WO2024000203A1 - 一种传输配置指示tci状态使用时间的确定方法及其装置 - Google Patents

一种传输配置指示tci状态使用时间的确定方法及其装置 Download PDF

Info

Publication number
WO2024000203A1
WO2024000203A1 PCT/CN2022/102073 CN2022102073W WO2024000203A1 WO 2024000203 A1 WO2024000203 A1 WO 2024000203A1 CN 2022102073 W CN2022102073 W CN 2022102073W WO 2024000203 A1 WO2024000203 A1 WO 2024000203A1
Authority
WO
WIPO (PCT)
Prior art keywords
tci state
indication information
tci
usage time
dci
Prior art date
Application number
PCT/CN2022/102073
Other languages
English (en)
French (fr)
Inventor
李明菊
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280002138.8A priority Critical patent/CN115299007A/zh
Priority to PCT/CN2022/102073 priority patent/WO2024000203A1/zh
Publication of WO2024000203A1 publication Critical patent/WO2024000203A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path

Definitions

  • the present disclosure relates to the field of communication technology, and in particular, to a method and device for determining the usage time of a transmission configuration indication TCI state.
  • TRPs transmission reception points
  • TCIs transmission configuration indications
  • Embodiments of the present disclosure provide a method and device for determining the usage time of a transmission configuration indication TCI state.
  • embodiments of the present disclosure provide a method for determining the usage time of a transmission configuration indication TCI state.
  • the method is executed by a terminal device.
  • the method includes:
  • Receive first indication information the first indication information being used to indicate at least one and/or at least a pair of first TCI states
  • Receive second indication information the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal, and the second TCI state is part or all of the first TCI state;
  • the usage time of the second TCI state is determined.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • the usage time of the second TCI state can be determined. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • embodiments of the present disclosure provide another method for determining the usage time of the transmission configuration indication TCI state.
  • the method is executed by a network device, and the method includes:
  • Send first indication information the first indication information being used to indicate at least one and/or at least a pair of first TCI states
  • Send second indication information where the second indication information is used to indicate a designated channel and/or a second TCI state used when transmitting a designated signal, where the second TCI state is part or all of the first TCI state.
  • the usage time of the second TCI state is determined.
  • the network device may send to the terminal device the time for indicating the designated channel and/or the designated signal transmission time.
  • the usage time of the second TCI state can be determined. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • an embodiment of the present disclosure provides a communication device, including:
  • a transceiver module configured to receive first indication information, the first indication information being used to indicate at least one and/or at least a pair of first TCI states;
  • the above-mentioned transceiver module is used to receive second indication information.
  • the second indication information is used to indicate a designated channel and/or a second TCI state used when transmitting a designated signal.
  • the second TCI state is the first TCI state. part or all of;
  • a processing module configured to determine the usage time of the second TCI state.
  • an embodiment of the present disclosure provides a communication device, including:
  • a transceiver module configured to send first indication information, the first indication information being used to indicate at least one and/or at least a pair of first TCI states;
  • the above-mentioned transceiver module is also used to send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is the first TCI. Some or all of the status.
  • a processing module configured to determine the usage time of the second TCI state.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • embodiments of the present disclosure provide a system for determining transmission configuration indication TCI status usage time.
  • the system includes the communication device described in the third aspect and the communication device described in the fourth aspect, or the system includes the communication device described in the third aspect.
  • the communication device and the communication device according to the tenth aspect are examples of the communication device described in the third aspect.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned terminal equipment. When the instructions are executed, the terminal equipment is caused to execute the above-mentioned first aspect. method.
  • embodiments of the present invention provide a readable storage medium for storing instructions used by the above-mentioned network device. When the instructions are executed, the network device is caused to perform the method described in the second aspect. .
  • the present disclosure also provides a computer program product including a computer program, which when run on a computer causes the computer to execute the method described in the first aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in the second aspect.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting a terminal device to implement the functions involved in the first aspect, for example, determining or processing data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the terminal device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a chip system, which includes at least one processor and an interface for supporting a network device to implement the functions involved in the second aspect, for example, determining or processing data involved in the above method. and information.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data for the network device.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to execute the method described in the first aspect.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in the second aspect.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • FIG. 3 is a schematic flowchart of another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • FIG. 4 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • FIG. 5 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • FIG. 6 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • FIG. 7 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 8 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 9 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • FIG 11 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 12 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 13 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 14 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 15 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 16 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 17 is a schematic flowchart of yet another method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure
  • Figure 18 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 19 is a schematic structural diagram of another communication device provided by an embodiment of the present disclosure.
  • Figure 20 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • TCI Transmission configuration indication
  • SSB synchronization signal block
  • CSI-RS channel state information reference signal
  • the co-site address contains one of the following transmission parameters: average delay, delay spread, Doppler frequency shift, Doppler spread, spatial relationship information, and spatial reception parameters.
  • TRP is equivalent to a traditional base station, but in some cases, a cell may be covered by more than one TRP, but jointly covered by multiple TRPs.
  • DCI Downlink control information
  • the downlink control information sent by the network equipment to the terminal equipment includes uplink and downlink resource allocation, Hybrid Automatic Repeat Request (HARQ) information, and power control. wait.
  • HARQ Hybrid Automatic Repeat Request
  • the reference signal is the "pilot" signal, which is a known signal provided by the transmitter to the receiver for channel estimation or channel detection. It can be used for coherent detection and demodulation of terminal equipment, beam measurement, channel state information measurement or coherent detection and monitoring of network equipment, or channel quality measurement.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to a network device, such as a TRP and a terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiment of the present disclosure. In actual applications, it may include two or Two or more network devices, two or more terminal devices.
  • the communication system shown in Figure 1 includes a network device 11 and a terminal device 12 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network equipment 11 in the embodiment of the present disclosure includes an evolved base station (evolved NodeB, eNB), a transmission point (transmission reception point, TRP), a next generation base station (next generation NodeB, gNB) in the NR system, and other future mobile communication systems.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • CU-DU is used.
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the DU.
  • the terminal device 12 in the embodiment of the present disclosure is an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • each TCI state indicated by signaling is uncertain, which may lead to inconsistent TCI states used by network equipment and terminal equipment at the same time, which may affect the performance of transmission based on TCI states.
  • the usage time of the TCI state indicated by the additional signaling can be accurately determined to ensure that the network device and the terminal device have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the network device and the terminal device are used at the same time.
  • the TCI status is consistent, which improves the performance of transmission based on TCI status.
  • the method for determining the usage time of the transmission configuration indication TCI state provided in any embodiment can be executed alone, or in combination with possible implementation methods in other embodiments, or in combination. Any technical solutions in related technologies are executed together.
  • Figure 2 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 2, the method may include but is not limited to the following steps:
  • Step 201 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • a TCI state can be a joint TCI state or a downlink (DL) TCI state, or an uplink (UL) TCI state.
  • a pair of TCI states represents a DL TCI state and a UL TCI state.
  • Step 202 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • the designated channel may include at least one of the following: physical downlink control channel (PDCCH), physical downlink shared channel (PDSCH), physical uplink control channel (PUCCH), Physical uplink shared channel (PUSCH).
  • the designated signal can be channel state information-reference signal (CSI-RS), channel sounding reference signal (sounding reference signal, SRS), positioning reference signal (positioning reference signal, PRS), tracking reference signal (tracking reference signal, TRS), etc., this disclosure does not limit this.
  • CSI-RS channel state information-reference signal
  • SRS channel sounding reference signal
  • PRS positioning reference signal
  • TRS tracking reference signal
  • the network device may send the second indication information to the terminal device to indicate the designated Channel and/or second TCI state used when specifying signal transmission.
  • the first TCI state includes two TCI states
  • the second indication information indicates that the second TCI state is the first TCI state of the two TCI states
  • the second indication information indicates that the second TCI state is the first of the two TCI states.
  • the second TCI state, or the second indication information indicates that the second TCI state is the two TCI states in the first TCI state.
  • the network device may send at least one second indication information to the terminal device for the PDCCH, used to indicate the TCI state used when transmitting the PDCCH corresponding to the CORESET identifier of the control resource set, or indicating the TCI state used when transmitting the PDCCH corresponding to the CORESET pool index.
  • the network device can send at least one second indication information to the terminal device for PUSCH, used to indicate the TCI state used when dynamically scheduled PUSCH transmission, or the TCI state used when configuring authorization type 1 PUSCH transmission, or Indicates the TCI state used when configuring PUSCH transmission of authorization type 2.
  • Step 203 Determine the usage time of the second TCI state.
  • the terminal device after the terminal device determines the second TCI state used for transmission of each designated channel and/or designated signal, it can determine the usage time of the second TCI state based on designated rules or protocol agreements. Similarly, the network device can also determine the usage time of the second TCI state based on specified rules or protocol agreements, thereby ensuring that the network device and the terminal device have consistent understanding of the usage time of the second TCI state.
  • the HARQ ACK may be a HARQ ACK including the second TCI status signaling.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • the usage time of the second TCI state can be determined. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 3 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 3, the method may include but is not limited to the following steps:
  • Step 301 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 302 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 303 In response to the second indication information, in the first MAC CE, it is determined that the usage time is located after the first specified number of time slots after the time slot occupied by the first PUCCH corresponding to the first hybrid automatic repeat request HARQ response ACK, The first HARQ ACK is the HARQ ACK for the first MAC CE.
  • the network device can configure the second indication information in a medium access control (medium access control, MAC) control element (control element, CE). Therefore, when receiving the MACCE, the terminal device can determine the second TCI status in the second indication information.
  • medium access control medium access control
  • CE control element
  • the terminal device can return the first HARQ ACK for the first MAC CE to the network device. Therefore, the use of the second TCI state can be The time is determined to be after the first specified number of time slots after the time slot occupied by the first PUCCH corresponding to the first HARQ ACK. Therefore, both the terminal equipment and the network equipment can determine the usage time of the second TCI state based on the time slot occupied by the first PUCCH and the first specified number, thereby ensuring that the terminal equipment and network equipment use the second TCI state in a timely manner.
  • Consistent understanding ensures that the TCI status used by network equipment and terminal equipment at the same time is consistent, improving the performance of transmission based on TCI status.
  • the first specified number may be preset, or agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the time slot occupied by the first PUCCH is the first slot
  • the usage time of the second TCI state is the time slot after the start of the fifth time slot.
  • the first PUCCH can be used according to the The SCS determines the first specified number of subcarrier spacings.
  • the corresponding relationship between the number of time slots contained in a subframe, that is, 1 millisecond, and the SCS is shown in Table 1:
  • ⁇ subcarrier spacing The number of timeslots contained in a subframe 0 15KHz 1 1 30KHz 2 2 60KHz 4 3 120KHz 8 4 240KHz 16 5 480KHz 32
  • the number of time slots included in each subframe at this time can be determined according to Table 1 is 2, and because the duration of a subframe is 1ms, it is determined that 3ms contains 3 subframes, and then it is determined that 3ms contains 6 time slots. Therefore, it can be determined that after the 6th time slot after the time slot occupied by the first PUCCH, it is also determined that That is, the second TCI state can be started in the 7th time slot after the time slot occupied by the first PUCCH at the earliest.
  • the first MAC CE may also include first indication information, that is, the first indication information and the second indication information are in the same MAC CE.
  • the usage time of the first TCI state may be a preset specified number of time slots after the time slot occupied by the first PUCCH corresponding to the first HARQ ACK.
  • the preset designated number may be the same as or different from the first designated number, that is, the usage time of the first TCI state is the same as or different from the usage time of the second TCI state, and this disclosure does not limit this.
  • the first indication information and the second indication information can be configured in different MAC CEs, the first indication information can be configured in the second MAC CE, and the second MAC CE is used to indicate the first TCI state.
  • one code point in the TCI field (field) in DCI can correspond to multiple TCI states, or one code point in the TCI field (field) in DCI can correspond to multiple pairs of TCI states, or the TCI field (field) in DCI ( A code point in field) can correspond to one TCI state and a pair of TCI states, or a code point in a TCI field (field) in DCI can correspond to multiple TCI states and multiple pairs of TCI states, or a TCI field (field) in DCI ) can correspond to one TCI state and multiple pairs of TCI states, or a code point in the TCI field (field) in DCI can correspond to multiple TCI states and a pair of TCI states, etc.
  • the first indication information may include the second MAC CE and the first DCI, wherein the second MAC CE is used to activate at least one and/or corresponding to each code point in the multiple code points of the TCI domain in the first DCI. At least one pair of first TCI states, the first DCI is used to indicate one code point among a plurality of code points.
  • the network device can first activate at least one and/or at least a pair of first TCI states corresponding to multiple code points through the second MAC CE, and then indicate one of the multiple code points through DCI, thereby The terminal device can determine the first TCI state based on at least one and/or at least a pair of first TCI states corresponding to one of the indicated code points. Further, the terminal device receives second indication information, the second indication information indicates a second TCI state, and the second TCI state is all or part of the first TCI state, so that the terminal device determines the designated channel or channel based on the first indication information and the second indication information.
  • the second TCI state corresponding to the signal that is, the reference signal indicated by which channel or signal is quasi-co-located with one or which pair of TCI states is clearly specified.
  • first indication information and the second indication information are independently indicated by the network device.
  • the network device if at the current moment, the network device indicates a new first TCI state, but the second TCI state remains unchanged, the corresponding TCI state at the next moment can be determined based on the next moment and the usage time of the first TCI state.
  • First TCI state and/or second TCI state For example, at the first time, the first TCI state is TCI#1 and TCI#2, and the second TCI state is TCI#1, which is the first of the first TCI states.
  • the network device sends the first indication information to indicate that the first TCI status is TCI#3 and TCI#4, without sending the second indication information.
  • the third time if the third time is before the use time of the first TCI state, the first TCI state is still TCI#1 and TCI#2, and the second TCI state is the first TCI in the first TCI state. #1; If the third time is after the usage time of the first TCI state, the first TCI state is TCI#3 and TCI#4, and the second TCI state is the first TCI #3 in the first TCI state.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status. For example, at the first time, the first TCI state is TCI#1 and TCI#2, and the second TCI state is TCI#1, which is the first of the first TCI states. At the second time, the network device does not send the first indication information, but sends the second indication information to indicate that the second TCI state is the second of the first TCI states.
  • the second TCI state is the first one in the first TCI state, that is, TCI#1; if the third time is before the use time of the second TCI state, After the usage time, the second TCI state is the second of the first TCI states, that is, TCI#2.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the first TCI state is TCI#1 and TCI#2
  • the second TCI state is TCI#1, which is the first of the first TCI states.
  • the network device sends first indication information to indicate that the first TCI state is TCI#3 and TCI#4, and sends second indication information to indicate that the second TCI state is the second TCI in the first TCI state.
  • the first TCI state is TCI#1 and TCI#2, and the second TCI state is in the first TCI state.
  • the first one is TCI#1. If the third time is after the use time of the first TCI state and before the use time of the second TCI state, then the first TCI state is TCI#3 and TCI#4, and the second TCI state is the first of the first TCI states. One is TCI#3.
  • the first TCI state is TCI#1 and TCI#2, and the second TCI state is the second one of the first TCI states.
  • the third time is after the usage time of the first TCI state and after the usage time of the second TCI state, then the first TCI state is TCI#3 and TCI#4, and the second TCI state is the second one of the first TCI states.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • second indication information and then, when the second indication information is in the first MAC CE, it is determined that the usage time is located in the time slot occupied by the first PUCCH corresponding to the first hybrid automatic repeat request HARQ response ACK for the first MAC CE after the first specified number of slots.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 4 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 4, the method may include but is not limited to the following steps:
  • Step 401 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 402 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 403 in response to the second indication information in the first DCI, determine that the usage time is located after the second specified number of symbols after the first DCI.
  • the network device can configure the second indication information in the first DCI and send it to the terminal device, and the terminal device and the network device can determine the usage time of the second TCI state as a second specified number after the first DCI. after the symbol. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • the first DCI may be after the first symbol of the first DCI, or the first DCI may be after the last symbol of the first DCI.
  • the last symbol of the first DCI is the last symbol occupied by the PDCCH candidate with a later end time.
  • the second specified number may be preset, agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the first DCI may include the first indication information, that is, the first indication information and the second indication information are included in the same DCI.
  • the usage time of the first TCI state is located after the fifth specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback
  • the second HARQ ACK is the HARQ ACK for the first DCI or the PDSCH scheduled for the first DCI HARQ ACK.
  • the fifth designated number and the second designated number may be the same or different, that is, the usage time of the first TCI state and the usage time of the second TCI state may be the same or different, and this disclosure does not limit this.
  • first indication information and the second indication information are independently indicated by the network device.
  • the network device if at the current moment, the network device indicates a new first TCI state, but the second TCI state remains unchanged, the corresponding TCI state at the next moment can be determined based on the next moment and the usage time of the first TCI state.
  • First TCI state and/or second TCI state For detailed description of the above process, please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 5 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 5, the method may include but is not limited to the following steps:
  • Step 501 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 502 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 503 in response to the second indication information in the first DCI, determine that the usage time is located after the third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is the HARQ for the first DCI ACK or HARQ ACK for the first DCI scheduled PDSCH.
  • the terminal device may return the second HARQ for the first DCI or for the PDSCH scheduled by the first DCI to the network device.
  • the terminal equipment and the network equipment can determine the time slot and/or symbols located after the third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback as the usage time of the second TCI state.
  • the second HARQ ACK is a HARQ ACK for the first DCI or for the PDSCH scheduled by the first DCI.
  • the third designated number may be preset, agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the second TCI state is started after 9 symbols, that is, the earliest 10th symbol. If the PUCCH or PUSCH corresponding to the second HARQ ACK feedback is located at the 12th symbol in the first slot, the second TCI state will be used after the 5th symbol in the 2nd slot, that is, at the earliest 6th symbol.
  • the period after the PUCCH may be the last symbol occupied by the PUCCH or the period after the first symbol.
  • PUSCH it can be the last symbol occupied by PUSCH or after the first symbol.
  • the last symbol occupied by the PUCCH is the last symbol occupied by the last repeating unit in time.
  • the last symbol occupied by the PUSCH is the last symbol occupied by the last repeating unit in time.
  • the first DCI may include the first indication information, that is, the first indication information and the second indication information are included in the same DCI.
  • the usage time of the first TCI state please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the usage time of the first TCI state and the usage time of the second TCI state may be the same or different, and this disclosure does not limit this.
  • first indication information and the second indication information are independently indicated by the network device.
  • the network device if at the current moment, the network device indicates a new first TCI state, but the second TCI state remains unchanged, the corresponding TCI state at the next moment can be determined based on the next moment and the usage time of the first TCI state.
  • First TCI status For detailed description of the above process, please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the network device can determine the usage time of the second TCI state based on the PUCCH or PUSCH corresponding to the second HARQ ACK and the fifth specified number, and then use the second TCI state. , thereby ensuring that the terminal device and the network device have a consistent understanding of the usage time of the second TCI state.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • second indication information and then, when the second indication information is in the first DCI, it is determined that the usage time is located at the PUCCH or PUSCH corresponding to the second HARQ ACK feedback for the first DCI or for the PDSCH scheduled by the first DCI. After three specified number of symbols.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 6 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 6, the method may include but is not limited to the following steps:
  • Step 601 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 602 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 603 in response to the second indication information in the first DCI, determine that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the confirmation information, and the confirmation information is the PUSCH scheduled by the first DCI, Or HARQ ACK for the first DCI.
  • the terminal device when the first DCI containing the second indication information is the uplink DCI, after receiving the first DCI, the terminal device can determine the fourth designation whose usage time is located after the last symbol of the PUCCH or PUSCH corresponding to the confirmation information. after the quantity symbol.
  • the acknowledgment information may be PUSCH scheduled by the first DCI, or HARQ ACK for the first DCI.
  • the third designated number may be preset, agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the period after the PUCCH may be the last symbol occupied by the PUCCH or the period after the first symbol.
  • After PUSCH it can be the last symbol occupied by PUSCH or after the first symbol.
  • the last symbol occupied by the PUCCH is the last symbol occupied by the last repeating unit in time.
  • the last symbol occupied by the PUSCH is the last symbol occupied by the last repeating unit in time.
  • the first DCI may include the first indication information, that is, the first indication information and the second indication information are included in the same DCI.
  • the usage time of the first TCI state please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the usage time of the first TCI state and the usage time of the second TCI state may be the same or different, and this disclosure does not limit this.
  • first indication information and the second indication information are independently indicated by the network device.
  • the network device if at the current moment, the network device indicates a new first TCI state, but the second TCI state remains unchanged, the corresponding TCI state at the next moment can be determined based on the next moment and the usage time of the first TCI state.
  • First TCI status For detailed description of the above process, please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the network device can determine the usage time of the second TCI state based on the last symbol of the PUCCH or PUSCH corresponding to the confirmation information and the fourth specified number, and then use the second TCI state. , thereby ensuring that the terminal device and the network device have a consistent understanding of the usage time of the second TCI state.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • second indication information and then, when the second indication information is in the first DCI, it is determined that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the acknowledgment information.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • FIG. 7 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 7, the method may include but is not limited to the following steps:
  • Step 701 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 702 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 703 In response to the second indication information being applicable to one bandwidth part BWP, determine a second specified number according to the SCS of one BWP.
  • the terminal device and the network device can determine the second specified number according to the SCS of the one BWP.
  • the second designated quantity can be determined based on the quantity A corresponding to the corresponding value ⁇ of the SCS of the BWP.
  • the second specified quantity is determined to be quantity A; or, the second specified quantity is determined to be quantity A + the first offset value, etc. This disclosure does not limit this.
  • the second specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the multiple BWPs.
  • the second specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the BWPs on each CC among the multiple CCs.
  • Step 704 In response to the second indication information in the first DCI, it is determined that the usage time is located after a second specified number of symbols after the first DCI.
  • step 704 for the specific process of step 704, please refer to the detailed description of any embodiment of this disclosure, and will not be described again here.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission. Second indication information. Later, when the second indication information is applicable to a bandwidth part BWP, the second specified number can be determined according to the SCS of one BWP. Then, when the second indication information is in the first DCI, it is determined that the usage time is located in After the second specified number of symbols after the first DCI.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 8 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 8, the method may include but is not limited to the following steps:
  • Step 801 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 802 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 803 In response to the second indication information being applicable to one bandwidth part BWP, determine a third specified number according to the SCS of one BWP.
  • the terminal device and the network device may determine the third specified number according to the SCS of the one BWP.
  • the third designated quantity can be determined based on the quantity A corresponding to the corresponding value ⁇ of the SCS of the BWP.
  • the third specified quantity is determined to be quantity A; or, the third specified quantity is determined to be quantity A + the second offset value, etc. This disclosure does not limit this.
  • the third specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the multiple BWPs.
  • the third specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the BWPs on each of the multiple CCs.
  • Step 804 in response to the second indication information in the first DCI, determine that the usage time is located after the third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is for the first DCI or HARQ ACK for the first DCI scheduled PDSCH.
  • step 804 for the specific process of step 804, please refer to the detailed description of any embodiment of this disclosure, and will not be described again here.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • second indication information when the second indication information is applicable to a bandwidth part BWP, the third specified number can be determined according to the SCS of one BWP. Then, when the second indication information is in the first DCI, it is determined that the usage time is located in After the second HARQ ACK for the first DCI or for the PDSCH scheduled by the first DCI is fed back a third specified number of symbols after the corresponding PUCCH or PUSCH.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 9 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a terminal device. As shown in Figure 9, the method may include but is not limited to the following steps:
  • Step 901 Receive first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 902 Receive second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 903 In response to the second indication information being applicable to one bandwidth part BWP, determine a fourth specified number according to the SCS of one BWP.
  • the terminal device and the network device may determine the fourth specified number according to the SCS of the one BWP.
  • the fourth designated quantity can be determined based on the quantity A corresponding to the corresponding value ⁇ of the SCS of the BWP.
  • the fourth specified quantity is determined to be quantity A; or, the fourth specified quantity is determined to be quantity A+the third offset value, etc. This disclosure does not limit this.
  • the fourth specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the multiple BWPs.
  • the fourth specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the BWPs on each CC among the multiple CCs.
  • Step 904 in response to the second indication information in the first DCI, determine that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the confirmation information, and the confirmation information is the PUSCH scheduled by the first DCI, Or HARQ ACK for the first DCI.
  • step 904 for the specific process of step 904, please refer to the detailed description of any embodiment of this disclosure, and will not be described again here.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • second indication information and then, when the second indication information is applicable to one bandwidth part BWP, the fourth specified number can be determined according to the SCS of one BWP, and then, when the second indication information is in the first DCI, it is determined that the usage time is located in After the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the acknowledgment information.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 10 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 10, the method may include but is not limited to the following steps:
  • Step 1001 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • a TCI state can be a joint TCI state or a downlink (DL) TCI state, or an uplink (UL) TCI state.
  • a pair of TCI states represents a DL TCI state and a UL TCI state.
  • Step 1002 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • the designated channel may include at least one of the following: physical downlink control channel (PDCCH), physical downlink shared channel (PDSCH), physical uplink control channel (PUCCH), Physical uplink shared channel (PUSCH).
  • the designated signal can be channel state information-reference signal (CSI-RS), channel sounding reference signal (sounding reference signal, SRS), positioning reference signal (positioning reference signal, PRS), tracking reference signal (tracking reference signalTRS), etc., this disclosure does not limit this.
  • CSI-RS channel state information-reference signal
  • SRS channel sounding reference signal
  • PRS positioning reference signal
  • TRS tracking reference signal
  • the network device may send the second indication information to the terminal device to indicate the designated Channel and/or second TCI state used when specifying signal transmission.
  • the first TCI state includes two TCI states
  • the second indication information indicates that the second TCI state is the first TCI state of the two TCI states
  • the second indication information indicates that the second TCI state is the first of the two TCI states.
  • the second TCI state, or the second indication information indicates that the second TCI state is the two TCI states in the first TCI state.
  • the network device can send at least one second indication information to the terminal device for the PDCCH, used to indicate the TCI state used when transmitting the PDCCH corresponding to the CORESET identifier of the control resource set, or indicating the TCI state used when transmitting the PDCCH corresponding to the CORESET pool index.
  • the network device may send at least one second indication information to the terminal device for PUSCH, used to indicate the TCI state used when dynamically scheduled PUSCH transmission, or the TCI state used when configuring authorization type 1 PUSCH transmission, or Indicates the TCI state used when configuring PUSCH transmission of authorization type 2.
  • Step 1003 Determine the usage time of the second TCI state.
  • the network device after the network device sends the second instruction information, it can determine the usage time of the second TCI state based on the same specified rules or protocol agreement as the terminal device side. This ensures that the two parties have consistent understanding of the usage time of the second TCI state.
  • the HARQ ACK may be a HARQ ACK including the second TCI status signaling.
  • the network device may send to the terminal device the time for indicating the designated channel and/or the designated signal transmission time.
  • the usage time of the second TCI state can be determined. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 11 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 11, the method may include but is not limited to the following steps:
  • Step 1101 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 1102 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 1103 In response to the second indication information, in the first MAC CE, it is determined that the usage time is located after the first specified number of time slots after the time slot occupied by the first PUCCH corresponding to the first hybrid automatic repeat request HARQ response ACK, The first HARQ ACK is the HARQ ACK for the first MAC CE.
  • the network device can configure the second indication information in a medium access control (medium access control, MAC) control element (control element, CE). Therefore, when receiving the MACCE, the terminal device can determine the second TCI status in the second indication information.
  • medium access control medium access control
  • CE control element
  • the terminal device can return the first HARQ ACK for the first MAC CE to the network device. Therefore, the network device and the terminal device can The usage time of the second TCI state is determined to be after the first specified number of time slots after the time slot occupied by the first PUCCH corresponding to the first HARQ ACK. In this way, the terminal equipment and the network equipment can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that both the network equipment and the terminal equipment can determine the second TCI state based on the time slot occupied by the first PUCCH and the first designated number.
  • the first specified number may be preset, or agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the time slot occupied by the first PUCCH is the first slot
  • the usage time of the second TCI state is the time slot after the start of the fifth time slot.
  • the first PUCCH can be used according to the The SCS determines the first specified number of subcarrier spacings.
  • the corresponding relationship between the number of time slots contained in one subframe, that is, 1 millisecond, and the SCS is shown in Table 1.
  • the number of time slots included in each subframe at this time can be determined according to Table 1 is 2, and because the duration of a subframe is 1ms, it is determined that 3ms contains 3 subframes, and then it is determined that 3ms contains 6 time slots. Therefore, it can be determined that after the 6th time slot after the time slot occupied by the first PUCCH, it is also determined that That is, the second TCI state can be started in the 7th time slot after the time slot occupied by the first PUCCH at the earliest.
  • the first MAC CE may also include first indication information, that is, the first indication information and the second indication information are in the same MAC CE.
  • the usage time of the first TCI state may be a preset specified number of time slots after the time slot occupied by the first PUCCH corresponding to the first HARQ ACK.
  • the preset designated number may be the same as or different from the first designated number, that is, the usage time of the first TCI state is the same as or different from the usage time of the second TCI state, and this disclosure does not limit this.
  • the first indication information and the second indication information can be configured in different MAC CEs, the first indication information can be configured in the second MAC CE, and the second MAC CE is used to indicate the first TCI state.
  • one code point in the TCI field (field) in DCI can correspond to multiple TCI states, or one code point in the TCI field (field) in DCI can correspond to multiple pairs of TCI states, or the TCI field (field) in DCI ( A code point in field) can correspond to one TCI state and a pair of TCI states, or a code point in a TCI field (field) in DCI can correspond to multiple TCI states and multiple pairs of TCI states, or a TCI field (field) in DCI ) can correspond to one TCI state and multiple pairs of TCI states, or a code point in the TCI field (field) in DCI can correspond to multiple TCI states and a pair of TCI states, etc.
  • the first indication information may include the second MAC CE and the first DCI, wherein the second MAC CE is used to activate at least one and/or corresponding to each code point in the multiple code points of the TCI domain in the first DCI. At least one pair of first TCI states, the first DCI is used to indicate one code point among a plurality of code points.
  • the network device can first activate at least one and/or at least a pair of first TCI states corresponding to multiple code points through the second MAC CE, and then indicate one of the multiple code points through DCI, thereby The terminal device can determine the first TCI state based on at least one and/or at least a pair of first TCI states corresponding to one of the indicated code points. Further, the terminal device receives second indication information, the second indication information indicates a second TCI state, and the second TCI state is all or part of the first TCI state, so that the terminal device determines the designated channel or channel based on the first indication information and the second indication information.
  • the second TCI state corresponding to the signal that is, the reference signal indicated by which channel or signal is quasi-co-located with one or which pair of TCI states is clearly specified.
  • first indication information and the second indication information are independently indicated by the network device.
  • the network device if at the current moment, the network device indicates a new first TCI state, but the second TCI state remains unchanged, the corresponding TCI state at the next moment can be determined based on the next moment and the usage time of the first TCI state.
  • First TCI status For example, at the first time, the first TCI state is TCI#1 and TCI#2, and the second TCI state is TCI#1, which is the first of the first TCI states.
  • the network device sends the first indication information to indicate that the first TCI status is TCI#3 and TCI#4, without sending the second indication information.
  • the third time if the third time is before the use time of the first TCI state, the first TCI state is still TCI#1 and TCI#2, and the second TCI state is the first TCI in the first TCI state. #1; If the third time is after the usage time of the first TCI state, the first TCI state is TCI#3 and TCI#4, and the second TCI state is the first TCI #3 in the first TCI state.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status.
  • the first TCI state is TCI#1 and TCI#2
  • the second TCI state is TCI#1, which is the first of the first TCI states.
  • the network device does not send the first indication information, but sends the second indication information to indicate that the second TCI state is the second one of the first TCI states, that is, TCI#2.
  • the second TCI state is the first one in the first TCI state, that is, TCI#1; if the third time is before the use time of the second TCI state, After the usage time, the second TCI state is the second of the first TCI states, that is, TCI#2.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the first TCI state is TCI#1 and TCI#2
  • the second TCI state is TCI#1, which is the first of the first TCI states.
  • the network device sends first indication information to indicate that the first TCI state is TCI#3 and TCI#4, and sends second indication information to indicate that the second TCI state is the second TCI in the first TCI state.
  • the first TCI state is TCI#1 and TCI#2, and the second TCI state is in the first TCI state.
  • the first one is TCI#1. If the third time is after the use time of the first TCI state and before the use time of the second TCI state, then the first TCI state is TCI#3 and TCI#4, and the second TCI state is the first of the first TCI states. One is TCI#3.
  • the first TCI state is TCI#1 and TCI#2, and the second TCI state is the second one of the first TCI states.
  • the third time is after the usage time of the first TCI state and after the usage time of the second TCI state, then the first TCI state is TCI#3 and TCI#4, and the second TCI state is the second one of the first TCI states.
  • the network device after the network device sends the first indication information for indicating at least one and/or at least a pair of first TCI states to the terminal device, the network device then sends to the terminal device the time for indicating the designated channel and/or designated signal transmission.
  • Use the second indication information of the second TCI state and then, when the second indication information is in the first MAC CE, determine that the use time is located at the first hybrid automatic repeat request HARQ response ACK for the first MAC CE After the first specified number of time slots after the time slot occupied by the first PUCCH.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 12 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 12, the method may include but is not limited to the following steps:
  • Step 1201 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 1202 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 1203 In response to the second indication information in the first DCI, it is determined that the usage time is located after the second specified number of symbols after the first DCI.
  • the network device can configure the second indication information in the first DCI and send it to the terminal device, and the network device and the terminal device can determine the usage time of the second TCI state as a second specified number after the first DCI. after the symbol. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • the first DCI may be after the first symbol of the first DCI, or the first DCI may be after the last symbol of the first DCI.
  • the last symbol of the first DCI is the last symbol occupied by the PDCCH candidate with a later end time.
  • the second specified number may be preset, agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the first DCI may include the first indication information, that is, the first indication information and the second indication information are included in the same DCI.
  • the usage time of the first TCI state is located after the fifth specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback
  • the second HARQ ACK is the HARQ ACK for the first DCI or the PDSCH scheduled for the first DCI HARQ ACK.
  • the fifth designated number and the second designated number may be the same or different, that is, the usage time of the first TCI state and the usage time of the second TCI state may be the same or different, and this disclosure does not limit this.
  • first indication information and the second indication information are independently indicated by the network device.
  • the next moment can be determined based on the usage time of the first TCI state.
  • First TCI status For detailed description of the above process, please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the network device after the network device sends the first indication information for indicating at least one and/or at least a pair of first TCI states to the terminal device, the network device then sends to the terminal device the time for indicating the designated channel and/or designated signal transmission.
  • the second indication information of the second TCI state is used, and then, when the second indication information is in the first DCI, it is determined that the use time is located after a second specified number of symbols after the first DCI.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 13 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 13, the method may include but is not limited to the following steps:
  • Step 1301 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 1302 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 1303 in response to the second indication information in the first DCI, determine that the usage time is located after the third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is the HARQ for the first DCI ACK or HARQ ACK for the first DCI scheduled PDSCH.
  • the terminal device may return the second HARQ for the first DCI or for the PDSCH scheduled by the first DCI to the network device.
  • ACK therefore, the network device and the terminal device can determine the time slot located after the third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback as the usage time of the second TCI state.
  • the second HARQ ACK is a HARQ ACK for the first DCI or for the PDSCH scheduled by the first DCI.
  • the third designated number may be preset, agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the second TCI state is started after 9 symbols, that is, the earliest 10th symbol. If the PUCCH or PUSCH corresponding to the second HARQ ACK feedback is located at the 12th symbol in the first slot, the second TCI state will be used after the 5th symbol in the 2nd slot, that is, at the earliest 6th symbol.
  • the period after the PUCCH may be the last symbol occupied by the PUCCH or the period after the first symbol.
  • PUSCH it can be the last symbol occupied by PUSCH or after the first symbol.
  • the last symbol occupied by the PUCCH is the last symbol occupied by the last repeating unit in time.
  • the last symbol occupied by the PUSCH is the last symbol occupied by the last repeating unit in time.
  • the first DCI may include the first indication information, that is, the first indication information and the second indication information are included in the same DCI.
  • the usage time of the first TCI state please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the usage time of the first TCI state and the usage time of the second TCI state may be the same or different, and this disclosure does not limit this.
  • first indication information and the second indication information are independently indicated by the network device.
  • the network device if at the current moment, the network device indicates a new first TCI state, but the second TCI state remains unchanged, the corresponding TCI state at the next moment can be determined based on the next moment and the usage time of the first TCI state.
  • First TCI state and/or second TCI state For detailed description of the above process, please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the terminal device can determine the usage time of the second TCI state based on the PUCCH or PUSCH corresponding to the second HARQ ACK and the fifth specified number, and then use the second TCI state. , thereby ensuring that the terminal device and the network device have a consistent understanding of the usage time of the second TCI state.
  • the network device after the network device sends the first indication information for indicating at least one and/or at least a pair of first TCI states to the terminal device, it is used when sending the first indication information to the terminal device for indicating designated channel and/or designated signal transmission.
  • second indication information of the second TCI state and then, when the second indication information is in the first DCI, it is determined that the usage time is located at the second HARQ ACK feedback corresponding to the first DCI or the PDSCH scheduled for the first DCI After the third specified number of symbols after PUCCH or PUSCH.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 14 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 14, the method may include but is not limited to the following steps:
  • Step 1401 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 1402 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 1403 in response to the second indication information in the first DCI, determine that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the confirmation information, and the confirmation information is the PUSCH scheduled by the first DCI, Or HARQ ACK for the first DCI.
  • the network device may determine that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the acknowledgment information.
  • the acknowledgment information may be PUSCH scheduled by the first DCI, or HARQ ACK for the first DCI.
  • the third designated number may be preset, agreed upon by a protocol, or indicated by a network device, and this disclosure does not limit this.
  • the period after the PUCCH may be the last symbol occupied by the PUCCH or the period after the first symbol.
  • PUSCH it can be the last symbol occupied by PUSCH or after the first symbol.
  • the last symbol occupied by the PUCCH is the last symbol occupied by the last repeating unit in time.
  • the last symbol occupied by the PUSCH is the last symbol occupied by the last repeating unit in time.
  • the first DCI may include the first indication information, that is, the first indication information and the second indication information are included in the same DCI.
  • the usage time of the first TCI state please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the usage time of the first TCI state and the usage time of the second TCI state may be the same or different, and this disclosure does not limit this.
  • first indication information and the second indication information are independently indicated by the network device.
  • the network device if at the current moment, the network device indicates a new first TCI state, but the second TCI state remains unchanged, the corresponding TCI state at the next moment can be determined based on the next moment and the usage time of the first TCI state.
  • First TCI state and/or second TC state For detailed description of the above process, please refer to the detailed description of any embodiment of the present disclosure, and will not be described again here.
  • the network device if at the current moment, the network device indicates a new second TCI state, but the first TCI state remains unchanged, the corresponding third TCI state at the next moment can be determined based on the next moment and the usage time of the second TCI state. 2 TCI status.
  • the network device if at the current moment, the network device indicates a new first TCI state and a new second TCI state, then according to the next moment, the usage time of the first TCI state and the usage time of the second TCI state, Determine the second TCI state and the first TCI state corresponding to the next moment.
  • the terminal device can determine the usage time of the second TCI state based on the last symbol of the PUCCH or PUSCH corresponding to the confirmation information and the fourth specified number, and then use the second TCI state. This ensures that the terminal device and the network device have consistent understanding of the usage time of the second TCI state.
  • the network device after the network device sends the first indication information for indicating at least one and/or at least a pair of first TCI states to the terminal device, it is used when sending the first indication information to the terminal device for indicating designated channel and/or designated signal transmission.
  • second indication information of the second TCI state and then, when the second indication information is in the first DCI, it is determined that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the acknowledgment information.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 15 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 15, the method may include but is not limited to the following steps:
  • Step 1501 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 1502 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 1503 In response to the second indication information being applicable to one bandwidth part BWP, determine a second specified number according to the SCS of one BWP.
  • the terminal device and the network device can determine the second specified number according to the SCS of the one BWP.
  • the second designated quantity can be determined based on the quantity A corresponding to the corresponding value ⁇ of the SCS of the BWP.
  • the second specified quantity is determined to be quantity A; or, the second specified quantity is determined to be quantity A + the first offset value, etc. This disclosure does not limit this.
  • the second specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the multiple BWPs.
  • the second specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the BWPs on each CC among the multiple CCs.
  • Step 1504 In response to the second indication information in the first DCI, it is determined that the usage time is located after a second specified number of symbols after the first DCI.
  • step 1504 for the specific implementation process of step 1504, please refer to the detailed description of any embodiment of this disclosure, and will not be described again here.
  • the network device after the network device sends the first indication information for indicating at least one and/or at least a pair of first TCI states to the terminal device, the network device then sends to the terminal device the time for indicating the designated channel and/or designated signal transmission.
  • the second indication information of the second TCI status is used, and then, when the second indication information is applicable to a bandwidth part BWP, the second specified number is determined according to the SCS of one BWP, and then, when the second indication information is in the first DCI When , it is determined that the usage time is located after the second specified number of symbols after the first DCI.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 16 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 16, the method may include but is not limited to the following steps:
  • Step 1601 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 1602 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 1603 In response to the second indication information being applicable to one bandwidth part BWP, determine a third specified number according to the SCS of one BWP.
  • the terminal device and the network device may determine the third specified number according to the SCS of the one BWP.
  • the third designated quantity can be determined based on the quantity A corresponding to the corresponding value ⁇ of the SCS of the BWP.
  • the third specified quantity is determined to be quantity A; or, the third specified quantity is determined to be quantity A + the second offset value, etc. This disclosure does not limit this.
  • the third specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the multiple BWPs.
  • the third specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the BWPs on each of the multiple CCs.
  • Step 1604 in response to the second indication information in the first DCI, determine that the usage time is located after the third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is the HARQ for the first DCI ACK or HARQ ACK for the first DCI scheduled PDSCH.
  • step 1604 for the specific implementation process of step 1604, please refer to the detailed description of any embodiment of this disclosure, and will not be described again here.
  • the network device after the network device sends the first indication information for indicating at least one and/or at least a pair of first TCI states to the terminal device, the network device then sends to the terminal device the time for indicating the designated channel and/or designated signal transmission.
  • the second indication information of the second TCI status is used, and then, when the second indication information is applicable to one bandwidth part BWP, the third specified number is determined according to the SCS of one BWP, and then, when the second indication information is in the first DCI
  • the usage time is located after the third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback for the first DCI or the PDSCH scheduled for the first DCI.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • Figure 17 is a schematic flowchart of a method for determining the usage time of a transmission configuration indication TCI state provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 17, the method may include but is not limited to the following steps:
  • Step 1701 Send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states.
  • Step 1702 Send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is part or all of the first TCI state.
  • Step 1703 In response to the second indication information being applicable to one bandwidth part BWP, determine a fourth specified number according to the SCS of one BWP.
  • the terminal device and the network device may determine the fourth specified number according to the SCS of the one BWP.
  • the fourth designated quantity can be determined based on the quantity A corresponding to the corresponding value ⁇ of the SCS of the BWP.
  • the fourth specified quantity is determined to be quantity A; or, the fourth specified quantity is determined to be quantity A+the third offset value, etc. This disclosure does not limit this.
  • the fourth specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the multiple BWPs.
  • the fourth specified number may be determined based on the smallest SCS among the SCSs respectively corresponding to the BWPs on each CC among the multiple CCs.
  • Step 1704 in response to the second indication information in the first DCI, determine that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the confirmation information, and the confirmation information is the PUSCH scheduled by the first DCI, Or HARQ ACK for the first DCI.
  • step 1704 for the specific implementation process of step 1704, please refer to the detailed description of any embodiment of this disclosure, and will not be described again here.
  • the network device after the network device sends the first indication information for indicating at least one and/or at least a pair of first TCI states to the terminal device, the network device then sends to the terminal device the time for indicating the designated channel and/or designated signal transmission.
  • the second indication information of the second TCI status is used, and then, when the second indication information is applicable to one bandwidth part BWP, the fourth specified number is determined according to the SCS of one BWP, and then, when the second indication information is in the first DCI When, it is determined that the usage time is located after the fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the acknowledgment information.
  • the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • FIG. 18 is a schematic structural diagram of a communication device 1800 provided by an embodiment of the present disclosure.
  • the communication device 1800 shown in FIG. 18 may include a transceiver module 1801.
  • the transceiving module 1801 may include a sending module and/or a receiving module.
  • the sending module is used to implement the sending function
  • the receiving module is used to implement the receiving function.
  • the transceiving module 1801 may implement the sending function and/or the receiving function.
  • the communication device 1800 may be a terminal device, a device in the terminal device, or a device that can be used in conjunction with the terminal device.
  • the communication device 1800 is on the terminal equipment side, where:
  • Transceiver module 1801 configured to receive first indication information, the first indication information being used to indicate at least one and/or at least a pair of first TCI states;
  • the above-mentioned transceiver module 1801 is used to receive second indication information.
  • the second indication information is used to indicate a designated channel and/or a second TCI state used when transmitting a designated signal.
  • the second TCI state is the first TCI. some or all of the state;
  • the processing module 1802 is used to determine the usage time of the second TCI state.
  • the designated channel includes at least one of the following:
  • Physical downlink control channel PDCCH Physical downlink control channel PDSCH, physical downlink shared channel PDSCH, physical uplink control channel PUCCH, and physical uplink shared channel PUSCH.
  • the second indication information is included in downlink control information DCI or media access control MAC control element CE.
  • processing module 1802 is used for:
  • the first HARQ ACK is a HARQ ACK for the first MAC CE.
  • the first MAC CE includes the first indication information, and the usage time of the first TCI state is the same as or different from the usage time of the second TCI state.
  • processing module 1802 is also used to:
  • the first specified number is determined according to the subcarrier spacing SCS of the first PUCCH.
  • processing module 1802 is also used to:
  • the usage time is located after a third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is for the HARQ ACK of the first DCI or HARQ ACK of the PDSCH scheduled for the first DCI; or,
  • the usage time is located after a fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the confirmation information, and the confirmation information is the first DCI scheduled PUSCH, or HARQ ACK for the first DCI.
  • the first DCI includes the first indication information, and the usage time of the first TCI state is located after the fifth specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is For the HARQ ACK of the first DCI or for the HARQ ACK of the PDSCH scheduled by the first DCI, the fifth designated number and the third designated number are the same or different.
  • processing module 1802 is also used to:
  • At least one of the second specified quantity, the third specified quantity and the fourth specified quantity is determined based on the smallest SCS among the SCS respectively corresponding to the multiple BWPs; or,
  • the second specified number, the third specified number and the third specified number are determined based on the smallest SCS among the SCS corresponding to the BWP on each CC in the multiple CCs. At least one of four specified quantities.
  • the terminal device may receive a second TCI state for indicating a designated channel and/or a designated signal transmission.
  • the usage time of the second TCI state can be determined. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • the communication device 1800 may be a network device, a device in the network device, or a device that can be used in conjunction with the network device.
  • Communication device 1800 on the network device side, where:
  • Transceiver module 1801 configured to send first indication information, where the first indication information is used to indicate at least one and/or at least a pair of first TCI states;
  • the above-mentioned transceiver module 1801 is also used to send second indication information.
  • the second indication information is used to indicate the designated channel and/or the second TCI state used when transmitting the designated signal.
  • the second TCI state is the first Some or all of the TCI status.
  • the processing module 1802 is used to determine the usage time of the second TCI state.
  • the designated channel includes at least one of the following:
  • Physical downlink control channel PDCCH Physical downlink control channel PDSCH, physical downlink shared channel PDSCH, physical uplink control channel PUCCH, and physical uplink shared channel PUSCH.
  • the second indication information is included in downlink control information DCI or media access control MAC control element CE.
  • processing module 1802 is used for:
  • the first HARQ ACK is a HARQ ACK for the first MAC CE.
  • the first MAC CE includes the first indication information, and the usage time of the first TCI state is the same as or different from the usage time of the second TCI state.
  • processing module 1802 is also used to:
  • the first specified number is determined according to the subcarrier spacing SCS of the first PUCCH.
  • processing module 1802 is also used to:
  • the usage time is located after a third specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is for the HARQ ACK of the first DCI or HARQ ACK of the PDSCH scheduled for the first DCI; or,
  • the usage time is located after a fourth specified number of symbols after the last symbol of the PUCCH or PUSCH corresponding to the confirmation information, and the confirmation information is the first DCI scheduled PUSCH, or HARQ ACK for the first DCI.
  • the first DCI includes the first indication information, and the usage time of the first TCI state is located after the fifth specified number of symbols after the PUCCH or PUSCH corresponding to the second HARQ ACK feedback, and the second HARQ ACK is For the HARQ ACK of the first DCI or for the HARQ ACK of the PDSCH scheduled by the first DCI, the fifth designated number and the third designated number are the same or different.
  • processing module 1802 is also used to:
  • At least one of the second specified quantity, the third specified quantity and the fourth specified quantity is determined based on the smallest SCS among the SCS respectively corresponding to the multiple BWPs; or,
  • the second specified number, the third specified number and the third specified number are determined based on the smallest SCS among the SCS corresponding to the BWP on each CC in the multiple CCs. At least one of four specified quantities.
  • the network device may send to the terminal device the time for indicating the designated channel and/or the designated signal transmission time.
  • the usage time of the second TCI state can be determined. In this way, the terminal device and the network device can have a consistent understanding of the usage time of the second TCI state, thereby ensuring that the TCI states used by the network device and the terminal device at the same time are consistent, and improving the performance of transmission based on the TCI state.
  • FIG 19 is a schematic structural diagram of another communication device 1900 provided by an embodiment of the present disclosure.
  • the communication device 1900 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1900 may include one or more processors 1901.
  • the processor 1901 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1900 may also include one or more memories 1902, on which a computer program 1904 may be stored.
  • the processor 1901 executes the computer program 1904, so that the communication device 1900 performs the steps described in the above method embodiments. method.
  • the memory 1902 may also store data.
  • the communication device 1900 and the memory 1902 can be provided separately or integrated together.
  • the communication device 1900 may also include a transceiver 1905 and an antenna 1906.
  • the transceiver 1905 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1905 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1900 may also include one or more interface circuits 1907.
  • the interface circuit 1907 is used to receive code instructions and transmit them to the processor 1901 .
  • the processor 1901 executes the code instructions to cause the communication device 1900 to perform the method described in the above method embodiment.
  • the communication device 1900 is a terminal device: the transceiver 1905 is used to perform steps 201 and 202 in Figure 2; steps 301 and 302 in Figure 3; steps 401 and 402 in Figure 4; steps 501 and 502 in Figure 5 Step 502; Step 601 and Step 602 in Figure 6; Step 701 and Step 702 in Figure 7; Step 801 and Step 802 in Figure 8; Step 901 and Step 902 in Figure 9, etc.
  • the communication device 1900 is a network device: the processor 1901 is used to execute step 1003 in Figure 10; step 1103 in Figure 11; step 1203 in Figure 12; step 1303 in Figure 13; step 1403 in Figure 14; Figure Steps 1503 and 1504 in Figure 15; Steps 1603 and 1604 in Figure 16; Steps 1703 and 1704 in Figure 17, etc.
  • the processor 1901 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1901 may store a computer program 1903, and the computer program 1903 runs on the processor 1901, causing the communication device 1900 to perform the method described in the above method embodiment.
  • the computer program 1903 may be solidified in the processor 1901, in which case the processor 1901 may be implemented by hardware.
  • the communication device 1900 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processors and transceivers described in this disclosure may be implemented on integrated circuits (ICs), analog ICs, radio frequency integrated circuits (RFICs), mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or an access network device (such as the terminal device in the foregoing method embodiment), but the scope of the communication device described in the present disclosure is not limited thereto, and the structure of the communication device may Not limited by Figure 19.
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 20 refer to the schematic structural diagram of the chip shown in FIG. 20 .
  • the chip shown in Figure 20 includes a processor 2001 and an interface 2003.
  • the number of processors 2001 may be one or more, and the number of interfaces 2003 may be multiple.
  • Interface 2003 used to execute steps 1001 and 1002 in Figure 10; steps 1101 and 1102 in Figure 11; steps 1201 and 1202 in Figure 12; steps 1301 and 1302 in Figure 13; steps 1301 and 1302 in Figure 14 Steps 1401 and 1402; steps 1501 and 1502 in Figure 15; steps 1601 and 1602 in Figure 16; steps 1701 and 1702 in Figure 17, etc.
  • the chip also includes a memory 2003, which is used to store necessary computer programs and data.
  • the present disclosure also provides a readable storage medium on which instructions are stored, and when the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • the present disclosure also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in accordance with the embodiments of the present disclosure are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in the present disclosure can also be described as one or more, and the plurality can be two, three, four or more, and the present disclosure is not limited.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D” etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • each table in this disclosure can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which is not limited by this disclosure.
  • it is not necessarily required to configure all the correspondences shown in each table.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this disclosure may be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例公开了一种传输配置指示TCI状态使用时间的确定方法及其装置,可应用于通信技术领域,其中,由终端设备执行的方法包括:在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,可以确定第二TCI状态的使用时间。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。

Description

一种传输配置指示TCI状态使用时间的确定方法及其装置 技术领域
本公开涉及通信技术领域,尤其涉及一种传输配置指示TCI状态使用时间的确定方法及其装置。
背景技术
在使用通信频段frequency range 2中的资源进行通信时,由于高频信道衰减较快,需要基于beam(波束)进行发送和接收,以保证覆盖范围。当信道配置了多个发射接收点(transmission reception Point,TRP)时,可以为该信道配置多套传输配置指示(transmission configuration indication,TCI),以提高传输的性能。
在信道由多TRP与单TRP动态切换的情况下,需要添加独立的额外信令指示使用多套TCI state中的一套或多套TCI state作为切换后的TRP的TCI状态。而明确额外信令指示的一套或多套TCI state的使用时间,是目前亟需解决的问题。
发明内容
本公开实施例提供一种传输配置指示TCI状态使用时间的确定方法及其装置。
第一方面,本公开实施例提供一种传输配置指示TCI状态使用时间的确定方法,该方法由终端设备执行,方法包括:
接收第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
接收第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部;
确定所述第二TCI状态的使用时间。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,可以确定第二TCI状态的使用时间。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
第二方面,本公开实施例提供另一种传输配置指示TCI状态使用时间的确定方法,方法由网络设备执行,方法包括:
发送第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
发送第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部。
确定所述第二TCI状态的使用时间。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,可以向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,可以确定第二TCI状态的使用时间。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
第三方面,本公开实施例提供一种通信装置,包括:
收发模块,用于接收第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
上述收发模块,用于接收第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部;
处理模块,用于确定所述第二TCI状态的使用时间。
第四方面,本公开实施例提供一种通信装置,包括:
收发模块,用于发送第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
上述收发模块,还用于发送第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部。
处理模块,用于确定所述第二TCI状态的使用时间。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种传输配置指示TCI状态使用时间的确定***,该***包括第三方面所述的通信装置以及第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置以及第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置以及第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置以及第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述终端设备所用的指令,当所述指令被执行时,使所述终端设备执行上述第一方面所述的方法。
第十三方面,本发明实施例提供一种可读存储介质,用于储存为上述网络设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第二方面所述的方法。
第十四方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十五方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
第十六方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持终端设备实现第一方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存终端设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十七方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第二方面所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存网络设备必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十八方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面所述的方法。
第十九方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第二方面所述的方法。
附图说明
为了更清楚地说明本公开实施例或背景技术中的技术方案,下面将对本公开实施例或背景技术中所需要使用的附图进行说明。
图1是本公开实施例提供的一种通信***的架构示意图;
图2是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图3是本公开实施例提供的另一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图4是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图5是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图6是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图7是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图8是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图9是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图10是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图11是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图12是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图13是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图14是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图15是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图16是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图17是本公开实施例提供的又一种传输配置指示TCI状态使用时间的确定方法的流程示意图;
图18是本公开实施例提供的一种通信装置的结构示意图;
图19是本公开实施例提供的另一种通信装置的结构示意图;
图20是本公开实施例提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
为了便于理解,首先介绍本公开涉及的术语。
1、传输配置指示(transmission configuration indication,TCI)
用于告知终端设备物理下行控制信道(physical downlink control channel,PDCCH)、物理下行共享信道(physical downlink shared channel,PDSCH)对应的解调参考信号,与网络设备发送的哪个同步信号块(Synchronization Signal Block,SSB)或信道状态信息参考信号(channel state information reference signal,CSI-RS)为共站址;或告知终端设备物理上行控制信道(physical uplink control channel,PUCCH)、物理上行共享信道(physical uplink shared channel,PUSCH)对应的解调参考信号与终端发送的哪个参考信号(比如SRS)或基站发送的哪个SSB或CSI-RS为共站址。其中共站址包含以下传输参数之一:平均时延,时延扩展,多普勒频移,多普勒扩展,空间关系信息,和空间接收参数。
2、发射接收节点TRP
TRP相当于传统的基站,但在一些情况下,一个小区可能不止一个trp来覆盖,而是由多个trp联合覆盖。
3、下行控制信息(downlink control information,DCI)
由下行物理控制信道(physical downlink control channel,PDCCH)承载的,网络设备发给终端设备的下行控制信息,包括上下行资源分配、混合自动重传请求(Hybrid Automatic Repeat reQuest,HARQ)信息、功率控制等。
4、参考信号(reference signal,RS)
参考信号就是“导频”信号,是由发射端提供给接收端用于信道估计或信道探测的一种已知信号。可以用于终端设备的相干检测和解调、波束测量、信道状态信息测量或网络设备的相干检测和监测、或信道质量测量等。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备,比如TRP和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11、一个终端设备12为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11包括演进型基站(evolved NodeB,eNB)、传输点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的终端设备12是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终 端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
通常,在信道由多TRP与单TRP动态切换的情况下,通过添加独立的额外信令指示使用多套TCI状态中的一套或多套TCI状态作为切换后的TRP的TCI状态时,由于额外信令指示的各TCI状态的使用时间不确定,可能导致网络设备和终端设备在同一时刻使用的TCI状态不一致,因此可能对基于TCI状态的传输的性能产生影响。
本公开中,可以准确确定额外信令指示的TCI状态的使用时间,以保证网络设备和终端设备对第二TCI状态的使用时间的理解是一致的,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
需要说明的是,本公开中,任一个实施例提供的一种传输配置指示TCI状态使用时间的确定方法可以单独执行,或是结合其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
现结合附图和具体实施方式对本公开实施例进一步说明。
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
取决于语境,如在此所使用的词语“如果”及“响应于”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
请参见图2,图2是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图2所示,该方法可以包括但不限于如下步骤:
步骤201,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
其中,一个TCI状态state,可以为一个联合(Joint)TCI state或一个下行(downlink,DL)TCI state,或一个上行(uplink,UL)TCI state。一对TCI状态,表示一个DL TCI state和一个UL TCI state。
步骤202,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
其中,指定信道可以包括以下至少一项:物理下行控制信道(physical downlink control channel,PDCCH),物理下行共享信道(physical downlink shared channel,PDSCH),物理上行控制信道(physical uplink control channel,PUCCH),物理上行共享信道(physical uplink shared channel,PUSCH)。指定信号可以为信道状态信息参考信号(channel state information-reference signal,CSI-RS),信道探测参考信号(sounding reference signal,SRS),定位参考信号(positioning reference signal,PRS),跟踪参考信号(tracking reference signal,TRS)等,本公开对此不作限制。
本公开中,每个指定信道和/或指定信号传输进行传输时,可以使用第一TCI状态中的部分或全部TCI状态,因此,网络设备可以通过向终端设备发送第二指示信息,以指示指定信道和/或指定信号传输时使用的第二TCI状态。比如第一TCI状态包含两个TCI状态,第二指示信息指示第二TCI状态为两个TCI状态中的第一个TCI状态,或第二指示信息指示第二TCI状态为两个TCI状态中的第二个TCI状态,或第二指示信息指示第二TCI状态为第一TCI状态中的两个TCI状态。
可选的,网络设备可以针对PDCCH向终端设备发送至少一个第二指示信息,用于指示控制资源集CORESET标识对应的PDCCH传输时使用的TCI状态,或指示CORESET池索引对应的PDCCH传输 时使用的TCI状态,或者搜索空间集(selective search set,SS set)组标识对应的PDCCH传输时使用的TCI状态,或者CORESET组标识对应的PDCCH传输时使用的TCI状态。
可选的,网络设备可以针对PUSCH向终端设备发送至少一个第二指示信息,用于指示动态调度的PUSCH传输时使用的TCI状态,或者指示配置授权类型1的PUSCH传输时使用的TCI状态,或者指示配置授权类型2的PUSCH传输时使用的TCI状态。
步骤203,确定第二TCI状态的使用时间。
本公开中,终端设备在确定每个指定信道和/或指定信号传输时使用的第二TCI状态后,即可基于指定的规则或者协议约定,确定第二TCI状态的使用时间。同样的,网络设备也可以基于指定的规则或协议约定,确定第二TCI状态的使用时间,从而保证网络设备与终端设备对第二TCI状态的使用时间理解一致。
比如,可以确定第二TCI状态的使用时间位于混合自动重传请求响应(hybrid automatic repeat request acknowledge,HARQACK)对应的PUCCH占用的时隙之后的指定数量个时隙后。其中,HARQ ACK可以为包含第二TCI状态信令的HARQ ACK。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,可以确定第二TCI状态的使用时间。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图3,图3是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图3所示,该方法可以包括但不限于如下步骤:
步骤301,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤302,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤301-步骤302的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤303,响应于第二指示信息在第一MAC CE中,确定使用时间位于第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后,第一HARQ ACK为针对第一MAC CE的HARQ ACK。
可选的,网络设备可以将第二指示信息配置在媒体接入控制(medium access control,MAC)控制单元(control element,CE)中。由此,终端设备在接收到MACCE时,即可确定第二指示信息中的第二TCI状态。
当第二指示信息在第一MAC CE中时,终端设备在接收到第一MAC CE后,可以向网络设备返回针对第一MAC CE的第一HARQ ACK,因此,可以将第二TCI状态的使用时间确定为该第一HARQ ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙slot后。由此,终端设备和网络设备,都可以根据第一PUCCH占用的时隙及第一指定数量,确定第二TCI状态的使用时间,从而保证终端设备与网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。此外,第一指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。
比如,假设第一指定数量为3,第一PUCCH占用的时隙为第一个slot,第二TCI状态的使用时间为第5个时隙开始之后的时隙。
此外,当预设在第一PUCCH占用的时隙之后的预设时长开始使用第二TCI状态时,由于一个子帧所包含的时隙数量与SCS存在相关关系,此时,可以根据第一PUCCH的子载波间隔SCS确定第一指定数量。一个子帧即1毫秒所包含的时隙数量与SCS的对应关系如表1所示:
表1
μ 子载波间隔 子帧包含的时隙数量
0 15KHz 1
1 30KHz 2
2 60KHz 4
3 120KHz 8
4 240KHz 16
5 480KHz 32
比如,当预设在第一PUCCH占用的时隙之后的3ms之后开始使用第二TCI状态,且子载波间隔对应值μ为1时,根据表1可以确定此时每个子帧包含的时隙数为2,又因为一个子帧时长为1ms,从而确定3ms包含3个子帧,进而确定3ms包含6个时隙,因此可以确定在第一PUCCH占用的时隙之后的第6个时隙之后,也就是最早在第一PUCCH占用的时隙之后的第7个时隙可以开始使用第二TCI状态。
可选的,第一MAC CE还可以包含第一指示信息,即第一指示信息与第二指示信息在同一MACCE中。其中,第一TCI状态的使用时间可以为第一HARQ ACK对应的第一PUCCH占用的时隙之后的预设指定数量个时隙后。此外,预设指定数量可以与第一指定数量相同也可以不同,即第一TCI状态的使用时间与第二TCI状态的使用时间相同或不同,本公开对此不作限制。
可选的,可以将第一指示信息与第二指示信息配置于不同的MAC CE中,可以将第一指示信息配置在第二MAC CE中,利用第二MAC CE指示第一TCI状态。
可选的,由于DCI中TCI域(field)中的一个码点可以对应多个TCI状态,或者DCI中TCI域(field)中的一个码点可以对应多对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应一个TCI状态和一对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应多个TCI状态和多对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应一个TCI状态和多对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应多个TCI状态和一对TCI状态等。因此,第一指示信息可以包括第二MAC CE及第一DCI,其中,第二MAC CE用于激活第一DCI中TCI域的多个码点中每个码点分别对应的至少一个和/或至少一对第一TCI状态,第一DCI用于指示多个码点中的一个码点。
也就是说,网络设备可以先通过第二MAC CE激活多个码点分别对应的至少一个和/或至少一对第一TCI状态,之后再通过DCI指示多个码点中的一个码点,从而终端设备即可基于指示的一个码点对应的至少一个和/或至少一对第一TCI状态,确定第一TCI状态。进一步终端设备接收第二指示信息,第二指示信息指示第二TCI状态,第二TCI状态为第一TCI状态的全部或部分,从而终端设备基于第一指示信息和第二指示信息确定指定信道或信号对应的第二TCI状态,即明确指定信道或信号与哪个或哪对TCI状态指示的参考信号准共址。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态和/或第二TCI状态。比如第一时间,第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。第二时间,网络设备发送第一指示信息指示第一TCI状态为TCI#3和TCI#4,而没有发送第二指示信息。那么在第三时间时,若第三时间在第一TCI状态的使用时间之前,第一TCI状态还是TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1;若第三时间在第一TCI状态的使用时间之后,第一TCI状态是TCI#3和TCI#4,第二TCI状态为第一TCI状态中的第一个即TCI#3。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。比如第一时间,第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。第二时间,网络设备没有发送第一指示信息,但发送第二指示信息指示第二TCI状态为第一TCI状态中的第二个。那么在第三时间时,若第三时间在第二TCI状态的使用时间之前,第二TCI状态为第一TCI状态中的第一个即TCI#1;若第三时间在第二TCI状态的使用时间之后,第二TCI状态为第一TCI状态中的第二个即TCI#2。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态 及第一TCI状态。比如第一时间,第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。第二时间,网络设备发送第一指示信息指示第一TCI状态为TCI#3和TCI#4,发送第二指示信息指示第二TCI状态为第一TCI状态中的第二个TCI。那么在第三时间时,若第三时间在第一TCI状态和第二TCI状态的使用时间之前,那么第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。若第三时间在第一TCI状态的使用时间之后、第二TCI状态的使用时间之前,那么第一TCI状态为TCI#3和TCI#4,第二TCI状态为第一TCI状态中的第一个即TCI#3。若第三时间在第一TCI状态的使用时间之前、第二TCI状态的使用时间之后,那么第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第二个即TCI#2。若第三时间在第一TCI状态的使用时间之后、第二TCI状态的使用时间之后,那么第一TCI状态为TCI#3和TCI#4,第二TCI状态为第一TCI状态中的第二个即TCI#4。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,在第二指示信息在第一MAC CE的情况下,确定使用时间位于针对第一MAC CE的第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图4,图4是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图4所示,该方法可以包括但不限于如下步骤:
步骤401,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤402,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤401-步骤402的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤403,响应于第二指示信息在第一DCI中,确定使用时间位于第一DCI之后的第二指定数量的符号之后。
本公开中,网络设备可以将第二指示信息配置在第一DCI中并发送给终端设备,终端设备和网络设备可以将第二TCI状态的使用时间确定为该第一DCI之后的第二指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
其中,第一DCI之后可以为第一DCI的第一个符号之后,或者第一DCI之后也可以为第一DCI的最后一个符号之后。当第一DCI包含多个PDCCH候选candidate时,则第一DCI的最后一个符号为结束时间较晚的PDCCH candidate占用的最后一个符号。此外,第二指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。可选的,第一DCI中可以包含第一指示信息,即第一指示信息与第二指示信息包含于同一DCI中。其中,第一TCI状态的使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第五指定数量的符号之后,第二HARQ ACK为针对第一DCI的HARQ ACK或针对第一DCI调度的PDSCH的HARQ ACK。此外,第五指定数量和第二指定数量可以相同也可以不同,即第一TCI状态的使用时间与第二TCI状态的使用时间可以相同或不同,本公开对此不作限制。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态和/或第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态及第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息在第一DCI中时,确定使用时间位于第一DCI之后的第二指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图5,图5是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图5所示,该方法可以包括但不限于如下步骤:
步骤501,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤502,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤501-步骤502的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤503,响应于第二指示信息在第一DCI中,确定使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,第二HARQ ACK为针对第一DCI的HARQ ACK或针对第一DCI调度的PDSCH的HARQ ACK。
本公开中,当包含第二指示信息的第一DCI为下行DCI时,终端设备在接收到第一DCI后,可以向网络设备返回针对第一DCI或针对第一DCI调度的PDSCH的第二HARQ ACK,因此,终端设备和网络设备可以将位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后的时隙和/或符号确定为第二TCI状态的使用时间。其中,第二HARQ ACK为针对第一DCI的或针对第一DCI调度的PDSCH的HARQ ACK。其中,第三指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。
比如,假设一个slot包含14个符号,且第三指定数量为7,若第二HARQ ACK反馈对应的PUCCH或PUSCH位于第1个slot中的第2个符号,则在第1个slot中的第9个符号之后即最早第10个符号开始使用第二TCI状态。若第二HARQ ACK反馈对应的PUCCH或PUSCH位于第1个slot中的第12个符号,则在第2个slot中的第5个符号之后即最早第6个符号开始使用第二TCI状态。
此外,PUCCH之后可以为PUCCH占用的最后一个符号或者第一个符号之后。PUSCH之后可以为PUSCH占用的最后一个符号或者第一个符号之后。而当PUCCH包含重复传输时,则PUCCH占用的最后一个符号为时间上最后一个重复单元占用的最后一个符号。而当PUSCH包含重复传输时,则PUSCH占用的最后一个符号为时间上最后一个重复单元占用的最后一个符号。
可选的,第一DCI中可以包含第一指示信息,即第一指示信息与第二指示信息包含于同一DCI中。其中,第一TCI状态的使用时间可参见本公开任一实施例的详细描述,在此不再赘述。此外,第一TCI状态的使用时间与第二TCI状态的使用时间可以相同或不同,本公开对此不作限制。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态及第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
需要说明的是,网络设备在接收到第二HARQ ACK后,可以根据第二HARQ ACK对应的PUCCH或PUSCH,及第五指定数量,确定第二TCI状态的使用时间,进而再使用第二TCI状态,从而保证终端设备与网络设备对第二TCI状态的使用时间理解一致。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息在第一DCI中时,确定使用时间位于针对第一DCI的或针对第一DCI调度的PDSCH的第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图6,图6是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图6所示,该方法可以包括但不限于如下步骤:
步骤601,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤602,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤601-步骤602的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤603,响应于第二指示信息在第一DCI中,确定使用时间位于确认信息对应的PUCCH或PUSCH 的最后一个符号之后的第四指定数量的符号之后,确认信息为第一DCI调度的PUSCH,或针对第一DCI的HARQ ACK。
本公开中,当包含第二指示信息的第一DCI为上行DCI时,终端设备在接收到第一DCI后,可以确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后。其中确认信息可以为第一DCI调度的PUSCH,或针对第一DCI的HARQ ACK。其中,第三指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。
此外,PUCCH之后可以为PUCCH占用的最后一个符号或者第一个符号之后。PUSCH之后可以为PUSCH占用的最后一个符号或者第一个符号之后。而当PUCCH包含重复传输时,则PUCCH占用的最后一个符号为时间上最后一个重复单元占用的最后一
个符号。而当PUSCH包含重复传输时,则PUSCH占用的最后一个符号为时间上最后一个重复单元占用的最后一个符号。
可选的,第一DCI中可以包含第一指示信息,即第一指示信息与第二指示信息包含于同一DCI中。其中,第一TCI状态的使用时间可参见本公开任一实施例的详细描述,在此不再赘述。此外,第一TCI状态的使用时间与第二TCI状态的使用时间可以相同或不同,本公开对此不作限制。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态及第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
需要说明的是,网络设备在接收到确认信息后,可以根据确认信息对应的PUCCH或PUSCH的最后一个符号,及第四指定数量,确定第二TCI状态的使用时间,进而再使用第二TCI状态,从而保证终端设备与网络设备对第二TCI状态的使用时间理解一致。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息在第一DCI中时,确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图7,图7是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图7所示,该方法可以包括但不限于如下步骤:
步骤701,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤702,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤701-步骤702的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤703,响应于第二指示信息适用于一个带宽部分BWP,根据一个BWP的SCS确定第二指定数量。
本公开中,当第二指示信息适用于一个带宽部分BWP时,终端设备和网络设备可以根据该一个BWP的SCS确定第二指定数量。比如,可以根据BWP的SCS的对应值μ对应的数量A,确定第二指定数量。比如确定第二指定数量为数量A;或者,确定第二指定数量为数量A+第一偏移值等等,本公开对此不做限定。
或者,当第二指示信息适用于多个BWP时,可以根据多个BWP分别对应的SCS中最小的SCS确定第二指定数量。
或者,当第二指示信息适用于多个分量载波CC,可以根据多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定第二指定数量。
步骤704,响应于第二指示信息在第一DCI中,确定使用时间位于第一DCI之后的第二指定数量的符号之后。
本公开中,步骤704的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以 接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息适用于一个带宽部分BWP时,可以根据一个BWP的SCS确定第二指定数量,然后,当第二指示信息在第一DCI中时,确定使用时间位于第一DCI之后的第二指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图8,图8是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图8所示,该方法可以包括但不限于如下步骤:
步骤801,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤802,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤801-步骤802的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤803,响应于第二指示信息适用于一个带宽部分BWP,根据一个BWP的SCS确定第三指定数量。
本公开中,当第二指示信息适用于一个带宽部分BWP时,终端设备和网络设备可以根据该一个BWP的SCS确定第三指定数量。比如,可以根据BWP的SCS的对应值μ对应的数量A,确定第三指定数量。比如确定第三指定数量为数量A;或者,确定第三指定数量为数量A+第二偏移值等等,本公开对此不做限定。
或者,当第二指示信息适用于多个BWP时,可以根据多个BWP分别对应的SCS中最小的SCS确定第三指定数量。
或者,当第二指示信息适用于多个分量载波CC,可以根据多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定第三指定数量。
步骤804,响应于第二指示信息在第一DCI中,确定使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,第二HARQ ACK为针对第一DCI的或针对第一DCI调度的PDSCH的HARQ ACK。
本公开中,步骤804的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息适用于一个带宽部分BWP时,可以根据一个BWP的SCS确定第三指定数量,然后,当第二指示信息在第一DCI中时,确定使用时间位于针对第一DCI的或针对第一DCI调度的PDSCH的第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图9,图9是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由终端设备执行。如图9所示,该方法可以包括但不限于如下步骤:
步骤901,接收第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤902,接收第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤901-步骤902的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤903,响应于第二指示信息适用于一个带宽部分BWP,根据一个BWP的SCS确定第四指定数量。
本公开中,当第二指示信息适用于一个带宽部分BWP时,终端设备和网络设备可以根据该一个BWP的SCS确定第四指定数量。比如,可以根据BWP的SCS的对应值μ对应的数量A,确定第四指定数量。比如确定第四指定数量为数量A;或者,确定第四指定数量为数量A+第三偏移值等等,本公开对此不做限定。
或者,当第二指示信息适用于多个BWP时,可以根据多个BWP分别对应的SCS中最小的SCS确定第四指定数量。
或者,当第二指示信息适用于多个分量载波CC,可以根据多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定第四指定数量。
步骤904,响应于第二指示信息在第一DCI中,确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后,确认信息为第一DCI调度的PUSCH,或针对第一DCI的HARQ ACK。
本公开中,步骤904的具体过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息适用于一个带宽部分BWP时,可以根据一个BWP的SCS确定第四指定数量,然后,当第二指示信息在第一DCI中时,确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图10,图10是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由网络设备执行。如图10所示,该方法可以包括但不限于如下步骤:
步骤1001,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
其中,一个TCI状态state,可以为一个联合(Joint)TCI state或一个下行(downlink,DL)TCI state,或一个上行(uplink,UL)TCI state。一对TCI状态,表示一个DL TCI state和一个UL TCI state。
步骤1002,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
其中,指定信道可以包括以下至少一项:物理下行控制信道(physical downlink control channel,PDCCH),物理下行共享信道(physical downlink shared channel,PDSCH),物理上行控制信道(physical uplink control channel,PUCCH),物理上行共享信道(physical uplink shared channel,PUSCH)。指定信号可以为信道状态信息参考信号(channel state information-reference signal,CSI-RS),信道探测参考信号(sounding reference signal,SRS),定位参考信号(positioning reference signal,PRS),跟踪参考信号(tracking reference signalTRS)等,本公开对此不作限制。
本公开中,每个指定信道和/或指定信号传输进行传输时,可以使用第一TCI状态中的部分或全部TCI状态,因此,网络设备可以通过向终端设备发送第二指示信息,以指示指定信道和/或指定信号传输时使用的第二TCI状态。比如第一TCI状态包含两个TCI状态,第二指示信息指示第二TCI状态为两个TCI状态中的第一个TCI状态,或第二指示信息指示第二TCI状态为两个TCI状态中的第二个TCI状态,或第二指示信息指示第二TCI状态为第一TCI状态中的两个TCI状态。
可选的,网络设备可以针对PDCCH向终端设备发送至少一第二指示信息,用于指示控制资源集CORESET标识对应的PDCCH传输时使用的TCI状态,或指示CORESET池索引对应的PDCCH传输时使用的TCI状态,或者搜索空间集(selective search set,SS set)组标识对应的PDCCH传输时使用的TCI状态,或者CORESET组标识对应的PDCCH传输时使用的TCI状态。
可选的,网络设备可以针对PUSCH向终端设备发送至少一第二指示信息,用于指示动态调度的PUSCH传输时使用的TCI状态,或者指示配置授权类型1的PUSCH传输时使用的TCI状态,或者指示配置授权类型2的PUSCH传输时使用的TCI状态。
步骤1003,确定第二TCI状态的使用时间。
本公开中,网络设备在发送第二指示信息后,即可基于与终端设备侧相同的指定的规则中或者协议约定,确定第二TCI状态的使用时间。从而保证二者对第二TCI状态的使用时间理解一致。
比如,可以确定第二TCI状态的使用时间位于混合自动重传请求响应(hybrid automatic repeat request acknowledge,HARQ ACK)对应的PUCCH占用的时隙之后的指定数量个时隙后。其中,HARQ ACK可以为包含第二TCI状态信令的HARQ ACK。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,可以向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,可以确定第二TCI状态的使用时间。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图11,图11是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由网络设备执行。如图11所示,该方法可以包括但不限于如下步骤:
步骤1101,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤1102,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤1101-步骤1102的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤1103,响应于第二指示信息在第一MAC CE中,确定使用时间位于第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后,第一HARQ ACK为针对第一MAC CE的HARQ ACK。
可选的,网络设备可以将第二指示信息配置在媒体接入控制(medium access control,MAC)控制单元(control element,CE)中。由此,终端设备在接收到MACCE时,即可确定第二指示信息中的第二TCI状态。
当第二指示信息在第一MAC CE中时,终端设备在接收到第一MAC CE后,可以向网络设备返回针对第一MAC CE的第一HARQ ACK,因此,网络设备和终端设备,可以将第二TCI状态的使用时间确定为该第一HARQ ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙slot后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备都可以根据第一PUCCH占用的时隙及第一指定数量,确定第二TCI状态的使用时间,从而保证终端设备与网络设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。此外,第一指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。
比如,假设第一指定数量为3,第一PUCCH占用的时隙为第一个slot,第二TCI状态的使用时间为第5个时隙开始之后的时隙。
此外,当预设在第一PUCCH占用的时隙之后的预设时长开始使用第二TCI状态时,由于一个子帧所包含的时隙数量与SCS存在相关关系,此时,可以根据第一PUCCH的子载波间隔SCS确定第一指定数量。一个子帧即1毫秒所包含的时隙数量与SCS的对应关系如表1所示。
比如,当预设在第一PUCCH占用的时隙之后的3ms之后开始使用第二TCI状态,且子载波间隔对应值μ为1时,根据表1可以确定此时每个子帧包含的时隙数为2,又因为一个子帧时长为1ms,从而确定3ms包含3个子帧,进而确定3ms包含6个时隙,因此可以确定在第一PUCCH占用的时隙之后的第6个时隙之后,也就是最早在第一PUCCH占用的时隙之后的第7个时隙可以开始使用第二TCI状态。
可选的,第一MAC CE还可以包含第一指示信息,即第一指示信息与第二指示信息在同一MAC CE中。其中,第一TCI状态的使用时间可以为第一HARQ ACK对应的第一PUCCH占用的时隙之后的预设指定数量个时隙后。此外,预设指定数量可以与第一指定数量相同也可以不同,即第一TCI状态的使用时间与第二TCI状态的使用时间相同或不同,本公开对此不作限制。
可选的,可以将第一指示信息与第二指示信息配置于不同的MAC CE中,可以将第一指示信息配置在第二MAC CE中,利用第二MAC CE指示第一TCI状态。
可选的,由于DCI中TCI域(field)中的一个码点可以对应多个TCI状态,或者DCI中TCI域(field)中的一个码点可以对应多对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应一个TCI状态和一对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应多个TCI状态和多对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应一个TCI状态和多对TCI状态,或者DCI中TCI域(field)中的一个码点可以对应多个TCI状态和一对TCI状态等。因此,第一指示信息可以包括第二MAC CE及第一DCI,其中,第二MAC CE用于激活第一DCI中TCI域的多个码点中每个码点分别对应的至少一个和/或至少一对第一TCI状态,第一DCI用于指示多个码点中的一个码点。
也就是说,网络设备可以先通过第二MAC CE激活多个码点分别对应的至少一个和/或至少一对第一TCI状态,之后再通过DCI指示多个码点中的一个码点,从而终端设备即可基于指示的一个码点对应的至少一个和/或至少一对第一TCI状态,确定第一TCI状态。进一步终端设备接收第二指示信息,第二指示信息指示第二TCI状态,第二TCI状态为第一TCI状态的全部或部分,从而终端设备基于第一指示信息和第二指示信息确定指定信道或信号对应的第二TCI状态,即明确指定信道或信号与哪个或哪对TCI状态指示的参考信号准共址。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态。比如第一时间,第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。第二时间,网络设备发送第一指示信息指示第一TCI状态为TCI#3和TCI#4,而没有发送第二指示信息。那么在第三时间时,若第三时间在第一TCI状态的使用时间之前,第一TCI状态还是TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1;若第三时间在第一TCI状态的使用时间之后,第一TCI状态是TCI#3和TCI#4,第二TCI状态为第一TCI状态中的第一个即TCI#3。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。比如第一时间,第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。第二时间,网络设备没有发送第一指示信息,但发送第二指示信息指示第二TCI状态为第一TCI状态中的第二个即TCI#2。那么在第三时间时,若第三时间在第二TCI状态的使用时间之前,第二TCI状态为第一TCI状态中的 第一个即TCI#1;若第三时间在第二TCI状态的使用时间之后,第二TCI状态为第一TCI状态中的第二个即TCI#2。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态及第一TCI状态。比如第一时间,第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。第二时间,网络设备发送第一指示信息指示第一TCI状态为TCI#3和TCI#4,发送第二指示信息指示第二TCI状态为第一TCI状态中的第二个TCI。那么在第三时间时,若第三时间在第一TCI状态和第二TCI状态的使用时间之前,那么第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第一个即TCI#1。若第三时间在第一TCI状态的使用时间之后、第二TCI状态的使用时间之前,那么第一TCI状态为TCI#3和TCI#4,第二TCI状态为第一TCI状态中的第一个即TCI#3。若第三时间在第一TCI状态的使用时间之前、第二TCI状态的使用时间之后,那么第一TCI状态为TCI#1和TCI#2,第二TCI状态为第一TCI状态中的第二个即TCI#2。若第三时间在第一TCI状态的使用时间之后、第二TCI状态的使用时间之后,那么第一TCI状态为TCI#3和TCI#4,第二TCI状态为第一TCI状态中的第二个即TCI#4。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,再向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,在第二指示信息在第一MAC CE的情况下,确定使用时间位于针对第一MAC CE的第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图12,图12是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由网络设备执行。如图12所示,该方法可以包括但不限于如下步骤:
步骤1201,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤1202,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤1201-步骤1202的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤1203,响应于第二指示信息在第一DCI中,确定使用时间位于第一DCI之后的第二指定数量的符号之后。
本公开中,网络设备可以将第二指示信息配置在第一DCI中并发送给终端设备,网络设备和终端设备可以将第二TCI状态的使用时间确定为该第一DCI之后的第二指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
其中,第一DCI之后可以为第一DCI的第一个符号之后,或者第一DCI之后也可以为第一DCI的最后一个符号之后。当第一DCI包含多个PDCCH候选candidate时,则第一DCI的最后一个符号为结束时间较晚的PDCCH candidate占用的最后一个符号。此外,第二指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。
可选的,第一DCI中可以包含第一指示信息,即第一指示信息与第二指示信息包含于同一DCI中。其中,第一TCI状态的使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第五指定数量的符号之后,第二HARQ ACK为针对第一DCI的HARQ ACK或针对第一DCI调度的PDSCH的HARQ ACK。此外,第五指定数量和第二指定数量可以相同也可以不同,即第一TCI状态的使用时间与第二TCI状态的使用时间相同或不同,本公开对此不作限制。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态及第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,再向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息在第一DCI中时,确定使用时间位于第一DCI之后的第二指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图13,图13是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由网络设备执行。如图13所示,该方法可以包括但不限于如下步骤:
步骤1301,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤1302,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤1301-步骤1302的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤1303,响应于第二指示信息在第一DCI中,确定使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,第二HARQ ACK为针对第一DCI的HARQ ACK或针对第一DCI调度的PDSCH的HARQ ACK。
本公开中,当包含第二指示信息的第一DCI为下行DCI时,终端设备在接收到第一DCI后,可以向网络设备返回针对第一DCI或针对第一DCI调度的PDSCH的第二HARQ ACK,因此,网络设备和终端设备可以将位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后的时隙确定为第二TCI状态的使用时间。其中,第二HARQ ACK为针对第一DCI的或针对第一DCI调度的PDSCH的HARQ ACK。其中,第三指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。
比如,假设一个slot包含14个符号,且第三指定数量为7,若第二HARQ ACK反馈对应的PUCCH或PUSCH位于第1个slot中的第2个符号,则在第1个slot中的第9个符号之后即最早第10个符号开始使用第二TCI状态。若第二HARQ ACK反馈对应的PUCCH或PUSCH位于第1个slot中的第12个符号,则在第2个slot中的第5个符号之后即最早第6个符号开始使用第二TCI状态。
此外,PUCCH之后可以为PUCCH占用的最后一个符号或者第一个符号之后。PUSCH之后可以为PUSCH占用的最后一个符号或者第一个符号之后。而当PUCCH包含重复传输时,则PUCCH占用的最后一个符号为时间上最后一个重复单元占用的最后一个符号。而当PUSCH包含重复传输时,则PUSCH占用的最后一个符号为时间上最后一个重复单元占用的最后一个符号。
可选的,第一DCI中可以包含第一指示信息,即第一指示信息与第二指示信息包含于同一DCI中。其中,第一TCI状态的使用时间可参见本公开任一实施例的详细描述,在此不再赘述。此外,第一TCI状态的使用时间与第二TCI状态的使用时间可以相同或不同,本公开对此不作限制。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态和/或第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态及第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
需要说明的是,终端设备可以在发送第二HARQ ACK后,可以根据第二HARQ ACK对应的PUCCH或PUSCH,及第五指定数量,确定第二TCI状态的使用时间,进而再使用第二TCI状态,从而保证终端设备与网络设备对第二TCI状态的使用时间理解一致。
本公开中,网络设备向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,再向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息在第一DCI中时,确定使用时间位于针对第一DCI的或针对第一DCI调度的PDSCH的第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图14,图14是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示 意图,该方法由网络设备执行。如图14所示,该方法可以包括但不限于如下步骤:
步骤1401,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤1402,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤1401-步骤1402的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤1403,响应于第二指示信息在第一DCI中,确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后,确认信息为第一DCI调度的PUSCH,或针对第一DCI的HARQ ACK。
本公开中,当包含第二指示信息的第一DCI为上行DCI时,网络设备可以确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后。其中确认信息可以为第一DCI调度的PUSCH,或针对第一DCI的HARQ ACK。其中,第三指定数量可以是预先设置的,或者是协议约定的,或是网络设备指示的,本公开对此不作限制。
此外,PUCCH之后可以为PUCCH占用的最后一个符号或者第一个符号之后。PUSCH之后可以为PUSCH占用的最后一个符号或者第一个符号之后。而当PUCCH包含重复传输时,则PUCCH占用的最后一个符号为时间上最后一个重复单元占用的最后一个符号。而当PUSCH包含重复传输时,则PUSCH占用的最后一个符号为时间上最后一个重复单元占用的最后一个符号。
可选的,第一DCI中可以包含第一指示信息,即第一指示信息与第二指示信息包含于同一DCI中。其中,第一TCI状态的使用时间可参见本公开任一实施例的详细描述,在此不再赘述。此外,第一TCI状态的使用时间与第二TCI状态的使用时间可以相同或不同,本公开对此不作限制。
需要说明的是,第一指示信息和第二指示信息由网络设备独立指示。
一个实施例中,若在当前时刻,网络设备指示了新的第一TCI状态,而第二TCI状态不变,则可以根据下一时刻及第一TCI状态的使用时间,确定下一时刻对应的第一TCI状态和/或第二TC状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第二TCI状态,而第一TCI状态不变,则可以根据下一时刻及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
一个实施例中,若在当前时刻,网络设备指示新的第一TCI状态和新的第二TCI状态,则可以根据下一时刻、第一TCI状态的使用时间及第二TCI状态的使用时间,确定下一时刻对应的第二TCI状态及第一TCI状态。上述过程详细描述,可参见本公开任一实施例的详细描述,在此不再赘述。
需要说明的是,终端设备可以在发送确认信息后,根据确认信息对应的PUCCH或PUSCH的最后一个符号,及第四指定数量,确定第二TCI状态的使用时间,进而再使用第二TCI状态,从而保证终端设备与网络设备对第二TCI状态的使用时间理解一致。
本公开中,网络设备向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,再向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息在第一DCI中时,确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图15,图15是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由网络设备执行。如图15所示,该方法可以包括但不限于如下步骤:
步骤1501,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤1502,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤1501-步骤1502的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤1503,响应于第二指示信息适用于一个带宽部分BWP,根据一个BWP的SCS确定第二指定数量。
本公开中,当第二指示信息适用于一个带宽部分BWP时,终端设备和网络设备可以根据该一个BWP的SCS确定第二指定数量。比如,可以根据BWP的SCS的对应值μ对应的数量A,确定第二指定数量。比如确定第二指定数量为数量A;或者,确定第二指定数量为数量A+第一偏移值等等,本公开对此不做限定。
或者,当第二指示信息适用于多个BWP时,可以根据多个BWP分别对应的SCS中最小的SCS确定第二指定数量。
或者,当第二指示信息适用于多个分量载波CC,可以根据多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定第二指定数量。
步骤1504,响应于第二指示信息在第一DCI中,确定使用时间位于第一DCI之后的第二指定数量的符号之后。
本公开中,步骤1504的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,再向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息适用于一个带宽部分BWP时,根据一个BWP的SCS确定第二指定数量,然后,当第二指示信息在第一DCI中时,确定使用时间位于第一DCI之后的第二指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图16,图16是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由网络设备执行。如图16所示,该方法可以包括但不限于如下步骤:
步骤1601,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤1602,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤1601-步骤1602的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤1603,响应于第二指示信息适用于一个带宽部分BWP,根据一个BWP的SCS确定第三指定数量。
本公开中,当第二指示信息适用于一个带宽部分BWP时,终端设备和网络设备可以根据该一个BWP的SCS确定第三指定数量。比如,可以根据BWP的SCS的对应值μ对应的数量A,确定第三指定数量。比如确定第三指定数量为数量A;或者,确定第三指定数量为数量A+第二偏移值等等,本公开对此不做限定。
或者,当第二指示信息适用于多个BWP时,可以根据多个BWP分别对应的SCS中最小的SCS确定第三指定数量。
或者,当第二指示信息适用于多个分量载波CC,可以根据多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定第三指定数量。
步骤1604,响应于第二指示信息在第一DCI中,确定使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,第二HARQ ACK为针对第一DCI的HARQ ACK或针对第一DCI调度的PDSCH的HARQ ACK。
本公开中,步骤1604的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,再向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息适用于一个带宽部分BWP时,根据一个BWP的SCS确定第三指定数量,然后,当第二指示信息在第一DCI中时,确定使用时间位于针对第一DCI的或针对第一DCI调度的PDSCH的第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图17,图17是本公开实施例提供的一种传输配置指示TCI状态使用时间的确定方法流程示意图,该方法由网络设备执行。如图17所示,该方法可以包括但不限于如下步骤:
步骤1701,发送第一指示信息,第一指示信息用于指示至少一个和/或至少一对第一TCI状态。
步骤1702,发送第二指示信息,第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,第二TCI状态为第一TCI状态中的部分或全部。
本公开中,步骤1701-步骤1702的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
步骤1703,响应于第二指示信息适用于一个带宽部分BWP,根据一个BWP的SCS确定第四指定数量。
本公开中,当第二指示信息适用于一个带宽部分BWP时,终端设备和网络设备可以根据该一个BWP的SCS确定第四指定数量。比如,可以根据BWP的SCS的对应值μ对应的数量A,确定第四指 定数量。比如确定第四指定数量为数量A;或者,确定第四指定数量为数量A+第三偏移值等等,本公开对此不做限定。
或者,当第二指示信息适用于多个BWP时,可以根据多个BWP分别对应的SCS中最小的SCS确定第四指定数量。
或者,当第二指示信息适用于多个分量载波CC,可以根据多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定第四指定数量。
步骤1704,响应于第二指示信息在第一DCI中,确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后,确认信息为第一DCI调度的PUSCH,或针对第一DCI的HARQ ACK。
本公开中,步骤1704的具体实现过程,可参见本公开任一实施例的详细描述,在此不再赘述。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,再向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,当第二指示信息适用于一个带宽部分BWP时,根据一个BWP的SCS确定第四指定数量,然后,当第二指示信息在第一DCI中时,确定使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
请参见图18,为本公开实施例提供的一种通信装置1800的结构示意图。图18所示的通信装置1800可包括收发模块1801。收发模块1801可包括发送模块和/或接收模块,发送模块用于实现发送功能,接收模块用于实现接收功能,收发模块1801可以实现发送功能和/或接收功能。
可以理解的是,通信装置1800可以是终端设备,也可以是终端设备中的装置,还可以是能够与终端设备匹配使用的装置。
通信装置1800在终端设备侧,其中:
收发模块1801,用于接收第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
上述收发模块1801,用于接收第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部;
处理模块1802,用于确定所述第二TCI状态的使用时间。
可选的,所述指定信道包括以下至少一项:
物理下行控制信道PDCCH,物理下行共享信道PDSCH,物理上行控制信道PUCCH,物理上行共享信道PUSCH。
可选的,
所述第二指示信息包含在下行控制信息DCI或媒体接入控制MAC控制单元CE中。
可选的,上述处理模块1802,用于:
响应于所述第二指示信息在第一MAC CE中,确定所述使用时间位于第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后,所述第一HARQ ACK为针对所述第一MAC CE的HARQ ACK。
可选的,
所述第一MAC CE包含所述第一指示信息,所述第一TCI状态的使用时间与所述第二TCI状态的使用时间相同或不同。
可选的,上述处理模块1802,还用于:
根据所述第一PUCCH的子载波间隔SCS,确定所述第一指定数量。
可选的,上述处理模块1802,还用于:
响应于所述第二指示信息在第一DCI中,确定所述使用时间位于所述第一DCI之后的第二指定数量的符号之后;或,
响应于所述第二指示信息在第一DCI中,确定所述使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK;或,
响应于所述第二指示信息在第一DCI中,确定所述使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后,所述确认信息为所述第一DCI调度的PUSCH,或针对所述第一DCI的HARQ ACK。
可选的,
所述第一DCI包含所述第一指示信息,所述第一TCI状态的使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第五指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK,所述第五指定数量和第三指定数量相同或不同。
可选的,上述处理模块1802,还用于:
响应于所述第二指示信息适用于一个带宽部分BWP,根据所述一个BWP的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
响应于所述第二指示信息适用于多个BWP,根据所述多个BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
响应于所述第二指示信息适用于多个分量载波CC,根据所述多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项。
本公开中,终端设备在接收用于指示至少一个和/或至少一对第一TCI状态第一指示信息后,可以接收用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,可以确定第二TCI状态的使用时间。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
需要说明的是,上述装置实施例是基于方法实施例得到的,具体的说明可以参见方法实施例部分,此处不再赘述。
可以理解的是,通信装置1800可以是网络设备,也可以是网络设备中的装置,还可以是能够与网络设备匹配使用的装置。
通信装置1800,在网络设备侧,其中:
收发模块1801,用于发送第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
上述收发模块1801,还用于发送第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部。
处理模块1802,用于确定所述第二TCI状态的使用时间。
可选的,所述指定信道包括以下至少一项:
物理下行控制信道PDCCH,物理下行共享信道PDSCH,物理上行控制信道PUCCH,物理上行共享信道PUSCH。
可选的,
所述第二指示信息包含在下行控制信息DCI或媒体接入控制MAC控制单元CE中。
可选的,上述处理模块1802,用于:
响应于所述第二指示信息在第一MAC CE中,确定所述使用时间位于第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后,所述第一HARQ ACK为针对所述第一MAC CE的HARQ ACK。
可选的,
所述第一MAC CE包含所述第一指示信息,所述第一TCI状态的使用时间与所述第二TCI状态的使用时间相同或不同。
可选的,上述处理模块1802,还用于:
根据所述第一PUCCH的子载波间隔SCS,确定所述第一指定数量。
可选的,上述处理模块1802,还用于:
响应于所述第二指示信息在第一DCI中,确定所述使用时间位于所述第一DCI之后的第二指定数量的符号之后;或,
响应于所述第二指示信息在第一DCI中,确定所述使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK;或,
响应于所述第二指示信息在第一DCI中,确定所述使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后,所述确认信息为所述第一DCI调度的PUSCH,或针对所述第一DCI的HARQ ACK。
可选的,
所述第一DCI包含所述第一指示信息,所述第一TCI状态的使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第五指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK,所述第五指定数量和第三指定数量 相同或不同。
可选的,上述处理模块1802,还用于:
响应于所述第二指示信息适用于一个带宽部分BWP,根据所述一个BWP的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
响应于所述第二指示信息适用于多个BWP,根据所述多个BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
响应于所述第二指示信息适用于多个分量载波CC,根据所述多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项。
本公开中,网络设备在向终端设备发送用于指示至少一个和/或至少一对第一TCI状态的第一指示信息后,可以向终端设备发送用于指示指定信道和/或指定信号传输时使用的第二TCI状态的第二指示信息,之后,可以确定第二TCI状态的使用时间。由此,可使终端设备和网络设备对第二TCI状态的使用时间的理解一致,从而保证网络设备和终端设备在同一时刻使用的TCI状态一致,提高了基于TCI状态的传输的性能。
需要说明的是,上述装置实施例是基于方法实施例得到的,具体的说明可以参见方法实施例部分,此处不再赘述。
请参见图19,图19是本公开实施例提供的另一种通信装置1900的结构示意图。通信装置1900可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1900可以包括一个或多个处理器1901。处理器1901可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1900中还可以包括一个或多个存储器1902,其上可以存有计算机程序1904,处理器1901执行所述计算机程序1904,以使得通信装置1900执行上述方法实施例中描述的方法。可选的,所述存储器1902中还可以存储有数据。通信装置1900和存储器1902可以单独设置,也可以集成在一起。
可选的,通信装置1900还可以包括收发器1905、天线1906。收发器1905可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1905可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1900中还可以包括一个或多个接口电路1907。接口电路1907用于接收代码指令并传输至处理器1901。处理器1901运行所述代码指令以使通信装置1900执行上述方法实施例中描述的方法。
通信装置1900为终端设备:收发器1905用于执行图2中的步骤201、步骤202;图3中的步骤301、步骤302;图4中的步骤401、步骤402;图5中的步骤501、步骤502;图6中的步骤601、步骤602;图7中的步骤701、步骤702;图8中的步骤801、步骤802;图9中的步骤901、步骤902等。
通信装置1900为网络网设备:处理器1901用于执行图10中的步骤1003;图11中的步骤1103;图12中的步骤1203;图13中的步骤1303;图14中的步骤1403;图15中的步骤1503、步骤1504;图16中的步骤1603、步骤1604;图17中的步骤1703、步骤1704等。
在一种实现方式中,处理器1901中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1901可以存有计算机程序1903,计算机程序1903在处理器1901上运行,可使得通信装置1900执行上述方法实施例中描述的方法。计算机程序1903可能固化在处理器1901中,该种情况下,处理器1901可能由硬件实现。
在一种实现方式中,通信装置1900可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本公开中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal  oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者接入网设备(如前述方法实施例中的终端设备),但本公开中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图19的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图20所示的芯片的结构示意图。图20所示的芯片包括处理器2001和接口2003。其中,处理器2001的数量可以是一个或多个,接口2003的数量可以是多个。
对于芯片用于实现本公开实施例中终端设备的功能的情况:
接口2003,用于执行图2中的步骤201、步骤202;图3中的步骤301、步骤302;图4中的步骤401、步骤402;图5中的步骤501、步骤502;图6中的步骤601、步骤602;图7中的步骤701、步骤702;图8中的步骤801、步骤802;图9中的步骤901、步骤902等。
对于芯片用于实现本公开实施例中网络设备的功能的情况:
接口2003,用于执行图10中的步骤1001、步骤1002;图11中的步骤1101、步骤1102;图12中的步骤1201、步骤1202;图13中的步骤1301、步骤1302;图14中的步骤1401、步骤1402;图15中的步骤1501、步骤1502;图16中的步骤1601、步骤1602;图17中的步骤1701、步骤1702等。
可选的,芯片还包括存储器2003,存储器2003用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本公开实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本公开实施例保护的范围。
本公开还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本公开还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本公开实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
可以理解的是,本公开中“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。
进一步可以理解的是,本公开实施例中尽管在附图中以特定的顺序描述操作,但是不应将其理解为要求按照所示的特定顺序或是串行顺序来执行这些操作,或是要求执行全部所示的操作以得到期望的结果。在特定环境中,多任务和并行处理可能是有利的。
本领域普通技术人员可以理解:本公开中涉及的第一、第二等各种数字编号仅为描述方便进行的区 分,并不用来限制本公开实施例的范围,也表示先后顺序。
本公开中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本公开不做限制。在本公开实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本公开中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本公开并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本公开中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本公开中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本公开的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
以上所述,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本公开揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本公开的保护范围之内。因此,本公开的保护范围应以所述权利要求的保护范围为准。

Claims (22)

  1. 一种传输配置指示TCI状态使用时间的确定方法,其特征在于,由终端设备执行,所述方法包括:
    接收第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
    接收第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部;
    确定所述第二TCI状态的使用时间。
  2. 如权利要求1所述的方法,其特征在于,所述指定信道包括以下至少一项:
    物理下行控制信道PDCCH,物理下行共享信道PDSCH,物理上行控制信道PUCCH,物理上行共享信道PUSCH。
  3. 如权利要求1所述的方法,其特征在于,
    所述第二指示信息包含在下行控制信息DCI或媒体接入控制MAC控制单元CE中。
  4. 如权利要求3所述的方法,其特征在于,所述确定所述第二TCI状态的使用时间,包括:
    响应于所述第二指示信息在第一MAC CE中,确定所述使用时间位于第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后,所述第一HARQ ACK为针对所述第一MAC CE的HARQ ACK。
  5. 如权利要求4所述的方法,其特征在于,
    所述第一MAC CE包含所述第一指示信息,所述第一TCI状态的使用时间与所述第二TCI状态的使用时间相同或不同。
  6. 如权利要求4所述的方法,其特征在于,还包括:
    根据所述第一PUCCH的子载波间隔SCS,确定所述第一指定数量。
  7. 如权利要求3所述的方法,其特征在于,所述确定所述第二TCI状态的使用时间,包括:
    响应于所述第二指示信息在第一DCI中,确定所述使用时间位于所述第一DCI之后的第二指定数量的符号之后;或,
    响应于所述第二指示信息在第一DCI中,确定所述使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK;或,
    响应于所述第二指示信息在第一DCI中,确定所述使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后,所述确认信息为所述第一DCI调度的PUSCH,或针对所述第一DCI的HARQ ACK。
  8. 如权利要求7所述的方法,其特征在于,
    所述第一DCI包含所述第一指示信息,所述第一TCI状态的使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第五指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK,所述第五指定数量和第三指定数量相同或不同。
  9. 如权利要求7所述的方法,其特征在于,还包括:
    响应于所述第二指示信息适用于一个带宽部分BWP,根据所述一个BWP的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
    响应于所述第二指示信息适用于多个BWP,根据所述多个BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
    响应于所述第二指示信息适用于多个分量载波CC,根据所述多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项。
  10. 一种传输配置指示TCI状态使用时间的确定方法,其特征在于,由网络设备执行,所述方法包括:
    发送第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
    发送第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部。
    确定所述第二TCI状态的使用时间。
  11. 如权利要求10所述的方法,其特征在于,所述指定信道包括以下至少一项:
    物理下行控制信道PDCCH,物理下行共享信道PDSCH,物理上行控制信道PUCCH,物理上行共享信道PUSCH。
  12. 如权利要求10所述的方法,其特征在于,
    所述第二指示信息包含在下行控制信息DCI或媒体接入控制MAC控制单元CE中。
  13. 如权利要求12所述的方法,其特征在于,所述确定所述第二TCI状态的使用时间,包括:
    响应于所述第二指示信息在第一MAC CE中,确定所述使用时间位于第一混合自动重传请求HARQ响应ACK对应的第一PUCCH占用的时隙之后的第一指定数量个时隙后,所述第一HARQ ACK为针对所述第一MAC CE的HARQ ACK。
  14. 如权利要求13所述的方法,其特征在于,
    所述第一MAC CE包含所述第一指示信息,所述第一TCI状态的使用时间与所述第二TCI状态的使用时间相同或不同。
  15. 如权利要求13所述的方法,其特征在于,还包括:
    根据所述第一PUCCH的子载波间隔SCS,确定所述第一指定数量。
  16. 如权利要求12所述的方法,其特征在于,所述确定所述第二TCI状态的使用时间,包括:
    响应于所述第二指示信息在第一DCI中,确定所述使用时间位于所述第一DCI之后的第二指定数量的符号之后;或,
    响应于所述第二指示信息在第一DCI中,确定所述使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第三指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK;或,
    响应于所述第二指示信息在第一DCI中,确定所述使用时间位于确认信息对应的PUCCH或PUSCH的最后一个符号之后的第四指定数量的符号之后,所述确认信息为所述第一DCI调度的PUSCH,或针对所述第一DCI的HARQ ACK。
  17. 如权利要求16所述的方法,其特征在于,
    所述第一DCI包含所述第一指示信息,所述第一TCI状态的使用时间位于第二HARQ ACK反馈对应的PUCCH或PUSCH之后的第五指定数量的符号之后,所述第二HARQ ACK为针对所述第一DCI的HARQ ACK或针对所述第一DCI调度的PDSCH的HARQ ACK,所述第五指定数量和第三指定数量相同或不同。
  18. 如权利要求16所述的方法,其特征在于,还包括:
    响应于所述第二指示信息适用于一个带宽部分BWP,根据所述一个BWP的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
    响应于所述第二指示信息适用于多个BWP,根据所述多个BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项;或者,
    响应于所述第二指示信息适用于多个分量载波CC,根据所述多个CC中各个CC上的BWP分别对应的SCS中最小的SCS确定所述第二指定数量,第三指定数量和第四指定数量的至少一项。
  19. 一种通信装置,其特征在于,包括:
    收发模块,用于接收第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
    所述收发模块,用于接收第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部;
    处理模块,用于确定所述第二TCI状态的使用时间。
  20. 一种通信装置,其特征在于,包括:
    收发模块,用于发送第一指示信息,所述第一指示信息用于指示至少一个和/或至少一对第一TCI状态;
    所述收发模块,用于发送第二指示信息,所述第二指示信息用于指示指定信道和/或指定信号传输时使用的第二TCI状态,所述第二TCI状态为所述第一TCI状态中的部分或全部。
    处理模块,用于确定所述第二TCI状态的使用时间。
  21. 一种通信装置,其特征在于,所述装置包括处理器和存储器,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至9中任一项所述的方法,或者执行如权利要求10至18中任一项所述的方法。
  22. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至9中任一项所述的方法被实现,或者使如权利要求10至18中任一项所述的方法被实现。
PCT/CN2022/102073 2022-06-28 2022-06-28 一种传输配置指示tci状态使用时间的确定方法及其装置 WO2024000203A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280002138.8A CN115299007A (zh) 2022-06-28 2022-06-28 一种传输配置指示tci状态使用时间的确定方法及其装置
PCT/CN2022/102073 WO2024000203A1 (zh) 2022-06-28 2022-06-28 一种传输配置指示tci状态使用时间的确定方法及其装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/102073 WO2024000203A1 (zh) 2022-06-28 2022-06-28 一种传输配置指示tci状态使用时间的确定方法及其装置

Publications (1)

Publication Number Publication Date
WO2024000203A1 true WO2024000203A1 (zh) 2024-01-04

Family

ID=83819256

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/102073 WO2024000203A1 (zh) 2022-06-28 2022-06-28 一种传输配置指示tci状态使用时间的确定方法及其装置

Country Status (2)

Country Link
CN (1) CN115299007A (zh)
WO (1) WO2024000203A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116633503A (zh) * 2022-02-11 2023-08-22 华为技术有限公司 数据传输方法及通信装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189320A (zh) * 2019-05-03 2021-01-05 联发科技股份有限公司 新无线电移动通信中的传输配置指示切换过程
WO2021145752A1 (en) * 2020-01-16 2021-07-22 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in a wireless communication system
CN113785645A (zh) * 2021-08-05 2021-12-10 北京小米移动软件有限公司 一种波束应用的方法及其装置
CN113825229A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 传输配置指示状态TCI state切换的方法和装置
WO2022021426A1 (en) * 2020-07-31 2022-02-03 Nec Corporation Method, device and computer storage medium for communication
CN114175822A (zh) * 2021-10-27 2022-03-11 北京小米移动软件有限公司 传输配置指示确定方法、装置、终端及存储介质

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110535592B (zh) * 2018-09-28 2023-02-03 中兴通讯股份有限公司 一种信息传输的方法及相关设备
WO2021198922A1 (en) * 2020-03-30 2021-10-07 Lenovo (Singapore) Pte. Ltd. Radio frequency beam management for multi-transmission and reception points
JP2024503823A (ja) * 2021-01-04 2024-01-29 北京小米移動軟件有限公司 デフォルトビームの決定方法、装置、ユーザ機器及びネットワーク機器
EP4362582A1 (en) * 2021-06-24 2024-05-01 Beijing Xiaomi Mobile Software Co., Ltd. Method and apparatus for determining cross-carrier wave beam service time
CN114175821A (zh) * 2021-10-29 2022-03-11 北京小米移动软件有限公司 传输配置指示状态确定方法、装置及存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112189320A (zh) * 2019-05-03 2021-01-05 联发科技股份有限公司 新无线电移动通信中的传输配置指示切换过程
WO2021145752A1 (en) * 2020-01-16 2021-07-22 Samsung Electronics Co., Ltd. Method and apparatus for beam indication in a wireless communication system
CN113825229A (zh) * 2020-06-19 2021-12-21 华为技术有限公司 传输配置指示状态TCI state切换的方法和装置
WO2022021426A1 (en) * 2020-07-31 2022-02-03 Nec Corporation Method, device and computer storage medium for communication
CN113785645A (zh) * 2021-08-05 2021-12-10 北京小米移动软件有限公司 一种波束应用的方法及其装置
CN114175822A (zh) * 2021-10-27 2022-03-11 北京小米移动软件有限公司 传输配置指示确定方法、装置、终端及存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
OPPO: "Enhancements on Multi-Beam Operation", 3GPP DRAFT; R1-2102378, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20210412 - 20210420, 7 April 2021 (2021-04-07), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052177095 *
ZTE: "Enhancements on Multi-beam Operation", 3GPP DRAFT; R1-2108870, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211011 - 20211019, 1 October 2021 (2021-10-01), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052057746 *

Also Published As

Publication number Publication date
CN115299007A (zh) 2022-11-04

Similar Documents

Publication Publication Date Title
WO2023010471A1 (zh) 一种传输配置指示tci状态配置的方法及其装置
WO2023206107A1 (zh) 一种终端设备调度方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
CN113273286B (zh) 一种时域资源分配的方法及装置
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
WO2023236223A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2023245521A1 (zh) 一种控制资源的位置信息的确定方法及其装置
EP4383879A1 (en) Beam application method and apparatus
WO2024000203A1 (zh) 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2023236222A1 (zh) 一种传输配置指示状态的指示方法及装置
WO2024000202A1 (zh) 一种信道状态信息csi反馈的确定方法及其装置
WO2024050774A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024000200A1 (zh) 一种混合自动重传请求harq反馈的确定方法及其装置
WO2024031577A1 (zh) 时域资源分配方法、装置、设备及存储介质
WO2024031485A1 (zh) 一种传输方法及其装置
WO2023184438A1 (zh) 一种消除时分干扰的方法及装置
WO2024000201A1 (zh) 一种指示方法及装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2024098430A1 (zh) 一种处理时延的确定方法、装置、设备及存储介质
CN114026907B (zh) 一种上行波束的测量方法及其装置
WO2023010475A1 (zh) 一种服务小区测量方法及其装置
WO2023197121A1 (zh) 一种发送直连测距信号的方法及装置
WO2024011637A1 (zh) 一种轨道角动量oam模态切换方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22948323

Country of ref document: EP

Kind code of ref document: A1