WO2023133742A1 - 物理下行共享信道的处理时间参数的确定方法及装置 - Google Patents

物理下行共享信道的处理时间参数的确定方法及装置 Download PDF

Info

Publication number
WO2023133742A1
WO2023133742A1 PCT/CN2022/071680 CN2022071680W WO2023133742A1 WO 2023133742 A1 WO2023133742 A1 WO 2023133742A1 CN 2022071680 W CN2022071680 W CN 2022071680W WO 2023133742 A1 WO2023133742 A1 WO 2023133742A1
Authority
WO
WIPO (PCT)
Prior art keywords
subcarrier spacing
feedback
harq
harq process
time parameter
Prior art date
Application number
PCT/CN2022/071680
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280000138.4A priority Critical patent/CN114503753A/zh
Priority to PCT/CN2022/071680 priority patent/WO2023133742A1/zh
Publication of WO2023133742A1 publication Critical patent/WO2023133742A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1812Hybrid protocols; Hybrid automatic repeat request [HARQ]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1829Arrangements specially adapted for the receiver end
    • H04L1/1854Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/12Arrangements for detecting or preventing errors in the information received by using return channel
    • H04L1/16Arrangements for detecting or preventing errors in the information received by using return channel in which the return channel carries supervisory signals, e.g. repetition request signals
    • H04L1/18Automatic repetition systems, e.g. Van Duuren systems
    • H04L1/1867Arrangements specially adapted for the transmitter end
    • H04L1/1887Scheduling and prioritising arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/53Allocation or scheduling criteria for wireless resources based on regulatory allocation policies

Definitions

  • the present disclosure relates to the field of communication technologies, and in particular to a method and device for determining a processing time parameter of a physical downlink shared channel.
  • the scheduling limit time of the physical downlink shared channel (PDSCH) is defined.
  • the terminal device does not wish to feed back the HARQ demodulation result for the PDSCH.
  • the proposal of HARQ feedback disabled feedback disabled
  • how to accurately determine the PDSCH scheduling limit time has become an urgent problem to be solved.
  • Embodiments of the present disclosure provide a method and device for determining the processing time parameters of the physical downlink shared channel, which can determine the time to process the physical downlink shared channel PDSCH carried by the HARQ process according to the feedback status of each HARQ process of the terminal device The first time parameter needed.
  • an embodiment of the present disclosure provides a method for determining a processing time parameter of a physical downlink shared channel, the method is executed by a terminal device, and the method includes: according to the feedback status of each hybrid automatic repeat request HARQ process, determine A first time parameter required for processing the physical downlink shared channel PDSCH carried by the HARQ process.
  • the terminal device determines the first time parameter required for processing the PDSCH carried by the HARQ process according to the state of the HARQ feedback of each HARQ process.
  • the determined first time parameter is made more accurate, thereby avoiding the impact on HARQ due to the determined processing time being too short, and avoiding resource waste due to the determined processing time being too long.
  • each hybrid automatic repeat request HARQ process determines the first time parameter required for processing the physical downlink shared channel PDSCH carried by each HARQ process, including:
  • each hybrid automatic repeat request HARQ process determines the first time parameter required for processing the physical downlink shared channel PDSCH carried by each HARQ process, including:
  • the HARQ processes in response to the feedback of any of the HARQ processes being in a disabled state, according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing, determine the The first time parameter required for processing the PDSCH carried by any of the above HARQ processes.
  • the above-mentioned first preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth in the active state is the subcarrier spacing corresponding to the uplink bandwidth in the active state.
  • the above-mentioned second preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the channel of the uplink bandwidth part In the activated state, the subcarrier spacing corresponding to the channel of the uplink bandwidth part.
  • each hybrid automatic repeat request HARQ process determines the first time parameter required for processing the physical downlink shared channel PDSCH carried by each HARQ process, including:
  • each HARQ process determines the candidate subcarrier spacing corresponding to the PDSCH carried by each HARQ process
  • mapping relationship table Based on the mapping relationship in the mapping relationship table, determine the maximum first time parameter corresponding to each of the second time parameters.
  • an embodiment of the present disclosure provides a method for determining a processing time parameter of a physical downlink shared channel, the method is executed by a network device, and the method includes: the network device requests feedback of the HARQ process according to each hybrid automatic repeat transmission of the terminal device , and determine the first time parameter required by the terminal device to process the physical downlink shared channel PDSCH carried by each of the HARQ processes.
  • the network device determines the first time parameter required for processing the PDSCH carried by each HARQ process according to the state of the HARQ feedback of each HARQ process.
  • the determined first time parameter is made more accurate, thereby avoiding the impact on HARQ due to the determined processing time being too short, and avoiding resource waste due to the determined processing time being too long.
  • the network device determines, according to the feedback status of each hybrid automatic repeat request (HARQ) process of the terminal device, that the terminal device needs to process the physical downlink shared channel PDSCH carried by each HARQ process.
  • a time parameter including:
  • the The PDSCH is the first parameter required for processing.
  • the network device determines that the terminal device needs to process the physical downlink shared channel PDSCH carried by each HARQ process according to the feedback status of each hybrid automatic repeat request HARQ process of the terminal device.
  • the first time parameters including:
  • the terminal device in response to the feedback of any of the HARQ processes being in a disabled state, according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing, determine that the terminal device is A first time parameter required for processing the PDSCH carried by any HARQ process.
  • the above-mentioned first preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth part in the active state is the subcarrier spacing corresponding to the uplink bandwidth part in the active state.
  • the above-mentioned second preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth part in the active state is the subcarrier spacing corresponding to the uplink bandwidth part in the active state.
  • the above-mentioned network device determines, according to the feedback status of each hybrid automatic repeat request HARQ process of the terminal device, the physical downlink shared channel PDSCH carried by each HARQ process.
  • First time parameters including:
  • each HARQ process of the terminal device determines the candidate subcarrier spacing corresponding to the PDSCH carried by each HARQ process;
  • mapping relationship table Based on the mapping relationship in the mapping relationship table, determine the maximum first time parameter corresponding to each of the second time parameters.
  • an embodiment of the present disclosure provides a communication device, which, on the terminal device side, includes:
  • the processing module is configured to determine the first time parameter required for processing the Physical Downlink Shared Channel PDSCH carried by each HARQ process according to the feedback status of each HARQ process.
  • processing module is specifically used for:
  • processing module is specifically used for:
  • the HARQ processes in response to the feedback of any of the HARQ processes being in a disabled state, according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing, determine the The first time parameter required for processing the PDSCH carried by any of the above HARQ processes.
  • the first preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth in the active state is the subcarrier spacing corresponding to the uplink bandwidth in the active state.
  • the second preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the channel of the uplink bandwidth part In the activated state, the subcarrier spacing corresponding to the channel of the uplink bandwidth part.
  • processing module is specifically used for:
  • each HARQ process determines the candidate subcarrier spacing corresponding to the PDSCH carried by each HARQ process
  • mapping relationship table Based on the mapping relationship in the mapping relationship table, determine the maximum first time parameter corresponding to each of the second time parameters.
  • processing module is also used for:
  • an embodiment of the present disclosure provides a communication device, which, on the network device side, includes:
  • the processing module is configured to, according to the feedback status of each hybrid automatic repeat request HARQ process of the terminal device, determine the first step required by the terminal device to process the physical downlink shared channel PDSCH carried by each of the HARQ processes. time parameter.
  • processing module is specifically used for:
  • the terminal device in response to the feedback of any HARQ process of the terminal device being in a disabled state, according to one of the first subcarrier spacing and the second subcarrier spacing, determine the The first parameter required for PDSCH processing.
  • processing module is specifically used for:
  • the terminal device in response to the feedback of any of the HARQ processes being in a disabled state, according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing, determine that the terminal device is A first time parameter required for processing the PDSCH carried by any HARQ process.
  • the first preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth part in the active state is the subcarrier spacing corresponding to the uplink bandwidth part in the active state.
  • the second preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth part in the active state is the subcarrier spacing corresponding to the uplink bandwidth part in the active state.
  • processing module is specifically used for:
  • each HARQ process of the terminal device determines the candidate subcarrier spacing corresponding to the PDSCH carried by each HARQ process;
  • mapping relationship table Based on the mapping relationship in the mapping relationship table, determine the maximum first time parameter corresponding to each of the second time parameters.
  • processing module is also used for:
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, where the communication device includes a processor, and when the processor invokes a computer program in a memory, it executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device, the device includes a processor and an interface circuit, the interface circuit is used to receive code instructions and transmit them to the processor, and the processor is used to run the code instructions to make the The device executes the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect and The communication device described in the sixth aspect, or, the system includes the communication device described in the seventh aspect and the communication device described in the eighth aspect, or, the system includes the communication device described in the ninth aspect and the communication device described in the tenth aspect the communication device described above.
  • the embodiment of the present invention provides a computer-readable storage medium, which is used to store the instructions used by the above-mentioned terminal equipment, and when the instructions are executed, the terminal equipment executes the above-mentioned first aspect. method.
  • an embodiment of the present invention provides a readable storage medium for storing instructions used by the above-mentioned network equipment, and when the instructions are executed, the network equipment executes the method described in the above-mentioned second aspect .
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure further provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the terminal device to implement the functions involved in the first aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is configured to store necessary computer programs and data of the terminal device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system
  • the chip system includes at least one processor and an interface, used to support the network device to implement the functions involved in the second aspect, for example, determine or process the data involved in the above method and at least one of information.
  • the chip system further includes a memory, and the memory is used for saving necessary computer programs and data of the network device.
  • the system-on-a-chip may consist of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect above.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the second aspect above.
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure
  • Fig. 3 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure
  • Fig. 4 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure
  • Fig. 5 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • PDSCH is used to carry data from transport channels.
  • PDCCH Physical downlink control channel
  • the PDCCH channel transmits downlink control information (Downlink Control Information, DCI) related to the physical uplink and downlink shared channel (PUSCH, PDSCH).
  • DCI information includes resource block (rescourc block, RB) allocation information, HARQ process identification, etc. Some related content. Only when the terminal device correctly decodes the DCI information, can it correctly process the PDSCH data or the PUSCH data.
  • HARQ is a new type of communication based on FEC (forward error correction) and ARQ (automatic retransmission) developed for better anti-interference and anti-fading, improving system throughput (effectiveness) and reliability of data transmission technology.
  • FEC forward error correction
  • ARQ automatic retransmission
  • HARQ feedback disabled means that after receiving a PDSCH carried by a HARQ process identifier/HARQ process number, the receiver does not need to feed back a HARQ acknowledgment (ACK) message based on the demodulation result to the sender, or feedback HARQ non-acknowledgment ( negative acknowledgment, NACK) message.
  • ACK HARQ acknowledgment
  • NACK negative acknowledgment
  • HARQ feedback enabled means that after receiving a PDSCH carried by a HARQ process identifier/HARQ process number, the receiver needs to feed back a HARQ acknowledgment (ACK) message to the sender according to the demodulation result, or feedback a HARQ non-acknowledgment ( negative acknowledgment, NACK) message.
  • ACK HARQ acknowledgment
  • NACK negative acknowledgment
  • Partial bandwidth is a subset of the total bandwidth, which flexibly adjusts the receiving and sending bandwidth of terminal equipment through bandwidth adaptation in NR, so that the receiving and sending bandwidth of terminal equipment does not need to be the same as the bandwidth of the cell big.
  • the terminal can only activate one uplink (UL) BWP and one downlink (DL) BWP at the same time, and each BWP is configured with a subcarrier spacing (SCS), unless otherwise specified , all signals and channels on this BWP use this scs.
  • SCS subcarrier spacing
  • OFDM orthogonal frequency division multiplexing
  • FIG. 1 is a schematic structural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include, but is not limited to, a network device and a terminal device.
  • the number and shape of the devices shown in Figure 1 are for example only and do not constitute a limitation to the embodiments of the present disclosure. In practical applications, two or more network equipment, two or more terminal equipment.
  • the communication system shown in FIG. 1 includes one network device 11 and one terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation 5th generation
  • 5G new radio new radio, NR
  • other future new mobile communication systems etc.
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side for transmitting or receiving signals.
  • the network device 101 may be an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, or a base station in other future mobile communication systems Or an access node in a wireless fidelity (wireless fidelity, WiFi) system, etc.
  • eNB evolved NodeB
  • TRP transmission reception point
  • gNB next generation base station
  • gNB next generation NodeB
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the network device.
  • the network device provided by the embodiment of the present disclosure may be composed of a centralized unit (central unit, CU) and a distributed unit (distributed unit, DU), wherein the CU may also be called a control unit (control unit), and the CU-DU
  • the structure of the network device such as the protocol layer of the base station, can be separated, and the functions of some protocol layers are placed in the centralized control of the CU, and the remaining part or all of the functions of the protocol layer are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • the terminal equipment may also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT) and so on.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with a wireless transceiver function, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control (industrial control), wireless terminal equipment in self-driving (self-driving), wireless terminal equipment in remote medical surgery (remote medical surgery), smart grid ( Wireless terminal devices in smart grid, wireless terminal devices in transportation safety, wireless terminal devices in smart city, wireless terminal devices in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific device form adopted by the terminal device.
  • the terminal device In a communication system, for a HARQ process with HARQ feedback enabled, after receiving the PDSCH carried by the HARQ process ID or the HARQ process number, the terminal device needs to feed back HARQ ACK or HARQ NACK according to the demodulation result of the PDSCH, so the terminal device does not It is desirable to feed back HARQ ACK or HARQ NACK before PDSCH demodulation is completed and/or uplink feedback is ready. For the HARQ process with HARQ feedback disabled, after receiving the PDSCH carried by the HARQ process identifier/HARQ process number, the terminal device does not need to feed back the HARQ ACK message or HARQ NACK message based on the demodulation result to the network device.
  • the terminal device It is not expected to receive another PDSCH carried by the HARQ process before the current PDSCH is demodulated. That is, the timing when the terminal equipment feeds back the demodulation result of PDSCH, or the timing of receiving another PDSCH carried by the same HARQ process, is related to the processing time or processing procedure time of PDSCH, and the processing time of PDSCH is determined by T proc. 1 decision. Among them, T proc.1 can be calculated by the following formula 1:
  • T proc,1 (N 1 +d 1,1 +d 2 )(2048+144) ⁇ 2 - ⁇ ⁇ T c +T ext (1)
  • N 1 is defined in PDSCH, and its value is related to the value of ⁇ of the terminal equipment.
  • the relationship between ⁇ and subcarrier spacing satisfies the following formula 2
  • T ext represents the additional processing time of the shared channel (unlicensed band)
  • d 1, 1 indicates the processing time in a specific case when the PDSCH mapping mode is A or B
  • d2 indicates the processing time in the case of overlapping uplink signals of different priorities
  • T C is the basic time unit in the communication system
  • k is in the 3GPP standard TS38 Defined in Section 4.1 of .214.
  • the subcarrier spacing may be the subcarrier spacing corresponding to the subcarrier spacing corresponding to the PDCCH, the subcarrier spacing corresponding to the PDSCH, and the subcarrier spacing corresponding to the uplink channel for sending the HARQ feedback message so that the value of T proc.1 is the largest.
  • the terminal device Since in the HARQ process with HARQ feedback disabled, the terminal device does not need to feed back the HARQ ACK message based on the demodulation result to the network device, or feed back the HARQ NACK message, that is, it does not need to consider the uplink sending the HARQ feedback message in the HARQ process with HARQ feedback disabled
  • the subcarrier spacing corresponding to the channel so that the above method of determining Tproc,1 is not applicable to the HARQ process of HARQ feedback disabled.
  • this disclosure proposes a method to determine the time to process the PDSCH carried by the HARQ process according to the feedback state of the HARQ process
  • the parameter method makes the determined processing time parameter more accurate, thereby avoiding the impact on the HARQ due to the determined processing time being too short, and avoiding the waste of resources due to the determined processing time being too long.
  • FIG. 2 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 2, the method may include but not limited to the following steps:
  • Step 201 according to the feedback status of each hybrid automatic repeat request HARQ process, determine the first time parameter required for processing the physical downlink shared channel PDSCH carried by the HARQ process.
  • the first time parameter may be the above T proc,1 .
  • the HARQ feedback state of each HARQ process can be determined first, and then according to the actual HARQ feedback state of each HARQ process, the candidate subcarrier spacing corresponding to the PDSCH carried by each HARQ process can be determined, and then based on The preset mapping relationship between the second time parameter ⁇ and the subcarrier spacing determines the second time parameter corresponding to each candidate subcarrier spacing, and then, based on the mapping relationship between the second time parameter and the number of symbols in the mapping relationship table The mapping relationship and the symbol length corresponding to each candidate subcarrier interval determine the maximum first time parameter corresponding to each second time parameter ⁇ .
  • the preset mapping relationship between the second time parameter and the subcarrier spacing may be stipulated by the protocol, or may also be configured by the network device. Its form may be as shown in the above formula (2), or may be other forms of mapping relationship, which is not limited in the present disclosure.
  • the mapping relationship between the second time parameter and the number of symbols (N 1 ) for terminal devices with different capabilities may be different.
  • the terminal device determines each second time parameter, That is, according to the capability of the terminal device itself, determine the mapping relationship table between the second time parameter and the number N1 of symbols, and then determine the N1 value corresponding to each second time parameter according to the mapping relationship table, and then based on the second The mapping relationship between the time parameter and the number of symbols and the symbol length corresponding to each candidate subcarrier interval determine the maximum first time parameter corresponding to each second time parameter.
  • the terminal device when the terminal device accesses the network device, it can report its capability information to the network device, so that the network device can determine the second time parameter and the number N of symbols corresponding to the terminal device according to the capability information of the terminal device 1 mapping relationship.
  • mapping relationship between the corresponding second time parameter and N1 can refer to Tables 5.3-1 and 5.3-2 in the 3GPP standard TS38.214, which will not be repeated here repeat.
  • the enabling state of the HARQ feedback for the HARQ process may be enabled or notdisabled.
  • each HARQ process may have the same or different corresponding first time parameter values; different HARQ processes in the same HARQ feedback state, the corresponding first time parameter values It may be the same, or it may be different. The present disclosure does not limit this.
  • a different number of symbols may be specified.
  • the HARQ process with HARQ feedback enabled corresponds to N 1
  • the HARQ process with HARQ feedback disabled corresponds to N 1 ′ , which is not limited in the present invention.
  • the terminal device determines the first time parameter required for processing the PDSCH carried by it, it can determine the earliest time to feed back the HARQ process based on the first time parameter .
  • the HARQ acknowledgment or non-confirmation message fed back is prevented from being inaccurate due to too short a certain processing time, and the waste of channel resources is avoided from being too long from a certain processing time.
  • the terminal device determines the first time parameter required for processing the PDSCH carried by it, it can determine to receive another message carried by the HARQ process based on the first time parameter. Earliest time for PDSCH. Therefore, it is avoided that the received PDSCH has an influence on the HARQ demodulation due to too short determined processing time, and the waste of channel resources due to too long determined processing time is avoided.
  • the terminal device determines the first time parameter required for processing the PDSCH carried by each HARQ according to the state of the feedback of each HARQ.
  • the determined first time parameter is made more accurate, thereby avoiding the impact on HARQ due to the determined processing time being too short, and avoiding resource waste due to the determined processing time being too long.
  • FIG. 3 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 301 determine the feedback status of any HARQ process.
  • the terminal device may determine the current HARQ feedback status according to the configuration information of each HARQ process indicated by the network device.
  • the terminal device may receive the HARQ process configuration information through a radio resource control (radio resource control, RRC) message, which is not limited in this disclosure.
  • RRC radio resource control
  • Step 302 in response to the feedback of any HARQ process being enabled, according to the first subcarrier spacing corresponding to the physical downlink control channel PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the third subcarrier spacing corresponding to the uplink physical channel for sending HARQ feedback
  • Step 303 in response to the feedback of any HARQ process being disabled, according to one of the first subcarrier spacing and the second subcarrier spacing, determine the first time required for processing the PDSCH carried by any HARQ process parameter.
  • the terminal device when the HARQ feedback of any HARQ process is enabled, the terminal device needs to return a HARQ ACK message to the network device according to the demodulation result of the PDSCH after receiving the HARQ identifier or the PDSCH carried by the process number.
  • a HARQ NACK message that is, at this time there is a corresponding third subcarrier spacing corresponding to the uplink physical channel that sends the HARQ feedback of the HARQ process, so that the terminal device can use the first subcarrier spacing, the second subcarrier spacing and the third subcarrier spacing
  • the carrier spacing is determined as the candidate subcarrier spacing, and then based on the scs and the second time parameter, and the relationship between the second time parameter and the number of symbols (N 1 ) corresponding to the processing capability of the terminal equipment, each candidate subcarrier spacing is determined
  • the corresponding maximum first time parameter and then determine the earliest time for sending the HARQ feedback based on the maximum first time parameter.
  • the terminal device When the feedback of the HARQ process is disabled, the terminal device does not need to return a HARQ ACK message or a HARQ NACK message based on the demodulation result to the network device after receiving the HARQ process identifier or the PDSCH carried by the HARQ process number, thereby
  • the terminal device may determine the first subcarrier spacing and the second subcarrier spacing as candidate subcarrier spacing, and then based on the second time parameter and the number of symbols corresponding to the scs, the second time parameter, and the processing capability of the terminal device (N 1 ), determine the maximum first time parameter corresponding to each candidate subcarrier interval.
  • the specific process for the terminal device to determine the first time parameter required for processing the PDSCH carried by each HARQ process according to the candidate subcarrier intervals corresponding to each HARQ process can refer to the detailed description of any embodiment of the present disclosure, I won't repeat them here.
  • the terminal device may determine to send the feedback of any HARQ process according to the first time parameter required for processing the PDSCH carried by the any HARQ process the earliest time.
  • the terminal device may determine to receive another PDSCH carried by any HARQ process according to the first time parameter required for processing the PDSCH carried by any HARQ process. Earliest time for PDSCH.
  • the terminal device can use the first subcarrier spacing corresponding to the PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the third subcarrier spacing corresponding to the uplink physical channel for sending HARQ feedback.
  • An item in the subcarrier spacing determines the first time parameter required for processing the PDSCH carried by the HARQ process, and when the feedback of the HARQ process is disabled, it can be based on the first subcarrier spacing and the second The subcarrier interval is used to determine the first time parameter required for processing the PDSCH carried by the HARQ process.
  • the first time parameter is determined according to different subcarrier intervals, so that the determined first time parameter is more accurate, thereby avoiding the impact of the HARQ due to the too short determined processing time. impact, and avoid wasting resources due to the long processing time determined.
  • FIG. 4 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure, and the method is executed by a terminal device. As shown in Figure 4, the method may include but not limited to the following steps:
  • Step 401 determine the feedback status of any HARQ process.
  • Step 402 in response to any HARQ feedback being enabled, according to one of the first subcarrier spacing corresponding to the physical downlink control channel PDCCH, the second subcarrier spacing corresponding to PDSCH, and the first preset subcarrier spacing, A first time parameter required for processing the PDSCH is determined.
  • Step 403 in response to any HARQ feedback being disabled, determine to process the PDSCH according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing The first time parameter required.
  • the first preset subcarrier spacing may be any of the following: the subcarrier spacing corresponding to the uplink physical channel that sends the HARQ feedback, the subcarrier spacing corresponding to the uplink physical channel that can be used to send the HARQ feedback, The subcarrier spacing corresponding to the uplink (uplink, UL) part of the bandwidth (Bandwidth Part, BWP) in the active state.
  • the uplink physical channel that can be used for sending HARQ feedback may be any uplink physical channel corresponding to the terminal device, and the channel may be configured for sending HARQ feedback when needed.
  • the SCS corresponding to the UL BWP corresponding to the terminal device and currently in an activated state may be determined as the first preset SCS.
  • the second preset SCS may be any of the following: the subcarrier spacing corresponding to the uplink physical channel that can be used to send the HARQ feedback, and the subcarrier spacing corresponding to the uplink bandwidth part in an active state.
  • the terminal device when determining the candidate subcarrier spacing, if the terminal device determines that the feedback of any HARQ process is enabled, it can send the first subcarrier spacing corresponding to the PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the HARQ
  • the subcarrier spacing of the feedback uplink physical channel is determined as the candidate subcarrier spacing; and if it is determined that the feedback of any HARQ process is disabled, the corresponding first subcarrier spacing, second subcarrier spacing, and
  • the fifth subcarrier spacing corresponding to the uplink physical channel fed back by the HARQ is determined as a candidate subcarrier spacing.
  • the largest first time parameter is determined.
  • the terminal device may determine the corresponding first subcarrier spacing, the second subcarrier spacing, and the subcarrier spacing of the uplink physical channel for sending HARQ feedback as the candidate subcarrier spacing and if it is determined that the feedback of any HARQ process is in a disabled state, then the corresponding first subcarrier spacing, the second subcarrier spacing, and the subcarrier spacing corresponding to the active uplink bandwidth part are determined as candidate subcarrier spacing . Furthermore, according to the mapping relationship between the subcarrier spacing and the second time parameter, and between the second time parameter and the number of symbols, the largest first time parameter is determined.
  • the first subcarrier spacing, the second subcarrier spacing corresponding to the process, and the subcarriers of the uplink physical channel that can be used to send HARQ feedback interval is determined as a candidate subcarrier interval. Furthermore, according to the mapping relationship between the subcarrier spacing and the second time parameter, and between the second time parameter and the number of symbols, the largest first time parameter is determined.
  • the terminal device may select the first subcarrier interval corresponding to the HARQ process, the second subcarrier interval, and the subcarrier interval corresponding to the uplink bandwidth part in the active state.
  • the carrier spacing is determined as the candidate subcarrier spacing. Furthermore, according to the mapping relationship between the subcarrier spacing and the second time parameter, and between the second time parameter and the number of symbols, the largest first time parameter is determined.
  • the process of determining the largest first time parameter by the terminal device according to the mapping relationship between the subcarrier spacing and the second time parameter, and the second time parameter and the number of symbols (N 1 ) can refer to any embodiment of the present disclosure. Detailed description will not be repeated here.
  • the terminal device may determine to send the feedback of any HARQ process according to the first time parameter required for processing the PDSCH carried by the any HARQ process the earliest time.
  • the terminal device may determine to receive another PDSCH carried by any HARQ process according to the first time parameter required for processing the PDSCH carried by any HARQ process. Earliest time for PDSCH.
  • the terminal device can select one of the first subcarrier spacing corresponding to the PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the first preset subcarrier spacing. item to determine the first time parameter required to process the PDSCH carried by any HARQ process, and when the feedback of any HARQ process is disabled, the first subcarrier interval, the second subcarrier One of the interval and the second preset subcarrier interval determines the first time parameter required for processing the PDSCH carried by any HARQ process.
  • the first time parameter is determined according to the corresponding candidate subcarrier spacing, so that the determined first time parameter is more accurate, thereby avoiding the The influence of HARQ avoids the waste of resources due to the long processing time of the determination.
  • FIG. 5 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 5, the method may include but not limited to the following steps:
  • Step 501 the network device determines the first time parameter required for the terminal device to process the physical downlink shared channel PDSCH carried by each HARQ process according to the feedback status of each HARQ process of the terminal device.
  • the first time parameter may be the above T proc,1 .
  • the network device determines the first time required for the terminal device to process the PDSCH carried by different HARQ processes
  • the state of the HARQ feedback of each HARQ process can be determined first, and then according to the actual state of the HARQ feedback of each HARQ process, the candidate subcarriers corresponding to the PDSCH carried by each HARQ process can be determined.
  • the second time parameter corresponding to each candidate subcarrier spacing is determined, and then, based on the mapping between the second time parameter and the number of symbols
  • the mapping relationship in the relationship table and the symbol length corresponding to each candidate subcarrier interval determine the maximum first time parameter corresponding to each second time parameter ⁇ .
  • the preset mapping relationship between the second time parameter and the subcarrier spacing may be stipulated by the protocol, or may also be configured by the network device. Its form may be as shown in the above formula (2), or may be other forms of mapping relationship, which is not limited in the present disclosure.
  • the mapping relationship between the second time parameters and the number of symbols (N 1 ) corresponding to terminal devices with different capabilities may be different.
  • the network device determines each second time parameter , that is, according to the capability of the terminal device itself, determine the mapping relationship table between the second time parameter and N1 , and then determine the N1 value corresponding to each second time parameter according to the mapping relationship table, and then based on the second time
  • the mapping relationship between parameters and the number of symbols and the symbol length corresponding to each candidate subcarrier interval determine the maximum first time parameter corresponding to each second time parameter.
  • the terminal device when the terminal device accesses the network device, it can report its capability information to the network device, so that the network device can determine the mapping between the second time parameter corresponding to the terminal device and N1 according to the capability information of the terminal device relation.
  • mapping relationship between the corresponding second time parameter and N1 can refer to Tables 5.3-1 and 5.3-2 in the 3GPP standard TS38.214, which will not be repeated here repeat.
  • the network device may first determine the time between the SCS and the second time parameter.
  • the enabling state of the HARQ feedback for the HARQ process may be enabled or notdisabled.
  • each HARQ process may have the same or different corresponding first time parameter values; different HARQ processes in the same HARQ feedback state, the corresponding first time parameter values It may be the same, or it may be different. The present disclosure does not limit this.
  • a different number of symbols may be specified.
  • the HARQ process with HARQ feedback enabled corresponds to N 1
  • the HARQ process with HARQ feedback disabled corresponds to N 1 ′ , which is not limited in the present invention.
  • the network device determines the first time parameter required by the terminal device to process the PDSCH carried by it, it can determine that the terminal device feeds back the HARQ process based on the first time parameter. The earliest time of the process. In this way, it is avoided that the determined processing time is too short to obtain the forwarded feedback message, and the determined processing time is too long to waste channel resources.
  • the network device determines the first time parameter required by the terminal device to process the PDSCH carried by it, it can determine to send the PDSCH carried by the HARQ process based on the first time parameter. Earliest time of another PDSCH. In this way, it is avoided that the determined processing time is too short to cause the transmitted PDSCH to affect the HARQ demodulation, and the determined processing time is too long to waste channel resources.
  • the network device determines the first time parameter required for processing the PDSCH carried by each HARQ according to the state of the feedback of each HARQ.
  • the determined first time parameter is made more accurate, thereby avoiding the impact on HARQ due to the determined processing time being too short, and avoiding resource waste due to the determined processing time being too long.
  • FIG. 6 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 3, the method may include but not limited to the following steps:
  • Step 601 determine the feedback status of each HARQ process of the terminal device.
  • the state of the HARQ feedback of the terminal device may be indicated by the network device.
  • the network device may indicate the HARQ process configuration information through a radio resource control (radio resource control, RRC) message, which is not limited in the present disclosure.
  • RRC radio resource control
  • Step 602 in response to the feedback of any HARQ process of the terminal equipment being in an enabled state, according to the first subcarrier spacing corresponding to the physical downlink control channel PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the uplink physical channel for sending HARQ feedback An item in the third subcarrier interval of , to determine the first time parameter required by the terminal equipment to process the PDSCH carried by any HARQ.
  • Step 603 In response to the feedback of any HARQ process being disabled, according to one of the first subcarrier spacing and the second subcarrier spacing, determine the first subcarrier required by the terminal device to process the PDSCH carried by any HARQ process. a time parameter.
  • the terminal device when the HARQ feedback of any HARQ process is enabled, the terminal device needs to return a HARQ ACK message to the network device according to the demodulation result of the PDSCH after receiving the HARQ identifier or the PDSCH carried by the process number.
  • a HARQ NACK message that is, there is a third subcarrier interval corresponding to the uplink physical channel that sends the HARQ feedback of the HARQ process at this time, so that the network device can use the first subcarrier interval, the second subcarrier interval, and the third subcarrier interval
  • the carrier spacing is determined as the candidate subcarrier spacing, and then based on the scs and the second time parameter, and the relationship between the second time parameter and the number of symbols (N 1 ) corresponding to the processing capability of the terminal equipment, each candidate subcarrier spacing is determined
  • the corresponding maximum first time parameter and then determine the earliest time for sending the HARQ feedback based on the maximum first time parameter.
  • the terminal device When the feedback of the HARQ process is disabled, the terminal device does not need to return a HARQ ACK message or a HARQ NACK message based on the demodulation result to the network device after receiving the HARQ process identifier or the PDSCH carried by the HARQ process number, thereby
  • the network device may determine the first subcarrier spacing and the second subcarrier spacing as candidate subcarrier spacing, and then based on the second time parameter and the number of symbols corresponding to the scs, the second time parameter, and the processing capability of the terminal device (N 1 ), determine the maximum first time parameter corresponding to each candidate subcarrier interval.
  • the specific process for the network device to determine the first time parameter required for processing the PDSCH carried by each HARQ process according to the candidate subcarrier intervals corresponding to the PDSCH carried by each HARQ process can refer to any embodiment of the present disclosure The detailed description will not be repeated here.
  • the network device may determine to receive any HARQ process according to the first time parameter required by the terminal device to process the PDSCH carried by the any HARQ process The earliest time of feedback.
  • the network device may determine to send the PDSCH carried by any HARQ process according to the first time parameter required by the terminal device to process the PDSCH carried by the any HARQ process. Earliest time of another PDSCH.
  • the network device can send the HARQ feedback according to the first subcarrier spacing corresponding to the PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the uplink physical
  • An item in the third subcarrier interval corresponding to the channel determines the first time parameter required by the terminal device to process the PDSCH carried by the HARQ process, and when the feedback of the HARQ process is disabled, it can be based on the first time parameter
  • the first subcarrier interval and the second subcarrier interval determine the first time parameter required by the terminal equipment to process the PDSCH carried by the HARQ process.
  • the first time parameter is determined according to different subcarrier intervals, so that the determined first time parameter is more accurate, thereby avoiding the impact of the HARQ due to the too short determined processing time. impact, and avoid wasting resources due to the long processing time determined.
  • FIG. 7 is a schematic flowchart of a method for determining a processing time parameter of a physical downlink shared channel provided by an embodiment of the present disclosure, and the method is executed by a network device. As shown in Figure 7, the method may include but not limited to the following steps:
  • Step 701 determine the feedback status of each HARQ process of the terminal device.
  • Step 702 in response to any HARQ feedback of the terminal equipment being in an enabled state, according to the first subcarrier spacing corresponding to the physical downlink control channel PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the first preset subcarrier spacing One item, determining the first time parameter required for processing the PDSCH carried by any HARQ.
  • Step 703 in response to any HARQ feedback being in a disabled state, according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing, determine the PDSCH processing required The first time parameter of .
  • the first preset subcarrier spacing may be any of the following: the subcarrier spacing corresponding to the uplink physical channel that sends the HARQ feedback, the subcarrier spacing corresponding to the uplink physical channel that can be used to send the HARQ feedback, The subcarrier spacing corresponding to the uplink (uplink, UL) part of the bandwidth (Bandwidth Part, BWP) in the activated state.
  • the uplink physical channel that can be used for sending HARQ feedback may be any uplink physical channel corresponding to the terminal device, and the channel may be configured for sending HARQ feedback when needed.
  • the SCS corresponding to the UL BWP corresponding to the terminal device and currently in an activated state may be determined as the first preset SCS.
  • the second preset SCS may be any of the following: the subcarrier spacing corresponding to the uplink physical channel that can be used to send the HARQ feedback, and the subcarrier spacing corresponding to the uplink bandwidth part in an active state.
  • the network device determines the candidate subcarrier spacing corresponding to each HARQ process, if it is determined that the feedback of any HARQ process is enabled, it can set the first subcarrier spacing corresponding to the PDCCH and the second subcarrier spacing corresponding to the PDSCH
  • the subcarrier spacing and the subcarrier spacing of the uplink physical channel for sending HARQ feedback are determined as candidate subcarrier spacing; and if it is determined that the feedback of any HARQ process is disabled, the corresponding first subcarrier spacing, second subcarrier spacing
  • the interval and the fifth subcarrier interval corresponding to the uplink physical channel that can be used to send the HARQ feedback are determined as candidate subcarrier intervals.
  • the largest first time parameter is determined.
  • the network device may also determine the corresponding first subcarrier spacing, second subcarrier spacing, and subcarrier spacing of the uplink physical channel for sending HARQ feedback when it is determined that the feedback of any HARQ process of the terminal equipment is in an enabled state. is the candidate subcarrier spacing; and if it is determined that the feedback of any HARQ process is in the disabled state, then determine the corresponding subcarrier spacing corresponding to the first subcarrier spacing, the second subcarrier spacing, and the active uplink bandwidth part is the candidate subcarrier spacing. Furthermore, according to the mapping relationship between the subcarrier spacing and the second time parameter, and between the second time parameter and the number of symbols, the largest first time parameter is determined.
  • the network device may also select the first subcarrier spacing, the second subcarrier spacing, and the uplink physical channel that can be used to send HARQ feedback regardless of whether the feedback of the HARQ process of the terminal device is enabled or disabled.
  • the subcarrier spacing of is determined as the candidate subcarrier spacing. Furthermore, according to the mapping relationship between the subcarrier spacing and the second time parameter, and between the second time parameter and the number of symbols, the largest first time parameter is determined.
  • the network device may also select the first subcarrier spacing, the second subcarrier spacing, and the uplink bandwidth part in the active state corresponding to the HARQ process regardless of whether the feedback of the HARQ process of the terminal device is in the enabled state or in the disabled state
  • the corresponding subcarrier spacing is determined as a candidate subcarrier spacing. Furthermore, according to the mapping relationship between the subcarrier spacing and the second time parameter, and between the second time parameter and the number of symbols, the largest first time parameter is determined.
  • the process of determining the largest first time parameter by the network device according to the mapping relationship between the subcarrier spacing and the second time parameter, and the second time parameter and the number of symbols (N 1 ) can refer to any embodiment of the present disclosure. Detailed description will not be repeated here.
  • the network device may determine to receive the any Earliest time of feedback for a HARQ process.
  • the network device may determine, according to the first time parameter required by the terminal device to process the PDSCH carried by the any HARQ process, to send Earliest time of another PDSCH carried by the process.
  • the network device when it determines that the feedback of any HARQ process of the terminal device is in the enabled state, it can use the first subcarrier spacing corresponding to the PDCCH, the second subcarrier spacing corresponding to the PDSCH, and the first preset subcarrier spacing An item in the carrier interval, which determines the first time parameter required by the terminal device to process the PDSCH carried by the any HARQ process, and when the feedback of the any HARQ process is disabled, it can be based on the first sub- One of the carrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing determines a first time parameter required by the terminal device to process the PDSCH carried by any HARQ process.
  • the first time parameter is determined according to the corresponding candidate subcarrier spacing, so that the determined first time parameter is more accurate, thereby avoiding the The influence of HARQ avoids the waste of resources due to the long processing time of the determination.
  • FIG. 8 is a schematic structural diagram of a communication device 800 provided by an embodiment of the present disclosure.
  • the communication device 800 shown in FIG. 8 may include a processing module 801 .
  • the communication device 800 may be a terminal device, may also be a device in the terminal device, and may also be a device that can be matched with the terminal device.
  • the communication device 800 is on the side of the terminal equipment, wherein:
  • the processing module 801 is configured to determine the first time parameter required for processing the physical downlink shared channel PDSCH carried by the HARQ process according to the status of the feedback of each HARQ process.
  • processing module 801 is specifically used for:
  • processing module 801 is specifically used for:
  • the HARQ processes in response to the feedback of any of the HARQ processes being in a disabled state, according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing, determine the The first time parameter required for processing the PDSCH carried by any of the above HARQ processes.
  • the first preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth in the active state is the subcarrier spacing corresponding to the uplink bandwidth in the active state.
  • the second preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the channel of the uplink bandwidth part In the activated state, the subcarrier spacing corresponding to the channel of the uplink bandwidth part.
  • processing module 801 is specifically used for:
  • each HARQ process determines the candidate subcarrier spacing corresponding to the PDSCH carried by each HARQ process
  • mapping relationship table Based on the mapping relationship in the mapping relationship table, determine the maximum first time parameter corresponding to each of the second time parameters.
  • processing module 801 is further configured to:
  • the communication device provided by the present disclosure can determine the first time parameter required for processing the PDSCH carried by each HARQ process according to the status of the feedback of each HARQ process. In this way, the determined first time parameter is made more accurate, thereby avoiding the impact on HARQ caused by the determined too short processing time, and avoiding the resource waste caused by the determined too long processing time.
  • the communication device 800 may be a network device, a device in the network device, or a device that can be matched with the network device.
  • the communication apparatus 800 on the network equipment side, the apparatus includes:
  • the processing module 801 is configured to, according to the feedback status of each hybrid automatic repeat request (HARQ) process of the terminal device, determine the first step required for the terminal device to process the physical downlink shared channel PDSCH carried by each HARQ process a time parameter.
  • HARQ hybrid automatic repeat request
  • processing module 801 is specifically used for:
  • the PDSCH is the first parameter required for processing.
  • processing module 801 is specifically used for:
  • the terminal in response to the feedback of any of the HARQ processes being in a disabled state, determine the terminal according to one of the first subcarrier spacing, the second subcarrier spacing, and the second preset subcarrier spacing A first time parameter required by the device to process the PDSCH carried by any HARQ process.
  • the first preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth part in the active state is the subcarrier spacing corresponding to the uplink bandwidth part in the active state.
  • the second preset subcarrier spacing is any of the following:
  • the subcarrier spacing corresponding to the uplink bandwidth part in the active state is the subcarrier spacing corresponding to the uplink bandwidth part in the active state.
  • processing module 801 is specifically used for:
  • each HARQ process of the terminal device determines the candidate subcarrier spacing corresponding to the PDSCH carried by each HARQ process;
  • mapping relationship table Based on the mapping relationship in the mapping relationship table, determine the maximum first time parameter corresponding to each of the second time parameters.
  • processing module 801 is further configured to:
  • the communication device provided in the present disclosure can determine the first time parameter required by the terminal device to process the PDSCH carried by each HARQ process according to the feedback status of each HARQ process of the terminal device.
  • the determined first time parameter is made more accurate, thereby avoiding the impact on HARQ due to the determined processing time being too short, and avoiding resource waste due to the determined processing time being too long.
  • FIG. 9 is a schematic structural diagram of another communication device 900 provided by an embodiment of the present disclosure.
  • the communication device 900 may be a network device, or a terminal device, or a chip, a chip system, or a processor that supports the network device to implement the above method, or a chip, a chip system, or a chip that supports the terminal device to implement the above method. processor etc.
  • the device can be used to implement the methods described in the above method embodiments, and for details, refer to the descriptions in the above method embodiments.
  • Communications device 900 may include one or more processors 901 .
  • the processor 901 may be a general-purpose processor or a special-purpose processor or the like. For example, it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs , to process data for computer programs.
  • the communication device 900 may further include one or more memories 902, on which a computer program 904 may be stored, and the processor 901 executes the computer program 904, so that the communication device 900 executes the method described in the foregoing method embodiments. method.
  • data may also be stored in the memory 902 .
  • the communication device 900 and the memory 902 can be set separately or integrated together.
  • the communication device 900 may further include a transceiver 905 and an antenna 906 .
  • the transceiver 905 may be called a transceiver unit, a transceiver, or a transceiver circuit, etc., and is used to implement a transceiver function.
  • the transceiver 905 may include a receiver and a transmitter, and the receiver may be called a receiver or a receiving circuit for realizing a receiving function; the transmitter may be called a transmitter or a sending circuit for realizing a sending function.
  • the communication device 900 may further include one or more interface circuits 907 .
  • the interface circuit 907 is used to receive code instructions and transmit them to the processor 901 .
  • the processor 901 runs the code instructions to enable the communication device 900 to execute the methods described in the foregoing method embodiments.
  • the communication device 900 is a terminal device: the processor 901 is used to execute step 201 in FIG. 2 ; step 301 , step 302 , and step 303 in FIG. 3 ; and step 401 , step 402 , and step 403 in FIG. 4 .
  • the communication device 900 is a network device: the processor 901 is configured to execute step 501 in FIG. 5 ; step 601 , step 602 , and step 603 in FIG. 6 ; and step 701 , step 702 , and step 703 in FIG. 7 .
  • the processor 901 may include a transceiver for implementing receiving and sending functions.
  • the transceiver may be a transceiver circuit, or an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits for realizing the functions of receiving and sending can be separated or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit may be used for reading and writing code/data, or the above-mentioned transceiver circuit, interface or interface circuit may be used for signal transmission or transfer.
  • the processor 901 may store a computer program 903, and the computer program 903 runs on the processor 901 to enable the communication device 900 to execute the methods described in the foregoing method embodiments.
  • the computer program 903 may be solidified in the processor 901, and in this case, the processor 901 may be implemented by hardware.
  • the communication device 900 may include a circuit, and the circuit may implement the function of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure can be implemented on integrated circuits (integrated circuits, ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board, PCB), electronic equipment, etc.
  • the processor and transceiver can also be fabricated using various IC process technologies such as complementary metal oxide semiconductor (CMOS), nMetal-oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (bipolar junction transistor, BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS nMetal-oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may not be limited by FIG. 9 .
  • a communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • a set of one or more ICs may also include storage components for storing data and computer programs;
  • ASIC such as modem (Modem);
  • the communication device may be a chip or a chip system
  • the chip shown in FIG. 10 includes a processor 1001 and an interface 1002 .
  • the number of processors 1001 may be one or more, and the number of interfaces 1002 may be more than one.
  • the chip further includes a memory 1003 for storing necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any one of the above method embodiments are realized.
  • the present disclosure also provides a computer program product, which implements the functions of any one of the above method embodiments when executed by a computer.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented in software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs. When the computer program is loaded and executed on the computer, all or part of the processes or functions according to the embodiments of the present disclosure will be generated.
  • the computer can be a general purpose computer, a special purpose computer, a computer network, or other programmable devices.
  • the computer program can be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program can be downloaded from a website, computer, server or data center Transmission to another website site, computer, server or data center by wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.).
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrated with one or more available media.
  • the available medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (digital video disc, DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk, SSD)) etc.
  • a magnetic medium for example, a floppy disk, a hard disk, a magnetic tape
  • an optical medium for example, a high-density digital video disc (digital video disc, DVD)
  • a semiconductor medium for example, a solid state disk (solid state disk, SSD)
  • At least one in the present disclosure can also be described as one or more, and a plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by "first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in the “first”, “second”, “third”, “A”, “B”, “C” and “D” have no sequence or order of magnitude among the technical features described.
  • each table in the present disclosure may be configured or predefined.
  • the values of the information in each table are just examples, and may be configured as other values, which are not limited in the present disclosure.
  • the corresponding relationship shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, for example, splitting, merging, and so on.
  • the names of the parameters shown in the titles of the above tables may also adopt other names understandable by the communication device, and the values or representations of the parameters may also be other values or representations understandable by the communication device.
  • other data structures can also be used, for example, arrays, queues, containers, stacks, linear tables, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables can be used wait.
  • Predefinition in the present disclosure can be understood as definition, predefinition, storage, prestorage, prenegotiation, preconfiguration, curing, or prefiring.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种物理下行共享信道的处理时间参数的确定方法,可应用于通信技术领域,其中,由终端设备执行的方法,包括:终端设备根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。通过这种方式,使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。

Description

物理下行共享信道的处理时间参数的确定方法及装置 技术领域
本公开涉及通信技术领域,尤其涉及一种物理下行共享信道的处理时间参数的确定方法及装置。
背景技术
在通信***中,为了避免对混合自动重传请求(hybrid automatic repeat request,HARQ)的影响,定义了物理下行共享信道(physical downlink shared channel,PDSCH)的调度限制时间。在该调度限制时间内,终端设备不希望反馈针对该PDSCH的HARQ解调结果。但是随着HARQ反馈禁用(feedback disabled)的提出,如何准确确定PDSCH调度限制时间,成为目前亟需解决的问题。
发明内容
本公开实施例提供一种物理下行共享信道的处理时间参数的确定方法及装置,可以根据终端设备的每个HARQ进程的反馈状态,确定对由该HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
第一方面,本公开实施例提供一种物理下行共享信道的处理时间参数的确定方法,该方法由终端设备执行,方法包括:根据的每个混合自动重传请求HARQ进程的反馈的状态,确定对由该HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
本公开中,终端设备根据每个HARQ进程的HARQ feedback的状态,确定对该HARQ进程承载的PDSCH进行处理所需的第一时间参数。由此,使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
可选的,上述根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,上述根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,上述第一预设的子载波间隔为以下任一项:
发送所述HARQ反馈的上行物理信道对应的子载波间隔;
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态的上行链路部分带宽对应的子载波间隔。
可选的,上述第二预设的子载波间隔为以下任一项:
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分信道对应的子载波间隔。
可选的,上述根据每个混合自动重传请求HARQ进程的反馈的状态,确定由每个所述HARQ进程承载的对物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
根据每个HARQ进程反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
可选的,还包括:
响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定接收由所述任一HARQ进程承载的另一个PDSCH的最早时间。
第二方面,本公开实施例提供一种物理下行共享信道的处理时间参数的确定方法,该方法由网络设备执行,方法包括:网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
本公开中,网络设备根据每个HARQ进程的HARQ feedback的状态,确定对由每个HARQ进程承载的PDSCH进行处理所需的第一时间参数。由此,使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
可选的,网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
响应于所述终端设备的任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述终端设备的任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一间参数。
可选的,所述网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
响应于所述终端设备的任一HARQ进程的反馈处于使能,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定终端设备对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定终端设备对所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,上述第一预设的子载波间隔为以下任一项:
发送所述HARQ反馈的上行物理信道对应的子载波间隔;
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分对应的子载波间隔。
可选的,上述第二预设的子载波间隔为以下任一项:
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分对应的子载波间隔。
可选的,上述所述网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
根据所述终端设备的每个HARQ进程的反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
可选的,还包括:
响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送由所述任一HARQ进程承载的另一个PDSCH的最早时间。
第三方面,本公开实施例提供一种通信装置,在终端设备侧,包括:
处理模块,用于根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
可选的,所述处理模块,具体用于:
响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,所述处理模块,具体用于:
响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,所述第一预设的子载波间隔为以下任一项:
发送所述HARQ反馈的上行物理信道对应的子载波间隔;
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态的上行链路部分带宽对应的子载波间隔。
可选的,所述第二预设的子载波间隔为以下任一项:
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分信道对应的子载波间隔。
可选的,所述处理模块,具体用于:
根据每个HARQ进程的反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
可选的,所述处理模块,还用于:
响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定接收由所述任一HARQ进程承载的另一个PDSCH的最早时间。
第四方面,本公开实施例提供一种通信装置,在网络设备侧,包括:
处理模块,用于根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
可选的,所述处理模块,具体用于:
响应于所述终端设备的任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述终端设备的任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ承载的PDSCH进行处理所需的第一间参数。
可选的,所述处理模块,具体用于:
响应于所述终端设备的任一HARQ进程的反馈处于使能,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定终端设备对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定终端设备对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,所述第一预设的子载波间隔为以下任一项:
发送所述HARQ反馈的上行物理信道对应的子载波间隔;
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分对应的子载波间隔。
可选的,所述第二预设的子载波间隔为以下任一项:
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分对应的子载波间隔。
可选的,所述处理模块,具体用于:
根据所述终端设备的每个HARQ进程的反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
可选的,所述处理模块,还用于:
响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送由所述任一HARQ进程承载的另一个PDSCH的最早时间。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述 指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构示意图;
图2是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图;
图3是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图;
图4是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图;
图5是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图;
图6是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图;
图7是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图;
图8是本公开实施例提供的一种通信装置的结构示意图;
图9是本公开实施例提供的另一种通信装置的结构示意图;
图10是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了便于理解,首先介绍本公开涉及的术语。
1、物理下行共享信道PDSCH
PDSCH用于承载来自传输信道的数据。
2、物理下行控制信道(physical downlink control channel,PDCCH)
PDCCH信道传输的是与物理上下行共享信道(PUSCH、PDSCH)相关的下行控制信息(Downlink Control Information,DCI),DCI信息包含了诸如资源块(rescourc block,RB)分配信息、HARQ进程标识等等若干相关内容。终端设备只有正确的解码到了DCI信息,才能正确的处理PDSCH数据或PUSCH数据。
3、混合自动重传请求HARQ
HARQ,是为了更好的抗干扰和抗衰落,提高***吞吐量(有效性)和数据传输的可靠性而研发的一种基于FEC(前向纠错)和ARQ(自动重传)的新型通信技术。
4、HARQ反馈禁用(HARQ feedback disabled)
HARQ feedback disabled,是指接收方在接收到某个HARQ进程标识/HARQ进程号承载的PDSCH后,无需向发送方反馈基于解调结果的HARQ确认(acknowledgement,ACK)消息,或者反馈HARQ非确认(negative acknowledgement,NACK)消息。
5、HARQ反馈使能(HARQ feedback enabled)
HARQ feedback enabled,是指接收方在接收到某个HARQ进程标识/HARQ进程号承载的PDSCH后,需要根据解调结果,向发送方反馈HARQ确认(acknowledgement,ACK)消息,或者反馈HARQ非确认(negative acknowledgement,NACK)消息。
6、部分带宽(bandwidth part,BWP)
部分带宽(bandwidth part,BWP),是总带宽的一个子集带宽,其通过NR中的带宽自适应灵活调整终端设备接收和发送带宽大小,使得终端设备接收和发送带宽不需要与小区的带宽一样大。终端在同一时间只能同时激活一个上行链路(up link,UL)BWP和一个下行链路(down link,DL)BWP,每个BWP配置一个子载波间隔(subcarrierspacing,SCS),除了特殊说明外,该BWP上的所有信号和信道均采用该scs。
7、子载波间隔(subcarrierspacing,SCS)
子载波间隔与正交频分复用(orthogonal frequency division multiplexing,OFDM)符号长度成反比,例如子载波间隔为15KHz(千赫兹)时,符号长度为1/15khz=66.7微秒(us)。新空口(New Radio,NR)中常用2 μ与15KHz的乘积表示子载波间隔的大小,比如μ=0,scs=15KHz;μ=2,scs=60KHz。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11和一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备101可以为演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR系 统中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
在通信***中,对于HARQ feedback enabled的HARQ进程,由于终端设备在收到该HARQ进程标识或该HARQ进程号承载的PDSCH后,需要根据PDSCH的解调结果反馈HARQ ACK或者HARQNACK,因此终端设备不希望在PDSCH解调完和/或上行反馈准备好之前就反馈HARQ ACK或者HARQ NACK。而对于HARQ feedback disabled的HARQ进程,终端设备在接收到该HARQ进程标识/HARQ进程号承载的PDSCH后,无需向网络设备反馈基于解调结果的HARQ ACK消息,或者HARQ NACK消息,因此,终端设备不希望在解调完当前PDSCH之前,就接收由该HARQ进程承载的另一个PDSCH。即终端设备反馈PDSCH的解调结果的时机,或者接收由相同的HARQ进程承载的另一个PDSCH的时机,与PDSCH的处理时间或处理过程时间(processingproceduretime)有关,而PDSCH的处理时间由T proc.1决定。其中,T proc.1可由以下公式1计算得到:
T proc,1=(N 1+d 1,1+d 2)(2048+144)·κ2 ·T c+T ext   (1)
其中,N 1是在PDSCH中定义的,其值与终端设备的μ值有关,μ与子载波间隔之间满足以下公式2的关系,T ext表示共享信道(unlicensed band)的额外处理时间,d 1,1表示PDSCH映射方式为A或者B时特定情况下的处理时间,d2表示不同优先级的上行信号重叠情况下的处理时间,T C为通信***中的基本时间单元,k在3GPP标准TS38.214中第4.1条中有定义。
scs=15*2 μ  (2)
通常,子载波间隔可以为PDCCH对应的子载波间隔、PDSCH对应的子载波间隔、及发送HARQ反馈消息的上行信道对应的子载波间隔中使得T proc.1取值最大的子载波间隔。由于在HARQ feedback disabled的HARQ进程中,终端设备无需向网络设备反馈基于解调结果的HARQ ACK消息,或者反馈HARQ NACK消息,即在HARQ feedback disabled的HARQ进程中不需要考虑发送HARQ反馈消息的上行信道对应的子载波间隔, 从而上述确定Tproc,1的方式不适用于HARQ feedback disabled的HARQ进程,因此,本公开提出一种根据HARQ进程的feedback状态,确定处理由该HARQ进程承载的PDSCH的时间参数的方法,使得确定的处理时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了确定的处理时间过长而浪费资源。
下面结合附图对本公开所提供的一种物理下行共享信道的处理时间参数的确定方法及装置进行详细地介绍。
请参见图2,图2是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由该HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
可选的,第一时间参数可以为上述T proc,1
本公开中,考虑到由于不同的HARQ进程的feedback的状态下,对应的可以考虑的候选子载波间隔不同,从而在确定对由不同HARQ进程承载PDSCH进行处理所需的第一时间参数T proc,1的值时,可以首先确定每个HARQ进程的HARQ feedback的状态,然后根据每个HARQ进程实际的HARQ feedback的状态,确定每个HARQ进程所承载的PDSCH对应的各候选子载波间隔,进而基于预设的第二时间参数μ与子载波间隔的映射关系,确定所述各候选子载波间隔对应的第二时间参数,之后,即可基于第二时间参数与符号个数的映射关系表中的映射关系、及各候选子载波间隔对应的符号长度,确定与各第二时间参数μ对应的最大第一时间参数。
其中,预设的第二时间参数与子载波间隔的映射关系可以为协议约定的,或者,也可以为网络设备配置的。其形式可以如上述公式(2)所示,或者也可以为其他形式的映射关系,本公开对此不做限定。
可选的,由于终端设备的能力不同,不同能力终端设备对应第二时间参数与符号个数(N 1)的映射关系可能不同,本公开中,终端设备在确定了各第二时间参数后,即可再根据终端设备自身的能力,确定第二时间参数与符号个数N 1映射关系表,进而再依据该映射关系表,确定各第二时间参数对应的N 1值,进而再基于第二时间参数与符号个数的映射关系及每个候选子载波间隔对应的符号长度,确定与各第二时间参数对应的最大第一时间参数。
可选的,终端设备在接入网络设备时,即可将其能力信息上报给网络设备,从而网络设备即可根据终端设备的能力信息,确定终端设备对应的第二时间参数与符号个数N 1的映射关系。
其中,终端设备的处理能力为1及处理能力2时,分别对应的第二时间参数与N 1的映射关系可以参照3GPP标准TS38.214中的表5.3-1及5.3-2,此处不再赘述。
举例来说,对于处理能力为1的终端设备,在其任一HARQ进程的HARQ feedback状态为使能状态时,该HARQ进程对应三个候选SCS,终端设备可以首先根据如上述公式(2)所示的SCS与第二时间参数间的映射关系,确定三个对应的第二时间参数μ,之后终端设备可以首先查询表5.3-1,确定出与三个μ分别对应的N 1值(符号个数)。之后终端设备可以算出三个候选SCS对应的时间长度。其中,时间长度=符号个数*每个符号的长度,每个符号的长度=1/scs。然后终端设备即可从三个时间长度中选择最大的时间长度,对应的那个值(符号个数)就是N 1。最后再基于该最终确定的N 1及对应的第二时间参数,即可计算得到最大的第一时间参数。
可选的,针对HARQ进程的HARQ feedback的使能状态可以是enabled状态或notdisabled状态。
需要说明的是,每个HARQ进程在不同的HARQ feedback的状态下,对应的第一时间参数值可能相同,也可能不同;不同的HARQ进程在相同的HARQ feedback状态下,对应的第一时间参数可能相同,也可能不同。本公开对此不做限定。
可选的,针对每个HARQ进程在不同的HARQfeedback状态,可以规定不同的符号个数名称。例如,HARQ feedback enabled的HARQ进程对应N 1,HARQ feedback disabled的HARQ进程对应N 1 ,本发明对此不进行限定。
可选的,对于HARQ feedback enabled的HARQ进程,终端设备在确定了对其承载的PDSCH进行处理所需的第一时间参数后,即可基于该第一时间参数,确定反馈该HARQ进程的最早时间。从而即避免 了确定的处理时间过短而使得反馈的HARQ确认或者非确认消息不准确,又避免了确定的处理时间过长,而浪费信道资源。
或者,对于HARQ feedback disabled的HARQ进程,终端设备在确定了对其承载的PDSCH进行处理所需的第一时间参数后,即可基于该第一时间参数,确定接收由该HARQ进程承载的另一个PDSCH的最早时间。从而即避免了确定的处理时间过短而使得接收的PDSCH对HARQ解调有影响,又避免了确定的处理时间过长,而浪费信道资源。
本公开中,终端设备根据每个HARQ的feedback的状态,确定对由每个HARQ承载的PDSCH进行处理所需的第一时间参数。由此,使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
请参见图3,图3是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,确定任一HARQ进程的反馈的状态。
可选的,终端设备可以根据网络设备指示的各HARQ进程配置信息,确定当前的HARQ反馈的状态。其中,终端设备可以通过无线资源控制(radio resource control,RRC)消息来接收HARQ进程配置信息,本公开对此不做限定。
步骤302,响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由任一HARQ承载的PDSCH进行处理所需的第一时间参数。
步骤303,响应于任一HARQ进程的反馈处于禁用状态,根据第一子载波间隔及第二子载波间隔中的一项,确定对由任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
本公开中,当任一HARQ进程的HARQ反馈处于使能状态时,终端设备在收到该HARQ标识或者该进程号承载的PDSCH后,需要根据PDSCH的解调结果向网络设备返回HARQ ACK消息,或者HARQ NACK消息,即此时存在对应的发送该HARQ进程的HARQ反馈的上行物理信道对应的第三子载波间隔,从而终端设备可以将第一子载波间隔、第二子载波间隔及第三子载波间隔,均确定为候选子载波间隔,进而再基于scs与第二时间参数、及终端设备的处理能力对应的第二时间参数与符号个数(N 1)的关系,确定各候选子载波间隔对应的最大第一时间参数,进而基于该最大第一时间参数确定发送HARQ反馈的最早时间。
而当HARQ进程的反馈处于禁用状态时,终端设备在收到该HARQ进程标识或者该HARQ进程号承载的PDSCH后,无需向网络设备返回基于解调结果的HARQ ACK消息,或者HARQ NACK消息,从而终端设备可以将第一子载波间隔、及第二子载波间隔,确定为候选子载波间隔,进而再基于scs与第二时间参数、及终端设备的处理能力对应的第二时间参数与符号个数(N 1)的关系,确定各候选子载波间隔对应的最大第一时间参数。
其中,终端设备根据每个HARQ进程对应的各候选子载波间隔,确定对每个HARQ进程承载的PDSCH进行处理所需的第一时间参数的具体过程可以参照本公开任一实施例的详细描述,此处不再赘述。
可选的,若任一HARQ进程的反馈为使能状态,则终端设备可以根据对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定发送该任一HARQ进程的反馈的最早时间。
或者,若任一HARQ进程的反馈为禁用状态,则终端设备可以根据对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定接收由该任一HARQ进程承载的另一个PDSCH的最早时间。
本公开中,终端设备在任一HARQ进程处于HARQ反馈使能状态时,即可根据PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由该HARQ进程承载的PDSCH进行处理所需的第一时间参数,而在该HARQ进程的反馈处于禁用状态时,即可根据第一子载波间隔及第二子载波间隔,确定对由该HARQ进程承载的PDSCH进行处理所需的第一时间参数。由此,在HARQ进程处于不同的HARQ反馈状态下,依据不同的子载波间隔确定第一时间参数,从而使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
请参见图4,图4是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程 示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,确定任一HARQ进程的反馈的状态。
步骤402,响应于任一HARQ反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对所述PDSCH进行处理所需的第一时间参数。
步骤403,响应于任一HARQ反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定对所述PDSCH进行处理所需的第一时间参数。
可选的,第一预设的子载波间隔可以为以下任一项:发送HARQ反馈的上行物理信道对应的子载波间隔,能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔,处于激活态的上行链路(uplink,UL)部分带宽(Bandwidth Part,BWP)对应的子载波间隔。
其中,能够用于发送HARQ反馈的上行物理信道,可以为终端设备对应的任一上行物理信道,该信道在需要时,可以被配置为用于发送HARQ反馈。
另外,终端设备对应的UL BWP可能为多个,本公开中,可以将终端设备对应的、当前处于激活态的UL BWP对应的SCS确定为第一预设的SCS。
可选的,第二预设的SCS可以为以下任一项:能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔,处于激活态上行链路带宽部分对应的子载波间隔。
举例来说,终端设备在确定候选子载波间隔时,若确定任一HARQ进程的反馈处于使能状态,则可以将PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送HARQ反馈的上行物理信道的子载波间隔确定为候选子载波间隔;而若确定任一HARQ进程的反馈处于禁用状态,则可以将对应的第一子载波间隔、第二子载波间隔及能够用于发送所述HARQ反馈的上行物理信道对应的第五子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
或者,终端设备也可以在任一HARQ进程的反馈处于使能状态时,将对应的第一子载波间隔、第二子载波间隔及发送HARQ反馈的上行物理信道的子载波间隔确定为候选子载波间隔;而若确定任一HARQ进程的反馈处于禁用状态,则将对应的第一子载波间隔、第二子载波间隔及处于激活态的上行链路带宽部分对应的子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
或者,终端设备也可以无论HARQ进程的反馈处于使能状态还是禁用状态,均将该进程对应的第一子载波间隔、第二子载波间隔及能够用于发送HARQ反馈的上行物理信道的子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
或者,终端设备也可以无论HARQ进程的反馈处于使能状态还是禁用状态,均将该HARQ进程对应的第一子载波间隔、第二子载波间隔及处于激活态的上行链路带宽部分对应的子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
其中,终端设备依据子载波间隔与第二时间参数、第二时间参数与符号个数(N 1)间的映射关系,确定最大的第一时间参数的过程,可以参照本公开任一实施例的详细描述,此处不再赘述。
可选的,若任一HARQ进程的反馈为使能状态,则终端设备可以根据对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定发送该任一HARQ进程的反馈的最早时间。
或者,若任一HARQ进程的反馈为禁用状态,则终端设备可以根据对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定接收由该任一HARQ进程承载的另一个PDSCH的最早时间。
本公开中,终端设备在任一HARQ进程的反馈处于使能状态时,即可根据PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,而在该任一HARQ进程的反馈处于禁用状态时,即可根据第一子载波间隔、第二子载波间隔及第二预设的子载波间隔中的一项,确定对由该任一HARQ进程承载的 PDSCH进行处理所需的第一时间参数。由此,在HARQ进程处于不同的HARQ反馈状态下,依据对应的候选子载波间隔确定第一时间参数,从而使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
请参见图5,图5是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图,该方法由网络设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定终端设备对由每个HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
可选的,第一时间参数可以为上述T proc,1
本公开中,考虑到由于不同的HARQ进程的feedback的状态下,对应的可以考虑的候选子载波间隔不同,从而网络设备在确定终端设备对由不同HARQ进程承载PDSCH进行处理所需的第一时间参数T proc,1的值时,可以首先确定每个HARQ进程的HARQ feedback的状态,然后根据每个HARQ进程实际的HARQ feedback的状态,确定每个HARQ进程所承载的PDSCH对应的各候选子载波间隔,进而基于预设的第二时间参数μ与子载波间隔的映射关系,确定所述各候选子载波间隔对应的第二时间参数,之后,即可基于第二时间参数与符号个数的映射关系表中的映射关系、及各候选子载波间隔对应的符号长度,确定与各第二时间参数μ对应的最大第一时间参数。
其中,预设的第二时间参数与子载波间隔的映射关系可以为协议约定的,或者,也可以为网络设备配置的。其形式可以如上述公式(2)所示,或者也可以为其他形式的映射关系,本公开对此不做限定。
可选的,由于终端设备的能力不同,不同能力终端设备对应的第二时间参数与符号个数(N 1)的映射关系可能不同,本公开中,网络设备在确定了各第二时间参数后,即可再根据终端设备自身的能力,确定第二时间参数与N 1的映射关系表,进而再依据该映射关系表,确定各第二时间参数对应的N 1值,进而再基于第二时间参数与符号个数的映射关系及每个候选子载波间隔对应的符号长度,确定与各第二时间参数对应的最大第一时间参数。
可选的,终端设备在接入网络设备时,即可将其能力信息上报给网络设备,从而网络设备即可根据终端设备的能力信息,确定终端设备对应的第二时间参数与N 1的映射关系。
其中,终端设备的处理能力为1及处理能力2时,分别对应的第二时间参数与N 1的映射关系可以参照3GPP标准TS38.214中的表5.3-1及5.3-2,此处不再赘述。
举例来说,对于处理能力为1的终端设备,在其任一HARQ进程的HARQ feedback状态为使能状态时,该HARQ进程对应三个候选SCS,网络设备可以首先根据SCS与第二时间参数间的映射关系如上述公式(2)所示,确定三个对应的第二时间参数μ,之后终端设备可以首先查询表5.3-1,确定出与三个μ分别对应的N 1值(符号个数)。之后网络设备可以算出三个候选SCS对应的时间长度。其中,时间长度=符号个数*每个符号的长度,每个符号的长度=1/scs。然后网络设备即可从三个时间长度中选择最大的时间长度,对应的那个值(符号个数)就是N 1。最后再基于该最终确定的N 1及对应的第二时间参数,即可计算得到最大的第一时间参数。
可选的,针对HARQ进程的HARQ feedback的使能状态可以是enabled状态或notdisabled状态。
需要说明的是,每个HARQ进程在不同的HARQ feedback的状态下,对应的第一时间参数值可能相同,也可能不同;不同的HARQ进程在相同的HARQ feedback状态下,对应的第一时间参数可能相同,也可能不同。本公开对此不做限定。
可选的,针对每个HARQ进程在不同的HARQfeedback状态,可以规定不同的符号个数名称。例如,HARQ feedback enabled的HARQ进程对应N 1,HARQ feedback disabled的HARQ进程对应N 1 ,本发明对此不进行限定。
可选的,对于HARQ feedback enabled的HARQ进程,网络设备在确定了终端设备对其承载的PDSCH进行处理所需的第一时间参数后,即可基于该第一时间参数,确定终端设备反馈该HARQ进程的最早时间。从而即避免了确定的处理时间过短而使得无法获取转的反馈消息,又避免了确定的处理时间过长,而浪费信道资源。
或者,对于HARQ feedback disable的HARQ进程,网络设备在确定了终端设备对其承载的PDSCH进行处理所需的第一时间参数后,即可基于该第一时间参数,确定发送由该HARQ进程承载的另一个PDSCH的最早时间。从而即避免了确定的处理时间过短而使得发送的PDSCH对HARQ解调有影响,又避免了确定的处理时间过长,而浪费信道资源。
本公开中,网络设备根据每个HARQ的feedback的状态,确定对由每个HARQ承载的PDSCH进行处理所需的第一时间参数。由此,使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
请参见图6,图6是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图,该方法由网络设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤601,确定终端设备每个HARQ进程的反馈的状态。
可选的,终端设备的HARQ反馈的状态可以为网络设备指示的。其中,网络设备可以通过无线资源控制(radio resource control,RRC)消息来指示HARQ进程配置信息,本公开对此不做限定。
步骤602,响应于终端设备的任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定终端设备对由任一HARQ承载的PDSCH进行处理所需的第一时间参数。
步骤603,响应于任一HARQ进程的反馈处于禁用状态,根据第一子载波间隔及第二子载波间隔中的一项,确定终端设备对由任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
本公开中,当任一HARQ进程的HARQ反馈处于使能状态时,终端设备在收到该HARQ标识或者该进程号承载的PDSCH后,需要根据PDSCH的解调结果向网络设备返回HARQ ACK消息,或者HARQ NACK消息,即此时存在对应的发送该HARQ进程的HARQ反馈的上行物理信道对应的第三子载波间隔,从而网络设备可以将第一子载波间隔、第二子载波间隔及第三子载波间隔,均确定为候选子载波间隔,进而再基于scs与第二时间参数、及终端设备的处理能力对应的第二时间参数与符号个数(N 1)的关系,确定各候选子载波间隔对应的最大第一时间参数,进而基于该最大第一时间参数确定发送HARQ反馈的最早时间。
而当HARQ进程的反馈处于禁用状态时,终端设备在收到该HARQ进程标识或者该HARQ进程号承载的PDSCH后,无需向网络设备返回基于解调结果的HARQ ACK消息,或者HARQ NACK消息,从而网络设备可以将第一子载波间隔、及第二子载波间隔,确定为候选子载波间隔,进而再基于scs与第二时间参数、及终端设备的处理能力对应的第二时间参数与符号个数(N 1)的关系,确定各候选子载波间隔对应的最大第一时间参数。
其中,网络设备根据每个HARQ进程所承载的PDSCH对应的各候选子载波间隔,确定对每个HARQ进程承载的PDSCH进行处理所需的第一时间参数的具体过程可以参照本公开任一实施例的详细描述,此处不再赘述。
可选的,若任一HARQ进程的反馈为使能状态,则网络设备可以根据终端设备对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定接收该任一HARQ进程的反馈的最早时间。
或者,若任一HARQ进程的反馈为禁用状态,则网络设备可以根据终端设备对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定发送由该任一HARQ进程承载的另一个PDSCH的最早时间。
本公开中,网络设备在终端设备中的任一HARQ进程处于HARQ反馈使能状态时,即可根据PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定终端设备对由该HARQ进程承载的PDSCH进行处理所需的第一时间参数,而在该HARQ进程的反馈处于禁用状态时,即可根据第一子载波间隔及第二子载波间隔,确定终端设备对由该HARQ进程承载的PDSCH进行处理所需的第一时间参数。由此,在HARQ进程处于不同的HARQ反馈状态下,依据不同的子载波间隔确定第一时间参数,从而使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
请参见图7,图7是本公开实施例提供的一种物理下行共享信道的处理时间参数的确定方法的流程示意图,该方法由网络设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,确定终端设备的每个HARQ进程的反馈的状态。
步骤702,响应于终端设备的任一HARQ反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对由任一HARQ 承载的PDSCH进行处理所需的第一时间参数。
步骤703,响应于任一HARQ反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定对PDSCH进行处理所需的第一时间参数。
可选的,第一预设的子载波间隔可以为以下任一项:发送HARQ反馈的上行物理信道对应的子载波间隔,能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔,处于激活态的上行链路(uplink,UL)部分带宽(Bandwidth Part,BWP)对应的子载波间隔。
其中,能够用于发送HARQ反馈的上行物理信道,可以为终端设备对应的任一上行物理信道,该信道在需要时,可以被配置为用于发送HARQ反馈。
另外,终端设备对应的UL BWP可能为多个,本公开中,可以将终端设备对应的、当前处于激活态的UL BWP对应的SCS确定为第一预设的SCS。
可选的,第二预设的SCS可以为以下任一项:能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔,处于激活态上行链路带宽部分对应的子载波间隔。
举例来说,网络设备在确定每个HARQ进程对应的候选子载波间隔时,若确定任一HARQ进程的反馈处于使能状态,则可以将PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送HARQ反馈的上行物理信道的子载波间隔确定为候选子载波间隔;而若确定任一HARQ进程的反馈处于禁用状态,则可以将对应的第一子载波间隔、第二子载波间隔及能够用于发送所述HARQ反馈的上行物理信道对应的第五子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
或者,网络设备也可以在确定终端设备的任一HARQ进程的反馈处于使能状态时,将对应的第一子载波间隔、第二子载波间隔及发送HARQ反馈的上行物理信道的子载波间隔确定为候选子载波间隔;而若确定任一HARQ进程的反馈处于禁用状态,则将对应的第一子载波间隔、第二子载波间隔及处于激活态的上行链路带宽部分对应的子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
或者,网络设备也可以无论终端设备的HARQ进程的反馈处于使能状态还是禁用状态,均将该进程对应的第一子载波间隔、第二子载波间隔及能够用于发送HARQ反馈的上行物理信道的子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
或者,网络设备也可以无论终端设备的HARQ进程的反馈处于使能状态还是禁用状态,均将该HARQ进程对应的第一子载波间隔、第二子载波间隔及处于激活态的上行链路带宽部分对应的子载波间隔确定为候选子载波间隔。进而再依据子载波间隔与第二时间参数、第二时间参数与符号个数间的映射关系,确定最大的第一时间参数。
其中,网络设备依据子载波间隔与第二时间参数、第二时间参数与符号个数(N 1)间的映射关系,确定最大的第一时间参数的过程,可以参照本公开任一实施例的详细描述,此处不再赘述。
可选的,若终端设备的任一HARQ进程的反馈为使能状态,则网络设备可以根据终端设备对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定接收该任一HARQ进程的反馈的最早时间。
或者,若终端设备的任一HARQ进程的反馈为禁用状态,则网络设备可以根据终端设备对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,确定发送由该任一HARQ进程承载的另一个PDSCH的最早时间。
本公开中,网络设备在确定终端设备的任一HARQ进程的反馈处于使能状态时,即可根据PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定终端设备对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数,而在该任一HARQ进程的反馈处于禁用状态时,即可根据第一子载波间隔、第二子载波间隔及第二预设的子载波间隔中的一项,确定终端设备对由该任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。由此,在HARQ进程处于不同的HARQ反馈状态下,依据对应的候选子载波间隔确定第一时间参数,从而使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而浪费资源。
请参见图8,为本公开实施例提供的一种通信装置800的结构示意图。图8所示的通信装置800可包括处理模块801。
可以理解的是,通信装置800可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置800在终端设备侧,其中:
处理模块801,用于根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由该HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
可选的,所述处理模块801,具体用于:
响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,所述处理模块801,具体用于:
响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,所述第一预设的子载波间隔为以下任一项:
发送所述HARQ反馈的上行物理信道对应的子载波间隔;
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态的上行链路部分带宽对应的子载波间隔。
可选的,所述第二预设的子载波间隔为以下任一项:
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分信道对应的子载波间隔。
可选的,所述处理模块801,具体用于:
根据每个HARQ进程反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
可选的,所述处理模块801,还用于:
响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定接收由所述任一HARQ进程承载的另一个PDSCH的最早时间。
本公开提供的通信装置,可以根据每个HARQ进程的feedback的状态,确定对由每个HARQ进程承载的PDSCH进行处理所需的第一时间参数。由此,使得确定的第一时间参数更准确,从而即避免了由此确定的处理时间过短对HARQ的影响,又避免了由此确定的处理时间过长而资源浪费。
可以理解的是,通信装置800可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置800,在网络设备侧,所述装置,包括:
处理模块801,用于根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
可选的,所述处理模块801,具体用于:
响应于所述终端设备的任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述终端设备的任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对处理由所述任一HARQ承载的PDSCH进行处理所需的第一间参数。
可选的,所述处理模块801,具体用于:
响应于所述终端设备的任一HARQ进程的反馈处于使能,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定所述终端设对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定所述终端设备对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
可选的,所述第一预设的子载波间隔为以下任一项:
发送所述HARQ反馈的上行物理信道对应的子载波间隔;
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分对应的子载波间隔。
可选的,所述第二预设的子载波间隔为以下任一项:
能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
处于激活态上行链路带宽部分对应的子载波间隔。
可选的,所述处理模块801,具体用于:
根据所述终端设备的每个HARQ进程的反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
可选的,所述处理模块801,还用于:
响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送由所述任一HARQ进程承载的另一个PDSCH的最早时间。
本公开提供的通信装置,可以根据终端设备的每个HARQ进程的feedback的状态,确定终端设备对由每个HARQ进程承载的PDSCH进行处理所需的第一时间参数。由此,使得确定的第一时间参数更准确,从而即避免了由于确定的处理时间过短对HARQ的影响,又避免了由于确定的处理时间过长而资源浪费。
请参见图9,图9是本公开实施例提供的另一种通信装置900的结构示意图。通信装置900可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置900可以包括一个或多个处理器901。处理器901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制, 执行计算机程序,处理计算机程序的数据。
可选的,通信装置900中还可以包括一个或多个存储器902,其上可以存有计算机程序904,处理器901执行所述计算机程序904,以使得通信装置900执行上述方法实施例中描述的方法。可选的,所述存储器902中还可以存储有数据。通信装置900和存储器902可以单独设置,也可以集成在一起。
可选的,通信装置900还可以包括收发器905、天线906。收发器905可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置900中还可以包括一个或多个接口电路907。接口电路907用于接收代码指令并传输至处理器901。处理器901运行所述代码指令以使通信装置900执行上述方法实施例中描述的方法。
通信装置900为终端设备:处理器901用于执行图2中的步骤201;图3中的步骤301、步骤302、步骤303;图4中的步骤401、步骤402及步骤403。
通信装置900为网络设备:处理器901用于执行图5中的步骤501;图6中的步骤601、步骤602、步骤603;图7中的步骤701、步骤702及步骤703。
在一种实现方式中,处理器901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器901可以存有计算机程序903,计算机程序903在处理器901上运行,可使得通信装置900执行上述方法实施例中描述的方法。计算机程序903可能固化在处理器901中,该种情况下,处理器901可能由硬件实现。
在一种实现方式中,通信装置900可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图9的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图10所示的芯片的结构示意图。图10所示的芯片包括处理器1001和接口1002。其中,处理器1001的数量可以是一个或多个,接口1002的数量可以是多个。
可选的,芯片还包括存储器1003,存储器1003用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实 现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (32)

  1. 一种物理下行共享信道的处理时间参数的确定方法,其特征在于,由终端设备实现,所述方法包括:
    根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
  2. 如权利要求1所述的方法,其特征在于,所述根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
    响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
  3. 如权利要求1所述的方法,其特征在于,所述根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
    响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
  4. 如权利要求3所述的方法,其特征在于,所述第一预设的子载波间隔为以下任一项:
    发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态的上行链路部分带宽对应的子载波间隔。
  5. 如权利要求3所述的方法,其特征在于,所述第二预设的子载波间隔为以下任一项:
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态上行链路带宽部分信道对应的子载波间隔。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述根据每个混合自动重传请求HARQ进程的反馈的状态,确定对每个所述HARQ进程承载的处理物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
    根据每个HARQ进程反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
    基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间 参数;
    根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
    基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
  7. 如权利要求1-6任一所述的方法,其特征在于,还包括:
    响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
    或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定接收由所述任一HARQ进程承载的另一个PDSCH的最早时间。
  8. 一种物理下行共享信道的处理时间参数的确定方法,其特征在于,由网络设备实现,所述方法包括:
    网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
  9. 如权利要求8所述的方法,其特征在于,所述网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
    响应于所述终端设备的任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定所述终端设备对由所述任一HARQ承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述终端设备的任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定所述终端设备对由所述任一HARQ承载的PDSCH进行处理所需的第一间参数。
  10. 如权利要求8所述的方法,其特征在于,所述网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
    响应于所述终端设备的任一HARQ进程的反馈处于使能,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定所述终端设备对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定所述终端设备对对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
  11. 如权利要求10所述的方法,其特征在于,所述第一预设的子载波间隔为以下任一项:
    发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态上行链路带宽部分对应的子载波间隔。
  12. 如权利要求10所述的方法,其特征在于,所述第二预设的子载波间隔为以下任一项:
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态上行链路带宽部分对应的子载波间隔。
  13. 如权利要求8-12任一所述的方法,其特征在于,所述网络设备根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数,包括:
    根据所述终端设备的每个HARQ进程的反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
    基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
    根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
    基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
  14. 如权利要求8-13任一所述的方法,其特征在于,还包括:
    响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
    或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送由所述任一HARQ进程承载的另一个PDSCH的最早时间。
  15. 一种通信装置,其特征在于,被配置在终端设备侧,所述装置包括:
    处理模块,用于根据每个混合自动重传请求HARQ进程的反馈的状态,确定对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
  16. 如权利要求15所述的通信装置,其特征在于,所述处理模块,具体用于:
    响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
  17. 如权利要求15所述的装置,其特征在于,所述所述处理模块,具体用于:
    响应于任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
  18. 如权利要求17所述的装置,其特征在于,所述第一预设的子载波间隔为以下任一项:
    发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态的上行链路部分带宽对应的子载波间隔。
  19. 如权利要求17所述的装置,其特征在于,所述第二预设的子载波间隔为以下任一项:
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态上行链路带宽部分信道对应的子载波间隔。
  20. 如权利要求15-19任一所述的装置,其特征在于,所述处理模块,具体用于
    根据每个HARQ进程的反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
    基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
    根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
    基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
  21. 如权利要求15-20任一所述的装置,其特征在于,所述处理模块,还用于:
    响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
    或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定接收由所述任一HARQ进程承载的另一个PDSCH的最早时间。
  22. 一种通信装置,其特征在于,被配置在网络设备侧,包括:
    处理模块,用于根据终端设备的每个混合自动重传请求HARQ进程的反馈的状态,确定所述终端设备对由每个所述HARQ进程承载的物理下行共享信道PDSCH进行处理所需的第一时间参数。
  23. 如权利要求22所述的装置,其特征在于,所述处理模块,具体用于:
    响应于所述终端设备的任一HARQ进程的反馈处于使能状态,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及发送所述HARQ反馈的上行物理信道对应的第三子载波间隔中的一项,确定对由所述任一HARQ承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述终端设备的任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔及所述第二子载波间隔中的一项,确定对由所述任一HARQ承载的PDSCH进行处理所需的第一间参数。
  24. 如权利要求22所述的装置,其特征在于,所述处理模块,具体用于:
    响应于所述终端设备的任一HARQ进程的反馈处于使能,根据物理下行控制信道PDCCH对应的第一子载波间隔、PDSCH对应的第二子载波间隔及第一预设的子载波间隔中的一项,确定所述终端设对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数;
    或者,响应于所述任一HARQ进程的反馈处于禁用状态,根据所述第一子载波间隔、所述第二子载波间隔及第二预设的子载波间隔中的一项,确定所述终端设备对对由所述任一HARQ进程承载的PDSCH进行处理所需的第一时间参数。
  25. 如权利要求24所述的装置,其特征在于,所述第一预设的子载波间隔为以下任一项:
    发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态上行链路带宽部分对应的子载波间隔。
  26. 如权利要求24所述的装置,其特征在于,所述第二预设的子载波间隔为以下任一项:
    能够用于发送所述HARQ反馈的上行物理信道对应的子载波间隔;
    处于激活态上行链路带宽部分对应的子载波间隔。
  27. 如权利要求22-26任一所述的装置,其特征在于,所述处理模块,具体用于:
    根据所述终端设备的每个HARQ进程的反馈的状态,确定每个所述HARQ进程所承载的PDSCH对应的各候选子载波间隔;
    基于预设的第二时间参数与子载波间隔的映射关系,确定所述各候选子载波间隔对应的各第二时间参数;
    根据所述终端设备自身的能力,确定第二时间参数与符号个数的映射关系表;
    基于所述映射关系表中的映射关系,确定与所述各第二时间参数对应的最大第一时间参数。
  28. 如权利要求22-27任一所述的装置,其特征在于,所述处理模块,还用于:
    响应于任一HARQ进程的反馈为使能状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送所述任一HARQ进程的反馈的最早时间;
    或者,响应于所述任一HARQ进程的反馈为禁用状态,根据对由所述任一HARQ进程承载的所述PDSCH进行处理所需的第一时间参数,确定发送由所述任一HARQ进程承载的另一个PDSCH的最早时间。
  29. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至7中任一项所述的方法。
  30. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序, 所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求7至14中任一项所述的方法。
  31. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至7中任一项所述的方法被实现。
  32. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求7至14中任一项所述的方法被实现。
PCT/CN2022/071680 2022-01-12 2022-01-12 物理下行共享信道的处理时间参数的确定方法及装置 WO2023133742A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280000138.4A CN114503753A (zh) 2022-01-12 2022-01-12 物理下行共享信道的处理时间参数的确定方法及装置
PCT/CN2022/071680 WO2023133742A1 (zh) 2022-01-12 2022-01-12 物理下行共享信道的处理时间参数的确定方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/071680 WO2023133742A1 (zh) 2022-01-12 2022-01-12 物理下行共享信道的处理时间参数的确定方法及装置

Publications (1)

Publication Number Publication Date
WO2023133742A1 true WO2023133742A1 (zh) 2023-07-20

Family

ID=81489397

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/071680 WO2023133742A1 (zh) 2022-01-12 2022-01-12 物理下行共享信道的处理时间参数的确定方法及装置

Country Status (2)

Country Link
CN (1) CN114503753A (zh)
WO (1) WO2023133742A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803430A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种无线通信方法及设备
WO2020252708A1 (zh) * 2019-06-19 2020-12-24 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN112311507A (zh) * 2019-08-02 2021-02-02 中国信息通信研究院 一种车联网通信反馈定时方法、终端设备、网络设备、***
CN112740589A (zh) * 2018-07-27 2021-04-30 三星电子株式会社 无线通信***中确定传输时间的方法和设备
US20210136830A1 (en) * 2019-11-06 2021-05-06 Asustek Computer Inc. Method and apparatus for uplink grant overridden in a wireless communication system
US20210314100A1 (en) * 2018-08-10 2021-10-07 Samsung Electronics Co., Ltd. Method and device for transmitting or receiving harq-ack feedback in wireless communication system

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109803430A (zh) * 2017-11-17 2019-05-24 华为技术有限公司 一种无线通信方法及设备
CN112740589A (zh) * 2018-07-27 2021-04-30 三星电子株式会社 无线通信***中确定传输时间的方法和设备
US20210314100A1 (en) * 2018-08-10 2021-10-07 Samsung Electronics Co., Ltd. Method and device for transmitting or receiving harq-ack feedback in wireless communication system
WO2020252708A1 (zh) * 2019-06-19 2020-12-24 Oppo广东移动通信有限公司 无线通信方法、终端设备和网络设备
CN112311507A (zh) * 2019-08-02 2021-02-02 中国信息通信研究院 一种车联网通信反馈定时方法、终端设备、网络设备、***
US20210136830A1 (en) * 2019-11-06 2021-05-06 Asustek Computer Inc. Method and apparatus for uplink grant overridden in a wireless communication system

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "On DRX, LCP, timing, HARQ, SR/BSR, and CG and SPS", 3GPP DRAFT; R2-2106089, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Electronic meeting; 20210519, 10 May 2021 (2021-05-10), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP052007458 *
ERICSSON: "On scheduling, HARQ, and DRX for NTNs", 3GPP DRAFT; R2-2103950, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Meeting; 20210412, 1 April 2021 (2021-04-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051992321 *

Also Published As

Publication number Publication date
CN114503753A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
US20240188054A1 (en) Method and device for time-domain resource allocation
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
WO2023206106A1 (zh) 一种终端设备调度方法及其装置
WO2023108657A1 (zh) 一种位置信息的确定方法及其装置
WO2023164952A1 (zh) 一种智能中继的控制方法及其装置
WO2023010473A1 (zh) 一种波束应用的方法及其装置
WO2023231035A1 (zh) 一种非授权频段下传输资源的确定方法及装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
US20240188086A1 (en) Resource mapping method and communication device for uplink control information (uci)
WO2023133742A1 (zh) 物理下行共享信道的处理时间参数的确定方法及装置
WO2022213289A1 (zh) 一种混合自动重传请求确认的反馈方法及其装置
WO2023004796A1 (zh) 混合自动重传请求反馈方法及装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2023151047A1 (zh) 一种终端设备调度方法及其装置
WO2023044804A1 (zh) 载波切换方法及装置
WO2023050392A1 (zh) 混合自动重传请求harq的发送方法、接收方法及装置
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024124562A1 (zh) 一种混合自动重传请求harq的配置方法及装置
WO2022205005A1 (zh) 一种数据接收的处理方法及其装置
WO2023050212A1 (zh) 一种cg资源的harq反馈的方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2024130566A1 (zh) 一种反馈方法、装置、设备及存储介质
WO2024031715A1 (zh) 一种harq反馈方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22919407

Country of ref document: EP

Kind code of ref document: A1