WO2021114419A1 - 一种旋转磁电编码器的校准方法、装置及设备 - Google Patents

一种旋转磁电编码器的校准方法、装置及设备 Download PDF

Info

Publication number
WO2021114419A1
WO2021114419A1 PCT/CN2019/129078 CN2019129078W WO2021114419A1 WO 2021114419 A1 WO2021114419 A1 WO 2021114419A1 CN 2019129078 W CN2019129078 W CN 2019129078W WO 2021114419 A1 WO2021114419 A1 WO 2021114419A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoder
voltage signal
rotation angle
signal values
hall sensor
Prior art date
Application number
PCT/CN2019/129078
Other languages
English (en)
French (fr)
Inventor
夏一帆
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021114419A1 publication Critical patent/WO2021114419A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other

Definitions

  • the present invention relates to the field of rotary magnetoelectric encoders, in particular to a method for calibrating a rotating magnetoelectric encoder.
  • the invention also relates to a calibration device and equipment of a rotating magnetoelectric encoder.
  • the rotary magnetic encoder can detect the rotation angle of the measured shaft, and calculate the position and speed of the object connected to the shaft (such as the shaft of the motor) based on the rotation angle.
  • Huo The Er sensor can output two sinusoidal voltage signals with a phase difference of 90° with the rotation of the magnetic code disc.
  • the present invention provides a method for calibrating a rotary magnetoelectric encoder, which includes:
  • a preset fitting algorithm is used to calculate the two voltage signal values of the Hall sensor and the value of the magnetic code disc.
  • the rotation angle of the rotating shaft where the encoder to be calibrated is located is calculated.
  • the two voltage signal values of the Hall sensor are calculated using a preset fitting algorithm according to the plurality of sampled voltage signal values and the precise rotation angle value corresponding to each sampled voltage signal value
  • the functional expression corresponding to the rotation angle of the magnetic code disc is specifically:
  • a preset fitting algorithm is used to fit the function waveform of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc;
  • the obtaining the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft of the encoder to be calibrated is specifically:
  • the accuracy of the precision encoder is a preset multiple of the accuracy of the encoder to be calibrated.
  • the preset fitting algorithm is a Fourier series interpolation fitting method.
  • the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated sampling at least one cycle are specifically:
  • the preset sampling frequency is greater than 1/16 of the resolution of the encoder to be calibrated.
  • the rotary magnetoelectric encoder After calculating the rotation angle of the shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated, the rotary magnetoelectric encoder
  • the calibration method also includes:
  • the present invention also provides a calibration device for a rotary magnetoelectric encoder, which includes:
  • the sampling module is used to sample at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated;
  • An obtaining module configured to obtain the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft where the encoder to be calibrated is located;
  • the first calculation module is used to calculate the two voltages of the Hall sensor by using a preset fitting algorithm according to the plurality of sampled voltage signal values and the precise rotation angle value corresponding to each sampled voltage signal value
  • the second calculation module is configured to calculate the rotation angle of the rotating shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated.
  • the first calculation module includes:
  • the fitting module is used to fit the function waveform of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc by using a preset fitting algorithm according to the sampled multiple voltage signal values;
  • the third calculation module is used to determine the zero point in the function waveform by using inverse triangulation calculation
  • the determination module is used to determine the function expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disk according to the zero point and the precise rotation angle value corresponding to each sampled voltage signal value formula.
  • the calibration device of the rotary magnetoelectric encoder further includes:
  • the return module is used to return to the step of sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated after the preset period.
  • the present invention also provides a calibration device for a rotary magnetoelectric encoder, which includes:
  • Memory used to store computer programs
  • the processor is used to implement the steps of the method for calibrating the rotary magneto-electric encoder as described in any one of the preceding items when the computer program is executed.
  • the present invention provides a method for calibrating a rotary magnetoelectric encoder.
  • the embodiment of the present invention can fit the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated for at least one cycle obtained by sampling.
  • the function expression of the corresponding relationship between the two voltage signal values of the magnetic code disk and the rotation angle of the magnetic code disk because the function expression expresses the true corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disk Therefore, compared with the preset idealized sine-cosine curve, the accurate function expression fitted in this application can calculate the rotation angle of the rotating shaft more accurately, which improves the measurement accuracy of the rotary magnetoelectric encoder.
  • the present invention also provides a calibration device and equipment for the rotary magnetic encoder, which has the same beneficial effects as the calibration method of the rotary magnetic encoder.
  • Fig. 1 is a schematic flowchart of a calibration method of a rotary magnetic encoder provided by the present invention
  • Figure 2 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention
  • Fig. 3 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention.
  • FIG. 1 is a schematic flowchart of a method for calibrating a rotary magneto-electric encoder provided by the present invention, including:
  • Step S1 Sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated;
  • the two sets of voltage signal values output by the Hall sensor obtained by sampling in the embodiment of the present invention can be used as the data basis in the subsequent steps, so that the two voltage signal values of the Hall sensor and the rotation of the magnetic code disc can be obtained in the subsequent steps.
  • the functional expression of the corresponding relationship of the angle can be used as the data basis in the subsequent steps, so that the two voltage signal values of the Hall sensor and the rotation of the magnetic code disc can be obtained in the subsequent steps.
  • the embodiment of the present invention in order to achieve accurate fitting of the functional expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc, in the embodiment of the present invention, during the rotation of the shaft where the encoder to be calibrated is located, The voltage signal value of at least one cycle of the Hall sensor in the encoder to be calibrated arranged on the rotating shaft is sampled.
  • the sampling amount here may not be at least one cycle, for example, less than one cycle, etc.
  • This embodiment of the present invention does not do it here. limited.
  • Step S2 Obtain the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft where the encoder to be calibrated is located;
  • a variety of measuring instruments can be used to obtain the precise rotation angle value.
  • a high-precision rotary magnetic encoder can be used for measurement.
  • the precise rotation angle value is required to correspond to the voltage signal value output by the Hall sensor on the time axis. .
  • the rotating shaft where the encoder to be calibrated is located may be of multiple types, for example, it may be a rotating shaft of a motor, etc., which is not limited in the embodiment of the present invention.
  • Step S3 According to the sampled multiple voltage signal values and the precise rotation angle value corresponding to each sampled voltage signal value, use a preset fitting algorithm to calculate the two voltage signal values of the Hall sensor and the rotation of the magnetic code disc The functional expression of the corresponding relationship of the angle;
  • the Hole sensor can be fitted.
  • the function expression of the corresponding relationship between the two voltage signal values of the Er sensor and the rotation angle of the magnetic code disc is more true and accurate because it is fitted according to the actual collected data.
  • the function expression of the corresponding relationship between the voltage signal value of the Hall sensor and the rotation angle of the magnetic code disc basically conforms to the function expression of the sine-cosine waveform curve of the trigonometric function, but it is relative to the standard sine-cosine curve. There are some offset errors, gain errors or phase errors.
  • the function expression of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc can basically conform to:
  • Step S4 Calculate the rotation angle of the rotating shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated.
  • the measured function expression can be combined with the code to be calibrated.
  • the two voltage signal values output by the Hall sensor in the device calculate the rotation angle of the shaft where the encoder to be calibrated is located. For example, at the current moment, you can combine the two function expressions and the two voltage signal values currently output by the Hall sensor to calculate Get the rotation angle of the shaft at the current moment.
  • the rotary magnetic encoder will sample the current position through the sampling points of the two Hall resistors with a difference of 90° when the magnetic code disc rotates one circle, and output two phase differences.
  • a complete cycle of the sine voltage waveform curve of 90° usually we call the sin ⁇ curve that is 90° ahead, and the cos ⁇ curve that is 90° behind ( ⁇ is the current rotation angle value of the shaft). Then by reading the current two voltage signal values, use the arctangent function to solve the current angle value of the encoder.
  • the principle is as follows:
  • the output waveform signal may not be the ideal sin ⁇ , cos ⁇ curve waveform.
  • the output waveform curve may not be the ideal sin ⁇ , cos ⁇ curve waveform.
  • the present invention provides a method for calibrating a rotary magnetoelectric encoder.
  • the embodiment of the present invention can fit the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated for at least one cycle obtained by sampling.
  • the function expression of the corresponding relationship between the two voltage signal values and the rotation angle of the magnetic code disc because the function expression expresses the true correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc Therefore, compared with the preset idealized sine-cosine curve, the accurate function expression fitted in this application can calculate the rotation angle of the rotating shaft more accurately, which improves the measurement accuracy of the rotary magnetoelectric encoder.
  • a preset fitting algorithm is used to calculate the two voltage signal values of the Hall sensor and the functional expression of the corresponding relation of the rotation angle of the magnetic code disc is specifically as follows:
  • a preset fitting algorithm is used to fit the function waveform of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc;
  • the functional expression of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc is determined.
  • the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc can be fitted according to the sampled multiple voltage signal values (without corresponding to the exact rotation angle value of the shaft at the same time)
  • the position of the abscissa zero point should be at the abscissa of the maximum y value of the curve waveform, but we cannot use the directly read voltage signal value
  • the abscissa of the maximum point is used as the abscissa zero point.
  • obtaining the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft where the encoder to be calibrated is located is specifically:
  • the precision of the precision encoder is a preset multiple of the precision of the encoder to be calibrated.
  • the preset multiple can be independently set, for example, it can be 10 times, etc., which is not limited in the embodiment of the present invention.
  • a high-precision measuring device as a reference for the abscissa ⁇ value, and consider it as an ideal angular position.
  • the first is to collect data.
  • the dual-channel ADC Analog-to-Digital Converter
  • we appropriately use single-point trigger and dual-channel simultaneous sampling and at the same time we need to synchronize Sampling the angle value of high-precision measuring equipment.
  • What we need to ensure is the dual-channel ADC and high-precision device angle synchronous sampling, so that the phase error can be minimized.
  • the collected data points should be distributed in at least one complete cycle, and they should be properly and evenly distributed on the abscissa ⁇ , and the number should be sufficient. Only in this way can we ensure that the fitted function waveform is as close as possible to the ideal curve waveform.
  • the precision encoder has the advantages of high precision and convenient use.
  • the preset fitting algorithm is a Fourier series interpolation fitting method.
  • the preset fitting algorithm may also be of other types, which is not limited in the embodiment of the present invention.
  • the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated sampling at least one cycle are specifically:
  • the preset sampling frequency is greater than 1/16 of the resolution of the encoder to be calibrated.
  • the sampling frequency can be set to a value greater than 1/16 of the resolution of the encoder to be calibrated. In this case, the number of data points sampled It is sufficient to simulate an accurate waveform curve, and the more data points are sampled, that is, the higher the sampling frequency, the more accurate the simulated waveform curve.
  • the calibration method of the rotary magnetoelectric encoder also includes:
  • the function expression of the waveform curve simulated last time will deviate greatly from the actual one. Therefore, in the embodiment of the present invention, it can be returned after a preset period.
  • the step of sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated, so as to re-determine the function expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc It realizes the automatic calibration of the encoder to be calibrated every preset period.
  • the preset period can be independently set according to actual conditions, for example, can be set to 1 month, etc., which is not limited in the embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention, including:
  • Sampling module for sampling at least one cycle of two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated
  • the second calculation module 4 is used to calculate the rotation angle of the rotating shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated.
  • the first calculation module includes:
  • the fitting module is used to fit the function waveform of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc by using a preset fitting algorithm according to the sampled multiple voltage signal values;
  • the third calculation module is used to determine the zero point in the function waveform by using inverse triangulation calculation
  • the determination module is used to determine the function expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc according to the zero point and the precise rotation angle value corresponding to each sampled voltage signal value.
  • the return module is used to return to the step of sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated after the preset period.
  • FIG. 3 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention, including:
  • the memory 5 is used to store computer programs
  • the processor 6 is used to implement the steps of any one of the calibration methods of the rotary magnetoelectric encoder when executing the computer program.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

一种旋转磁电编码器的校准方法和校准装置,基于采样得到的至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值,拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式,由于该函数表达式表达出了霍尔传感器的两个电压信号值与磁码盘的旋转角度的真实的对应关系,因此相比于预设的理想化的正余弦曲线,根据拟合出的精确的函数表达式能够更精准地计算转轴的旋转角度,提高了旋转磁电编码器的测量精度。

Description

一种旋转磁电编码器的校准方法、装置及设备
本申请要求于2019年12月13日提交至中国专利局、申请号为201911283773.4、发明名称为“一种旋转磁电编码器的校准方法、装置及设备”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及旋转磁电编码器领域,特别是涉及一种旋转磁电编码器的校准方法,本发明还涉及一种旋转磁电编码器的校准装置及设备。
背景技术
旋转磁电编码器能够对被测转轴的旋转角度进行检测,根据该旋转角度能够计算出与转轴(例如电机的转轴)连接的物体的位置以及速度等数据,在对旋转角度进行测量时,霍尔传感器随着磁码盘的旋转可以输出两路相位相差90°的正弦电压信号,我们认为相位超前90°的正弦信号为sin信号,相位滞后90°的正弦信号为cos信号。我们根据这两路电压信号进行模数转换得到数字信号,再根据两路数字信号解码出编码器的磁码盘(被测转轴)的角度值。
然而,由于机械安装、芯片设计以及电路干扰等原因导致上述两路正弦电压信号之间幅值以及偏置等存在差异,相位差也可能不是标准的90°。导致最终解码出的角度值存在偏差,从而影响整个旋转磁电编码器的测量精度。
因此,如何提供一种解决上述技术问题的方案是本领域技术人员目前需要解决的问题。
发明内容
本发明的目的是提供一种旋转磁电编码器的校准方法,根据本申请中拟合出的精确的函数表达式能够更精准地计算转轴的旋转角度,提高了旋转磁电编码器的测量精度;本发明的另一目的是提供一种旋转磁电编码器 的校准装置及设备,根据本申请中拟合出的精确的函数表达式能够更精准地计算转轴的旋转角度,提高了旋转磁电编码器的测量精度。
为解决上述技术问题,本发明提供了一种旋转磁电编码器的校准方法,包括:
采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
获取所述待校准编码器所在转轴的与每个采样的所述电压信号值对应的精确旋转角度值;
根据采样的多个所述电压信号值、与每个采样的所述电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式;
根据所述函数表达式以及所述待校准编码器中霍尔传感器输出的两个电压信号值,计算所述待校准编码器所在转轴的旋转角度。
优选地,所述根据采样的多个所述电压信号值、与每个采样的所述电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式具体为:
根据采样的多个所述电压信号值,采用预设拟合算法拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数波形;
利用反三角计算确定出所述函数波形中零点;
根据所述零点以及与每个采样的所述电压信号值对应的精确旋转角度值确定出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
优选地,所述获取所述待校准编码器所在转轴的与每个采样的所述电压信号值对应的精确旋转角度值具体为:
获取在所述转轴转动的过程中,通过精准编码器同步测量出的所述转轴的旋转角度;
其中,所述精准编码器的精度为所述待校准编码器精度的预设倍数。
优选地,所述预设拟合算法为傅里叶级数插值拟合法。
优选地,所述采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值具体为:
以预设采样频率采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
其中,所述预设采样频率大于所述待校准编码器的分辨率的1/16。
优选地,所述根据所述函数表达式以及所述待校准编码器中霍尔传感器输出的两个电压信号值,计算所述待校准编码器所在转轴的旋转角度之后,该旋转磁电编码器的校准方法还包括:
在预设周期之后,返回采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值的步骤。
为解决上述技术问题,本发明还提供了一种旋转磁电编码器的校准装置,包括:
采样模块,用于采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
获取模块,用于获取所述待校准编码器所在转轴的与每个采样的所述电压信号值对应的精确旋转角度值;
第一计算模块,用于根据采样的多个所述电压信号值、与每个采样的所述电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式;
第二计算模块,用于根据所述函数表达式以及所述待校准编码器中霍尔传感器输出的两个电压信号值,计算所述待校准编码器所在转轴的旋转角度。
优选地,所述第一计算模块包括:
拟合模块,用于根据采样的多个所述电压信号值,采用预设拟合算法拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数波形;
第三计算模块,用于利用反三角计算确定出所述函数波形中零点;
确定模块,用于根据所述零点以及与每个采样的所述电压信号值对应的精确旋转角度值确定出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
优选地,该旋转磁电编码器的校准装置还包括:
返回模块,用于在预设周期之后,返回采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值的步骤。
为解决上述技术问题,本发明还提供了一种旋转磁电编码器的校准设备,包括:
存储器,用于存储计算机程序;
处理器,用于执行所述计算机程序时实现如上任一项所述旋转磁电编码器的校准方法的步骤。
本发明提供了一种旋转磁电编码器的校准方法,本发明实施例能够基于采样得到的至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值,拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式,由于该函数表达式表达出了霍尔传感器的两个电压信号值与磁码盘的旋转角度的真实的对应关系,因此相比于预设的理想化的正余弦曲线,根据本申请中拟合出的精确的函数表达式能够更精准地计算转轴的旋转角度,提高了旋转磁电编码器的测量精度。
本发明还提供了一种旋转磁电编码器的校准装置及设备,具有如上旋转磁电编码器的校准方法相同的有益效果。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对现有技术和实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明提供的一种旋转磁电编码器的校准方法的流程示意图;
图2为本发明提供的一种旋转磁电编码器的校准装置的结构示意图;
图3为本发明提供的一种旋转磁电编码器的校准设备的结构示意图。
具体实施方式
本发明的核心是提供一种旋转磁电编码器的校准方法,根据本申请中拟合出的精确的函数表达式能够更精准地计算转轴的旋转角度,提高了旋转磁电编码器的测量精度;本发明的另一核心是提供一种旋转磁电编码器的校准装置及设备,根据本申请中拟合出的精确的函数表达式能够更精准地计算转轴的旋转角度,提高了旋转磁电编码器的测量精度。
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参考图1,图1为本发明提供的一种旋转磁电编码器的校准方法的流程示意图,包括:
步骤S1:采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
具体的,本发明实施例中采样得到的霍尔传感器输出的两组电压信号值可以作为后续步骤中的数据基础,以便后续步骤中得到霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
其中,为了实现对于霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式进行精确拟合,本发明实施例中在待校准编码器所在转轴转动的过程中,采样了设置于转轴上的待校准编码器中霍尔传感器至少一个周期的电压信号值,当然这里的采样量也可以不为至少一个周期,例如小于一个周期等,本发明实施例在此不做限定。
步骤S2:获取待校准编码器所在转轴的与每个采样的电压信号值对应的精确旋转角度值;
精确旋转角度值的获取可以采用多种的测量仪器,例如可以采用精度较高的旋转磁电编码器测量,这里要求精确旋转角度值在时间轴上要与霍尔传感器输出的电压信号值相对应。
具体的,为了精确拟合出霍尔传感器的电压信号值与磁码盘的旋转角度的对应关系的函数表达式,还需要使用相关测量仪器同步地测量出转轴精确的旋转角度值,以便确定出每一刻霍尔传感器输出的电压信号值所对应的转轴的旋转角度值并得到霍尔传感器的电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
其中,待校准编码器所在转轴可以为多种类型,例如可以为电机的转轴等,本发明实施例在此不做限定。
步骤S3:根据采样的多个电压信号值、与每个采样的电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式;
其中,根据上述步骤中获取到的数据基础,由于包含了至少一个周期内每一采样时刻霍尔传感器输出的电压信号值以及与电压信号值对应的转轴的旋转角度值,便可以拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式,此函数表达式由于是根据实际采集的数据进行拟合出来的,比较真实准确。
其中,霍尔传感器的电压信号值与磁码盘的旋转角度的对应关系的函数表达式基本也符合三角函数的正余弦波形曲线的函数表达式,只是相对于标准的正余弦曲线来水,可能存在一些偏置误差、增益误差或者相位误差,霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式基本可以符合:
Figure PCTCN2019129078-appb-000001
步骤S4:根据函数表达式以及待校准编码器中霍尔传感器输出的两个电压信号值,计算待校准编码器所在转轴的旋转角度。
具体的,在依据曲线拟合的方式获得霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式后,便可以根据实测的函数表达式,并结合待校准编码器中霍尔传感器输出的两个电压信号值计算出待校准编码器所在转轴的旋转角度,例如在当前时刻,可以结合两个函数表 达式以及霍尔传感器当前输出的两个电压信号值,计算出当前时刻转轴的旋转角度。
具体的,我们需要明确本发明所适用的旋转磁电编码器输出角度的原理。旋转磁电编码器会根据磁场的变化,在磁码盘旋转一圈时,通过在磁场位置中,两个相差90°的霍尔电阻的采样点,对当前位置的采样,输出两条相位相差90°的一个完整周期的正弦电压波形曲线,通常我们称超前90°的为sinθ曲线,落后90°的为cosθ曲线(θ为转轴的当前旋转角度值)。然后通过读取当前两个电压信号值,使用反正切函数解算出来编码器的当前角度值。原理如下:
令:
x=sinθ,y=cosθ;
则:
θ=arctan(x/y);
其中,由于霍尔传感器采样点相对位置的偏差,编码器磁盘和电路板的安装位置偏差以及磁场本身易受外界干扰等原因,导致输出的波形信号可能并非理想的sinθ,cosθ曲线波形,这就导致输出的波形曲线存在偏置误差A、B,增益误差α、β以及相位误差
Figure PCTCN2019129078-appb-000002
霍尔传感器实际输出原始信号波形曲线的函数表达式可以如下所示:
Figure PCTCN2019129078-appb-000003
Figure PCTCN2019129078-appb-000004
具体的,由编码器的原理可知波形曲线x和波形曲线y周期相同,为θ∈[0,2*π),所以ω1=ω2=1;角度值θ的零点位置是相对的,所以我们可以令波形曲线
Figure PCTCN2019129078-appb-000005
代入(1),(2)式整理可得:
Figure PCTCN2019129078-appb-000006
y=β*cosθ+B;        (4)
将(3)式整理,展开可得:
Figure PCTCN2019129078-appb-000007
将(4),(5)两式整理转化可得:
β*cosθ=y-B;            (6)
Figure PCTCN2019129078-appb-000008
又知:
θ=arctan(tanθ)=arctan[(β*sinθ)/(β*cosθ)];        (8)
因此我们只要求出能理想(β*sinθ)的值和理想(β*cosθ)的值,也即只要得出未知量A、B、
Figure PCTCN2019129078-appb-000009
以及
Figure PCTCN2019129078-appb-000010
的值,就能求出的当前理想角度位置值θ,而根据上述步骤中得到的霍尔传感器的两个函数表达式便可得知这几个未知量,从而便可以求解出准确地转轴的旋转角度值θ。
本发明提供了一种旋转磁电编码器的校准方法,本发明实施例能够基于采样得到的至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值,拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式,由于该函数表达式表达出了霍尔传感器的两个电压信号值与磁码盘的旋转角度的真实的对应关系,因此相比于预设的理想化的正余弦曲线,根据本申请中拟合出的精确的函数表达式能够更精准地计算转轴的旋转角度,提高了旋转磁电编码器的测量精度。
在上述实施例的基础上:
作为一种优选的实施例,根据采样的多个电压信号值、与每个采样的电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式具体为:
根据采样的多个电压信号值,采用预设拟合算法拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数波形;
利用反三角计算确定出函数波形中零点;
根据零点以及与每个采样的电压信号值对应的精确旋转角度值确定出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
具体的,根据采样的多个电压信号值(无需与其对应的同一时刻的转轴的精确旋转角度值)便可以拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数波形,但是此时无法知道函数波形横坐标的零点,理论上来说横坐标零点的位置应当在在曲线波形的y值最大点的 横坐标,但是我们不能使用直接读取的电压信号值的最大值点的横坐标作为横坐标零点,这是由于即使我们采样了足够数量的电压信号值的数据点,在概率上其中的y值最大点也只能无限接近最大值点,无法精确到达最大值点,还有就是磁电编码器的一致性较差,所以采样得到电压信号值中y值的最大值点极大概率也不是我们拟合后的函数表达式中的最大值点。所以这里我们使用直接计算的方式,利用反三角计算直接计算出拟合的函数波形的最大值点的角度值,以此确定出函数波形的零点,然后便可以得到函数波形以及函数波形中每个电压信号值对应的精确旋转角度值。
作为一种优选的实施例,获取待校准编码器所在转轴的与每个采样的电压信号值对应的精确旋转角度值具体为:
获取在转轴转动的过程中,通过精准编码器同步测量出的转轴的旋转角度;
其中,精准编码器的精度为待校准编码器精度的预设倍数。
具体的,预设倍数可以进行自主设定,例如可以为10倍等,本发明实施例在此不做限定。
具体的,我们需要一台高精度测量设备作为横坐标θ值的参考,认为它为理想角度位置。首先是采集数据,我们在采集磁电编码器霍尔传感器对应的双通道ADC(模数转换器)的数据时,适当使用单点触发,双通道同时采样的方式,并且与此同时我们需要同步采样高精度测量设备的角度值。我们需要保证的是双通道ADC和高精度设备角度同步采样,这样可以尽量减少相位误差的产生。采集到的数据点应当保证至少分布在一个完整周期上,应当在横坐标θ值上分布适当均匀,数量足够多。只有这样我们才能保证拟合出的函数波形尽可能的接近理想曲线波形。
具体的,精准编码器具有精度高以及使用方便等优点。
当然,除了精准编码器外,还可以采用其他方法以及设备来测量转轴的精确旋转角度值,本发明实施例在此不做限定。
作为一种优选的实施例,预设拟合算法为傅里叶级数插值拟合法。
具体的,由于上述的波形曲线x和波形曲线y的函数表达式格式和傅里叶级数一阶展开式(f(x)=a0+a1*cos(x*ω)+a2*(x*ω))完全相同,所以 这里我们可以使用傅里叶级数插值拟合法对波形曲线x和波形曲线y的函数表达式进行拟合计算从而算出这两条曲线的函数表达式,具有快捷且准确度高的优点。
当然,除了傅里叶级数插值拟合法外,预设拟合算法还可以为其他多种类型,本发明实施例在此不做限定。
作为一种优选的实施例,采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值具体为:
以预设采样频率采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
其中,预设采样频率大于待校准编码器的分辨率的1/16。
具体的,为了使得拟合出的波形曲线具有合格的准确度,因此可以将采样频率设置为大于待校准编码器的分辨率的1/16的值,此种情况下采样出的数据点的数量足够模拟出准确的波形曲线,且采样的数据点越多,也即采样频率越高时模拟出的波形曲线越准确。
作为一种优选的实施例,根据函数表达式以及待校准编码器中霍尔传感器输出的两个电压信号值,计算待校准编码器所在转轴的旋转角度之后,该旋转磁电编码器的校准方法还包括:
在预设周期之后,返回采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值的步骤。
具体的,考虑到随着待校准编码器使用时间的增长,上次模拟出的波形曲线的函数表达式会变得与实际偏差较大,因此本发明实施例中可以在预设周期之后重新返回采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值的步骤,以便重新确定出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式,实现了每个预设周期自动校准待校准编码器。
其中,预设周期可以根据实际情况自主设定,例如可以设置为1个月等,本发明实施例在此不做限定。
请参考图2,图2为本发明提供的一种旋转磁电编码器的校准装置的结构示意图,包括:
采样模块1,用于采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
获取模块2,用于获取待校准编码器所在转轴的与每个采样的电压信号值对应的精确旋转角度值;
第一计算模块3,用于根据采样的多个电压信号值、与每个采样的电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式;
第二计算模块4,用于根据函数表达式以及待校准编码器中霍尔传感器输出的两个电压信号值,计算待校准编码器所在转轴的旋转角度。
作为一种优选的实施例,第一计算模块包括:
拟合模块,用于根据采样的多个电压信号值,采用预设拟合算法拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数波形;
第三计算模块,用于利用反三角计算确定出函数波形中零点;
确定模块,用于根据零点以及与每个采样的电压信号值对应的精确旋转角度值确定出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
作为一种优选的实施例,该旋转磁电编码器的校准装置还包括:
返回模块,用于在预设周期之后,返回采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值的步骤。
对于本发明实施例提供的旋转磁电编码器的校准装置的介绍请参照前述的旋转磁电编码器的校准方法的实施例,本发明实施例在此不再赘述。
请参考图3,图3为本发明提供的一种旋转磁电编码器的校准设备的结构示意图,包括:
存储器5,用于存储计算机程序;
处理器6,用于执行计算机程序时实现如上任一项旋转磁电编码器的 校准方法的步骤。
对于本发明实施例提供的旋转磁电编码器的校准设备的介绍请参照前述的旋转磁电编码器的校准方法的实施例,本发明实施例在此不再赘述。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
还需要说明的是,在本说明书中,诸如第一和第二等之类的关系术语仅仅用来将一个实体或者操作与另一个实体或操作区分开来,而不一定要求或者暗示这些实体或操作之间存在任何这种实际的关系或者顺序。而且,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者设备中还存在另外的相同要素。
对所公开的实施例的上述说明,使本领域专业技术人员能够实现或使用本发明。对这些实施例的多种修改对本领域的专业技术人员来说将是显而易见的,本文中所定义的一般原理可以在不脱离本发明的精神或范围的情况下,在其他实施例中实现。因此,本发明将不会被限制于本文所示的这些实施例,而是要符合与本文所公开的原理和新颖特点相一致的最宽的范围。

Claims (10)

  1. 一种旋转磁电编码器的校准方法,其特征在于,包括:
    采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
    获取所述待校准编码器所在转轴的与每个采样的所述电压信号值对应的精确旋转角度值;
    根据采样的多个所述电压信号值、与每个采样的所述电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式;
    根据所述函数表达式以及所述待校准编码器中霍尔传感器输出的两个电压信号值,计算所述待校准编码器所在转轴的旋转角度。
  2. 根据权利要求1所述的旋转磁电编码器的校准方法,其特征在于,所述根据采样的多个所述电压信号值、与每个采样的所述电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式具体为:
    根据采样的多个所述电压信号值,采用预设拟合算法拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数波形;
    利用反三角计算确定出所述函数波形中零点;
    根据所述零点以及与每个采样的所述电压信号值对应的精确旋转角度值确定出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
  3. 根据权利要求2所述的旋转磁电编码器的校准方法,其特征在于,所述获取所述待校准编码器所在转轴的与每个采样的所述电压信号值对应的精确旋转角度值具体为:
    获取在所述转轴转动的过程中,通过精准编码器同步测量出的所述转轴的旋转角度;
    其中,所述精准编码器的精度为所述待校准编码器精度的预设倍数。
  4. 根据权利要求3所述的旋转磁电编码器的校准方法,其特征在于,所述预设拟合算法为傅里叶级数插值拟合法。
  5. 根据权利要求1所述的旋转磁电编码器的校准方法,其特征在于,所述采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值具体为:
    以预设采样频率采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
    其中,所述预设采样频率大于所述待校准编码器的分辨率的1/16。
  6. 根据权利要求1至5任一项所述的旋转磁电编码器的校准方法,其特征在于,所述根据所述函数表达式以及所述待校准编码器中霍尔传感器输出的两个电压信号值,计算所述待校准编码器所在转轴的旋转角度之后,该旋转磁电编码器的校准方法还包括:
    在预设周期之后,返回采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值的步骤。
  7. 一种旋转磁电编码器的校准装置,其特征在于,包括:
    采样模块,用于采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值;
    获取模块,用于获取所述待校准编码器所在转轴的与每个采样的所述电压信号值对应的精确旋转角度值;
    第一计算模块,用于根据采样的多个所述电压信号值、与每个采样的所述电压信号值对应的精确旋转角度值,采用预设拟合算法计算出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式;
    第二计算模块,用于根据所述函数表达式以及所述待校准编码器中霍尔传感器输出的两个电压信号值,计算所述待校准编码器所在转轴的旋转角度。
  8. 根据权利要求7所述的旋转磁电编码器的校准装置,其特征在于,所述第一计算模块包括:
    拟合模块,用于根据采样的多个所述电压信号值,采用预设拟合算法拟合出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数波形;
    第三计算模块,用于利用反三角计算确定出所述函数波形中零点;
    确定模块,用于根据所述零点以及与每个采样的所述电压信号值对应的精确旋转角度值确定出霍尔传感器的两个电压信号值与磁码盘的旋转角度的对应关系的函数表达式。
  9. 根据权利要求7或8所述的旋转磁电编码器的校准装置,其特征在于,该旋转磁电编码器的校准装置还包括:
    返回模块,用于在预设周期之后,返回采样至少一个周期的待校准编码器中霍尔传感器输出的两组电压信号值的步骤。
  10. 一种旋转磁电编码器的校准设备,其特征在于,包括:
    存储器,用于存储计算机程序;
    处理器,用于执行所述计算机程序时实现如权利要求1至6任一项所述旋转磁电编码器的校准方法的步骤。
PCT/CN2019/129078 2019-12-13 2019-12-27 一种旋转磁电编码器的校准方法、装置及设备 WO2021114419A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911283773.4A CN110940371B (zh) 2019-12-13 2019-12-13 一种旋转磁电编码器的校准方法、装置及设备
CN201911283773.4 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021114419A1 true WO2021114419A1 (zh) 2021-06-17

Family

ID=69910799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129078 WO2021114419A1 (zh) 2019-12-13 2019-12-27 一种旋转磁电编码器的校准方法、装置及设备

Country Status (2)

Country Link
CN (1) CN110940371B (zh)
WO (1) WO2021114419A1 (zh)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758513B (zh) * 2020-06-04 2022-11-04 杭州海康威视数字技术股份有限公司 设备中磁性编码器精度检测方法及电子设备
CN113050699B (zh) * 2020-08-30 2024-01-12 惠州华阳通用电子有限公司 一种基于磁编码器的控制方法及装置
CN112039373A (zh) * 2020-09-03 2020-12-04 苏州臻迪智能科技有限公司 一种基于线性霍尔***的转子角度检测方法及装置
CN112152542B (zh) * 2020-09-24 2022-04-19 深圳市兆威机电股份有限公司 霍尔信号处理方法、装置、电机控制器及存储介质
CN112304210B (zh) * 2020-11-10 2023-03-21 陕西宏星电器有限责任公司 一种霍尔角度传感器角度校准方法
CN114593754B (zh) * 2020-12-04 2024-01-19 小华半导体有限公司 数据的分析/校正/方法及***、存储介质、磁性编码器
CN114665749B (zh) * 2020-12-08 2024-06-18 山东新松工业软件研究院股份有限公司 电机高精度细分控制方法、***、终端设备及存储介质
CN112964164A (zh) * 2021-03-02 2021-06-15 Oppo广东移动通信有限公司 校准方法、装置、计算机可读存储介质及电子设备
CN113029222A (zh) * 2021-03-08 2021-06-25 深圳市昂霸科技有限公司 一种用于磁编码器的校准方法,装置和磁编码器
CN114383495B (zh) * 2021-11-15 2023-11-03 北京诺多科技发展有限公司 一种双霍尔偏航角度测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022103A (ja) * 2009-07-21 2011-02-03 Meidensha Corp レゾルバの検出角度誤差の補正方法、レゾルバの検出角度誤差の補正方法を行うr/d変換器およびレゾルバの検出角度誤差の補正方法を行うr/d変換部を有するcpu
CN103837169A (zh) * 2014-02-28 2014-06-04 哈尔滨工业大学 用于磁电编码器的自校正装置和方法以及磁电编码器
KR20160071067A (ko) * 2014-12-11 2016-06-21 현대자동차주식회사 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법
CN107449460A (zh) * 2017-07-07 2017-12-08 银弗(北京)科技有限公司 一种旋转编码器的补偿方法和补偿***
CN107655511A (zh) * 2017-11-03 2018-02-02 常州寻心电子科技有限公司 一种磁性编码器校准装置及方法
CN109163752A (zh) * 2018-09-18 2019-01-08 张明辉 最小二乘法曲线拟合校正磁编码器的初值算法
CN109708681A (zh) * 2019-02-19 2019-05-03 深圳市盛泰奇科技有限公司 编码器校准方法及装置
WO2019142875A1 (ja) * 2018-01-19 2019-07-25 日本精工株式会社 電動パワーステアリング装置、及び回転角検出方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233318A (ja) * 1988-03-15 1989-09-19 Matsushita Electric Ind Co Ltd 位置検出器
GB2243211A (en) * 1990-04-20 1991-10-23 Philips Electronic Associated Analytical instrument and method of calibrating an analytical instrument
JP2000314638A (ja) * 1999-04-28 2000-11-14 Asahi Optical Co Ltd エンコーダ
JP2006250604A (ja) * 2005-03-09 2006-09-21 Tdk Corp 磁気エンコーダ及び磁気エンコーダ用信号処理回路
JP4824635B2 (ja) * 2007-06-15 2011-11-30 株式会社 ソキア・トプコン ロータリエンコーダの角度補正方法
CN101726320B (zh) * 2009-10-30 2012-11-21 大连光洋科技工程有限公司 正余弦输出型编码器本身精度补偿***
CA2891479C (en) * 2012-11-14 2017-10-10 Baumuller Nurnberg Gmbh Method for calibrating a rotary encoder
CN103954316B (zh) * 2014-04-30 2016-04-13 湖南大学 一种角度编码器的标定方法及装置
CN204255287U (zh) * 2014-12-02 2015-04-08 厦门市计量检定测试院 磁性角度传感器标定和校准装置
DE102016101965A1 (de) * 2016-02-04 2017-08-10 Fraba B.V. Verfahren zum Kalibrieren eines Drehgebers und Drehgeber zur Bestimmung einer korrigierten Winkelposition
GB2552385B (en) * 2016-07-22 2021-09-15 Cmr Surgical Ltd Calibrating position sensor readings
CN106679710B (zh) * 2017-02-08 2020-03-10 亿航智能设备(广州)有限公司 一种磁编码器校准方法及***
CN107607037B (zh) * 2017-09-18 2020-05-19 哈尔滨理工大学 一种基于反正切跨区间制表法的磁电编码器标定方法
CN107843227B (zh) * 2017-12-09 2020-04-10 连云港杰瑞电子有限公司 一种基于校准技术提高编码器精度的方法
CN109000702A (zh) * 2018-05-16 2018-12-14 苏州汇川技术有限公司 编码器校正***及方法
CN208635828U (zh) * 2018-07-18 2019-03-22 南通市计量检定测试所(江苏省南通质量技术监督眼镜产品质量检验站、江苏省南通质量技术监督金银珠宝饰品产品质量检验站、江苏省大容量南通计量站、南通市大流量计量中心) 一种编码器校准装置
CN209310837U (zh) * 2019-02-19 2019-08-27 深圳市盛泰奇科技有限公司 编码器校准装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022103A (ja) * 2009-07-21 2011-02-03 Meidensha Corp レゾルバの検出角度誤差の補正方法、レゾルバの検出角度誤差の補正方法を行うr/d変換器およびレゾルバの検出角度誤差の補正方法を行うr/d変換部を有するcpu
CN103837169A (zh) * 2014-02-28 2014-06-04 哈尔滨工业大学 用于磁电编码器的自校正装置和方法以及磁电编码器
KR20160071067A (ko) * 2014-12-11 2016-06-21 현대자동차주식회사 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법
CN107449460A (zh) * 2017-07-07 2017-12-08 银弗(北京)科技有限公司 一种旋转编码器的补偿方法和补偿***
CN107655511A (zh) * 2017-11-03 2018-02-02 常州寻心电子科技有限公司 一种磁性编码器校准装置及方法
WO2019142875A1 (ja) * 2018-01-19 2019-07-25 日本精工株式会社 電動パワーステアリング装置、及び回転角検出方法
CN109163752A (zh) * 2018-09-18 2019-01-08 张明辉 最小二乘法曲线拟合校正磁编码器的初值算法
CN109708681A (zh) * 2019-02-19 2019-05-03 深圳市盛泰奇科技有限公司 编码器校准方法及装置

Also Published As

Publication number Publication date
CN110940371B (zh) 2020-08-21
CN110940371A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2021114419A1 (zh) 一种旋转磁电编码器的校准方法、装置及设备
CN110793430B (zh) 绝对电角度检测方法、***及计算机可读存储介质
CN101672665B (zh) 编码器输出信号校正设备和方法
AU2006336718B2 (en) Rotary encoder
CN108155910B (zh) 一种基于fpga的高速正余弦编码器解码方法
TW201632837A (zh) 修正表製作裝置、編碼器及修正表製作方法
WO2021017075A1 (zh) 混合编码器的位置确定方法、装置、设备及可读存储介质
Just et al. Comparison of angle standards with the aid of a high-resolution angle encoder
CN102597707A (zh) 带复合自校正功能的角度检测器
CN103217139A (zh) 一种基于双测头的角位移传感器在线自标定方法
JP2014025871A (ja) エンコーダ出力信号補正装置
CN1884979A (zh) 运动参数测量仪
CN114636387B (zh) 一种圆光栅编码器双读数头非对称安装偏心误差补偿方法
WO2024113450A1 (zh) 磁编码器的校正方法、装置及磁编码器
JPH0643892B2 (ja) 測角誤差の補正装置
CN206773000U (zh) 双轴速率位置转台角速率检定装置
CN108827190B (zh) 基于双自准直仪的高精度测角误差检测装置及其检测方法
WO2021017074A1 (zh) 一种光磁混合编码器***
JP2839340B2 (ja) 位置信号の校正装置
CN110375788B (zh) 一种四路正交差动信号解调仪表校准方法及***
CN107036627B (zh) 环形激光测角装置的地速投影分量误差自校准方法
Ye et al. Development of a digital interpolation module for high-resolution sinusoidal encoders
JP2839341B2 (ja) 位置信号の校正装置
JP2009288241A6 (ja) 第1の事象と第2の事象との間の時間差を求める方法
RU200017U1 (ru) Шпиндельный узел повышенной точности углового компаратора

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956074

Country of ref document: EP

Kind code of ref document: A1