WO2021203804A1 - 自加热气体传感器、气敏材料及其制备方法和应用 - Google Patents

自加热气体传感器、气敏材料及其制备方法和应用 Download PDF

Info

Publication number
WO2021203804A1
WO2021203804A1 PCT/CN2021/073734 CN2021073734W WO2021203804A1 WO 2021203804 A1 WO2021203804 A1 WO 2021203804A1 CN 2021073734 W CN2021073734 W CN 2021073734W WO 2021203804 A1 WO2021203804 A1 WO 2021203804A1
Authority
WO
WIPO (PCT)
Prior art keywords
metal oxide
oxide
carbon material
gas
tungsten
Prior art date
Application number
PCT/CN2021/073734
Other languages
English (en)
French (fr)
Inventor
安飞
孙冰
李娜
王林
石宁
徐伟
张树才
王浩志
王世强
冯俊杰
赵辰阳
Original Assignee
中国石油化工股份有限公司
中国石油化工股份有限公司青岛安全工程研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国石油化工股份有限公司, 中国石油化工股份有限公司青岛安全工程研究院 filed Critical 中国石油化工股份有限公司
Priority to JP2022562099A priority Critical patent/JP7445016B2/ja
Priority to US17/906,232 priority patent/US20230124633A1/en
Priority to EP21785231.8A priority patent/EP4112547A4/en
Publication of WO2021203804A1 publication Critical patent/WO2021203804A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • G01N27/127Composition of the body, e.g. the composition of its sensitive layer comprising nanoparticles
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/184Preparation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y30/00Nanotechnology for materials or surface science, e.g. nanocomposites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/152Fullerenes
    • C01B32/156After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/158Carbon nanotubes
    • C01B32/168After-treatment
    • C01B32/174Derivatisation; Solubilisation; Dispersion in solvents
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B32/00Carbon; Compounds thereof
    • C01B32/15Nano-sized carbon materials
    • C01B32/182Graphene
    • C01B32/194After-treatment
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G15/00Compounds of gallium, indium or thallium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G19/00Compounds of tin
    • C01G19/02Oxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G3/00Compounds of copper
    • C01G3/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G39/00Compounds of molybdenum
    • C01G39/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G41/00Compounds of tungsten
    • C01G41/02Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/0018Mixed oxides or hydroxides
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/02Oxides; Hydroxides
    • C01G49/06Ferric oxide (Fe2O3)
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G9/00Compounds of zinc
    • C01G9/02Oxides; Hydroxides
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/125Composition of the body, e.g. the composition of its sensitive layer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/02Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
    • G01N27/04Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
    • G01N27/12Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
    • G01N27/128Microapparatus
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/0004Gaseous mixtures, e.g. polluted air
    • G01N33/0009General constructional details of gas analysers, e.g. portable test equipment
    • G01N33/0027General constructional details of gas analysers, e.g. portable test equipment concerning the detector
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y15/00Nanotechnology for interacting, sensing or actuating, e.g. quantum dots as markers in protein assays or molecular motors
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/50Solid solutions
    • C01P2002/52Solid solutions containing elements as dopants
    • C01P2002/54Solid solutions containing elements as dopants one element only
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2002/00Crystal-structural characteristics
    • C01P2002/70Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
    • C01P2002/77Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by unit-cell parameters, atom positions or structure diagrams
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/03Particle morphology depicted by an image obtained by SEM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/01Particle morphology depicted by an image
    • C01P2004/04Particle morphology depicted by an image obtained by TEM, STEM, STM or AFM
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/10Particle morphology extending in one dimension, e.g. needle-like
    • C01P2004/16Nanowires or nanorods, i.e. solid nanofibres with two nearly equal dimensions between 1-100 nanometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/20Particle morphology extending in two dimensions, e.g. plate-like
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/61Micrometer sized, i.e. from 1-100 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/60Particles characterised by their size
    • C01P2004/62Submicrometer sized, i.e. from 0.1-1 micrometer
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2006/00Physical properties of inorganic compounds
    • C01P2006/40Electric properties

Definitions

  • the invention relates to the field of materials, in particular to a gas-sensitive material, a preparation method and application thereof, and a self-heating gas sensor based on the Joule principle using the gas-sensitive material.
  • One of the effective ways to solve this problem is to prepare a gas sensor based on metal oxide nanomaterials.
  • Metal oxide nanomaterials not only reduce the amount of sensing materials and greatly reduce the cost, but also benefit from the small size effect of the nanomaterials themselves, and the gas sensitivity of the sensor is also improved.
  • gas sensors based on metal oxide nanomaterials need to be heated to 200-400°C to work normally. According to statistics, nearly 60% of the energy of the sensor is used to heat the sensing material, which not only increases the energy consumption, but also is not conducive to the miniaturization and long-term use of the sensor, and it also brings safety hazards. Therefore, how to prepare sensors with low energy consumption and excellent gas sensitivity has become one of the hotspots in the field of gas sensors in recent years.
  • the purpose of the present invention is to overcome the above-mentioned problems in the prior art, and provide a gas-sensitive material, a preparation method and application thereof, and a self-heating gas sensor based on the Joule principle using the gas-sensitive material.
  • the gas-sensitive material of the present invention has low electrical resistance, can respond to a variety of gases at a lower working temperature, does not require external heating, and only relies on the Joule heat of the measuring circuit to achieve self-heating, lower power consumption, and sensitivity higher.
  • the first aspect of the present invention provides a gas sensor for a self-heating gas sensor based on the Joule principle, wherein the gas sensor is a carbon material and a metal oxide composite.
  • the content of the carbon material in the carbon material metal oxide composite nano material is 0.5-20% by weight, the content of the metal oxide is 80-99.5% by weight, and the metal oxide contains tungsten oxide and One or more of tin oxide, iron oxide, titanium oxide, copper oxide, molybdenum oxide, and zinc oxide, wherein the metal oxide is formed on the carbon in the form of nanowires Material, and the nanowires are tungsten oxide doped nanowires.
  • the diameter of the nanowire is 10-100 nm, and the length is 500-10000 nm.
  • the metal oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO, MoO 3 and ZnO; more preferably, the metal oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO and MoO 3.
  • the content of WO 3 is preferably 60-99.5 wt%.
  • the nanowire is a tungsten trioxide doped nanowire.
  • the content of the carbon material in the carbon material metal oxide composite nanomaterial is 0.5-15 wt%, and the content of the metal oxide is 85-99.5 wt%.
  • the carbon material is one or more of graphene, carbon nanotube, fullerene, and carbon black.
  • a method for preparing a gas-sensitive material comprising: heat-treating a carbon material and a metal oxide and/or a metal oxide precursor under a microwave in the presence of an alcohol solvent Then, solid-liquid separation is performed to obtain a carbon material metal oxide composite nano material, wherein the metal oxide contains tungsten oxide and is selected from tin oxide, iron oxide, titanium oxide, copper oxide, and molybdenum oxide. And one or more of zinc oxide; the metal oxide precursor is alcohol soluble tungsten salt and selected from alcohol soluble tin salt, alcohol soluble iron salt, alcohol soluble titanium salt, alcohol soluble copper salt, alcohol soluble molybdenum One or more of salt and alcohol-soluble zinc salt.
  • the amount of the carbon material is 0.5-20% by weight, and the amount of the metal oxide is 80-99.5% by weight;
  • the total weight of the carbon material and the metal oxide precursor based on the metal oxide, the amount of the carbon material is 0.5-20% by weight, and the amount of the metal oxide precursor based on the metal oxide It is 80-99.5 wt%.
  • the carbon material is one or more of graphene, carbon nanotube, fullerene, and carbon black.
  • the metal oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO, MoO 3 and ZnO; more preferably, the metal oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO and MoO 3.
  • the metal oxide precursor is tungsten chloride and one or more selected from tin chloride, iron chloride, titanium chloride, copper chloride, molybdenum chloride and zinc chloride; more preferably Preferably, the metal oxide precursor is tungsten chloride and at least one selected from tin chloride, iron chloride, titanium chloride, copper chloride and molybdenum chloride.
  • the content of the tungsten oxide is preferably 60-99.5 wt%.
  • the amount of alcohol-soluble tungsten salt in the metal oxide precursor is 60-99.5 wt%.
  • the alcohol solvent is ethanol.
  • the amount of the solvent is 500 to 100,000 parts by weight relative to 100 parts by weight of the total weight of the carbon material, the metal oxide, and the metal oxide precursor.
  • the conditions of the heat treatment include: a microwave power of 200-1800 W, a heat treatment temperature of 160-220° C., and a heat treatment time of 10-240 minutes.
  • the method further includes the step of drying the separated carbon material metal oxide composite nanomaterial.
  • the method further includes the step of subjecting the carbon material metal oxide composite nanomaterial and the reducing agent to a reduction treatment.
  • the mass ratio of the carbon material metal oxide composite nano material to the reducing agent in terms of carbon element is 1:0.1-20.
  • the reducing agent is sodium borohydride, lithium aluminum hydride, hydrogen iodide, hydrogen bromide, thiourea, ethyl mercaptan, sodium persulfate, hydrazine hydrate, pyrrole, urea, ethanol, ascorbic acid, glucose, aluminum- One or more of hydrochloric acid, iron-hydrochloric acid, zinc-sodium hydroxide, zinc-ammonia, glycine, lysine, and green tea.
  • the conditions of the reduction treatment include: the temperature of the reduction treatment is 200-500° C., and the time of the reduction treatment is 0.1-12 h.
  • a self-heating gas sensor based on the Joule principle wherein the self-heating gas sensor includes a chip carrier and a gas-sensitive material carried on the chip carrier, and the gas-sensitive material is of the present invention The gas-sensitive material used for the self-heating gas sensor based on the Joule principle.
  • the gas-sensitive material is loaded on the chip carrier by a drip method, an air spray method, a micro spray method, a deposition method or a coating method.
  • the chip carrier is a ceramic tube and/or a MEMS chip.
  • the application of the gas sensitive material of the present invention in a self-heating gas sensor based on the Joule principle is provided.
  • the gas-sensing material of the present invention has low resistance, can respond to a variety of gases at a relatively low working temperature (room temperature to 200°C), does not require external heating, and only relies on the Joule heat of the measuring circuit to achieve self-heating, and Lower power consumption.
  • the gas-sensitive material of the present invention requires a relatively low measurement voltage, and only needs to be self-heated to a temperature of 200°C at 1-20V.
  • the sensitivity of the gas-sensitive material of the present invention is higher.
  • the response recovery speed of the gas-sensitive material of the present invention is less than 20s, and the response recovery speed is extremely fast.
  • the gas-sensitive material of the present invention is a broad-spectrum gas-sensitive material that can respond to various gases such as hydrogen sulfide, toluene, carbon monoxide, etc., and particularly has an excellent response recovery speed to hydrogen sulfide.
  • Fig. 1 is a schematic diagram of a self-heating power test using a MEMS chip in Test Example 1.
  • FIG. 2 is a scanning electron microscope image of the sheet-shaped nanomaterial obtained in Example 1.
  • FIG. 2 is a scanning electron microscope image of the sheet-shaped nanomaterial obtained in Example 1.
  • FIG. 3 is a TEM image of the nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 1.
  • FIG. 4 is a TEM image of nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 3.
  • FIG. 4 is a TEM image of nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 3.
  • FIG. 5 is a TEM image of nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 4.
  • FIG. 6 is a TEM image of the nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 5.
  • FIG. 7 is a scanning electron microscope image of the nanomaterial obtained in Comparative Example 8.
  • FIG. 7 is a scanning electron microscope image of the nanomaterial obtained in Comparative Example 8.
  • the first aspect of the present invention provides a gas-sensitive material, wherein the gas-sensitive material is a carbon material metal oxide composite nano material formed by a composite of a carbon material and a metal oxide, and the carbon material metal oxide composite nano material is The content of the carbon material is 0.5-20% by weight, and the content of the metal oxide is 80-99.5% by weight.
  • the metal oxide contains tungsten oxide and is selected from tin oxide, iron oxide, titanium oxide, and copper oxide.
  • molybdenum oxide, molybdenum oxide, and zinc oxide wherein the metal oxide is formed on the carbon material in the form of nanowires, and the nanowires are tungsten oxide doped nanowires .
  • tungsten oxide doped nanowires refers to: one or more doped materials selected from tin oxide, iron oxide, titanium oxide, copper oxide, molybdenum oxide and zinc oxide Structure doped into tungsten oxide nanowires.
  • tin oxide for example, stannous oxide, tin dioxide, etc.; preferably tin dioxide.
  • iron oxide examples include: diiron trioxide, ferrous oxide, triiron tetroxide, etc.; preferably, diiron trioxide.
  • titanium oxide examples include titanium dioxide, titanium suboxide, and the like; preferably titanium dioxide.
  • copper oxide examples include copper oxide, cuprous oxide, and the like; copper oxide is preferred.
  • molybdenum oxide examples include molybdenum dioxide, molybdenum trioxide, etc.; preferably, molybdenum trioxide.
  • zinc oxide examples include zinc oxide, zinc peroxide, and the like; zinc oxide is preferred.
  • the inventors of the present invention have also discovered through in-depth research that when the metal oxide is formed on the carbon material in the form of nanowires, and the metal oxide is a structure of tungsten oxide doped nanowires, it can Significantly improve the gas sensitivity.
  • the diameter of the nanowire is preferably 10-100 nm, more preferably 15-80 nm, still more preferably 15-50 nm, and still more preferably 18-40 nm.
  • the length of the nanowire is preferably 500-10000 nm, more preferably 500-8000 nm, still more preferably 550-7000 nm, and still more preferably 550-5000 nm.
  • the metal oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO, MoO 3 and ZnO; more preferably, the metal The oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO, and MoO 3.
  • the gas sensitivity performance can be further improved through the above combination.
  • the content of the tungsten oxide is preferably 60-99.5 wt%, more preferably 70-99.5 weight%.
  • the tungsten oxide is preferably tungsten trioxide.
  • the gas-sensitive material can heat the gas-sensitive material to 200° C. only under the measuring voltage, the measuring voltage is low, and the power consumption is low. Specifically, when the gas-sensitive material is self-heated from 25°C to 200°C under the measuring voltage, its power consumption is less than 9000uW; preferably, the gas-sensitive material is only under the measuring voltage and self-heating from 25°C to 25°C.
  • its power consumption is preferably 8800uW or less, more preferably 8500uW or less, still more preferably 8000uW or less, still more preferably 7000uW or less, still more preferably 6000uW or less, still more preferably 5000uW or less, still more It is preferably 4000 uW or less, and particularly preferably 3000 uW or less.
  • the power consumption is preferably 1000 uW or higher, more preferably 1500 uW or higher, still more preferably 1800 uW or higher, and still more preferably 2500 uW or higher.
  • its power consumption is preferably 2000uW or less, more preferably 1800uW or less, still more preferably 1600uW or less, still more preferably 1400uW or less, and still more preferably 1200uW
  • it is more preferably 1000 uW or less, and particularly preferably 800 uW or less.
  • the power consumption is preferably 180 uW or more, more preferably 200 uW or more, still more preferably 250 uW or more, and still more preferably 500 uW or more.
  • its power consumption is preferably 120uW or less, more preferably 110uW or less, still more preferably 90uW or less, still more preferably 85uW or less, particularly preferably 70uW or less .
  • the power consumption is preferably 10 uW or more, more preferably 15 uW or more, still more preferably 20 uW or more, and still more preferably 50 uW or more.
  • the measurement voltage can be, for example, 1-20V, specifically, 1V, 2V, 3V, 4V, 5V, 6V, 7V, 8V, 9V, 10V, 11V, 12V, 13V, 14V, 15V, 16V, 17V, 18V, 19V or 20V etc.
  • the content of carbon material in the carbon material metal oxide composite nanomaterial is 0.5-20% by weight, and the content of metal oxide is 80-99.5% by weight; Considering its response and recovery speed, preferably, the content of the carbon material in the carbon material metal oxide composite nanomaterial is 0.5-15 wt%, and the content of the metal oxide is 85-99.5 wt%.
  • the content of the carbon material is higher than 20% by weight, the resistance of the gas-sensitive material is small, and the gas response speed and recovery speed will be reduced.
  • the carbon material content is less than 0.5% by weight, the resistance of the gas-sensitive material is relatively large, the working temperature is relatively high, the corresponding heating voltage is increased, and the energy consumption is increased.
  • the electrical resistance of the carbon material metal oxide composite nanomaterial is 0.1-110 k ⁇ , more preferably 1-100 k ⁇ .
  • the carbon material may be various carbon materials commonly used in the art.
  • the carbon material is one or more of graphene, carbon nanotube, fullerene, and carbon black.
  • the shape of the carbon material metal oxide composite nanomaterial may be flake, granular or linear, etc., preferably flake.
  • the thickness can be 0.5-100nm, and the longest distance between two points can be 0.1-50um; preferably, the thickness can be 1-50nm, two The longest distance between points is 0.1-40um.
  • the shape of the carbon material metal oxide composite nano material is granular, its particle size may be 10-800 nm, preferably 10-700 nm.
  • the shape of the carbon material metal oxide composite nano material is linear, the diameter can be 1-100 nm, and the length can be 0.1-200um; preferably, the particle size is 1-50 nm and the length is 0.1-100um.
  • a method for preparing a gas-sensitive material comprising: heat-treating a carbon material and a metal oxide and/or a metal oxide precursor under a microwave in the presence of an alcohol solvent Then, solid-liquid separation is performed to obtain a carbon material metal oxide composite nano material, wherein the metal oxide contains tungsten oxide and is selected from tin oxide, iron oxide, titanium oxide, copper oxide, and molybdenum oxide. And one or more of zinc oxide; the metal oxide precursor is alcohol soluble tungsten salt and selected from alcohol soluble tin salt, alcohol soluble iron salt, alcohol soluble titanium salt, alcohol soluble copper salt, alcohol soluble molybdenum One or more of salt and alcohol-soluble zinc salt.
  • the heat treatment does not use a surfactant.
  • the raw materials can be heated to the target temperature in a short time by using microwaves.
  • the heat is generated by molecular vibrations.
  • the distribution of the reaction heat field is more uniform, the morphology of the product is more uniform, and the carbon material has high microwave absorption performance, which can quickly absorb microwaves and convert microwaves into heat energy. Therefore, the method of microwave synthesis is used to prepare carbon material metal oxide nanometers. Material, time-consuming is shorter, output is larger, and quality is higher.
  • the amount of the carbon material is 0.5-20% by weight, and the amount of the metal oxide is 80- 99.5 wt%; more preferably, based on the total weight of the carbon material and the metal oxide, the amount of the carbon material is 0.5-15 wt%, and the amount of the metal oxide is 85-99.5 wt %.
  • the amount of the carbon material is 0.5-20% by weight, and the amount of the carbon material is 0.5-20% by weight.
  • the amount of the metal oxide precursor based on the oxide is 80-99.5 wt%; more preferably, based on the total weight of the carbon material and the metal oxide precursor based on the metal oxide,
  • the amount of the carbon material is 0.5-15% by weight, and the amount of the metal oxide precursor calculated as the metal oxide is 85-99.5% by weight.
  • the carbon material may be various carbon materials commonly used in the art.
  • the carbon material is one or more of graphene, carbon nanotube, fullerene, and carbon black. kind.
  • the inventor of the present invention has also found through in-depth research that the metal oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO, MoO 3 and ZnO At the same time, the gas sensitivity can be further improved. More preferably, the metal oxide contains WO 3 and one or more selected from SnO 2 , Fe 2 O 3 , TiO 2 , CuO, and MoO 3.
  • the alcohol-soluble salt may be various salts that can form the metal oxide after the heat treatment and can be dissolved in an alcohol solvent or in the presence of a co-solvent.
  • the co-solvent preferably used is a co-solvent that can be removed during the heat treatment, so that even if the co-solvent is used, it does not adversely affect the preparation of the catalyst and the performance of the product.
  • examples of the alcohol-soluble tungsten salt include one or more of tungsten chloride, tungsten iodide, and tungsten hexacarbonyl.
  • examples of the alcohol-soluble tin salt include one or more of tin chloride, tin bromide, and tin iodide.
  • examples of the alcohol-soluble iron salt include one or more of iron chloride, iron bromide, iron nitrate, and carbonyl iron.
  • examples of the alcohol-soluble titanium salt include one or more of titanium chloride, titanium bromide, and titanium iodide.
  • examples of the alcohol-soluble copper salt include one or more of copper chloride, copper bromide, and copper nitrate.
  • examples of the alcohol-soluble molybdenum salt include one or more of molybdenum chloride, molybdenum bromide, and molybdenum iodide.
  • the alcohol-soluble zinc salt for example, one or more of zinc chloride, zinc iodide, zinc bromide, and zinc nitrate can be cited.
  • the content of the tungsten oxide is preferably 60-99.5 wt%, more preferably 70-99.5 weight%.
  • the amount of the alcohol-soluble tungsten salt in the metal oxide precursor is preferably 60 to 99.5% by weight, more preferably 70 to 99.5% by weight.
  • the alcohol solvent may be, for example, one or more of ethanol, ethylene glycol and glycerol.
  • the alcohol solvent is ethanol.
  • the amount of the solvent is 500 to 100,000 parts by weight relative to 100 parts by weight of the total weight of the carbon material, the metal oxide, and the metal oxide precursor.
  • the conditions of the heat treatment include: a microwave power of 200-1800W, a heat treatment temperature of 160-220°C, a heat treatment time of 10-240 minutes; more preferably, a microwave power of 200-1200W, and a heat treatment temperature of 180-200 °C, the heat treatment time is 30-150 minutes; further preferably, the microwave power is 300-1000 W, the heat treatment temperature is 180-190 °C, and the heat treatment time is 40-140 minutes.
  • solid-liquid separation is performed after heat treatment, and the solid-liquid separation method can adopt various methods commonly used in the art to separate solids and liquids, such as centrifugation or filtration.
  • the method further includes the steps of washing and drying the separated carbon material metal oxide composite nanomaterial.
  • the above-mentioned washing is preferably carried out using a solvent used in the heat treatment, for example, ethanol can be used.
  • the drying can be carried out at 60-100°C for 2-10 hours, for example.
  • the method further includes the step of reducing the carbon material metal oxide composite nanomaterial with a reducing agent; or the method further includes making the carbon material metal oxide composite nanomaterial Perform thermal reduction steps.
  • the reduction step By performing the reduction step, the power consumption can be further reduced, and the sensitivity can be improved.
  • the mass ratio of the carbon material metal oxide composite nanomaterial to the reducing agent in terms of carbon element is 1:0.1-20 , More preferably 1:0.1-10.
  • the reducing agent is sodium borohydride, lithium aluminum hydride, hydrogen iodide, hydrogen bromide, thiourea, ethyl mercaptan, sodium persulfate, hydrazine hydrate, pyrrole, urea, ethanol, ascorbic acid, glucose, aluminum- One or more of hydrochloric acid, iron-hydrochloric acid, zinc-sodium hydroxide, zinc-ammonia, glycine, lysine, and green tea.
  • the conditions of the reduction treatment include: the temperature of the reduction treatment is 200-500° C., and the time of the reduction treatment is 0.1-12 h.
  • the high-temperature reduction temperature is 200-1000°C, and the higher the temperature, the higher the degree of reduction.
  • the temperature is too high and exceeds the melting point of the metal oxide, the morphology will change, which will affect the gas sensitivity.
  • the heating temperature is higher than 1000°C, a carbothermal reaction will occur between the metal oxide and the carbon material, thereby affecting the composition of the product.
  • the temperature is lower than 200°C, the degree of reduction is insufficient and the resistance is still high.
  • a self-heating gas sensor based on the Joule principle wherein the self-heating gas sensor includes a chip carrier and a gas-sensitive material carried on the chip carrier, and the gas-sensitive material is Invented gas-sensitive material for self-heating gas sensor based on Joule principle.
  • the chip carrier is a ceramic tube and/or a MEMS chip.
  • the MEMS chip for example, it may be the chip shown in FIG. 1, which includes a silicon substrate 3 and a metal interdigital electrode 2 formed on the silicon substrate 3. Among them, the metal interdigital electrode 2 is used for current transmission; the silicon substrate 3 provides support for the entire MEMS chip, and at the same time plays the role of insulation and heat insulation.
  • the gas-sensitive material is loaded on the chip carrier by a drip method, an air spray method, a micro spray method, a deposition method or a coating method.
  • a suitable organic solvent for example, ethanol, acetone, glycerin, terpineol, etc.
  • the mass ratio of the organic solvent to the gas sensitive material can be 0.1-10:1, preferably 1:1. Too much organic solvent will make the gas-sensitive material dispersion too thin to be coated on the substrate. The amount of organic solvent should not be too small. Too small will make the gas-sensitive material dispersion too thick, causing uneven distribution of the material coated on the substrate and affecting the gas-sensitive performance.
  • Different types of organic solvents have different boiling points, preferably 80-250°C. Organic solvents with a too low boiling point volatilize too quickly during the drying process and are prone to cracks. Organic solvents with too high boiling point evaporate too slowly and are not easy to remove.
  • the application of the gas sensitive material of the present invention in a self-heating gas sensor based on the Joule principle is provided.
  • a carbon material metal oxide composite nanomaterial A1 (sheet-like nanomaterial with a thickness of 1-2nm, and the longest linear distance between two points is 1 -5um), wherein the content of carbon material is 2.5% by weight, the content of metal oxide is 97.5% by weight, and the resistance is 30k ⁇ .
  • the content of tungsten trioxide is 80% by weight, The content of the tin oxide is 20% by weight.
  • FIG. 2 is a scanning electron microscope image of the sheet-shaped nanomaterial obtained in Example 1.
  • FIG. 3 is a TEM image of the nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 1.
  • FIG. As shown in Figures 2 and 3, the structure of the sheet-shaped nanomaterial is that nanowires are formed on the surface of the carbon material, and the diameter of the nanowires is 20-30 nm and the length is 600-4000 nm.
  • the above-mentioned nanowires contain oxygen, tungsten and tin elements through the XPS test. According to the peak positions in the XPS spectrum, the valence states of the tungsten and tin elements are +6 and +4, respectively; through the XRD test, the above-mentioned The peak positions of the nanowires are compared with the tungsten trioxide and tin dioxide in the PDF card. The results show that all peaks can be attributed to the crystalline structure of WO 3 (JCPDs: 83-0950), and no diffraction of Sn oxide is detected.
  • the peak indicates that Sn does not form a separate crystal phase, but is embedded in the WO 3 lattice in the form of ions; through the HRTEM test, it is observed that the lattice spacing of the doped nanowires is 0.387 nm, which corresponds to the (001) of WO 3 The crystal plane does not have the corresponding crystal plane of SnO 2 , which indicates that the nanowire is a tungsten trioxide doped nanowire in which tin dioxide is doped to a tungsten trioxide nanowire.
  • a carbon material metal oxide composite nanomaterial A2 (a linear nanomaterial with a diameter of 5-15nm and a length of 10-30um).
  • the carbon The content of the material is 2.5% by weight, the content of the metal oxide is 97.5% by weight, and the resistance is 56k ⁇ . Based on the total amount of the metal oxide, the content of the tungsten trioxide is 80% by weight, and the content of the tin oxide is 20% by weight.
  • the structure of the linear nanomaterial is that nanowires are formed on the surface of the carbon material.
  • the diameter of the nanowires is 20-30nm and the length is 20-30nm. It is 600-4000nm.
  • the above-mentioned nanowires contain oxygen, tungsten and tin elements through the XPS test. According to the peak positions in the XPS spectrum, the valence states of the tungsten and tin elements are +6 and +4, respectively; through the XRD test, the above-mentioned The peak positions of the nanowires are compared with the tungsten trioxide and tin dioxide in the PDF card. The results show that all peaks can be attributed to the crystalline structure of WO 3 (JCPDs: 83-0950), and no diffraction of Sn oxide is detected.
  • the peak indicates that Sn does not form a separate crystal phase, but is embedded in the WO 3 lattice in the form of ions; through the HRTEM test, it is observed that the lattice spacing of the doped nanowires is 0.387 nm, which corresponds to the (001) of WO 3 The crystal plane does not have the corresponding crystal plane of SnO 2 , which indicates that the nanowire is a tungsten trioxide doped nanowire in which tin dioxide is doped to a tungsten trioxide nanowire.
  • a carbon material metal oxide composite nanomaterial A4 (sheet-like nanomaterial with a thickness of 1-2nm, and the longest linear distance between two points is 1 -5um), wherein the content of carbon material is 2.5% by weight, the content of metal oxide is 97.5% by weight, and the resistance is 33k ⁇ .
  • the content of tungsten trioxide is 70% by weight, The content of the iron trioxide is 30% by weight.
  • FIG. 4 is a TEM image of nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 3.
  • the diameter of the nanowires is 20-30nm and the length is 600 -4000nm.
  • the above-mentioned nanowires contain oxygen, tungsten, and iron through the XPS test.
  • the valence states of tungsten and iron are +6 and +3, respectively;
  • the above The peak position of the nanowire was compared with the tungsten trioxide and ferric oxide in the PDF card. The result showed that all the peaks can be attributed to the crystal structure of WO 3 (JCPDs: 83-0950), and no Fe oxide was detected.
  • FIG. 5 is a TEM image of nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 4.
  • the diameter of the nanowires is 20-30nm and the length is 600 -4000nm.
  • the above-mentioned nanowires contain oxygen, tungsten, and copper through the XPS test.
  • the valence states of tungsten and copper are +6 and +2, respectively;
  • the above The peak positions of the nanowires are compared with the tungsten trioxide and copper oxide in the PDF card. The results show that all peaks can be attributed to the crystalline structure of WO 3 (JCPDs: 83-0950), and no diffraction peaks of Cu oxides are detected.
  • FIG. 6 is a TEM image of the nanowires formed on the surface of the carbon material by the sheet-shaped nanomaterial obtained in Example 5.
  • the diameter of the nanowires is 20-30nm and the length is 600 -4000nm.
  • the above-mentioned nanowires contain oxygen, tungsten, and titanium through the XPS test.
  • the valence states of tungsten and titanium are +6 and +4, respectively;
  • the above The peak position of the nanowire was compared with the tungsten trioxide and titanium dioxide in the PDF card. The result showed that all the peaks can be attributed to the crystal structure of WO 3 (JCPDs: 83-0950), and no diffraction peak of Ti oxide was detected.
  • the structure of the sheet-like nanomaterial is that nanowires are formed on the surface of the carbon material.
  • the diameter of the nanowires is 20-30nm and the length is 600 -4000nm.
  • the above-mentioned nanowires contain oxygen, tungsten, and molybdenum through XPS test.
  • the valence states of tungsten and molybdenum are +6 and +6, respectively;
  • XRD test the above The peak position of the nanowire is compared with the tungsten trioxide and molybdenum trioxide in the PDF card. The result shows that all the peaks can be attributed to the crystalline structure of WO 3 (JCPDs: 83-0950), and no diffraction of Mo oxide is detected.
  • the peak indicates that Mo does not form a separate crystal phase, but is embedded in the WO 3 lattice in the form of ions; through the HRTEM test, it is observed that the lattice spacing of the doped nanowires is 0.387 nm, which corresponds to the (001) of WO 3 The crystal plane does not have the corresponding crystal plane of MoO 3 , which indicates that the nanowire is a tungsten trioxide doped nanowire in which molybdenum trioxide is doped to a tungsten trioxide nanowire.
  • the difference is that tungsten chloride is used instead of tungsten chloride and SnCl 4 , and reduced graphene WO 3 is obtained .
  • the content of carbon material is 0.4% by weight
  • the content of metal oxide is The content is 99.6% by weight
  • the resistance is 120 k ⁇ .
  • Example 2 It was carried out according to the method of Example 1, except that tungsten chloride was used to replace tungsten chloride and SnCl 4 , and reduced graphene WO 3 was obtained .
  • the content of carbon material was 25% by weight, and the content of metal oxide was 25% by weight.
  • the content is 75% by weight, and the resistance is 500k ⁇ .
  • carbon nanotube WO 3 nanomaterial D4 (a linear nanomaterial with a diameter of 5-15nm and a length of 10-30um).
  • the carbon material The content of is 2.5% by weight, the content of metal oxide is 97.5% by weight, and the resistance is 60k ⁇ .
  • the difference is that the tungsten chloride is replaced with copper chloride to obtain the reduced graphene copper oxide nanomaterial D6 (sheet-like nanomaterial with a thickness of 1-2nm, the longest straight line between two points The distance is 1-5um), where the content of carbon material is 2.5% by weight, the content of metal oxide is 97.5% by weight, and the resistance is 70k ⁇ .
  • the difference is that the tungsten chloride is replaced with molybdenum chloride to obtain the reduced graphene molybdenum oxide nanomaterial D7 (sheet-like nanomaterial with a thickness of 1-2nm, the longest straight line between two points The distance is 1-5um), where the content of carbon material is 2.5% by weight, the content of metal oxide is 97.5% by weight, and the resistance is 80k ⁇ .
  • Planar multilayer electrode purchased from Beijing Elite Technology Co., Ltd.
  • Fig. 7 is a scanning electron microscope image of the nanomaterial obtained in Comparative Example 8. It can be seen from Fig. 7 that after replacing ethanol with water, the rod-shaped and spherical nano-WO 3 structures are obtained.
  • Example 2 It was carried out according to the method of Example 1, except that in the microwave synthesis, the surfactant urea was added to obtain the carbon material metal oxide composite nano-material D9. It can be seen from the scanning electron micrograph that the structure of the irregular semi-tubular nano WO 3 is obtained.
  • the nanomaterials A1-A7 obtained in Examples 1-7 and the materials D1-D6 obtained in Comparative Examples 1-6 were respectively used to prepare a gas sensor.
  • the preparation method is as follows.

Abstract

一种气敏材料及其制备方法和应用,以及使用了该气敏材料的气体传感器。所述气敏材料为碳材料和金属氧化物复合而成的碳材料金属氧化物复合纳米材料,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-20重量%,金属氧化物的含量为80-99.5重量%,所述金属氧化物含有钨氧化物以及选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种,所述金属氧化物以纳米线的形式形成在所述碳材料上,且所述纳米线为钨氧化物掺杂纳米线。该气敏材料的电阻较低,可以在较低的工作温度下对多种气体发生响应,同时不需要外部加热,仅仅靠测量电路的焦耳热实现自加热,功耗更低,灵敏度更高。

Description

自加热气体传感器、气敏材料及其制备方法和应用
相关申请的交叉引用
本申请要求提交的中国专利申请202010280974.5的权益,该申请的内容通过引用被合并于本文。
技术领域
本发明涉及材料领域,具体涉及一种气敏材料及其制备方法和应用,以及使用了该气敏材料的基于焦耳原理的自加热气体传感器。
背景技术
近年来,环境污染问题越来越突出,因此,解决环境污染问题成为需要优先考虑的问题之一。其中有毒有害气体作为环境污染的重要来源之一,广泛存在于石油以及化工企业的生产、运输和储存过程,时刻威胁着工作人员的健康安全。因此,如何迅速准确的检测有毒有害气体的浓度、保障人身安全成为工业界亟待解决的问题之一。
通过制备金属氧化物纳米材料基气敏传感器是解决这个问题的有效途径之一。金属氧化物纳米材料不仅减少了传感材料的用量,极大降低了成本,而且得益于纳米材料自身的小尺寸效应,传感器的气敏性能也有所提高。然而,受限于金属氧化物室温电导率过低的缺点,由金属氧化物纳米材料基气敏传感器需要被加热到200-400℃,才能正常工作。经统计,传感器接近60%的能量用于加热传感材料,这不仅增加了能耗,也不利于传感器微型化和长时间使用,同时带来安全隐患。因此,如何制备低能耗同时气敏性能优异的传感器,成为近几年气体传感器领域研究的热点之一。
为了降低气体传感器的能耗,目前常用的方法有两个:1、制备新型的纳米气敏材料。目前研究比较多的是石墨烯、碳纳米管、富勒烯等碳材料。这几种材料自身具有很高的导电性,而且比表面积较大,通过表面修饰可以改变其对不同气体的选择性,因此它们都可以在室温条件下对目标气体产生响应,并不需要加热,从而降低了能耗。2、利用焦耳热原理进行自加热。焦耳热:电流通过导体时产生的热量。因此,通过调控气敏材料的电阻和施加的测量电压,利用测量电路提供的电流就可以实现对气敏材料进行加热。而且由于加热时直接由气敏材料自身产生的,中间不需要热传导,可以极大降低热量耗散。而且去除掉外部加热电路之后,能耗可以进一步降低。然而这两种方法目前都有相应的缺点。1、虽然石墨烯、碳纳米管等碳材料可以在室温条件下产生气体响应,但是由于室温下的气体吸附解吸附过程较慢,导致它们的响应恢复速度较慢,并不能满足人们实际生活中的需求。2、目前利用焦耳热原理自加热的气体传感器主要是利用单根或取向的金属或者金属氧化物纳米线或者纳米带,这些传感器的制备方法繁琐,仪器昂贵。而且电阻较大,必须施加较高的电压才能将气敏材料加热到理想的温 度。这会使得电池的尺寸增大,并不利于传感器的微型化和便携化。
发明内容
本发明的目的是为了克服上述现有技术存在的问题,提供一种气敏材料及其制备方法和应用,以及使用了该气敏材料的基于焦耳原理的自加热气体传感器。本发明的气敏材料的电阻较低,可以在较低的工作温度下对多种气体发生响应,同时不需要外部加热,仅仅靠测量电路的焦耳热实现自加热,功耗更低,并且灵敏度更高。
为了实现上述目的,本发明第一方面提供一种用于基于焦耳原理的自加热气体传感器的气敏材料,其中,所述气敏材料为碳材料和金属氧化物复合而成的碳材料金属氧化物复合纳米材料,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-20重量%,金属氧化物的含量为80-99.5重量%,所述金属氧化物含有钨氧化物以及选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种,其中,所述金属氧化物以纳米线的形式形成在所述碳材料上,且所述纳米线为钨氧化物掺杂纳米线。
优选地,所述纳米线的直径为10-100nm,长度为500-10000纳米。
优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO、MoO 3和ZnO中的一种或多种;更优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO和MoO 3中的一种或多种。
优选地,以所述金属氧化物的总量计,所述WO 3的含量优选为60-99.5重量%。
优选地,所述纳米线为三氧化钨掺杂纳米线。
优选地,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-15重量%,金属氧化物的含量为85-99.5重量%。
优选地,所述碳材料为石墨烯、碳纳米管、富勒烯和炭黑中的一种或多种。
根据本发明第二方面,提供一种气敏材料的制备方法,其中,该方法包括:在醇溶剂存在下,在微波下使碳材料与、金属氧化物和/或金属氧化物前体进行热处理后进行固液分离得到碳材料金属氧化物复合纳米材料的步骤,其中,所述金属氧化物含有钨氧化物以及选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种;所述金属氧化物前体为醇溶性钨盐以及选自醇溶性锡盐、醇溶性铁盐、醇溶性钛盐、醇溶性铜盐、醇溶性钼盐和醇溶性锌盐中的一种或多种。
优选地,以所述碳材料与所述金属氧化物的合计重量为基准,所述碳材料的用量为0.5-20重量%,所述金属氧化物的用量为80-99.5重量%;以所述碳材料与以金属氧化物计的所述金属氧化物前体的合计重量为基准,所述碳材料的用量为0.5-20重量%,以金属氧化物计的所述金属氧化物前体的用量为80-99.5重量%。
优选地,所述碳材料为石墨烯、碳纳米管、富勒烯和炭黑中的一种或多种。
优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO、MoO 3和ZnO中的一种或多种;更优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO和MoO 3中的一种或多种。
优选地,所述金属氧化物前体为氯化钨以及选自氯化锡、氯化铁、氯化钛、氯化铜、氯化钼和氯化锌中的一种或多种;更优选地,所述金属氧化物前体为氯化钨以及选自氯化锡、氯化铁、氯化钛、氯化铜和氯化钼中的至少一种。
优选地,以所述金属氧化物的总量计,所述钨氧化物的含量优选为60-99.5重量%。
优选地,以金属氧化物计,所述金属氧化物前体中醇溶性钨盐的用量为60-99.5重量%。
优选地,所述醇溶剂为乙醇。
优选地,相对于所述碳材料与、金属氧化物和金属氧化物前体的合计重量100重量份,所述溶剂的用量为500-100000重量份。
优选地,所述热处理的条件包括:微波功率为200-1800W,热处理温度为160-220℃,热处理时间为10-240分钟。
优选地,该方法还包括将分离得到碳材料金属氧化物复合纳米材料进行干燥的步骤。
优选地,该方法还包括使所述碳材料金属氧化物复合纳米材料与还原剂进行还原处理的步骤。
优选地,以碳元素计的所述碳材料金属氧化物复合纳米材料与还原剂的质量比为1∶0.1-20。
优选地,所述还原剂为硼氢化钠、氢化铝锂、碘化氢、溴化氢、硫脲、乙硫醇、过硫酸钠、水合肼、吡咯、尿素、乙醇、抗坏血酸、葡萄糖、铝-盐酸、铁-盐酸、锌-氢氧化钠、锌-氨水、甘氨酸、赖氨酸和绿茶中的一种或多种。
优选地,所述还原处理的条件包括:还原处理的温度为200-500℃,还原处理的时间为0.1-12h。
根据本发明第三方面,提供一种基于焦耳原理的自加热气体传感器,其中,该自加热气体传感器包括芯片载体以及负载在所述芯片载体上的气敏材料,所述气敏材料为本发明所述的用于基于焦耳原理的自加热气体传感器的气敏材料。
优选地,通过滴注法、气喷法、微喷法、沉积法或涂覆法将所述气敏材料负载在所述芯片载体上。
优选地,所述芯片载体为陶瓷管和/或MEMS芯片。
根据本发明第四方面,提供本发明的气敏材料在基于焦耳原理的自加热气体传感器中的应用。
本发明的气敏材料的电阻较低,可以在较低的工作温度(室温~200℃)下对多种气体发生响应,同时不需要外部加热,仅仅靠测量电路的焦耳热实现自加热,并且功耗更低。并且,本发明的气敏材料所需的测量电压较低,仅需要在1-20V即可自加热到200℃的温度。进而,本发明的气敏材料的灵敏度更高。
此外,如测试例2所示,本发明的气敏材料的响应恢复速度为20s以下,响应恢复速度极快。
进而,本发明的气敏材料是一种广谱型气敏材料,其可以对硫化氢、甲苯、一氧化碳等多种气体产生响应,特别是对硫化氢具有极好的响应恢复速度。
附图说明
图1为测试例1中使用MEMS芯片进行自加热功率测试的示意图。
图2为实施例1得到的片状纳米材料的扫描电镜图。
图3为实施例1得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。
图4为实施例3得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。
图5为实施例4得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。
图6为实施例5得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。
图7为对比例8得到的纳米材料的扫描电镜图。
附图标记说明
1:气敏材料层     2:金属叉指电极
3:硅衬底         4:电源原表
5:欧姆计
具体实施方式
在本文中所披露的范围的端点和任何值都不限于该精确的范围或值,这些范围或值应当理解为包含接近这些范围或值的值。对于数值范围来说,各个范围的端点值之间、各个范围的端点值和单独的点值之间,以及单独的点值之间可以彼此组合而得到一个或多个新的数值范围,这些数值范围应被视为在本文中具体公开。
本发明第一方面提供一种气敏材料,其中,所述气敏材料为碳材料和金属氧化物复合而成的碳材料金属氧化物复合纳米材料,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-20重量%,金属氧化物的含量为80-99.5重量%,所述金属氧化物含有钨氧化物以及选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种,其中,所述金属氧化物以纳米线的形式形成在所述碳材料上,且所述纳米线为钨氧化物掺杂纳米线。
在本发明中,“钨氧化物掺杂纳米线”是指:选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种掺杂到钨氧化物纳米线中的结构。
作为所述锡氧化物例如可以举出:氧化亚锡、二氧化锡等;优选为二氧化锡。
作为所述铁氧化物例如可以举出:三氧化二铁、氧化亚铁、四氧化三铁等;优选为三氧化二铁。
作为所述钛氧化物例如可以举出:二氧化钛、亚氧化钛等;优选为二氧化钛。
作为所述铜氧化物例如可以举出:氧化铜、氧化亚铜等;优选为氧化铜。
作为所述钼氧化物例如可以举出:二氧化钼、三氧化钼等;优选为三氧化钼。
作为所述锌氧化物例如可以举出:氧化锌、过氧化锌等;优选为氧化锌。
本发明的发明人经过深入的研究还发现,通过所述金属氧化物以纳米线的形式形成在所述碳材料上,且所述金属氧化物为钨氧化物掺杂纳米线的结构时,能够显著提高气敏性能。
作为所述纳米线的直径优选为10-100nm,更优选为15-80nm,进一步优选为15-50nm,更进一步优选为18-40nm。此外,作为所述纳米线的长度优选为500-10000纳米,更优选为500-8000nm,进一步优选为550-7000nm,更进一步优选为550-5000nm。
根据本发明,优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO、MoO 3和ZnO中的一种或多种;更优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO和MoO 3中的一种或多种。通过上述组合可以进一步提高气敏性能。
根据本发明,从进一步提高气敏性能的方面来考虑,优选地,以所述金属氧化物的总量计,所述钨氧化物的含量优选为60-99.5重量%,更优选为70-99.5重量%。
作为所述钨氧化物优选为三氧化钨。
根据本发明,所述气敏材料仅在测量电压下,即可将所述气敏材料加热到200℃,其测量电压低,消耗功率小。具体而言,所述气敏材料仅在测量电压下,从25℃自加热到200℃时,其消耗功率为9000uW以下;优选地,所述气敏材料仅在测量电压下,从25℃自加热到200℃时,其消耗功率优选为8800uW以下,进一步优选为8500uW以下,更进一步优选为8000uW以下,更进一步优选为7000uW以下,更进一步优选为6000uW以下,更进一步优选为5000uW以下,更进一步优选为4000uW以下,特别优选为3000uW以下。另外,所述消耗功率优选为1000uW以上,更优选为1500uW以上,进一步优选为1800uW以上,进一步优选为2500uW以上。
根据本发明,优选地,从25℃自加热到100℃时,其消耗功率优选为2000uW以下,进一步优选为1800uW以下,更进一步优选为1600uW以下,更进一步优选为1400uW以下,更进一步优选为1200uW以下,更进一步优选为1000uW以下,特别优选为800uW以下。另外,所述消耗功率优选为180uW以上,更优选 为200uW以上,进一步优选为250uW以上,进一步优选为500uW以上。
根据本发明,优选地,从25℃自加热到50℃时,其消耗功率优选为120uW以下,进一步优选为110uW以下,更进一步优选为90uW以下,更进一步优选为85uW以下,特别优选为70uW以下。另外,所述消耗功率优选为10uW以上,更优选为15uW以上,进一步优选为20uW以上,进一步优选为50uW以上。
根据本发明,所述测量电压例如可以为1-20V,具体地,可以为1V、2V、3V、4V、5V、6V、7V、8V、9V、10V、11V、12V、13V、14V、15V、16V、17V、18V、19V或20V等。
根据本发明,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-20重量%,金属氧化物的含量为80-99.5重量%;从降低工作温度、降低能耗以及较快的响应、恢复速度方面量考虑,优选地,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-15重量%,金属氧化物的含量为85-99.5重量%。在本发明中,当碳材料含量高于20重量%时,气敏材料的电阻较小,气体响应速度和恢复速度会降低。当碳材料含量低于0.5重量%时,气敏材料的电阻较大,工作温度较高,应的加热电压增大,能耗增大。
根据本发明,优选地,所述的碳材料金属氧化物复合纳米材料的电阻为0.1-110kΩ,更优选为1-100kΩ。
根据本发明,所述碳材料可以为本领域通常使用的各种碳材料,优选地,所述碳材料为石墨烯、碳纳米管、富勒烯和炭黑中的一种或多种。
根据本发明,所述碳材料金属氧化物复合纳米材料的形状可以为片状、颗粒状或线状等,优选为片状。
所述碳材料金属氧化物复合纳米材料的形状为片状时,其厚度可以为0.5-100nm,两点之间最长的距离可以为0.1-50um;优选地,厚度可以为1-50nm,两点之间最长的距离为0.1-40um。
所述碳材料金属氧化物复合纳米材料的形状为颗粒状时,其粒径可以为10-800nm,优选为10-700nm。
所述碳材料金属氧化物复合纳米材料的形状为线状,其直径可以为1-100nm,其长度可以为0.1-200um;优选地,粒径为1-50nm,长度为0.1-100um。
根据本发明第二方面,提供一种气敏材料的制备方法,其中,该方法包括:在醇溶剂存在下,在微波下使碳材料与、金属氧化物和/或金属氧化物前体进行热处理后进行固液分离得到碳材料金属氧化物复合纳米材料的步骤,其中,所述金属氧化物含有钨氧化物以及选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种;所述金属氧化物前体为醇溶性钨盐以及选自醇溶性锡盐、醇溶性铁盐、醇溶性钛盐、醇溶性铜盐、醇溶性钼盐和醇溶性锌盐中的一种或多种。
根据本发明的制备方法,所述热处理不使用表面活性剂。
由于是在微波下使碳材料与、金属氧化物或金属氧化物前体进行热处理,通过使用微波可以在很短的时间内将原料加热到的目标温度,同时热量是由于分 子振动产生的,因此反应热场分布更均匀,产物的形貌更均一,而且碳材料有很高的微波吸收性能,能够迅速吸收微波,并将微波转化成热能,因此采用微波合成的方法制备碳材料金属氧化物纳米材料,耗时更短,产量更大,质量更高。
根据本发明的制备方法,优选地,以所述碳材料与所述金属氧化物的合计重量为基准,所述碳材料的用量为0.5-20重量%,所述金属氧化物的用量为80-99.5重量%;更优选地,以所述碳材料与所述金属氧化物的合计重量为基准,所述碳材料的用量为0.5-15重量%,所述金属氧化物的用量为85-99.5重量%。
根据本发明的制备方法,优选地,以所述碳材料与以金属氧化物计的所述金属氧化物前体的合计重量为基准,所述碳材料的用量为0.5-20重量%,以金属氧化物计的所述金属氧化物前体的用量为80-99.5重量%;更优选地,以所述碳材料与以金属氧化物计的所述金属氧化物前体的合计重量为基准,所述碳材料的用量为0.5-15重量%,以金属氧化物计的所述金属氧化物前体的用量为85-99.5重量%。
根据本发明的制备方法,所述碳材料可以为本领域通常使用的各种碳材料,优选地,所述碳材料为石墨烯、碳纳米管、富勒烯和炭黑中的一种或多种。
此外,本发明的发明人经过深入的研究还发现,在所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO、MoO 3和ZnO中的一种或多种时,可以进一步提高气敏性能。更优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO和MoO 3中的一种或多种。
根据本发明,作为醇溶性盐可以是各种在所述热处理后可形成所述金属氧化物且能够溶于醇溶剂中或者在助溶剂存在下能够溶于醇溶剂中的盐。另外,使用助溶剂的情况下,优选使用的助溶剂为在热处理过程中能够被除去的助溶剂,由此即使使用助溶剂也不对催化剂的制备和产品性能造成不利影响。
根据本发明,作为所述醇溶性钨盐例如可以举出氯化钨、碘化钨和六羰基钨中的一种或多种。
根据本发明,作为所述醇溶性锡盐例如可以举出氯化锡、溴化锡和碘化锡中的一种或多种。
根据本发明,作为所述醇溶性铁盐例如可以举出氯化铁、溴化铁、硝酸铁和羰基铁中的一种或多种。
根据本发明,作为所述醇溶性钛盐例如可以举出氯化钛、溴化钛和碘化钛中的一种或多种。
根据本发明,作为所述醇溶性铜盐例如可以举出氯化铜、溴化铜和硝酸铜中的一种或多种。
根据本发明,作为所述醇溶性钼盐例如可以举出氯化钼、溴化钼和碘化钼中的一种或多种。
根据本发明,作为所述醇溶性锌盐例如可以举出氯化锌、碘化锌、溴化锌和硝酸锌中的一种或多种。
根据本发明,从进一步提高气敏性能的方面来考虑,优选地,以所述金属 氧化物的总量计,所述钨氧化物的含量优选为60-99.5重量%,更优选为70-99.5重量%。此外,以金属氧化物计,所述金属氧化物前体中醇溶性钨盐的用量优选为60-99.5重量%,更优选为70-99.5重量%。
根据本发明的制备方法,所述醇溶剂例如可以为乙醇、乙二醇和甘油中的一种或多种。优选地,所述醇溶剂为乙醇。
根据本发明的制备方法,优选地,相对于所述碳材料与、金属氧化物和金属氧化物前体的合计重量100重量份,所述溶剂的用量为500-100000重量份。
优选地,所述热处理的条件包括:微波功率为200-1800W,热处理温度为160-220℃,热处理时间为10-240分钟;更优选地,微波功率为200-1200W,热处理温度为180-200℃,热处理时间为30-150分钟;进一步优选地,微波功率为300-1000W,热处理温度为180-190℃,热处理时间为40-140分钟。
根据本发明的制备方法,热处理后进行固液分离,所述固液分离的方法可以采用本领域通常用于分离固体和液体的各种方法,例如可以采用离心或过滤。
根据本发明的制备方法,优选地,该方法还包括将分离得到碳材料金属氧化物复合纳米材料进行洗涤和干燥的步骤。上述洗涤优选使用热处理所使用的溶剂进行,例如可以使用乙醇。上述干燥例如可以在60-100℃下干燥2-10小时。
根据本发明的制备方法,优选地,该方法还包括使所述碳材料金属氧化物复合纳米材料与还原剂进行还原处理的步骤;或者该方法还包括使所述碳材料金属氧化物复合纳米材料进行热还原的步骤。通过进行还原步骤,能够进一步提高降低功耗,并且提高灵敏度。
在使所述碳材料金属氧化物复合纳米材料与还原剂进行还原处理时,优选地,以碳元素计的所述碳材料金属氧化物复合纳米材料与还原剂的质量比为1∶0.1-20,更优选为1∶0.1-10。
优选地,所述还原剂为硼氢化钠、氢化铝锂、碘化氢、溴化氢、硫脲、乙硫醇、过硫酸钠、水合肼、吡咯、尿素、乙醇、抗坏血酸、葡萄糖、铝-盐酸、铁-盐酸、锌-氢氧化钠、锌-氨水、甘氨酸、赖氨酸和绿茶中的一种或多种。
优选地,所述还原处理的条件包括:还原处理的温度为200-500℃,还原处理的时间为0.1-12h。
使所述碳材料金属氧化物复合纳米材料进行高温热还原时,高温还原的温度为200-1000℃,温度越高,还原程度越高。但是温度过高,超过金属氧化物熔点时,形貌会发生变化,影响气敏性能。如果加热温度高于1000℃,金属氧化物与碳材料之间会发生碳热反应,从而影响产物的组成。温度低于200℃时,还原程度不够,电阻仍然较高。
根据本发明的第三方面,提供一种基于焦耳原理的自加热气体传感器,其中,该自加热气体传感器包括芯片载体以及负载在所述芯片载体上的气敏材料,所述气敏材料为本发明的用于基于焦耳原理的自加热气体传感器的气敏材料。
优选地,所述芯片载体为陶瓷管和/或MEMS芯片。
作为所述MEMS芯片,例如可以为图1所示的芯片,其包括硅衬底3和形 成在硅衬底3上的金属叉指电极2。其中,金属叉指电极2,用于电流传输;硅衬底3,其为整个MEMS芯片提供支撑,同时起到绝缘和绝热的作用。
优选地,通过滴注法、气喷法、微喷法、沉积法或涂覆法将所述气敏材料负载在所述芯片载体上。
采用涂覆法进行涂覆前,需要使用合适的有机溶剂(例如可以为乙醇、丙酮、甘油、松油醇等)分散,然后在玛瑙研钵中研磨,使气敏材料在有机溶剂中分散均匀。上述有机溶剂与所述气敏材料的质量比可以为0.1-10∶1,优选为1∶1。有机溶剂过多,会使气敏材料分散液太稀,无法涂覆在基板上。有机溶剂的量不能太少,太少会使气敏材料分散液太稠,使得涂覆在基板上的材料分布不均匀,影响气敏性能。不同种类的有机溶剂沸点不同,优选沸点为80-250℃,干燥过程中沸点过低的有机溶剂挥发过快,容易产生裂纹。沸点过高的有机溶剂挥发过慢,不容易除去。
根据本发明第四方面,提供本发明的气敏材料在基于焦耳原理的自加热气体传感器中的应用。
以下将通过实施例对本发明进行详细描述,但本发明并不仅限于下述实施例。
实施例1
准确称取15mg氧化石墨烯、0.80g氯化钨和0.20g SnCl 4放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h,得到碳材料金属氧化物复合纳米材料A1(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为30kΩ,以金属氧化物的总量计,所述三氧化钨的含量为80重量%,所述氧化锡的含量为20重量%。
图2为实施例1得到的片状纳米材料的扫描电镜图。图3为实施例1得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。如图2和图3所示,该片状纳米材料的结构为在碳材料的表面形成有纳米线,该纳米线的直径为20-30nm,长度为600-4000nm。
另外,通过XPS测试得到上述纳米线中含有氧、钨和锡元素,根据XPS谱图中的峰位置可以得到钨和锡元素的价态分别为+6和+4价;通过XRD测试,将上述纳米线的峰位置与PDF卡片中三氧化钨和二氧化锡对比,结果表明所有峰都可以归属到WO 3的晶型结构(JCPDs:83-0950),并没有检测到Sn的氧化物的衍射峰,表明Sn并没有形成单独的晶相,而是以离子形式嵌入到WO 3晶格中;通过HRTEM测试,观察到掺杂纳米线的晶格间距为0.387nm,对应WO 3的(001)晶面,并没有SnO 2的对应晶面,由此表明该纳米线为二氧化锡掺杂到 三氧化钨纳米线的三氧化钨掺杂纳米线。
实施例2
准确称取15mg碳纳米管,0.80g氯化钨和0.20SnCl 4放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h,得到碳材料金属氧化物复合纳米材料A2(线状纳米材料,直径为5-15nm,长度为10-30um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为56kΩ,以金属氧化物的总量计,所述三氧化钨的含量为80重量%,所述氧化锡的含量为20重量%。
另外,通过实施例2得到的线状纳米材料的扫描电镜图以及TEM图片可知,该线状纳米材料的结构为在碳材料的表面形成有纳米线,该纳米线的直径为20-30nm,长度为600-4000nm。
另外,通过XPS测试得到上述纳米线中含有氧、钨和锡元素,根据XPS谱图中的峰位置可以得到钨和锡元素的价态分别为+6和+4价;通过XRD测试,将上述纳米线的峰位置与PDF卡片中三氧化钨和二氧化锡对比,结果表明所有峰都可以归属到WO 3的晶型结构(JCPDs:83-0950),并没有检测到Sn的氧化物的衍射峰,表明Sn并没有形成单独的晶相,而是以离子形式嵌入到WO 3晶格中;通过HRTEM测试,观察到掺杂纳米线的晶格间距为0.387nm,对应WO 3的(001)晶面,并没有SnO 2的对应晶面,由此表明该纳米线为二氧化锡掺杂到三氧化钨纳米线的三氧化钨掺杂纳米线。
实施例3
准确称取15mg氧化石墨烯,0.8g氯化钨和0.2g氯化铁放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和少量无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h,得到碳材料金属氧化物复合纳米材料A4(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为33kΩ,以金属氧化物的总量计,所述三氧化钨的含量为70重量%,所述三氧化二铁的含量为30重量%。
图4为实施例3得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。通过实施例3得到的线状纳米材料的扫描电镜图以及TEM图片可知,该片状纳米材料的结构为在碳材料的表面形成有纳米线,该纳米线的直径为20-30nm,长度为600-4000nm。
另外,通过XPS测试得到上述纳米线中含有氧、钨和铁元素,根据XPS谱图中的峰位置可以得到钨和铁元素的价态分别为+6和+3价;通过XRD测试,将上述纳米线的峰位置与PDF卡片中三氧化钨和三氧化二铁对比,结果表明所有峰都可以归属到WO 3的晶型结构(JCPDs:83-0950),并没有检测到Fe的氧化物的衍射峰,表明Fe并没有形成单独的晶相,而是以离子形式嵌入到WO 3晶格中;通过HRTEM测试,观察到掺杂纳米线的晶格间距为0.387nm,对应WO 3的(001)晶面,并没有Fe 2O 3的对应晶面,由此表明该纳米线为三氧化二铁掺杂到三氧化钨纳米线的三氧化钨掺杂纳米线。
实施例4
准确称取15mg氧化石墨烯,0.8g氯化钨和0.2g氯化铜放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h,得到碳材料金属氧化物复合纳米材料A5(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为61kΩ,以金属氧化物的总量计,所述三氧化钨的含量为80重量%,所述氧化铜的含量为20重量%。
图5为实施例4得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。通过实施例4得到的线状纳米材料的扫描电镜图以及TEM图片可知,该片状纳米材料的结构为在碳材料的表面形成有纳米线,该纳米线的直径为20-30nm,长度为600-4000nm。
另外,通过XPS测试得到上述纳米线中含有氧、钨和铜元素,根据XPS谱图中的峰位置可以得到钨和铜元素的价态分别为+6和+2价;通过XRD测试,将上述纳米线的峰位置与PDF卡片中三氧化钨和氧化铜对比,结果表明所有峰都可以归属到WO 3的晶型结构(JCPDs:83-0950),并没有检测到Cu的氧化物的衍射峰,表明Cu并没有形成单独的晶相,而是以离子形式嵌入到WO 3晶格中;通过HRTEM测试,观察到掺杂纳米线的晶格间距为0.387nm,对应WO 3的(001)晶面,并没有CuO的对应晶面,由此表明该纳米线为氧化铜掺杂到三氧化钨纳米线的三氧化钨掺杂纳米线。
实施例5
准确称取15mg氧化石墨烯,0.8g氯化钨和0.2g四氯化钛放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h, 得到碳材料金属氧化物复合纳米材料A6(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为55kΩ,以金属氧化物的总量计,所述三氧化钨的含量为84.7重量%,所述二氧化钛的含量为15.3重量%。
图6为实施例5得到的片状纳米材料形成在碳材料表面的纳米线TEM图片。通过实施例5得到的线状纳米材料的扫描电镜图以及TEM图片可知,该片状纳米材料的结构为在碳材料的表面形成有纳米线,该纳米线的直径为20-30nm,长度为600-4000nm。
另外,通过XPS测试得到上述纳米线中含有氧、钨和钛元素,根据XPS谱图中的峰位置可以得到钨和钛元素的价态分别为+6和+4价;通过XRD测试,将上述纳米线的峰位置与PDF卡片中三氧化钨和二氧化钛对比,结果表明所有峰都可以归属到WO 3的晶型结构(JCPDs:83-0950),并没有检测到Ti的氧化物的衍射峰,表明Ti并没有形成单独的晶相,而是以离子形式嵌入到WO 3晶格中;通过HRTEM测试,观察到掺杂纳米线的晶格间距为0.387nm,对应WO 3的(001)晶面,并没有TiO 2的对应晶面,由此表明该纳米线为二氧化钛掺杂到三氧化钨纳米线的三氧化钨掺杂纳米线。
实施例6
准确称取15mg氧化石墨烯,0.8g氯化钨和0.2g氯化钼放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h,得到碳材料金属氧化物复合纳米材料A7(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为97.5重量%,金属氧化物的含量为2.5重量%,电阻为50kΩ,以金属氧化物的总量计,所述三氧化钨的含量为81.6重量%,所述三氧化钼的含量为18.4重量%。
通过实施例6得到的线状纳米材料的扫描电镜图以及TEM图片可知,该片状纳米材料的结构为在碳材料的表面形成有纳米线,该纳米线的直径为20-30nm,长度为600-4000nm。
另外,通过XPS测试得到上述纳米线中含有氧、钨和钼元素,根据XPS谱图中的峰位置可以得到钨和钼元素的价态分别为+6和+6价;通过XRD测试,将上述纳米线的峰位置与PDF卡片中三氧化钨和三氧化钼对比,结果表明所有峰都可以归属到WO 3的晶型结构(JCPDs:83-0950),并没有检测到Mo的氧化物的衍射峰,表明Mo并没有形成单独的晶相,而是以离子形式嵌入到WO 3晶格中;通过HRTEM测试,观察到掺杂纳米线的晶格间距为0.387nm,对应WO 3的(001)晶面,并没有MoO 3的对应晶面,由此表明该纳米线为三氧化钼掺杂到三氧化钨纳米线的三氧化钨掺杂纳米线。
实施例7
按照实施例1的方法制备碳材料金属氧化物复合纳米材料A1,然后,准确称取100mg碳材料金属氧化物复合纳米材料A1,将样品放在50ml烧杯中,滴入200uL水合肼,使用保鲜膜密封,并放入水浴锅中,90℃恒温5h,得到提高了石墨烯的还原程度的碳材料金属氧化物复合纳米材料A8。
对比例1
按照实施例1的方法进行,不同的是,使用氯化钨替换氯化钨和SnCl 4,且得到还原石墨烯WO 3,纳米材料D1中,碳材料的含量为0.4重量%,金属氧化物的含量为99.6重量%,电阻为120kΩ。
对比例2
按照实施例1的方法进行,不同的是,使用氯化钨替换氯化钨和SnCl 4,且得到还原石墨烯WO 3,纳米材料D2中,碳材料的含量为25重量%,金属氧化物的含量为75重量%,电阻为500kΩ。
对比例3
准确称取15mg氧化石墨烯,1g氯化钨放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h,得到还原石墨烯WO 3纳米材料D3(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为40kΩ。
对比例4
准确称取15mg碳纳米管,1g氯化钨放入500mL的烧杯中,倒入300mL的无水乙醇,磁力搅拌约30min,然后采用细胞破碎仪超声破碎30min,得到的混合溶液分别倒入10个50mL聚四氟乙烯反应釜中,用微波合成仪以800W加热到200℃,恒温2h。反应结束得到的产物离心,并用去离子水和无水乙醇洗涤3次。然后把离心后的样品放入烘箱,在80℃下烘干6h,得到碳纳米管WO 3纳米材料D4(线状纳米材料,直径为5-15nm,长度为10-30um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为60kΩ。
对比例5
按照对比例3的方法进行,不同的是,将氯化钨替换为氯化铜,得到还原石墨烯氧化铜纳米材料D6(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5 重量%,电阻为70kΩ。
对比例6
按照对比例3的方法进行,不同的是,将氯化钨替换为氯化钼,得到还原石墨烯氧化钼纳米材料D7(片状纳米材料,厚度为1-2nm,两点之间最长直线距离为1-5um),其中,碳材料的含量为2.5重量%,金属氧化物的含量为97.5重量%,电阻为80kΩ。
对比例7
商业购买:购于北京艾立特科技有限公司的平面型多层电极。
对比例8
按照实施例1的方法进行,不同的是,在微波合成中,将无水乙醇替换为去离子水,得到碳材料金属氧化物复合纳米材料D8。
图7为对比例8得到的纳米材料的扫描电镜图,通过图7可知,将乙醇换成水后,得到的是棒状和球状纳米WO 3结构。
对比例9
按照实施例1的方法进行,不同的是,在微波合成中,加入表面活性剂尿素,得到碳材料金属氧化物复合纳米材料D9。通过扫描电镜图可知,得到的是不规则半管状纳米WO 3的结构。
测试例1
分别使用实施例1-7得到的纳米材料A1-A7以及对比例1-6得到的材料D1-D6,制备气敏传感器,其制备方法如下所述。
准确称取100mg纳米材料,放入到玛瑙研钵中,加入100ul松油醇,研磨10min,用毛笔将研磨好的浆料均匀涂覆在MEMS芯片的金属叉指电极2上形成气敏材料层1,然后用烘箱加热80℃,恒温12h。通过引线机将MEMS芯片连接到测试底座上,将底座插到老化台上,400℃老化7天,得到气敏传感器B1-B7和DB1-DB6。另外以购于北京艾立特科技有限公司的平面型多层电极作为DB7。
如图1所示,将电源原表4和欧姆计5与气敏传感器进行连接,采用电源原表提供电压,对气敏传感器B1-B9和DB1-DB8从25℃开始进行加热,得到不同温度条件下的功率,其结果如表1所示。
表1
Figure PCTCN2021073734-appb-000001
测试例2
分别将气体传感器B1-B7以及DB1-DB9放入密封腔内,并与电源原表和欧姆计相连,记录此时的电压和电流,通过欧姆定律得到传感器的电阻R0,然后向密封腔体内通入10ppm的硫化氢气体,气体传感器的电阻变小,待电阻稳定后,记录此时的传感器电阻R1,气体传感器的响应值S=(R0-R1)/R0*100%,响应时间t1为电阻降低90%时的时间,然后停止通入硫化氢气体,向腔体通入空气,传感器电阻开始恢复,恢复时间t2为电阻恢复90%所用的时间,将整个过程的响应值对时间作图,求出电压为5V的情况下气体传感器对硫化氢的响应值和响应恢复时间,其结果如表2所示。
表2
  响应值(200℃) 响应恢复时间
B1 65 <20s
B2 63 <20s
B3 59 <20s
B4 58 <20s
B5 57 <20s
B6 56 <20s
B7 63 <20s
DB1 50 <30s
DB2 28 <180s
DB3 51 <30s
DB4 48 <30s
DB5 46 <30s
DB6 43 <30s
DB7 33 <30s
DB8 27 <30s
DB9 18 <30s
以上详细描述了本发明的优选实施方式,但是,本发明并不限于此。在本发明的技术构思范围内,可以对本发明的技术方案进行多种简单变型,包括各个技术特征以任何其它的合适方式进行组合,这些简单变型和组合同样应当视为本发明所公开的内容,均属于本发明的保护范围。

Claims (16)

  1. 一种气敏材料,其特征在于,所述气敏材料为碳材料和金属氧化物复合而成的碳材料金属氧化物复合纳米材料,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-20重量%,金属氧化物的含量为80-99.5重量%,所述金属氧化物含有钨氧化物以及选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种,
    其中,所述金属氧化物以纳米线的形式形成在所述碳材料上,且所述纳米线为钨氧化物掺杂纳米线。
  2. 根据权利要求1所述的气敏材料,其中,所述纳米线的直径为10-100nm,长度为500-10000纳米。
  3. 根据权利要求1所述的气敏材料,其中,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO、MoO 3和ZnO中的一种或多种;
    优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO和MoO 3中的一种或多种;
    优选地,以所述金属氧化物的总量计,所述钨氧化物的含量为60-99.5重量%;
    优选地,所述纳米线为三氧化钨掺杂纳米线。
  4. 根据权利要求1所述的气敏材料,其中,所述碳材料金属氧化物复合纳米材料中的碳材料的含量为0.5-15重量%,金属氧化物的含量为85-99.5重量%。
  5. 根据权利要求1-4中任意一项所述的气敏材料,其中,所述碳材料为石墨烯、碳纳米管、富勒烯和炭黑中的一种或多种。
  6. 一种气敏材料的制备方法,其特征在于,该方法包括:在醇溶剂存在下,在微波下使碳材料与、金属氧化物和/或金属氧化物前体进行热处理后进行固液分离得到碳材料金属氧化物复合纳米材料的步骤,
    其中,所述金属氧化物含有钨氧化物以及选自锡氧化物、铁氧化物、钛氧化物、铜氧化物、钼氧化物和锌氧化物中的一种或多种;
    所述金属氧化物前体为醇溶性钨盐以及选自醇溶性锡盐、醇溶性铁盐、醇溶性钛盐、醇溶性铜盐、醇溶性钼盐和醇溶性锌盐中的一种或多种。
  7. 根据权利要求6所述的方法,其中,所述热处理不使用表面活性剂。
  8. 根据权利要求6所述的方法,其中,以所述碳材料与所述金属氧化物的 合计重量为基准,所述碳材料的用量为0.5-20重量%,所述金属氧化物的用量为80-99.5重量%;
    优选地,以所述碳材料与以金属氧化物计的所述金属氧化物前体的合计重量为基准,所述碳材料的用量为0.5-20重量%,以金属氧化物计的所述金属氧化物前体的用量为80-99.5重量%;
    优选地,所述碳材料为石墨烯、碳纳米管、富勒烯和炭黑中的一种或多种;
    优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO、MoO 3和ZnO中的一种或多种;更优选地,所述金属氧化物含有WO 3以及选自SnO 2、Fe 2O 3、TiO 2、CuO和MoO 3中的一种或多种;
    优选地,所述金属氧化物前体为氯化钨以及选自氯化锡、氯化铁、氯化钛、氯化铜、氯化钼和氯化锌中的一种或多种;更优选地,所述金属氧化物前体为氯化钨以及选自氯化锡、氯化铁、氯化钛、氯化铜和氯化钼中的至少一种。
  9. 根据权利要求8所述的方法,其中,以所述金属氧化物的总量计,所述钨氧化物的含量优选为60-99.5重量%;
    优选地,以金属氧化物计,所述金属氧化物前体中醇溶性钨盐的用量为60-99.5重量%。
  10. 根据权利要求6-10中任意一项所述的方法,其中,所述醇溶剂为乙醇;
    优选地,相对于所述碳材料与、金属氧化物和金属氧化物前体的合计重量100重量份,所述溶剂的用量为500-100000重量份。
  11. 根据权利要求6-10中任意一项所述的方法,其中,所述热处理的条件包括:微波功率为200-1800W,热处理温度为160-220℃,热处理时间为10-240分钟;
    优选地,该方法还包括将分离得到碳材料金属氧化物复合纳米材料进行干燥的步骤。
  12. 根据权利要求6-10中任意一项所述的方法,其中,该方法还包括使所述碳材料金属氧化物复合纳米材料与还原剂进行还原处理的步骤;
    优选地,以碳元素计的所述碳材料金属氧化物复合纳米材料与还原剂的质量比为1∶0.1-20;
    优选地,所述还原剂为硼氢化钠、氢化铝锂、碘化氢、溴化氢、硫脲、乙硫醇、过硫酸钠、水合肼、吡咯、尿素、乙醇、抗坏血酸、葡萄糖、铝-盐酸、铁-盐酸、锌-氢氧化钠、锌-氨水、甘氨酸、赖氨酸和绿茶中的一种或多种;
    优选地,所述还原处理的条件包括:还原处理的温度为200-500℃,还原处理的时间为0.1-12h。
  13. 一种基于焦耳原理的自加热气体传感器,其特征在于,该自加热气体传感器包括芯片载体以及负载在所述芯片载体上的气敏材料,所述气敏材料为权利要1-5中任意一项所述的用于基于焦耳原理的自加热气体传感器的气敏材料。
  14. 根据权利要求13所述的自加热气体传感器,其中,通过滴注法、气喷法、微喷法、沉积法或涂覆法将所述气敏材料负载在所述芯片载体上。
  15. 根据权利要求13或14所述的自加热气体传感器,其中,所述芯片载体为陶瓷管和/或MEMS芯片。
  16. 权利要1-5中任意一项所述的气敏材料在基于焦耳原理的自加热气体传感器中的应用。
PCT/CN2021/073734 2020-04-10 2021-01-26 自加热气体传感器、气敏材料及其制备方法和应用 WO2021203804A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2022562099A JP7445016B2 (ja) 2020-04-10 2021-01-26 自己加熱型ガスセンサー、ガス感受性材料、その製造方法及び使用
US17/906,232 US20230124633A1 (en) 2020-04-10 2021-01-26 Self-heating gas sensor, gas-sensitive material, preparation method for same, and applications thereof
EP21785231.8A EP4112547A4 (en) 2020-04-10 2021-01-26 SELF-HEATING GAS SENSOR, GAS SENSITIVE MATERIAL, METHOD OF MANUFACTURE THEREOF AND APPLICATIONS THEREOF

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010280974.5 2020-04-10
CN202010280974.5A CN113511646A (zh) 2020-04-10 2020-04-10 自加热气体传感器、气敏材料及其制备方法和应用

Publications (1)

Publication Number Publication Date
WO2021203804A1 true WO2021203804A1 (zh) 2021-10-14

Family

ID=78022568

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/073734 WO2021203804A1 (zh) 2020-04-10 2021-01-26 自加热气体传感器、气敏材料及其制备方法和应用

Country Status (5)

Country Link
US (1) US20230124633A1 (zh)
EP (1) EP4112547A4 (zh)
JP (1) JP7445016B2 (zh)
CN (1) CN113511646A (zh)
WO (1) WO2021203804A1 (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113238A (zh) * 2021-11-17 2022-03-01 中国兵器工业集团第二一四研究所苏州研发中心 一种基于三维多孔石墨烯@量子点复合材料的气敏传感器及其制备方法
CN114130402A (zh) * 2021-11-26 2022-03-04 清华大学深圳国际研究生院 一种铁钼负载的藻基碳材料及其制备方法和应用方法
CN114878667A (zh) * 2022-04-29 2022-08-09 安徽维纳物联科技有限公司 一种一氧化碳传感器及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115259156A (zh) * 2022-07-18 2022-11-01 微集电科技(苏州)有限公司 能够在室温下检测低浓度no2的气敏元器件及其制备方法

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141433A (zh) * 1995-02-24 1997-01-29 Lg电子株式会社 气体检测仪及其方法
GB2464516A (en) * 2008-10-17 2010-04-21 Alireza Salehi Self heated carbon monoxide sensor
CN101913597A (zh) * 2010-09-14 2010-12-15 武汉理工大学 一种氧化钨纳米线与多孔碳纳米复合结构材料及其制备方法
CN102502842A (zh) * 2011-11-07 2012-06-20 河北联合大学 一种由纳米线组装成辐射状钼酸铜微米球的制备方法
US20120161796A1 (en) * 2010-12-22 2012-06-28 Peter Smith Co2 sensing materials and sensors incorporating said materials
CN102531063A (zh) * 2011-11-20 2012-07-04 湖南理工学院 一种石墨烯负载wo3纳米线复合材料及其制备方法
CN105606659A (zh) * 2015-08-28 2016-05-25 天津大学 用于低温工作的氧化钨纳米棒结构气敏传感器的制备方法
CN106596652A (zh) * 2016-12-06 2017-04-26 上海第二工业大学 一种高灵敏度no2气体传感器的制备方法
CN106770476A (zh) * 2015-11-23 2017-05-31 天津大学 氧化铜/氧化钨一维有序异质包覆结构基气敏元件及其在探测二氧化氮中的应用
CN107298464A (zh) * 2017-05-24 2017-10-27 江苏时瑞电子科技有限公司 一种碳纳米管气敏材料的制备方法
CN108398408A (zh) * 2018-02-02 2018-08-14 上海理工大学 一种用于甲醛气体检测的复合气敏材料及其制备方法

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101439855B (zh) * 2008-12-24 2010-09-08 北京科技大学 一种纳米SnO2-MWCNTs的微波水热合成方法
CN101824603B (zh) * 2010-06-02 2011-11-09 福州大学 一种复合薄膜气敏传感器的制作方法
KR101466310B1 (ko) * 2013-09-09 2014-11-27 아주대학교산학협력단 금속산화물-그래핀 나노복합체의 제조방법 및 금속산화물-그래핀 나노복합체를 이용한 전극 제조방법
CN104807860B (zh) * 2014-12-23 2017-09-01 郑州轻工业学院 一种花状纳米wo3/石墨烯复合气敏材料及其制备方法和应用
KR101588169B1 (ko) * 2015-07-28 2016-01-25 고려대학교 산학협력단 나노 기공, 메조 기공 및 마크로 기공이 3차원적으로 상호 연결된 다공성 산화물 반도체, 그 제조방법 및 이를 가스감응물질로 포함하는 가스센서
KR102311971B1 (ko) * 2017-05-24 2021-10-12 엘지디스플레이 주식회사 그래핀-산화주석 나노 복합체의 제조 방법 및 그래핀-산화주석 나노 복합체
CN109839408B (zh) * 2017-11-24 2022-04-12 中国科学院大连化学物理研究所 一种以纳米复合材料为传感膜的氨气传感器
CN110161091B (zh) * 2018-02-13 2022-02-15 中国石油化工股份有限公司 气体传感模块及其制备方法和应用
CN109632895B (zh) * 2019-01-18 2021-04-06 重庆大学 复合气敏材料及其制备方法与气体传感器及其应用
CN110127671A (zh) * 2019-06-10 2019-08-16 中国烟草总公司郑州烟草研究院 一种还原氧化石墨烯基复合膜的通用制备方法
CN110498405A (zh) * 2019-08-21 2019-11-26 南京倍格电子科技有限公司 一种石墨烯/氧化锡复合气敏材料及其制备方法
CN110759376B (zh) * 2019-09-30 2022-02-22 南京工业大学 一种ZnO掺杂SnO2-石墨烯气凝胶气敏材料的制备方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1141433A (zh) * 1995-02-24 1997-01-29 Lg电子株式会社 气体检测仪及其方法
GB2464516A (en) * 2008-10-17 2010-04-21 Alireza Salehi Self heated carbon monoxide sensor
CN101913597A (zh) * 2010-09-14 2010-12-15 武汉理工大学 一种氧化钨纳米线与多孔碳纳米复合结构材料及其制备方法
US20120161796A1 (en) * 2010-12-22 2012-06-28 Peter Smith Co2 sensing materials and sensors incorporating said materials
CN102502842A (zh) * 2011-11-07 2012-06-20 河北联合大学 一种由纳米线组装成辐射状钼酸铜微米球的制备方法
CN102531063A (zh) * 2011-11-20 2012-07-04 湖南理工学院 一种石墨烯负载wo3纳米线复合材料及其制备方法
CN105606659A (zh) * 2015-08-28 2016-05-25 天津大学 用于低温工作的氧化钨纳米棒结构气敏传感器的制备方法
CN106770476A (zh) * 2015-11-23 2017-05-31 天津大学 氧化铜/氧化钨一维有序异质包覆结构基气敏元件及其在探测二氧化氮中的应用
CN106596652A (zh) * 2016-12-06 2017-04-26 上海第二工业大学 一种高灵敏度no2气体传感器的制备方法
CN107298464A (zh) * 2017-05-24 2017-10-27 江苏时瑞电子科技有限公司 一种碳纳米管气敏材料的制备方法
CN108398408A (zh) * 2018-02-02 2018-08-14 上海理工大学 一种用于甲醛气体检测的复合气敏材料及其制备方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP4112547A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114113238A (zh) * 2021-11-17 2022-03-01 中国兵器工业集团第二一四研究所苏州研发中心 一种基于三维多孔石墨烯@量子点复合材料的气敏传感器及其制备方法
CN114130402A (zh) * 2021-11-26 2022-03-04 清华大学深圳国际研究生院 一种铁钼负载的藻基碳材料及其制备方法和应用方法
CN114130402B (zh) * 2021-11-26 2024-01-12 清华大学深圳国际研究生院 一种铁钼负载的藻基碳材料及其制备方法和应用方法
CN114878667A (zh) * 2022-04-29 2022-08-09 安徽维纳物联科技有限公司 一种一氧化碳传感器及其制备方法

Also Published As

Publication number Publication date
EP4112547A4 (en) 2023-08-23
JP7445016B2 (ja) 2024-03-06
CN113511646A (zh) 2021-10-19
JP2023520825A (ja) 2023-05-19
EP4112547A1 (en) 2023-01-04
US20230124633A1 (en) 2023-04-20

Similar Documents

Publication Publication Date Title
WO2021203804A1 (zh) 自加热气体传感器、气敏材料及其制备方法和应用
Xu et al. The ultra-high NO2 response of ultra-thin WS2 nanosheets synthesized by hydrothermal and calcination processes
Lu et al. Electrospun ZnO–SnO2 composite nanofibers and enhanced sensing properties to SF6 decomposition byproduct H2S
Yan et al. Facile synthesis, characterization and gas sensing performance of ZnO nanoparticles-coated MoS2 nanosheets
Guan et al. Hydrothermal preparation and gas sensing properties of Zn-doped SnO2 hierarchical architectures
Xiang et al. Ammonia sensor based on polypyrrole–graphene nanocomposite decorated with titania nanoparticles
Doan et al. Facile synthesis of metal-organic framework-derived ZnO/CuO nanocomposites for highly sensitive and selective H2S gas sensing
Xu et al. Enhanced NH3 gas sensing performance based on electrospun alkaline-earth metals composited SnO2 nanofibers
Vaishampayan et al. Influence of Pd doping on morphology and LPG response of SnO2
Yin et al. Improved gas sensing properties of silver-functionalized ZnSnO 3 hollow nanocubes
Majumdar et al. Enhanced performance of CNT/SnO2 thick film gas sensors towards hydrogen
Chen et al. Wearable NO2 sensing and wireless application based on ZnS nanoparticles/nitrogen-doped reduced graphene oxide
Wang et al. The enhanced NO2 sensing properties of SnO2 nanoparticles/reduced graphene oxide composite
Cuong et al. Gas sensor based on nanoporous hematite nanoparticles: effect of synthesis pathways on morphology and gas sensing properties
Chu et al. Gas sensing properties of graphene–WO3 composites prepared by hydrothermal method
Li et al. High-response and low-temperature nitrogen dioxide gas sensor based on gold-loaded mesoporous indium trioxide
Chu et al. Preparation and gas sensing properties of graphene-Zn2SnO4 composite materials
Hung et al. Carbon nanotube-metal oxide nanocomposite gas sensing mechanism assessed via NO2 adsorption on n-WO3/p-MWCNT nanocomposites
Zou et al. Pd-doped TiO2@ polypyrrole core-shell composites as hydrogen-sensing materials
Kamble et al. IDE embedded tungsten trioxide gas sensor for sensitive NO2 detection
Khaleed et al. Effect of activated carbon on the enhancement of CO sensing performance of NiO
Chen et al. High performance ammonia gas sensor based on electrospinned Co3O4 nanofibers decorated with hydrothermally synthesized MoTe2 nanoparticles
Singh et al. Reduced graphene oxide-SnO2 nanocomposite thin film based CNG/PNG sensor
Chaitongrat et al. Fast-LPG sensors at room temperature by α-Fe2O3/CNT nanocomposite thin films
Baro et al. Room temperature hydrogen gas sensing properties of mono dispersed platinum nanoparticles on graphene-like carbon-wrapped carbon nanotubes

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21785231

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2022562099

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2021785231

Country of ref document: EP

Effective date: 20220928

NENP Non-entry into the national phase

Ref country code: DE