021-09-06 一种时间偏移量的确定方法及其装置

Country Status (3)

Country Link
EP (1) EP4401495A1 (zh)
CN (1) CN116097845A (zh)
WO (1) WO2023029058A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425839A (zh) * 2007-10-31 2009-05-06 大唐移动通信设备有限公司 一种确定数据发送偏移量的方法、***和装置
CN110912663A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 一种通信方法及装置
CN111432465A (zh) * 2019-01-09 2020-07-17 华为技术有限公司 一种同步方法及装置
CN111885684A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 通信方法及装置
WO2021069731A1 (en) * 2019-10-11 2021-04-15 Nokia Technologies Oy 2-step rach radio network temporary identifier (rnti)
CN113228794A (zh) * 2021-04-02 2021-08-06 北京小米移动软件有限公司 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425839A (zh) * 2007-10-31 2009-05-06 大唐移动通信设备有限公司 一种确定数据发送偏移量的方法、***和装置
CN110912663A (zh) * 2018-09-15 2020-03-24 华为技术有限公司 一种通信方法及装置
CN111432465A (zh) * 2019-01-09 2020-07-17 华为技术有限公司 一种同步方法及装置
CN111885684A (zh) * 2019-05-03 2020-11-03 华为技术有限公司 通信方法及装置
WO2021069731A1 (en) * 2019-10-11 2021-04-15 Nokia Technologies Oy 2-step rach radio network temporary identifier (rnti)
CN113228794A (zh) * 2021-04-02 2021-08-06 北京小米移动软件有限公司 上行传输时域资源的确定方法及装置、ue、网络设备及存储介质

Also Published As

Publication number Publication date
EP4401495A1 (en) 2024-07-17
CN116097845A (zh) 2023-05-09

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
CN113273286B (zh) 一种时域资源分配的方法及装置
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023230972A1 (zh) 资源配置方法及装置
WO2023010473A1 (zh) 一种波束应用的方法及其装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
CN115735350A (zh) 一种信息确定方法/装置/设备及存储介质
WO2023029058A1 (zh) 一种时间偏移量的确定方法及其装置
WO2022266926A1 (zh) 一种定时关系调整方法及其装置
WO2022198668A1 (zh) 物理随机接入信道prach的配置方法及其装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
EP4319323A1 (en) Method and apparatus for determining power parameter
WO2023077463A1 (zh) 波束的确定方法及装置
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2024036520A1 (zh) 一种侧行链路逻辑信道标识的确定方法及装置
US20240188052A1 (en) Method and device for determining time domain resources
WO2022266948A1 (zh) 一种物理上行控制信道波束恢复的方法及其装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023010428A1 (zh) 准共址配置方法、准共址qcl信息确定方法及其装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024086979A1 (zh) 一种传输配置指示tci状态的确定方法及装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
WO2024000201A1 (zh) 一种指示方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21955589

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021955589

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2021955589

Country of ref document: EP

Effective date: 20240408