WO2024011637A1 - 一种轨道角动量oam模态切换方法、装置、设备及存储介质 - Google Patents

一种轨道角动量oam模态切换方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2024011637A1
WO2024011637A1 PCT/CN2022/106121 CN2022106121W WO2024011637A1 WO 2024011637 A1 WO2024011637 A1 WO 2024011637A1 CN 2022106121 W CN2022106121 W CN 2022106121W WO 2024011637 A1 WO2024011637 A1 WO 2024011637A1
Authority
WO
WIPO (PCT)
Prior art keywords
oam mode
time
indication information
terminal device
relay device
Prior art date
Application number
PCT/CN2022/106121
Other languages
English (en)
French (fr)
Inventor
池连刚
段高明
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/106121 priority Critical patent/WO2024011637A1/zh
Publication of WO2024011637A1 publication Critical patent/WO2024011637A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition

Definitions

  • the present disclosure relates to the field of communication technology, and in particular to OAM mode switching methods, devices, equipment and storage media.
  • UCA Uniform circular array, uniform circular phased antenna array
  • OAM Orbital angular momentum, orbital angular momentum
  • the signal transmitting terminal when the transceiver terminal needs to switch the OAM mode, the signal transmitting terminal will send the indication information of the OAM mode to be switched to the signal receiving terminal, and switch to the OAM mode. And, after receiving the indication information, the signal receiving end will demodulate and decode the indication information to determine the OAM mode to be switched, and switch to the OAM mode.
  • the OAM mode switching method, device, equipment and storage medium proposed in this disclosure can avoid the modal desynchronization of the transmitting end and the receiving end caused by the switching delay of the signal receiving end.
  • embodiments of the present disclosure provide an OAM mode switching method, which is executed by a network device and includes:
  • the OAM mode is switched based on the time interval.
  • an OAM mode switching method is provided.
  • the network device will determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information; after that, it will determine The target OAM mode to be switched by the relay device and/or the terminal device; and the indication information of the target OAM mode is sent to the relay device and/or the terminal device; finally, the OAM mode is switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information, it will subsequently switch to the OAM mode.
  • the relay device and/or terminal device will also take this time interval into consideration when switching the OAM mode, so that the network device and the relay device and/or terminal device can perform operations at the same or similar time.
  • OAM switching reduces the switching delay, avoids the modal desynchronization of relay equipment and/or terminal equipment and network equipment caused by the switching delay of terminal equipment, and ensures the stability of OAM switching.
  • embodiments of the present disclosure provide an OAM mode switching method, which is executed by a relay device and/or a terminal device, including:
  • the OAM mode is switched based on the time interval.
  • an embodiment of the present disclosure provides a communication device, which is configured in a network device and includes:
  • a processing module used to determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information
  • the processing module is also used to determine the target OAM mode to be switched by the relay device and/or the terminal device;
  • a transceiver module configured to send indication information of the target OAM mode to the relay device and/or terminal device;
  • the processing module is also used to switch the OAM mode based on the time interval.
  • embodiments of the present disclosure provide a communication device, which is configured in a relay device and/or a terminal device, including:
  • a processing module used to determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information
  • the transceiver module is used to receive the indication information of the target OAM mode sent by the network device;
  • the processing module is also used to switch the OAM mode based on the time interval.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor.
  • the processor calls a computer program in a memory, it executes the method described in the second aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the first aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the communication device includes a processor and a memory, and a computer program is stored in the memory; the processor executes the computer program stored in the memory, so that the communication device executes The method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the first aspect.
  • an embodiment of the present disclosure provides a communication device.
  • the device includes a processor and an interface circuit.
  • the interface circuit is used to receive code instructions and transmit them to the processor.
  • the processor is used to run the code instructions to cause the The device performs the method described in the second aspect above.
  • an embodiment of the present disclosure provides a communication system, which includes the communication device described in the third aspect to the communication device described in the fourth aspect, or the system includes the communication device described in the fifth aspect to The communication device according to the sixth aspect, or the system includes the communication device according to the seventh aspect to the communication device according to the eighth aspect, or the system includes the communication device according to the ninth aspect to the tenth aspect. the above-mentioned communication device.
  • embodiments of the present invention provide a computer-readable storage medium for storing instructions used by the above-mentioned network device and/or the above-mentioned terminal device.
  • the network device is caused to execute the above-mentioned The method described in the first aspect, and/or causing the terminal device to perform the method described in the second aspect.
  • the present disclosure also provides a computer program product including a computer program, which, when run on a computer, causes the computer to execute the method described in any one of the above first to second aspects.
  • the present disclosure provides a chip system.
  • the chip system includes at least one processor and an interface, and is used to support a network device to implement the functions involved in the method described in the first aspect, and/or to support a terminal device.
  • Implement the functions involved in the method described in the second aspect for example, determine or process at least one of the data and information involved in the above method.
  • the chip system further includes a memory, and the memory is used to store necessary computer programs and data of the source secondary node.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the present disclosure provides a computer program that, when run on a computer, causes the computer to perform the method described in any one of the above first to second aspects.
  • Figure 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic flowchart of an OAM mode switching method provided by another embodiment of the present disclosure.
  • FIG. 3 is a schematic flowchart of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • FIG. 4 is a schematic flowchart of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • FIG. 5 is a schematic flowchart of an OAM mode switching method provided by another embodiment of the present disclosure.
  • FIG. 6 is a schematic flowchart of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • FIGS 7a-7b are schematic flow diagrams of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • FIG. 8 is a schematic flowchart of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • FIG. 9 is a schematic flowchart of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • FIG. 10 is a schematic flowchart of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • FIG. 11 is a schematic flowchart of an OAM mode switching method provided by yet another embodiment of the present disclosure.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure.
  • Figure 13 is a schematic structural diagram of a communication device provided by another embodiment of the present disclosure.
  • Figure 14 is a block diagram of a communication device provided by an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a chip provided by an embodiment of the present disclosure.
  • first, second, third, etc. may be used to describe various information in the embodiments of the present disclosure, the information should not be limited to these terms. These terms are only used to distinguish information of the same type from each other.
  • first information may also be called second information, and similarly, the second information may also be called first information.
  • the words "if” and “if” as used herein may be interpreted as “when” or “when” or “in response to determining.”
  • Equipment used to implement relay communications between terminal equipment and base stations.
  • the instruction information configuration method provided by any embodiment can be executed alone, and any implementation method in the embodiment can also be executed alone, or combined with other embodiments, or possible methods in other embodiments.
  • the implementation methods are executed together, and can also be executed in combination with any technical solution in related technologies.
  • FIG. 1 is a schematic architectural diagram of a communication system provided by an embodiment of the present disclosure.
  • the communication system may include but is not limited to a network device, a relay device and a terminal device.
  • the number and form of devices shown in Figure 1 are only for examples and do not constitute a limitation on the embodiments of the present disclosure. Practical applications may include two One or more network devices, two or more terminal devices.
  • the communication system shown in Figure 1 includes a network device 11, a relay device 12, and a terminal device 13 as an example.
  • LTE long term evolution
  • 5th generation fifth generation
  • 5G new radio (NR) system 5th generation new radio
  • the network device 11 in the embodiment of the present disclosure is an entity on the network side that is used to transmit or receive signals.
  • the network device 11 may be an evolved base station (evolved NodeB, eNB), a transmission reception point (TRP), a next generation base station (next generation NodeB, gNB) in an NR system, or other base stations in future mobile communication systems. Base stations or access nodes in wireless fidelity (WiFi) systems, etc.
  • the embodiments of the present disclosure do not limit the specific technologies and specific equipment forms used by network equipment.
  • the network equipment provided by the embodiments of the present disclosure may be composed of a centralized unit (CU) and a distributed unit (DU).
  • the CU may also be called a control unit (control unit).
  • CU-DU is used.
  • the structure can separate the protocol layers of network equipment, such as base stations, and place some protocol layer functions under centralized control on the CU. The remaining part or all protocol layer functions are distributed in the DU, and the CU centrally controls the
  • the relay device 12 and the terminal device 13 in the embodiment of the present disclosure may be an entity on the user side for receiving or transmitting signals, such as a mobile phone.
  • Terminal equipment can also be called terminal equipment (terminal), user equipment (user equipment, UE), mobile station (mobile station, MS), mobile terminal equipment (mobile terminal, MT), etc.
  • the terminal device can be a car with communication functions, a smart car, a mobile phone, a wearable device, a tablet computer (Pad), a computer with wireless transceiver functions, a virtual reality (VR) terminal device, an augmented reality (augmented reality (AR) terminal equipment, wireless terminal equipment in industrial control, wireless terminal equipment in self-driving, wireless terminal equipment in remote medical surgery, smart grid ( Wireless terminal equipment in smart grid, wireless terminal equipment in transportation safety, wireless terminal equipment in smart city, wireless terminal equipment in smart home, etc.
  • the embodiments of the present disclosure do not limit the specific technology and specific equipment form used by the terminal equipment.
  • FIG. 2 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 2, the OAM mode switching method may include the following steps:
  • Step 201 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • a communication connection is established between the relay device and/or the terminal device and the network device.
  • the time interval is N time units, N is a positive integer, wherein the time unit can be an absolute time unit (such as N seconds or N milliseconds), orthogonal frequency division complex Use any one or more of the number of symbols (such as N OFDM symbols), the number of time slots (such as N time slots), and the number of subframes (such as N subframes) using technology (Orthogonal Frequency Division Multiplexing, OFDM).
  • N OFDM symbols such as N OFDM symbols
  • time slots such as N time slots
  • subframes such as N subframes
  • the above-mentioned method of determining the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the indication information of the OAM mode may include at least one of the following:
  • Step 202 Determine the target OAM mode to be switched by the relay device and/or the terminal device.
  • the above-mentioned network device may determine the target OAM mode based on the channel measurement result of the channel between the relay device and/or the terminal device and the network device.
  • the target OAM mode may be an OAM set including at least one OAM mode.
  • Step 203 Send the indication information of the target OAM mode to the relay device and/or the terminal device.
  • the network device may send the indication information of the target OAM mode to the relay device and/or the terminal device through signaling, which may include at least one of the following methods:
  • DCI downlink control information
  • Radio Resource Control Send the indication information to the relay device and/or terminal device through Radio Resource Control (RRC) signaling;
  • RRC Radio Resource Control
  • Instruction information is sent to the relay device and/or terminal device through Media Access Control Random access response (MAC-CE) signaling.
  • MAC-CE Media Access Control Random access response
  • the network device may send different indication information to the relay device and/or the terminal device to respectively indicate the target OAM mode corresponding to the uplink and downlink channels; and/or, the network device Instruction information for uniformly indicating the target OAM mode corresponding to the uplink and downlink channels may be sent to the relay device and/or the terminal device.
  • Step 204 Switch the OAM mode based on the time interval.
  • the specific method for the network device to switch the OAM mode based on the time interval will be introduced in detail in subsequent embodiments.
  • the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information; Afterwards, the target OAM mode to be switched by the relay device and/or terminal device will be determined; indication information of the target OAM mode will be sent to the relay device and/or terminal device; finally, the OAM mode will be switched based on the time interval. . It can be seen from this that in the embodiments of the present disclosure, after the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information, it will subsequently switch to the OAM mode.
  • the relay device and/or terminal device will also take this time interval into consideration when switching the OAM mode, so that the network device and the relay device and/or terminal device can perform operations at the same or similar time.
  • OAM switching reduces the switching delay, avoids the modal desynchronization of relay equipment and/or terminal equipment and network equipment caused by the switching delay of terminal equipment, and ensures the stability of OAM switching.
  • FIG 3 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 3, the OAM mode switching method may include the following steps:
  • Step 301 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 302 Determine the target OAM mode to be switched by the relay device and/or the terminal device.
  • Step 303 Send different indication information for respectively indicating the target OAM modes corresponding to the uplink and downlink channels to the relay device and/or the terminal device.
  • the target OAM modes corresponding to the uplink and downlink channels may be different. Therefore, the target OAM modes of the uplink and downlink channels need to be indicated separately.
  • the network device may send the first indication information for indicating the target OAM mode corresponding to the uplink channel to the relay device and/or the terminal device, and/or send the indication information to the relay device and/or the terminal device. Second indication information of the target OAM mode corresponding to the downlink channel.
  • the network device can send instructions to the relay device and/or the terminal device through at least one of DCI signaling, RRC signaling, and MAC-CE signaling. information.
  • the above-mentioned first indication information and second indication information may be included in the same signaling (such as both included in DCI signaling or RRC signaling or MAC-CE signaling) and sent to the relay device and/or terminal. equipment.
  • the first indication information and the second indication information may also be included in different signaling and sent to the relay device and/or the terminal device.
  • the first indication information and the second indication information may be included in different signaling of the same type.
  • the first indication information may be included in DCI-1 signaling
  • the second indication information may be included in DCI-2 signaling.
  • Step 304 Switch the OAM mode based on the time interval.
  • the specific method for the network device to switch the OAM mode based on the time interval will be introduced in detail in subsequent embodiments.
  • the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information; Afterwards, the target OAM mode to be switched by the relay device and/or terminal device will be determined; indication information of the target OAM mode will be sent to the relay device and/or terminal device; finally, the OAM mode will be switched based on the time interval. . It can be seen from this that in the embodiments of the present disclosure, after the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information, it will subsequently switch to the OAM mode.
  • the relay device and/or terminal device will also take this time interval into consideration when switching the OAM mode, so that the network device and the relay device and/or terminal device can perform operations at the same or similar time.
  • OAM switching reduces the switching delay, avoids the modal desynchronization of relay equipment and/or terminal equipment and network equipment caused by the switching delay of terminal equipment, and ensures the stability of OAM switching.
  • FIG 4 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 4, the OAM mode switching method may include the following steps:
  • Step 401 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 402 Determine the target OAM mode to be switched by the relay device and/or the terminal device.
  • steps 401-402 please refer to the above embodiment description.
  • Step 403 Send indication information for uniformly indicating the target OAM mode corresponding to the uplink and downlink channels to the relay device and/or the terminal device.
  • the uplink and downlink channels may use the same OAM mode within a period of time, such as in the case of Time Division Duplexing (TDD).
  • TDD Time Division Duplexing
  • the indication information of the target OAM mode corresponding to the uplink and downlink channels can be indicated uniformly instead of separately, thereby saving signaling overhead.
  • the network device may send an indication information to the relay device and/or the terminal device, and the target OAM mode indicated by the indication information is the target OAM mode corresponding to the uplink channel and the downlink channel.
  • step 403 please refer to the description of the above embodiment.
  • Step 404 Switch the OAM mode based on the time interval.
  • the specific method for the network device to switch the OAM mode based on the time interval will be introduced in detail in subsequent embodiments.
  • the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information; Afterwards, the target OAM mode to be switched by the relay device and/or terminal device will be determined; indication information of the target OAM mode will be sent to the relay device and/or terminal device; finally, the OAM mode will be switched based on the time interval. . It can be seen from this that in the embodiments of the present disclosure, after the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information, it will subsequently switch to the OAM mode.
  • the relay device and/or terminal device will also take this time interval into consideration when switching the OAM mode, so that the network device and the relay device and/or terminal device can perform operations at the same or similar time.
  • OAM switching reduces the switching delay, avoids the modal desynchronization of relay equipment and/or terminal equipment and network equipment caused by the switching delay of terminal equipment, and ensures the stability of OAM switching.
  • FIG. 5 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 5, the OAM mode switching method may include the following steps:
  • Step 501 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 502 Determine the target OAM mode to be switched by the relay device and/or the terminal device.
  • Step 503 Send the indication information of the target OAM mode to the relay device and/or the terminal device.
  • steps 501-503 please refer to the above embodiment description.
  • Step 504 In response to the target OAM mode being different from the original OAM mode, switch the OAM mode based on the time interval.
  • the original OAM mode is the OAM mode used by the network device before switching.
  • a method of switching OAM modes based on time intervals may include:
  • a first time period communication is performed with the relay device and/or the terminal device based on a specific manner; wherein the first time period is: a first time to a second time, and the first time is when the network device sends the instruction information. time, the second time is the sum of the first time and the time interval; and, the specific method is determined by the protocol or the network device independently. Wherein, in response to the specific mode being independently determined by the network device, the network device also needs to configure the specific mode to the relay device and/or the terminal device.
  • the specific mode may include any of the following:
  • the specified OAM mode can be agreed in advance between the base station and the relay equipment and/or terminal equipment, or the specified OAM mode can be configured in advance by the base station to the relay equipment and/or of terminal equipment.
  • the second time period switch to the target OAM mode to communicate with the relay device and/or the terminal device based on the target OAM mode, where the second time period is: the second time to the third time, and the third time Time is the time when the network device sends new instruction information.
  • the first time, the second time, and the third time may include any one of absolute time, OFDM symbol number, slot number, and subframe number.
  • the third moment in response to any one of the first moment, the second moment, and the third moment including an OFDM symbol sequence number, a timeslot sequence number, and a subframe sequence number, the third moment may be determined based on the transmission timing or reception timing of the wireless frame.
  • the specifically determined OFDM symbol is: which OFDM symbol on which subframe and which time slot.
  • the specifically determined time slot number is: which time slot of which subframe.
  • the specifically determined timeslot sequence number is: subframe number.
  • the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information; Afterwards, the target OAM mode to be switched by the relay device and/or terminal device will be determined; indication information of the target OAM mode will be sent to the relay device and/or terminal device; finally, the OAM mode will be switched based on the time interval. . It can be seen from this that in the embodiments of the present disclosure, after the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information, it will subsequently switch to the OAM mode.
  • the relay device and/or terminal device will also take this time interval into consideration when switching the OAM mode, so that the network device and the relay device and/or terminal device can perform operations at the same or similar time.
  • OAM switching reduces the switching delay, avoids the modal desynchronization of relay equipment and/or terminal equipment and network equipment caused by the switching delay of terminal equipment, and ensures the stability of OAM switching.
  • FIG. 6 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a network device. As shown in Figure 6, the OAM mode switching method may include the following steps:
  • Step 601 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 602 Determine the target OAM mode to be switched by the relay device and/or the terminal device.
  • Step 603 Send the indication information of the target OAM mode to the relay device and/or the terminal device.
  • steps 601-603 please refer to the above embodiment description.
  • Step 604 In response to the target OAM mode being the same as the original OAM mode, the OAM mode is not switched.
  • the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information; Afterwards, the target OAM mode to be switched by the relay device and/or terminal device will be determined; indication information of the target OAM mode will be sent to the relay device and/or terminal device; finally, the OAM mode will be switched based on the time interval. . It can be seen from this that in the embodiments of the present disclosure, after the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information, it will subsequently switch to the OAM mode.
  • the relay device and/or terminal device will also take this time interval into consideration when switching the OAM mode, so that the network device and the relay device and/or terminal device can perform operations at the same or similar time.
  • OAM switching reduces the switching delay, avoids the modal desynchronization of relay equipment and/or terminal equipment and network equipment caused by the switching delay of terminal equipment, and ensures the stability of OAM switching.
  • FIG. 7a is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a relay device and/or a terminal device. As shown in Figure 7a, the OAM mode switching method may include the following steps :
  • Step 701a Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • the time interval is N time units, N is a positive integer, and the time unit is any of an absolute time unit, the number of OFDM symbols, the number of time slots, and the number of subframes. A sort of.
  • the determination of the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the indication information of the OAM mode includes at least one of the following:
  • Step 702a Receive the indication information of the target OAM mode sent by the network device.
  • the target OAM mode is an OAM set including at least one OAM mode.
  • the relay device and/or the terminal device may receive the indication information of the target OAM mode sent by the network device through signaling, specifically including at least one of the following:
  • Step 703a Switch the OAM mode based on the time interval.
  • steps 701a-703a please refer to the above embodiment description.
  • the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the OAM mode indication information; and then , when receiving the indication information of the target OAM mode sent by the network device, the OAM mode will be switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the indication information for the OAM mode, it will be considered when subsequently switching the OAM mode. At this time interval, the network device will also perform OAM mode switching based on the time interval, thereby avoiding the switching delay between the switching on the network device side and the switching on the relay device and/or terminal device side, ensuring OAM Switching stability.
  • FIG. 7b is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a relay device and/or a terminal device. As shown in Figure 7b, the OAM mode switching method may include the following steps. :
  • Step 701b Report the time interval required to complete the demodulation and decoding of the OAM mode indication information to the network device.
  • the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the OAM mode indication information; and then , when receiving the indication information of the target OAM mode sent by the network device, the OAM mode will be switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the indication information for the OAM mode, it will be considered when subsequently switching the OAM mode. At this time interval, the network device will also perform OAM mode switching based on the time interval, thereby avoiding the switching delay between the switching on the network device side and the switching on the relay device and/or terminal device side, ensuring OAM Switching stability.
  • FIG. 8 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a relay device and/or a terminal device. As shown in Figure 8, the OAM mode switching method may include the following steps. :
  • Step 801 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 802 Receive different indication information sent by the network device for respectively indicating the target OAM modes corresponding to the uplink and downlink channels.
  • Step 803 Switch the OAM mode based on the time interval.
  • steps 801-803 please refer to the above embodiment description.
  • the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the OAM mode indication information; and then , when receiving the indication information of the target OAM mode sent by the network device, the OAM mode will be switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the indication information for the OAM mode, it will be considered when subsequently switching the OAM mode. At this time interval, the network device will also perform OAM mode switching based on the time interval, thereby avoiding the switching delay between the switching on the network device side and the switching on the relay device and/or terminal device side, ensuring OAM Switching stability.
  • FIG. 9 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a relay device and/or a terminal device. As shown in Figure 9, the OAM mode switching method may include the following steps. :
  • Step 901 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 902 Receive indication information sent by the network device for uniformly indicating the target OAM mode corresponding to the uplink and downlink channels.
  • Step 903 Switch the OAM mode based on the time interval.
  • steps 901-903 please refer to the above embodiment description.
  • the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the OAM mode indication information; and then , when receiving the indication information of the target OAM mode sent by the network device, the OAM mode will be switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the indication information for the OAM mode, it will be considered when subsequently switching the OAM mode. At this time interval, the network device will also perform OAM mode switching based on the time interval, thereby avoiding the switching delay between the switching on the network device side and the switching on the relay device and/or terminal device side, ensuring OAM Switching stability.
  • FIG 10 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a relay device and/or a terminal device. As shown in Figure 10, the OAM mode switching method may include the following steps :
  • Step 1001 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 1002 Receive the indication information of the target OAM mode sent by the network device.
  • steps 1001-1002 please refer to the above embodiment description.
  • Step 1003 In response to the target OAM mode being different from the original OAM mode, switch the OAM mode based on the time interval.
  • the original OAM mode is the OAM mode used by the network device before switching.
  • the above-mentioned method of switching OAM mode based on time interval may include:
  • the third time period communicate with the relay device and/or the terminal device based on a specific method; wherein the third time period is: the fourth moment to the fifth moment, and the fourth moment is the relay device and/or the terminal device.
  • the fifth moment when the indication information is received is the sum of the fourth moment and the time interval; and, the specific method is agreed by the protocol or configured by the network device, and the specific method may include any of the following:
  • the specified OAM mode can be agreed in advance between the base station and the relay equipment and/or terminal equipment, or the specified OAM mode can be configured in advance by the base station to the relay equipment and/or of terminal equipment.
  • a fourth time period communicate with the relay device and/or terminal device based on the target OAM mode, where the fourth time period is: the fifth time to the sixth time, and the sixth time is the relay The moment when the device and/or the terminal device receives new indication information.
  • the fourth time, the fifth time, and the sixth time may include any one of absolute time, OFDM symbol number, slot number, and subframe number.
  • the first The OFDM symbol number or slot number or subframe number corresponding to the fourth time, the fifth time, and the sixth time may be determined based on the transmission timing or reception timing of the wireless frame.
  • the subcarrier bandwidth as 15 kilohertz (KHz) as an example
  • the specifically determined OFDM symbol is: which OFDM symbol on which subframe and which time slot.
  • the specifically determined time slot number is: which time slot of which subframe.
  • the specifically determined timeslot sequence number is: subframe number.
  • the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the OAM mode indication information; and then , when receiving the indication information of the target OAM mode sent by the network device, the OAM mode will be switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the indication information for the OAM mode, it will be considered when subsequently switching the OAM mode. At this time interval, the network device will also perform OAM mode switching based on the time interval, thereby avoiding the switching delay between the switching on the network device side and the switching on the relay device and/or terminal device side, ensuring OAM Switching stability.
  • FIG 11 is a schematic flowchart of an OAM mode switching method provided by an embodiment of the present disclosure. The method is executed by a relay device and/or a terminal device. As shown in Figure 11, the OAM mode switching method may include the following steps :
  • Step 1101 Determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information.
  • Step 1102 Receive the indication information of the target OAM mode sent by the network device.
  • steps 1101-1102 please refer to the above embodiment description.
  • Step 1103 In response to the target OAM mode being the same as the original OAM mode, the OAM mode is not switched.
  • the original OAM mode is the OAM mode used by the network device before switching.
  • the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the OAM mode indication information; and then , when receiving the indication information of the target OAM mode sent by the network device, the OAM mode will be switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the indication information for the OAM mode, it will be considered when subsequently switching the OAM mode. At this time interval, the network device will also perform OAM mode switching based on the time interval, thereby avoiding the switching delay between the switching on the network device side and the switching on the relay device and/or terminal device side, ensuring OAM Switching stability.
  • Figure 12 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure. As shown in Figure 12, the device may include:
  • a processing module used to determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information
  • the processing module is also used to determine the target OAM mode to be switched by the relay device and/or the terminal device;
  • a transceiver module configured to send indication information of the target OAM mode to the relay device and/or terminal device;
  • the processing module is also used to switch the OAM mode based on the time interval.
  • the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information; thereafter, The target OAM mode to be switched by the relay device and/or the terminal device is determined; indication information of the target OAM mode is sent to the relay device and/or the terminal device; finally, the OAM mode is switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the network device determines the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information, it will subsequently switch to the OAM mode.
  • the relay device and/or terminal device will also take this time interval into consideration when switching the OAM mode, so that the network device and the relay device and/or terminal device can perform operations at the same or similar time.
  • OAM switching reduces the switching delay, avoids the modal desynchronization of relay equipment and/or terminal equipment and network equipment caused by the switching delay of terminal equipment, and ensures the stability of OAM switching.
  • the time interval is N time units, N is a positive integer, and the time unit is an absolute time unit, the number of OFDM symbols of orthogonal frequency division multiplexing technology, and Either the number of slots or the number of subframes.
  • the processing module is used for at least one of the following:
  • the time interval corresponding to the relay device and/or the terminal device is determined based on the protocol agreement.
  • the target OAM mode is an OAM set including at least one OAM mode.
  • the transceiver module is used for at least one of the following:
  • the indication information is sent to the relay device and/or terminal device through media access control-control unit MAC-CE signaling.
  • the transceiver module is used for at least one of the following:
  • the processing module is used for:
  • the OAM mode is not switched
  • first time period communicate with the relay device and/or terminal device based on a specific manner; wherein the first time period is: a first time to a second time, and the first time is a network device The time when the indication information is sent, the second time is the sum of the first time and the time interval; the specific method includes any of the following:
  • a second time period communication is performed with the relay device and/or terminal device based on the target OAM mode, wherein the second time period is: the second time to the third time, and the third time Time is the time when the network device sends new instruction information.
  • the first time, the second time, and the third time include any one of absolute time, OFDM symbol number, timeslot number, and subframe number;
  • the first moment, the second moment, and the third moment correspond to The OFDM symbol number, time slot number, or subframe number is determined based on the transmission timing or reception timing of the wireless frame.
  • the specific manner is determined by a protocol or independently by the network device.
  • the device in response to the specific manner being determined autonomously by the network device, the device is further configured to:
  • Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present disclosure. As shown in Figure 13, the device may include:
  • a processing module used to determine the time interval required for the relay device and/or the terminal device to complete demodulation and decoding of the OAM mode indication information
  • the transceiver module is used to receive the indication information of the target OAM mode sent by the network device;
  • the processing module is also used to switch the OAM mode based on the time interval.
  • the relay device and/or the terminal device determines the time interval required to complete the demodulation and decoding of the indication information of the OAM mode; and then, When receiving the indication information of the target OAM mode sent by the network device, the OAM mode will be switched based on the time interval. It can be seen from this that in the embodiments of the present disclosure, after the relay device and/or the terminal device determines the time interval required to complete demodulation and decoding of the indication information for the OAM mode, it will be considered when subsequently switching the OAM mode. At this time interval, the network device will also perform OAM mode switching based on the time interval, thereby avoiding the switching delay between the switching on the network device side and the switching on the relay device and/or terminal device side, ensuring OAM Switching stability.
  • the time interval is N time units, N is a positive integer, and the time unit is an absolute time unit, the number of OFDM symbols, the number of time slots, and the number of subframes. any kind.
  • the processing module is used for at least one of the following:
  • the device is also used for:
  • the target OAM mode is an OAM set including at least one OAM mode.
  • the transceiver module is used for at least one of the following:
  • the transceiver module is used for at least one of the following:
  • the processing module is used to:
  • the OAM mode is not switched
  • the third time period communicate with the relay device and/or terminal device based on a specific manner; wherein the third time period is: the fourth moment to the fifth moment, and the fourth moment is the relay device.
  • the moment when the device and/or the terminal device receives the indication information, the fifth moment is the sum of the fourth moment and the time interval; the specific method includes any of the following:
  • a fourth time period communicate with the relay device and/or terminal device based on the target OAM mode, wherein the fourth time period is: the fifth time to the sixth time, and the sixth time
  • the time is the time when the relay device and/or the terminal device receives new indication information.
  • the fourth time, the fifth time, and the sixth time include any one of absolute time, OFDM symbol number, timeslot number, and subframe number;
  • the fourth time, the fifth time, and the sixth time correspond to The OFDM symbol number, time slot number, or subframe number is determined based on the transmission timing or reception timing of the wireless frame.
  • the specific manner is agreed upon by a protocol or configured by the network device.
  • FIG 14 is a schematic structural diagram of a communication device 1400 provided by an embodiment of the present application.
  • the communication device 1400 may be a network device, a terminal device, a chip, a chip system, or a processor that supports a network device to implement the above method, or a chip, a chip system, or a processor that supports a terminal device to implement the above method. Processor etc.
  • the device can be used to implement the method described in the above method embodiment. For details, please refer to the description in the above method embodiment.
  • Communication device 1400 may include one or more processors 1401.
  • the processor 1401 may be a general-purpose processor or a special-purpose processor, or the like.
  • it can be a baseband processor or a central processing unit.
  • the baseband processor can be used to process communication protocols and communication data.
  • the central processor can be used to control communication devices (such as base stations, baseband chips, terminal equipment, terminal equipment chips, DU or CU, etc.) and execute computer programs. , processing data for computer programs.
  • the communication device 1400 may also include one or more memories 1402, on which a computer program 1404 may be stored.
  • the processor 1401 executes the computer program 1404, so that the communication device 1400 performs the steps described in the above method embodiments. method.
  • the memory 1402 may also store data.
  • the communication device 1400 and the memory 1402 can be provided separately or integrated together.
  • the communication device 1400 may also include a transceiver 1405 and an antenna 1406.
  • the transceiver 1405 may be called a transceiver unit, a transceiver, a transceiver circuit, etc., and is used to implement transceiver functions.
  • the transceiver 1405 may include a receiver and a transmitter.
  • the receiver may be called a receiver or a receiving circuit, etc., used to implement the receiving function;
  • the transmitter may be called a transmitter, a transmitting circuit, etc., used to implement the transmitting function.
  • the communication device 1400 may also include one or more interface circuits 1407.
  • the interface circuit 1407 is used to receive code instructions and transmit them to the processor 1401 .
  • the processor 1401 executes the code instructions to cause the communication device 1400 to perform the method described in the above method embodiment.
  • the processor 1401 may include a transceiver for implementing receiving and transmitting functions.
  • the transceiver may be a transceiver circuit, an interface, or an interface circuit.
  • the transceiver circuits, interfaces or interface circuits used to implement the receiving and transmitting functions can be separate or integrated together.
  • the above-mentioned transceiver circuit, interface or interface circuit can be used for reading and writing codes/data, or the above-mentioned transceiver circuit, interface or interface circuit can be used for signal transmission or transfer.
  • the processor 1401 may store a computer program 1403, and the computer program 1403 runs on the processor 1401, causing the communication device 1400 to perform the method described in the above method embodiment.
  • the computer program 1403 may be solidified in the processor 1401, in which case the processor 1401 may be implemented by hardware.
  • the communication device 1400 may include a circuit, which may implement the functions of sending or receiving or communicating in the foregoing method embodiments.
  • the processor and transceiver described in this application can be implemented in integrated circuits (ICs), analog ICs, radio frequency integrated circuits RFICs, mixed signal ICs, application specific integrated circuits (ASICs), printed circuit boards ( printed circuit board (PCB), electronic equipment, etc.
  • the processor and transceiver can also be manufactured using various IC process technologies, such as complementary metal oxide semiconductor (CMOS), n-type metal oxide-semiconductor (NMOS), P-type Metal oxide semiconductor (positive channel metal oxide semiconductor, PMOS), bipolar junction transistor (BJT), bipolar CMOS (BiCMOS), silicon germanium (SiGe), gallium arsenide (GaAs), etc.
  • CMOS complementary metal oxide semiconductor
  • NMOS n-type metal oxide-semiconductor
  • PMOS P-type Metal oxide semiconductor
  • BJT bipolar junction transistor
  • BiCMOS bipolar CMOS
  • SiGe silicon germanium
  • GaAs gallium arsenide
  • the communication device described in the above embodiments may be a network device or a terminal device, but the scope of the communication device described in this application is not limited thereto, and the structure of the communication device may not be limited by FIG. 14 .
  • the communication device may be a stand-alone device or may be part of a larger device.
  • the communication device may be:
  • the IC collection may also include storage components for storing data and computer programs;
  • the communication device may be a chip or a chip system
  • the schematic structural diagram of the chip shown in FIG. 15 refer to the schematic structural diagram of the chip shown in FIG. 15 .
  • the chip shown in Figure 15 includes a processor 1501 and an interface 1502.
  • the number of processors 1501 may be one or more, and the number of interfaces 1502 may be multiple.
  • the chip also includes a memory 1503, which is used to store necessary computer programs and data.
  • This application also provides a readable storage medium on which instructions are stored. When the instructions are executed by a computer, the functions of any of the above method embodiments are implemented.
  • This application also provides a computer program product, which, when executed by a computer, implements the functions of any of the above method embodiments.
  • the above embodiments it may be implemented in whole or in part by software, hardware, firmware, or any combination thereof.
  • software it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product includes one or more computer programs.
  • the computer program When the computer program is loaded and executed on a computer, the processes or functions described in the embodiments of the present application are generated in whole or in part.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable device.
  • the computer program may be stored in or transferred from one computer-readable storage medium to another, for example, the computer program may be transferred from a website, computer, server, or data center Transmission to another website, computer, server or data center through wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, data center, etc. that contains one or more available media integrated.
  • the usable media may be magnetic media (e.g., floppy disks, hard disks, magnetic tapes), optical media (e.g., high-density digital video discs (DVD)), or semiconductor media (e.g., solid state disks, SSD)) etc.
  • magnetic media e.g., floppy disks, hard disks, magnetic tapes
  • optical media e.g., high-density digital video discs (DVD)
  • DVD digital video discs
  • semiconductor media e.g., solid state disks, SSD
  • At least one in this application can also be described as one or more, and the plurality can be two, three, four or more, which is not limited by this application.
  • the technical feature is distinguished by “first”, “second”, “third”, “A”, “B”, “C” and “D”, etc.
  • the technical features described in “first”, “second”, “third”, “A”, “B”, “C” and “D” are in no particular order or order.
  • the corresponding relationships shown in each table in this application can be configured or predefined.
  • the values of the information in each table are only examples and can be configured as other values, which are not limited by this application.
  • the corresponding relationships shown in some rows may not be configured.
  • appropriate deformation adjustments can be made based on the above table, such as splitting, merging, etc.
  • the names of the parameters shown in the titles of the above tables may also be other names understandable by the communication device, and the values or expressions of the parameters may also be other values or expressions understandable by the communication device.
  • other data structures can also be used, such as arrays, queues, containers, stacks, linear lists, pointers, linked lists, trees, graphs, structures, classes, heaps, hash tables or hash tables. wait.
  • Predefinition in this application can be understood as definition, pre-definition, storage, pre-storage, pre-negotiation, pre-configuration, solidification, or pre-burning.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提出一种OAM模态切换方法、装置、设备及存储介质,所述方法包括:确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;确定中继设备和/或终端设备所要切换的目标OAM模态;向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息;基于所述时间间隔切换OAM模态。本公开的方法之中,可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。

Description

一种轨道角动量OAM模态切换方法、装置、设备及存储介质 技术领域
本公开涉及通信技术领域,尤其涉及OAM模态切换方法、装置、设备及存储介质。
背景技术
为了解决频谱资源短缺的问题,通常会利用UCA(Uniform circular array,均匀圆形相控天线阵列)来建立OAM(Orbital angular momentum,轨道角动量)通信***。但是,基于UCA的OAM通信***中,由于信道环境是动态变化的,因此为保证传输性能,收发端传输所用的OAM模态也需要进行切换。
相关技术中,当收发端需要切换OAM模态时,信号发送端会向信号接收端发送所要切换的OAM模态的指示信息,并切换至该OAM模态。以及,信号接收端接收到该指示信息后,会解调译码该指示信息以确定出所要切换的OAM模态,并切换至该OAM模态。
但是,相关技术中,信号接收端完成指示信息的解调译码需要一定的时间,并且,不同的信号接收端的解调译码的能力会有所不同,从而会使得信号接收端从接收到切换信令到完成模态切换存在切换时延。因此亟需一种OAM模态切换方法,以避免由于信号接收端的切换时延导致的发射端与接收端模态不同步。
发明内容
本公开提出的OAM模态切换方法、装置、设备及存储介质,以避免由于信号接收端的切换时延导致的发射端与接收端模态不同步。
第一方面,本公开实施例提供一种OAM模态切换方法,该方法被网络设备执行,包括:
确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
确定中继设备和/或终端设备所要切换的目标OAM模态;
向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息;
基于所述时间间隔切换OAM模态。
本公开中,提供了一种OAM模态切换方法,网络设备会确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,会确定出中继设备和/或终端设备所要切换的目标OAM模态;并向中继设备和/或终端设备发送目标OAM模态的指示信息;最后,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,网络设备确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时中继设备和/或终端设备在切换OAM模态时也会考虑到该时间间隔,从而可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。
第二方面,本公开实施例提供一种OAM模态切换方法,该方法被中继设备和/或终端设备执行,包括:
确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
接收网络设备发送的目标OAM模态的指示信息;
基于所述时间间隔切换OAM模态。
第三方面,本公开实施例提供一种通信装置,该装置被配置在网络设备中,包括:
处理模块,用于确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
所述处理模块,还用于确定中继设备和/或终端设备所要切换的目标OAM模态;
收发模块,用于向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息;
所述处理模块,还用于基于所述时间间隔切换OAM模态。
第四方面,本公开实施例提供一种通信装置,该装置被配置在中继设备和/或终端设备中,包括:
处理模块,用于确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
收发模块,用于接收网络设备发送的目标OAM模态的指示信息;
所述处理模块,还用于基于所述时间间隔切换OAM模态。
第五方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第一方面所述的方法。
第六方面,本公开实施例提供一种通信装置,该通信装置包括处理器,当该处理器调用存储器中的计算机程序时,执行上述第二方面所述的方法。
第七方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第一方面所述的方法。
第八方面,本公开实施例提供一种通信装置,该通信装置包括处理器和存储器,该存储器中存储有计算机程序;所述处理器执行该存储器所存储的计算机程序,以使该通信装置执行上述第二方面所述的方法。
第九方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第一方面所述的方法。
第十方面,本公开实施例提供一种通信装置,该装置包括处理器和接口电路,该接口电路用于接收代码指令并传输至该处理器,该处理器用于运行所述代码指令以使该装置执行上述第二方面所述的方法。
第十一方面,本公开实施例提供一种通信***,该***包括第三方面所述的通信装置至第四方面所述的通信装置,或者,该***包括第五方面所述的通信装置至第六方面所述的通信装置,或者,该***包括第七方面所述的通信装置至第八方面所述的通信装置,或者,该***包括第九方面所述的通信装置至第十方面所述的通信装置。
第十二方面,本发明实施例提供一种计算机可读存储介质,用于储存为上述网络设备和/或上述终端设备所用的指令,当所述指令被执行时,使所述网络设备执行上述第一方面所述的方法,和/或,使所述终端设备执行上述第二方面所述的方法。
第十三方面,本公开还提供一种包括计算机程序的计算机程序产品,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
第十四方面,本公开提供一种芯片***,该芯片***包括至少一个处理器和接口,用于支持网络设备实现第一方面至所述的方法所涉及的功能,和/或,支持终端设备实现第二方面所述的方法所涉及的功能,例如,确定或处理上述方法中所涉及的数据和信息中的至少一种。在一种可能的设计中,所述芯片***还包括存储器,所述存储器,用于保存源辅节点必要的计算机程序和数据。该芯片***,可以由芯片构成,也可以包括芯片和其他分立器件。
第十五方面,本公开提供一种计算机程序,当其在计算机上运行时,使得计算机执行上述第一方面至第二方面的任一方面所述的方法。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1为本公开实施例提供的一种通信***的架构示意图;
图2为本公开另一个实施例所提供的OAM模态切换方法的流程示意图;
图3为本公开再一个实施例所提供的OAM模态切换方法的流程示意图;
图4为本公开又一个实施例所提供的OAM模态切换方法的流程示意图;
图5为本公开另一个实施例所提供的OAM模态切换方法的流程示意图;
图6为本公开再一个实施例所提供的OAM模态切换方法的流程示意图;
图7a-7b为本公开又一个实施例所提供的OAM模态切换方法的流程示意图;
图8为本公开又一个实施例所提供的OAM模态切换方法的流程示意图;
图9为本公开又一个实施例所提供的OAM模态切换方法的流程示意图;
图10为本公开又一个实施例所提供的OAM模态切换方法的流程示意图;
图11为本公开又一个实施例所提供的OAM模态切换方法的流程示意图;
图12为本公开一个实施例所提供的通信装置的结构示意图;
图13为本公开另一个实施例所提供的通信装置的结构示意图;
图14是本公开一个实施例所提供的一种通信装置的框图;
图15为本公开一个实施例所提供的一种芯片的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”及“若”可以被解释成为“在……时”或“当……时”或“响应于确定”。
下面详细描述本公开的实施例,所述实施例的示例在附图中示出,其中自始至终相同或类似的标号表示相同或类似的要素。下面通过参考附图描述的实施例是示例性的,旨在用于解释本公开,而不能理解为对本公开的限制。
为了便于理解,首先介绍本申请涉及的术语。
1、中继设备
用于实现终端设备与基站之间的中继通信的设备。
2、OAM
由于光束具有螺旋形相位结构而产生的角动量。
需要说明的是,本申请中,任一个实施例提供的指示信息配置方法可以单独执行,实施例中任一实现方式也可以单独执行,或是结合其他实施例,或其他实施例中的可能的实现方法一起被执行,还可以结合相关技术中的任一种技术方案一起被执行。
为了更好的理解本申请实施例公开的一种确定侧链路时长的方法,下面首先对本申请实施例适用的通信***进行描述。
请参见图1,图1为本公开实施例提供的一种通信***的架构示意图。该通信***可包括但不限于一个网络设备、一个中继设备和一个终端设备,图1所示的设备数量和形态仅用于举例并不构成对本公开实施例的限定,实际应用中可以包括两个或两个以上的网络设备,两个或两个以上的终端设备。图1所示的通信***以包括一个网络设备11、一个中继设备12、一个终端设备13为例。
需要说明的是,本公开实施例的技术方案可以应用于各种通信***。例如:长期演进(long term evolution,LTE)***、第五代(5th generation,5G)移动通信***、5G新空口(new radio,NR)***,或者其他未来的新型移动通信***等。
本公开实施例中的网络设备11是网络侧的一种用于发射或接收信号的实体。例如,网络设备11可以为演进型基站(evolved NodeB,eNB)、发送接收点(transmission reception point,TRP)、NR***中的下一代基站(next generation NodeB,gNB)、其他未来移动通信***中的基站或无线保真(wireless  fidelity,WiFi)***中的接入节点等。本公开的实施例对网络设备所采用的具体技术和具体设备形态不做限定。本公开实施例提供的网络设备可以是由集中单元(central unit,CU)与分布式单元(distributed unit,DU)组成的,其中,CU也可以称为控制单元(control unit),采用CU-DU的结构可以将网络设备,例如基站的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在DU中,由CU集中控制DU。
本公开实施例中的中继设备12和终端设备13可以是用户侧的一种用于接收或发射信号的实体,如手机。终端设备也可以称为终端设备(terminal)、用户设备(user equipment,UE)、移动台(mobile station,MS)、移动终端设备(mobile terminal,MT)等。终端设备可以是具备通信功能的汽车、智能汽车、手机(mobile phone)、穿戴式设备、平板电脑(Pad)、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端设备、无人驾驶(self-driving)中的无线终端设备、远程手术(remote medical surgery)中的无线终端设备、智能电网(smart grid)中的无线终端设备、运输安全(transportation safety)中的无线终端设备、智慧城市(smart city)中的无线终端设备、智慧家庭(smart home)中的无线终端设备等等。本公开的实施例对终端设备所采用的具体技术和具体设备形态不做限定。
可以理解的是,本公开实施例描述的通信***是为了更加清楚的说明本公开实施例的技术方案,并不构成对于本公开实施例提供的技术方案的限定,本领域普通技术人员可知,随着***架构的演变和新业务场景的出现,本公开实施例提供的技术方案对于类似的技术问题,同样适用。
下面参考附图对本公开实施例所提供的OAM模态切换方法、装置、设备及存储介质进行详细描述。
图2为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由网络设备执行,如图2所示,该OAM模态切换方法可以包括以下步骤:
步骤201、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
其中,在本公开的一个实施例之中,该中继设备和/或终端设备与网络设备之间建立有通信连接。
以及,在本公开的一个实施例之中,该时间间隔为N个时间单元,N为正整数,其中,该时间单位可以为绝对时间单元(如N秒或N毫秒)、正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号数目(如N个OFDM符号)、时隙数目(如N个时隙)、子帧数目(如N个子帧)中的任一种或任几种。
以及,在本公开的一个实施例之中,上述的确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔的方法可以包括以下至少一种:
获取中继设备和/或终端设备上报的时间间隔;
基于协议约定确定中继设备和/或终端设备对应的时间间隔。
步骤202、确定中继设备和/或终端设备所要切换的目标OAM模态。
其中,在本公开的一个实施例之中,上述的网络设备可以基于中继设备和/或终端设备与该网络设备之间信道的信道测量结果确定该目标OAM模态。该目标OAM模态可以为包括至少一种OAM模态的OAM集合。
步骤203、向中继设备和/或终端设备发送目标OAM模态的指示信息。
其中,在本公开的一个实施例之中,网络设备可以通过信令向中继设备和/或终端设备发送目标OAM模态的指示信息,具体可以包括以下至少一种方法:
通过下行控制信息(Downlink Control Information,DCI)信令向所述中继设备和/或终端设备发送所述指示信息;
通过无线资源控制(Radio Resource Control,RRC)信令向所述中继设备和/或终端设备发送所述指示信息;
通过媒体介入控制-控制单元(Media Access Control Random access response,MAC-CE)信令向所述中继设备和/或终端设备发送指示信息。
以及,在本公开的一个实施例之中,网络设备可以向中继设备和/或终端设备发送用于分别指示上下行信道对应的目标OAM模态的不同的指示信息;和/或,网络设备可以向中继设备和/或终端设备发 送用于统一指示上下行信道对应的目标OAM模态的指示信息。其中,关于该部分内容会在后续实施例详细介绍。
步骤204、基于时间间隔切换OAM模态。
其中,在本公开的一个实施例之中,关于网络设备基于该时间间隔切换OAM模态的具体方法会在后续实施例进行详细介绍。
综上所述,本公开实施例提供的OAM模态切换方法之中,网络设备会确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,会确定出中继设备和/或终端设备所要切换的目标OAM模态;并向中继设备和/或终端设备发送目标OAM模态的指示信息;最后,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,网络设备确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时中继设备和/或终端设备在切换OAM模态时也会考虑到该时间间隔,从而可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。
图3为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由网络设备执行,如图3所示,该OAM模态切换方法可以包括以下步骤:
步骤301、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤302、确定中继设备和/或终端设备所要切换的目标OAM模态。
其中,关于步骤301-302的详细介绍可以参考上述实施例描述。
步骤303、向中继设备和/或终端设备发送用于分别指示上下行信道对应的目标OAM模态的不同的指示信息。
其中,在本公开的一个实施例之中,上下行信道对应的目标OAM模态可能会有所不同。因此,需要对上下行信道的目标OAM模态进行分别指示。具体的,网络设备可以向中继设备和/或终端设备发送用于指示上行信道对应的目标OAM模态的第一指示信息,和/或,向中继设备和/或终端设备发送用于指示下行信道对应的目标OAM模态的第二指示信息。
此外,需要说明的是,由前述实施例内容可知,网络设备可以通过DCI信令、RRC信令、MAC-CE信令中的至少一种信令来向中继设备和/或终端设备发送指示信息。基于此,上述的第一指示信息和第二指示信息可以包括于同一信令中(如均包括于DCI信令或RRC信令或MAC-CE信令中)发送至中继设备和/或终端设备。或者,上述第一指示信息和第二指示信息也可以包括于不同信令中发送至中继设备和/或终端设备。如第一指示信息和第二指示信息可以包括于同一类型的不同信令中。示例的,第一指示信息可以包括于DCI-1信令中,第二指示信息包括于DCI-2信令中。
步骤304、基于时间间隔切换OAM模态。
其中,在本公开的一个实施例之中,关于网络设备基于该时间间隔切换OAM模态的具体方法会在后续实施例进行详细介绍。
综上所述,本公开实施例提供的OAM模态切换方法之中,网络设备会确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,会确定出中继设备和/或终端设备所要切换的目标OAM模态;并向中继设备和/或终端设备发送目标OAM模态的指示信息;最后,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,网络设备确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时中继设备和/或终端设备在切换OAM模态时也会考虑到该时间间隔,从而可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。
图4为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由网络设备执行,如图4所示,该OAM模态切换方法可以包括以下步骤:
步骤401、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤402、确定中继设备和/或终端设备所要切换的目标OAM模态。
其中,关于步骤401-402的详细介绍可以参考上述实施例描述。
步骤403、向中继设备和/或终端设备发送用于统一指示上下行信道对应的目标OAM模态的指示信息。
其中,在本公开的一个实施例之中,基于信道互易性的假设,一段时间内上下行信道可能会使用相同的OAM模态,例如时分双工(Time Division Duplexing,TDD)情况下,此时可以统一指示上下行信道对应的目标OAM模态的指示信息,而不分开指示,则可以节省信令开销。
具体的,网络设备可以向中继设备和/或终端设备发送一指示信息,该指示信息所指示的目标OAM模态为上行信道和下行信道统一对应的目标OAM模态。
以及,关于步骤403的其他详细内容可以参考上述实施例描述。
步骤404、基于时间间隔切换OAM模态。
其中,在本公开的一个实施例之中,关于网络设备基于该时间间隔切换OAM模态的具体方法会在后续实施例进行详细介绍。
综上所述,本公开实施例提供的OAM模态切换方法之中,网络设备会确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,会确定出中继设备和/或终端设备所要切换的目标OAM模态;并向中继设备和/或终端设备发送目标OAM模态的指示信息;最后,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,网络设备确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时中继设备和/或终端设备在切换OAM模态时也会考虑到该时间间隔,从而可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。
图5为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由网络设备执行,如图5所示,该OAM模态切换方法可以包括以下步骤:
步骤501、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤502、确定中继设备和/或终端设备所要切换的目标OAM模态。
步骤503、向中继设备和/或终端设备发送目标OAM模态的指示信息。
其中,关于步骤501-503的详细介绍可以参考上述实施例描述。
步骤504、响应于目标OAM模态与原OAM模态不同,基于时间间隔切换OAM模态。
在本公开的一个实施例之中,该原OAM模态为切换之前网络设备所采用的OAM模态。
以及,在本公开的一个实施例之中,基于时间间隔切换OAM模态的方法可以包括:
在第一时间段内,基于特定方式与中继设备和/或终端设备进行通信;其中,该第一时间段为:第一时刻至第二时刻,该第一时刻为网络设备发送指示信息的时刻,该第二时刻为第一时刻与时间间隔之和;以及,该特定方式由协议约定或网络设备自主确定。其中,响应于该特定方式由网络设备自主确定,则网络设备还需向中继设备和/或终端设备配置该特定方式,该特定方式可以包括以下任一种:
最近一次使用的数据信道对应的OAM模态;
控制信道对应的OAM模态
指定的OAM模态;其中,该指定的OAM模态可以为基站与中继设备和/或终端设备提前约定的,或者,该指定的OAM模态可以由基站提前配置至中继设备和/或终端设备的。
在第二时间段内,切换至目标OAM模态,以基于目标OAM模态与中继设备和/或终端设备进行通信,其中,第二时间段为:第二时刻至第三时刻,第三时刻为网络设备发送新的指示信息的时刻。
其中,在本公开的一个实施例之中,上述第一时刻、第二时刻、第三时刻可以包括绝对时刻、OFDM符号序号、时隙序号、子帧序号中的任一种。
以及,需要说明的是,在本公开的一个实施例之中,响应于第一时刻、第二时刻、第三时刻包括 OFDM符号序号、时隙序号、子帧序号中的任一种,该第一时刻、第二时刻、第三时刻对应的OFDM符号序号或时隙序号或子帧序号可以是以无线帧的发送定时或接收定时为参考基准确定。
具体的,无线帧的发送帧和接收帧均为10毫秒(ms),10ms=10子帧,以子载波带宽为15千赫兹(KHz)为例,1子帧=1时隙=14个OFDM符号,因此一个无线帧有140个OFDM符号。则当基于无线帧的发送定时或接收定时为参考基准确定OFDM符号时,具体确定出的OFDM符号为:第几个子帧的第几个时隙上的第几个OFDM符号。当基于无线帧的发送定时或接收定时为参考基准确定时隙序号时,具体确定出的时隙序号为:第几个子帧的第几个时隙。当基于无线帧的发送定时或接收定时为参考基准确定子帧序号时,具体确定出的时隙序号为:第几个子帧。
综上所述,本公开实施例提供的OAM模态切换方法之中,网络设备会确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,会确定出中继设备和/或终端设备所要切换的目标OAM模态;并向中继设备和/或终端设备发送目标OAM模态的指示信息;最后,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,网络设备确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时中继设备和/或终端设备在切换OAM模态时也会考虑到该时间间隔,从而可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。
图6为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由网络设备执行,如图6所示,该OAM模态切换方法可以包括以下步骤:
步骤601、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤602、确定中继设备和/或终端设备所要切换的目标OAM模态。
步骤603、向中继设备和/或终端设备发送目标OAM模态的指示信息。
其中,关于步骤601-603的详细介绍可以参考上述实施例描述。
步骤604、响应于目标OAM模态与原OAM模态相同,则不切换OAM模态。
综上所述,本公开实施例提供的OAM模态切换方法之中,网络设备会确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,会确定出中继设备和/或终端设备所要切换的目标OAM模态;并向中继设备和/或终端设备发送目标OAM模态的指示信息;最后,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,网络设备确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时中继设备和/或终端设备在切换OAM模态时也会考虑到该时间间隔,从而可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。
图7a为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由中继设备和/或终端设备执行,如图7a所示,该OAM模态切换方法可以包括以下步骤:
步骤701a、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
其中,在本公开的一个实施例之中,所述时间间隔为N个时间单元,N为正整数,所述时间单位为绝对时间单元、OFDM符号数目、时隙数目、子帧数目中的任一种。
以及,在本公开的一个实施例之中,所述确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔,包括以下至少一种:
基于协议约定确定所述中继设备和/或终端设备对应的所述时间间隔;
自主确定所述中继设备和/或终端设备对应的时间间隔。
步骤702a、接收网络设备发送的目标OAM模态的指示信息。
其中,在本公开的一个实施例之中,所述目标OAM模态为包括至少一种OAM模态的OAM集合。
以及,在本公开的一个实施例之中,中继设备和/或终端设备可以接收网络设备通过信令发送的目 标OAM模态的指示信息,具体包括以下至少一种:
接收网络设备通过DCI信令发送的所述指示信息;
接收网络设备通过RRC信令发送的所述指示信息;
接收网络设备通过MAC-CE信令发送的所述指示信息。
步骤703a、基于时间间隔切换OAM模态。
其中,关于步骤701a-703a的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的OAM模态切换方法之中,中继设备和/或终端设备会确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,在接收到网络设备发送的目标OAM模态的指示信息时,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,中继设备和/或终端设备确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时网络设备也会基于时间间隔来进行OAM模态切换,从而可以避免网络设备侧的切换与中继设备和/或终端设备侧的切换之间存在切换时延,确保了OAM切换的稳定性。
图7b为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由中继设备和/或终端设备执行,如图7b所示,该OAM模态切换方法可以包括以下步骤:
步骤701b、向网络设备上报其对于OAM模态的指示信息完成解调译码所需的时间间隔。
综上所述,本公开实施例提供的OAM模态切换方法之中,中继设备和/或终端设备会确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,在接收到网络设备发送的目标OAM模态的指示信息时,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,中继设备和/或终端设备确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时网络设备也会基于时间间隔来进行OAM模态切换,从而可以避免网络设备侧的切换与中继设备和/或终端设备侧的切换之间存在切换时延,确保了OAM切换的稳定性。
图8为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由中继设备和/或终端设备执行,如图8所示,该OAM模态切换方法可以包括以下步骤:
步骤801、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤802、接收网络设备发送的用于分别指示上下行信道对应的目标OAM模态的不同的指示信息。
步骤803、基于时间间隔切换OAM模态。
其中,关于步骤801-803的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的OAM模态切换方法之中,中继设备和/或终端设备会确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,在接收到网络设备发送的目标OAM模态的指示信息时,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,中继设备和/或终端设备确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时网络设备也会基于时间间隔来进行OAM模态切换,从而可以避免网络设备侧的切换与中继设备和/或终端设备侧的切换之间存在切换时延,确保了OAM切换的稳定性。
图9为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由中继设备和/或终端设备执行,如图9所示,该OAM模态切换方法可以包括以下步骤:
步骤901、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤902、接收网络设备发送的用于统一指示上下行信道对应的目标OAM模态的指示信息。
步骤903、基于时间间隔切换OAM模态。
其中,关于步骤901-903的详细介绍可以参考上述实施例描述。
综上所述,本公开实施例提供的OAM模态切换方法之中,中继设备和/或终端设备会确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,在接收到网络设备发送的目标OAM模态的指示信息时,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,中继设备和/或终端设备确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时网络设备也会基于时间间隔来进行OAM模态切换,从而可以避免网络设备侧的切换与中继设备和/或终端设备侧的切换之间存在切换时延,确保了OAM切换的稳定性。
图10为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由中继设备和/或终端设备执行,如图10所示,该OAM模态切换方法可以包括以下步骤:
步骤1001、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤1002、接收网络设备发送的目标OAM模态的指示信息。
其中,关于步骤1001-1002的详细介绍可以参考上述实施例描述。
步骤1003、响应于所述目标OAM模态与原OAM模态不同,基于时间间隔切换OAM模态。
在本公开的一个实施例之中,该原OAM模态为切换之前网络设备所采用的OAM模态。
以及,在本公开的一个实施例之中,上述的基于时间间隔切换OAM模态的方法可以包括:
在第三时间段内,基于特定方式与中继设备和/或终端设备进行通信;其中,第三时间段为:第四时刻至第五时刻,第四时刻为中继设备和/或终端设备接收到指示信息的时刻,第五时刻为第四时刻与所述时间间隔之和;以及,该特定方式由协议约定或网络设备配置,该特定方式可以包括以下任一种:
最近一次使用的数据信道对应的OAM模态;
控制信道对应的OAM模态
指定的OAM模态;其中,该指定的OAM模态可以为基站与中继设备和/或终端设备提前约定的,或者,该指定的OAM模态可以由基站提前配置至中继设备和/或终端设备的。
在第四时间段内,基于目标OAM模态与所述中继设备和/或终端设备进行通信,其中,第四时间段为:第五时刻至第六时刻,所述第六时刻为中继设备和/或终端设备接收到新的指示信息的时刻。
其中,在本公开的一个实施例之中,上述第四时刻、第五时刻、第六时刻可以包括绝对时刻、OFDM符号序号、时隙序号、子帧序号中的任一种。
以及,需要说明的是,在本公开的一个实施例之中,响应于第四时刻、第五时刻、第六时刻包括OFDM符号序号、时隙序号、子帧序号中的任一种,该第四时刻、第五时刻、第六时刻对应的OFDM符号序号或时隙序号或子帧序号可以是以无线帧的发送定时或接收定时为参考基准确定。
具体的,无线帧的发送帧和接收帧均为10ms,10ms=10子帧,以子载波带宽为15千赫兹(KHz)为例,1子帧=1时隙=14个OFDM符号,因此一个无线帧有140个OFDM符号。则当基于无线帧的发送定时或接收定时为参考基准确定OFDM符号时,具体确定出的OFDM符号为:第几个子帧的第几个时隙上的第几个OFDM符号。当基于无线帧的发送定时或接收定时为参考基准确定时隙序号时,具体确定出的时隙序号为:第几个子帧的第几个时隙。当基于无线帧的发送定时或接收定时为参考基准确定子帧序号时,具体确定出的时隙序号为:第几个子帧。
综上所述,本公开实施例提供的OAM模态切换方法之中,中继设备和/或终端设备会确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,在接收到网络设备发送的目标OAM模态的指示信息时,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,中继设备和/或终端设备确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时网络设备也会基于时间间隔来进行OAM模态切换,从而可以避免网络设备侧的切换与中继设备和/或终端设备侧的切换之间存在切换时延,确保了OAM切换的稳定性。
图11为本公开实施例所提供的一种OAM模态切换方法的流程示意图,该方法由中继设备和/或终端设备执行,如图11所示,该OAM模态切换方法可以包括以下步骤:
步骤1101、确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔。
步骤1102、接收网络设备发送的目标OAM模态的指示信息。
其中,关于步骤1101-1102的详细介绍可以参考上述实施例描述。
步骤1103、响应于所述目标OAM模态与原OAM模态相同,则不切换OAM模态。
在本公开的一个实施例之中,该原OAM模态为切换之前网络设备所采用的OAM模态。
综上所述,本公开实施例提供的OAM模态切换方法之中,中继设备和/或终端设备会确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,在接收到网络设备发送的目标OAM模态的指示信息时,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,中继设备和/或终端设备确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态 时会考虑到该时间间隔,同时网络设备也会基于时间间隔来进行OAM模态切换,从而可以避免网络设备侧的切换与中继设备和/或终端设备侧的切换之间存在切换时延,确保了OAM切换的稳定性。
图12为本公开实施例所提供的一种通信装置的结构示意图,如图12所示,装置可以包括:
处理模块,用于确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
所述处理模块,还用于确定中继设备和/或终端设备所要切换的目标OAM模态;
收发模块,用于向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息;
所述处理模块,还用于基于所述时间间隔切换OAM模态。
综上所述,在本公开实施例提供的通信装置之中,网络设备会确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,会确定出中继设备和/或终端设备所要切换的目标OAM模态;并向中继设备和/或终端设备发送目标OAM模态的指示信息;最后,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,网络设备确定出中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时中继设备和/或终端设备在切换OAM模态时也会考虑到该时间间隔,从而可以使得网络设备与中继设备和/或终端设备能够在相同或相近时刻进行OAM切换,减少了切换时延,避免了由于终端设备的切换时延导致的中继设备和/或终端设备与网络设备模态不同步,确保了OAM切换的稳定性。
可选的,在本公开的一个实施例之中,所述时间间隔为N个时间单元,N为正整数,所述时间单位为绝对时间单元、正交频分复用技术OFDM符号数目、时隙数目、子帧数目中的任一种。
可选的,在本公开的一个实施例之中,所述处理模块用于以下至少一种:
获取中继设备和/或终端设备上报的所述时间间隔;
基于协议约定确定所述中继设备和/或终端设备对应的所述时间间隔。
可选的,在本公开的一个实施例之中,所述目标OAM模态为包括至少一种OAM模态的OAM集合。
可选的,在本公开的一个实施例之中,所述收发模块用于以下至少一种:
通过下行控制信息DCI信令向所述中继设备和/或终端设备发送所述指示信息;
通过无线资源控制RRC信令向所述中继设备和/或终端设备发送所述指示信息;
通过媒体介入控制-控制单元MAC-CE信令向所述中继设备和/或终端设备发送所述指示信息。
可选的,在本公开的一个实施例之中,所述收发模块用于以下至少一种:
向所述中继设备和/或终端设备发送用于分别指示上下行信道对应的目标OAM模态的不同的指示信息;
向所述中继设备和/或终端设备发送用于统一指示上下行信道对应的目标OAM模态的指示信息。
可选的,在本公开的一个实施例之中,所述处理模块用于:
响应于所述目标OAM模态与原OAM模态相同,则不切换所述OAM模态;
响应于所述目标OAM模态与原OAM模态不同,则执行以下操作:
在第一时间段内,基于特定方式与所述中继设备和/或终端设备进行通信;其中,所述第一时间段为:第一时刻至第二时刻,所述第一时刻为网络设备发送所述指示信息的时刻,所述第二时刻为第一时刻与所述时间间隔之和;所述特定方式包括以下任一种:
最近一次使用的数据信道对应的OAM模态;
控制信道对应的OAM模态
指定的OAM模态;
在第二时间段内,基于所述目标OAM模态与所述中继设备和/或终端设备进行通信,其中,所述第二时间段为:第二时刻至第三时刻,所述第三时刻为网络设备发送新的指示信息的时刻。
可选的,在本公开的一个实施例之中,所述第一时刻、第二时刻、第三时刻包括绝对时刻、OFDM符号序号、时隙序号、子帧序号中的任一种;
其中,响应于所述第一时刻、第二时刻、第三时刻包括OFDM符号序号、时隙序号、子帧序号中 的任一种,所述第一时刻、第二时刻、第三时刻对应的OFDM符号序号或时隙序号或子帧序号以无线帧的发送定时或接收定时为参考基准确定。
可选的,在本公开的一个实施例之中,所述特定方式由协议约定或所述网络设备自主确定。
可选的,在本公开的一个实施例之中,响应于所述特定方式由所述网络设备自主确定,所述装置还用于:
向所述中继设备和/或终端设备配置所述特定方式。
图13为本公开实施例所提供的一种通信装置的结构示意图,如图13所示,装置可以包括:
处理模块,用于确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
收发模块,用于接收网络设备发送的目标OAM模态的指示信息;
所述处理模块,还用于基于所述时间间隔切换OAM模态。
综上所述,在本公开实施例提供的通信装置之中,中继设备和/或终端设备会确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔;之后,在接收到网络设备发送的目标OAM模态的指示信息时,会基于时间间隔切换OAM模态。由此可知,本公开实施例之中,中继设备和/或终端设备确定出其对于OAM模态的指示信息完成解调译码所需的时间间隔之后,在后续切换OAM模态时会考虑到该时间间隔,同时网络设备也会基于时间间隔来进行OAM模态切换,从而可以避免网络设备侧的切换与中继设备和/或终端设备侧的切换之间存在切换时延,确保了OAM切换的稳定性。
可选的,在本公开的一个实施例之中,所述时间间隔为N个时间单元,N为正整数,所述时间单位为绝对时间单元、OFDM符号数目、时隙数目、子帧数目中的任一种。
可选的,在本公开的一个实施例之中,所述处理模块用于以下至少一种:
基于协议约定确定所述中继设备和/或终端设备对应的所述时间间隔;
自主确定所述中继设备和/或终端设备对应的时间间隔。
可选的,在本公开的一个实施例之中,所述装置还用于:
向所述网络设备上报所述时间间隔。
可选的,在本公开的一个实施例之中,所述目标OAM模态为包括至少一种OAM模态的OAM集合。
可选的,在本公开的一个实施例之中,所述收发模块用于以下至少一种:
接收网络设备通过DCI信令发送的所述指示信息;
接收网络设备通过RRC信令发送的所述指示信息;
接收网络设备通过MAC-CE信令发送的所述指示信息。
可选的,在本公开的一个实施例之中,所述收发模块用于以下至少一种:
接收网络设备发送的用于分别指示上下行信道对应的目标OAM模态的不同的指示信息;
接收网络设备发送的用于统一指示上下行信道对应的目标OAM模态的指示信息。
可选的,在本公开的一个实施例之中,所述处理模块用于:
响应于所述目标OAM模态与原OAM模态相同,则不切换所述OAM模态;
响应于所述目标OAM模态与原OAM模态不同,则执行以下操作:
在第三时间段内,基于特定方式与所述中继设备和/或终端设备进行通信;其中,所述第三时间段为:第四时刻至第五时刻,所述第四时刻为中继设备和/或终端设备接收到所述指示信息的时刻,所述第五时刻为第四时刻与所述时间间隔之和;所述特定方式包括以下任一种:
最近一次使用的数据信道对应的OAM模态;
控制信道对应的OAM模态
指定的OAM模态;
在第四时间段内,基于所述目标OAM模态与所述中继设备和/或终端设备进行通信,其中,所述第四时间段为:第五时刻至第六时刻,所述第六时刻为中继设备和/或终端设备接收到新的指示信息的时刻。
可选的,在本公开的一个实施例之中,所述第四时刻、第五时刻、第六时刻包括绝对时刻、OFDM符号序号、时隙序号、子帧序号中的任一种;
其中,响应于所述第四时刻、第五时刻、第六时刻包括OFDM符号序号、时隙序号、子帧序号中的任一种,所述第四时刻、第五时刻、第六时刻对应的OFDM符号序号或时隙序号或子帧序号以无线帧的发送定时或接收定时为参考基准确定。
可选的,在本公开的一个实施例之中,所述特定方式由协议约定或所述网络设备配置。
请参见图14,图14是本申请实施例提供的一种通信装置1400的结构示意图。通信装置1400可以是网络设备,也可以是终端设备,也可以是支持网络设备实现上述方法的芯片、芯片***、或处理器等,还可以是支持终端设备实现上述方法的芯片、芯片***、或处理器等。该装置可用于实现上述方法实施例中描述的方法,具体可以参见上述方法实施例中的说明。
通信装置1400可以包括一个或多个处理器1401。处理器1401可以是通用处理器或者专用处理器等。例如可以是基带处理器或中央处理器。基带处理器可以用于对通信协议以及通信数据进行处理,中央处理器可以用于对通信装置(如,基站、基带芯片,终端设备、终端设备芯片,DU或CU等)进行控制,执行计算机程序,处理计算机程序的数据。
可选的,通信装置1400中还可以包括一个或多个存储器1402,其上可以存有计算机程序1404,处理器1401执行所述计算机程序1404,以使得通信装置1400执行上述方法实施例中描述的方法。可选的,所述存储器1402中还可以存储有数据。通信装置1400和存储器1402可以单独设置,也可以集成在一起。
可选的,通信装置1400还可以包括收发器1405、天线1406。收发器1405可以称为收发单元、收发机、或收发电路等,用于实现收发功能。收发器1405可以包括接收器和发送器,接收器可以称为接收机或接收电路等,用于实现接收功能;发送器可以称为发送机或发送电路等,用于实现发送功能。
可选的,通信装置1400中还可以包括一个或多个接口电路1407。接口电路1407用于接收代码指令并传输至处理器1401。处理器1401运行所述代码指令以使通信装置1400执行上述方法实施例中描述的方法。
在一种实现方式中,处理器1401中可以包括用于实现接收和发送功能的收发器。例如该收发器可以是收发电路,或者是接口,或者是接口电路。用于实现接收和发送功能的收发电路、接口或接口电路可以是分开的,也可以集成在一起。上述收发电路、接口或接口电路可以用于代码/数据的读写,或者,上述收发电路、接口或接口电路可以用于信号的传输或传递。
在一种实现方式中,处理器1401可以存有计算机程序1403,计算机程序1403在处理器1401上运行,可使得通信装置1400执行上述方法实施例中描述的方法。计算机程序1403可能固化在处理器1401中,该种情况下,处理器1401可能由硬件实现。
在一种实现方式中,通信装置1400可以包括电路,所述电路可以实现前述方法实施例中发送或接收或者通信的功能。本申请中描述的处理器和收发器可实现在集成电路(integrated circuit,IC)、模拟IC、射频集成电路RFIC、混合信号IC、专用集成电路(application specific integrated circuit,ASIC)、印刷电路板(printed circuit board,PCB)、电子设备等上。该处理器和收发器也可以用各种IC工艺技术来制造,例如互补金属氧化物半导体(complementary metal oxide semiconductor,CMOS)、N型金属氧化物半导体(nMetal-oxide-semiconductor,NMOS)、P型金属氧化物半导体(positive channel metal oxide semiconductor,PMOS)、双极结型晶体管(bipolar junction transistor,BJT)、双极CMOS(BiCMOS)、硅锗(SiGe)、砷化镓(GaAs)等。
以上实施例描述中的通信装置可以是网络设备或者终端设备,但本申请中描述的通信装置的范围并不限于此,而且通信装置的结构可以不受图14的限制。通信装置可以是独立的设备或者可以是较大设备的一部分。例如所述通信装置可以是:
(1)独立的集成电路IC,或芯片,或,芯片***或子***;
(2)具有一个或多个IC的集合,可选的,该IC集合也可以包括用于存储数据,计算机程序的存储部件;
(3)ASIC,例如调制解调器(Modem);
(4)可嵌入在其他设备内的模块;
(5)接收机、终端设备、智能终端设备、蜂窝电话、无线设备、手持机、移动单元、车载设备、网络设备、云设备、人工智能设备等等;
(6)其他等等。
对于通信装置可以是芯片或芯片***的情况,可参见图15所示的芯片的结构示意图。图15所示的芯片包括处理器1501和接口1502。其中,处理器1501的数量可以是一个或多个,接口1502的数量可以是多个。
可选的,芯片还包括存储器1503,存储器1503用于存储必要的计算机程序和数据。
本领域技术人员还可以了解到本申请实施例列出的各种说明性逻辑块(illustrative logical block)和步骤(step)可以通过电子硬件、电脑软件,或两者的结合进行实现。这样的功能是通过硬件还是软件来实现取决于特定的应用和整个***的设计要求。本领域技术人员可以对于每种特定的应用,可以使用各种方法实现所述的功能,但这种实现不应被理解为超出本申请实施例保护的范围。
本申请还提供一种可读存储介质,其上存储有指令,该指令被计算机执行时实现上述任一方法实施例的功能。
本申请还提供一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例的功能。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序。在计算机上加载和执行所述计算机程序时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机程序可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
本领域普通技术人员可以理解:本申请中涉及的第一、第二等各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围,也表示先后顺序。
本申请中的至少一个还可以描述为一个或多个,多个可以是两个、三个、四个或者更多个,本申请不做限制。在本申请实施例中,对于一种技术特征,通过“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”等区分该种技术特征中的技术特征,该“第一”、“第二”、“第三”、“A”、“B”、“C”和“D”描述的技术特征间无先后顺序或者大小顺序。
本申请中各表所示的对应关系可以被配置,也可以是预定义的。各表中的信息的取值仅仅是举例,可以配置为其他值,本申请并不限定。在配置信息与各参数的对应关系时,并不一定要求必须配置各表中示意出的所有对应关系。例如,本申请中的表格中,某些行示出的对应关系也可以不配置。又例如,可以基于上述表格做适当的变形调整,例如,拆分,合并等等。上述各表中标题示出参数的名称也可以采用通信装置可理解的其他名称,其参数的取值或表示方式也可以通信装置可理解的其他取值或表示方式。上述各表在实现时,也可以采用其他的数据结构,例如可以采用数组、队列、容器、栈、线性表、指针、链表、树、图、结构体、类、堆、散列表或哈希表等。
本申请中的预定义可以理解为定义、预先定义、存储、预存储、预协商、预配置、固化、或预烧制。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实 现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的***、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (25)

  1. 一种轨道角动量OAM模态切换方法,其特征在于,所述方法被网络设备执行,所述方法包括:
    确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
    确定中继设备和/或终端设备所要切换的目标OAM模态;
    向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息;
    基于所述时间间隔切换OAM模态。
  2. 如权利要求1所述的方法,其特征在于,所述时间间隔为N个时间单元,N为正整数,所述时间单位为绝对时间单元、正交频分复用技术OFDM符号数目、时隙数目、子帧数目中的任一种。
  3. 如权利要求1所述的方法,其特征在于,所述确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔,包括以下至少一种:
    获取中继设备和/或终端设备上报的所述时间间隔;
    基于协议约定确定所述中继设备和/或终端设备对应的所述时间间隔。
  4. 如权利要求1所述的方法,其特征在于,所述目标OAM模态为包括至少一种OAM模态的OAM集合。
  5. 如权利要求1所述的方法,其特征在于,所述向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息,包括以下至少一种:
    通过下行控制信息DCI信令向所述中继设备和/或终端设备发送所述指示信息;
    通过无线资源控制RRC信令向所述中继设备和/或终端设备发送所述指示信息;
    通过媒体介入控制-控制单元MAC-CE信令向所述中继设备和/或终端设备发送所述指示信息。
  6. 如权利要求1所述的方法,其特征在于,所述向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息,包括以下至少一种:
    向所述中继设备和/或终端设备发送用于分别指示上下行信道对应的目标OAM模态的不同的指示信息;
    向所述中继设备和/或终端设备发送用于统一指示上下行信道对应的目标OAM模态的指示信息。
  7. 如权利要求1或4所述的方法,其特征在于,所述基于所述时间间隔切换OAM模态,包括:
    响应于所述目标OAM模态与原OAM模态相同,则不切换所述OAM模态;
    响应于所述目标OAM模态与原OAM模态不同,则执行以下操作:
    在第一时间段内,基于特定方式与所述中继设备和/或终端设备进行通信;其中,所述第一时间段为:第一时刻至第二时刻,所述第一时刻为网络设备发送所述指示信息的时刻,所述第二时刻为第一时刻与所述时间间隔之和;所述特定方式包括以下任一种:
    最近一次使用的数据信道对应的OAM模态;
    控制信道对应的OAM模态
    指定的OAM模态;
    在第二时间段内,基于所述目标OAM模态与所述中继设备和/或终端设备进行通信,其中,所述第二时间段为:第二时刻至第三时刻,所述第三时刻为网络设备发送新的指示信息的时刻。
  8. 如权利要求7所述的方法,其特征在于,所述第一时刻、第二时刻、第三时刻包括绝对时刻、OFDM符号序号、时隙序号、子帧序号中的任一种;
    其中,响应于所述第一时刻、第二时刻、第三时刻包括OFDM符号序号、时隙序号、子帧序号中的任一种,所述第一时刻、第二时刻、第三时刻对应的OFDM符号序号或时隙序号或子帧序号以无线帧的发送定时或接收定时为参考基准确定。
  9. 如权利要求7所述的方法,其特征在于,所述特定方式由协议约定或所述网络设备自主确定。
  10. 如权利要求9所述的方法,其特征在于,响应于所述特定方式由所述网络设备自主确定,所述方法还包括:
    向所述中继设备和/或终端设备配置所述特定方式。
  11. 一种轨道角动量OAM模态切换方法,其特征在于,所述方法被中继设备和/或终端设备执行,所述方法包括:
    确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
    接收网络设备发送的目标OAM模态的指示信息;
    基于所述时间间隔切换OAM模态。
  12. 如权利要求11所述的方法,其特征在于,所述时间间隔为N个时间单元,N为正整数,所述时间单位为绝对时间单元、OFDM符号数目、时隙数目、子帧数目中的任一种。
  13. 如权利要求11所述的方法,其特征在于,所述确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔,包括以下至少一种:
    基于协议约定确定所述中继设备和/或终端设备对应的所述时间间隔;
    自主确定所述中继设备和/或终端设备对应的时间间隔。
  14. 如权利要求11所述的方法,其特征在于,所述方法还包括:
    向所述网络设备上报所述时间间隔。
  15. 如权利要求11所述的方法,其特征在于,所述目标OAM模态为包括至少一种OAM模态的OAM集合。
  16. 如权利要求11或15所述的方法,其特征在于,所述接收网络设备发送的目标OAM模态的指示信息,包括以下至少一种:
    接收网络设备通过DCI信令发送的所述指示信息;
    接收网络设备通过RRC信令发送的所述指示信息;
    接收网络设备通过MAC-CE信令发送的所述指示信息。
  17. 如权利要求11所述的方法,其特征在于,所述接收网络设备发送的目标OAM模态的指示信息,包括以下至少一种:
    接收网络设备发送的用于分别指示上下行信道对应的目标OAM模态的不同的指示信息;
    接收网络设备发送的用于统一指示上下行信道对应的目标OAM模态的指示信息。
  18. 如权利要求11所述的方法,其特征在于,所述基于所述时间间隔切换OAM模态,包括:
    响应于所述目标OAM模态与原OAM模态相同,则不切换所述OAM模态;
    响应于所述目标OAM模态与原OAM模态不同,则执行以下操作:
    在第三时间段内,基于特定方式与所述中继设备和/或终端设备进行通信;其中,所述第三时间段为:第四时刻至第五时刻,所述第四时刻为中继设备和/或终端设备接收到所述指示信息的时刻,所述第五时刻为第四时刻与所述时间间隔之和;所述特定方式包括以下任一种:
    最近一次使用的数据信道对应的OAM模态;
    控制信道对应的OAM模态
    指定的OAM模态;
    在第四时间段内,基于所述目标OAM模态与所述中继设备和/或终端设备进行通信,其中,所述第四时间段为:第五时刻至第六时刻,所述第六时刻为中继设备和/或终端设备接收到新的指示信息的时刻。
  19. 如权利要求18所述的方法,其特征在于,所述第四时刻、第五时刻、第六时刻包括绝对时刻、OFDM符号序号、时隙序号、子帧序号中的任一种;
    其中,响应于所述第四时刻、第五时刻、第六时刻包括OFDM符号序号、时隙序号、子帧序号中的任一种,所述第四时刻、第五时刻、第六时刻对应的OFDM符号序号或时隙序号或子帧序号以无线帧的发送定时或接收定时为参考基准确定。
  20. 如权利要求18所述的方法,其特征在于,所述特定方式由协议约定或所述网络设备配置。
  21. 一种通信装置,其特征在于,所述装置被配置于目标节点中,包括:
    处理模块,用于确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间 间隔;
    所述处理模块,还用于确定中继设备和/或终端设备所要切换的目标OAM模态;
    收发模块,用于向所述中继设备和/或终端设备发送所述目标OAM模态的指示信息;
    所述处理模块,还用于基于所述时间间隔切换OAM模态。
  22. 一种通信装置,其特征在于,所述装置被配置于中继UE中,包括:
    处理模块,用于确定中继设备和/或终端设备对于OAM模态的指示信息完成解调译码所需的时间间隔;
    收发模块,用于接收网络设备发送的目标OAM模态的指示信息;
    所述处理模块,还用于基于所述时间间隔切换OAM模态。
  23. 一种通信装置,其特征在于,所述装置包括处理器和存储器,其中,所述存储器中存储有计算机程序,所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求1至10中任一项所述的方法,或所述处理器执行所述存储器中存储的计算机程序,以使所述装置执行如权利要求11至20所述的方法。
  24. 一种通信装置,其特征在于,包括:处理器和接口电路,其中
    所述接口电路,用于接收代码指令并传输至所述处理器;
    所述处理器,用于运行所述代码指令以执行如权利要求1至10中任一项所述的方法,或用于运行所述代码指令以执行如权利要求11至20所述的方法。
  25. 一种计算机可读存储介质,用于存储有指令,当所述指令被执行时,使如权利要求1至10中任一项所述的方法被实现,或当所述指令被执行时,使如权利要求11至12所述的方法被实现。
PCT/CN2022/106121 2022-07-15 2022-07-15 一种轨道角动量oam模态切换方法、装置、设备及存储介质 WO2024011637A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106121 WO2024011637A1 (zh) 2022-07-15 2022-07-15 一种轨道角动量oam模态切换方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/106121 WO2024011637A1 (zh) 2022-07-15 2022-07-15 一种轨道角动量oam模态切换方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2024011637A1 true WO2024011637A1 (zh) 2024-01-18

Family

ID=89535292

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/106121 WO2024011637A1 (zh) 2022-07-15 2022-07-15 一种轨道角动量oam模态切换方法、装置、设备及存储介质

Country Status (1)

Country Link
WO (1) WO2024011637A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180167703A1 (en) * 2016-12-09 2018-06-14 University Of Southern California Data encoding and channel hopping using orbital angular momentum modes
CN112887989A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 基于oam的通信方法和相关设备及存储介质
CN113498143A (zh) * 2020-04-01 2021-10-12 华为技术有限公司 网络的接入方法和***、通信装置、网络侧设备
CN114205005A (zh) * 2020-09-02 2022-03-18 ***通信有限公司研究院 基于轨道角动量的发送、接收方法及装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180167703A1 (en) * 2016-12-09 2018-06-14 University Of Southern California Data encoding and channel hopping using orbital angular momentum modes
CN112887989A (zh) * 2019-11-30 2021-06-01 华为技术有限公司 基于oam的通信方法和相关设备及存储介质
CN113498143A (zh) * 2020-04-01 2021-10-12 华为技术有限公司 网络的接入方法和***、通信装置、网络侧设备
CN114205005A (zh) * 2020-09-02 2022-03-18 ***通信有限公司研究院 基于轨道角动量的发送、接收方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
NTT DOCOMO, INC.: "Status and Way forward on CU-DU LLS SI", 3GPP DRAFT; R3-174953, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG3, no. Reno, NV, USA; 20171127 - 20171201, 30 November 2017 (2017-11-30), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051364093 *

Similar Documents

Publication Publication Date Title
WO2023028962A1 (zh) 一种信息传输方法和装置
US20240188054A1 (en) Method and device for time-domain resource allocation
WO2022266957A1 (zh) 一种跨载波的波束使用时间的确定方法及其装置
EP4322443A1 (en) Frequency hopping method and apparatus
CN115191145B (zh) 一种多prach传输方法及其装置
WO2024050776A1 (zh) 一种信息确定方法/装置/设备及存储介质
WO2024000203A1 (zh) 一种传输配置指示tci状态使用时间的确定方法及其装置
WO2023164951A1 (zh) 一种智能中继时分复用图样的确定方法及其装置
WO2023019410A1 (zh) 一种传输下行控制信息dci的方法及其装置
WO2024011637A1 (zh) 一种轨道角动量oam模态切换方法、装置、设备及存储介质
WO2024086979A1 (zh) 一种传输配置指示tci状态的确定方法及装置
WO2024031721A1 (zh) 一种调度信令的检测方法及其装置
WO2023050091A1 (zh) 一种上行波束的测量方法及其装置
CN114008964B (zh) Mbs业务中sps对应hpn的确定方法及其装置
WO2023206572A1 (zh) 小区状态配置方法及其装置
WO2024092822A1 (zh) 指示方法、装置、设备及芯片***
WO2023173257A1 (zh) 一种请求***信息的方法及其装置
WO2022261915A1 (zh) 一种通信方法及其装置
WO2023206180A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023044620A1 (zh) 一种传输配置指示状态的确定方法及其装置
WO2023206179A1 (zh) 一种确定传输配置指示状态的方法及装置
WO2023155206A1 (zh) 联合信道估计的最大持续时间的上报方法及其装置
WO2022266861A1 (zh) 寻呼处理方法、通信装置和存储介质
WO2023283782A1 (zh) 一种信道状态反馈的方法及其装置
WO2024000208A1 (zh) 一种定时提前报告tar的触发方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22950755

Country of ref document: EP

Kind code of ref document: A1