WO2021114419A1 - Procédé, appareil et dispositif d'étalonnage pour codeur magnétoélectrique rotatif - Google Patents

Procédé, appareil et dispositif d'étalonnage pour codeur magnétoélectrique rotatif Download PDF

Info

Publication number
WO2021114419A1
WO2021114419A1 PCT/CN2019/129078 CN2019129078W WO2021114419A1 WO 2021114419 A1 WO2021114419 A1 WO 2021114419A1 CN 2019129078 W CN2019129078 W CN 2019129078W WO 2021114419 A1 WO2021114419 A1 WO 2021114419A1
Authority
WO
WIPO (PCT)
Prior art keywords
encoder
voltage signal
rotation angle
signal values
hall sensor
Prior art date
Application number
PCT/CN2019/129078
Other languages
English (en)
Chinese (zh)
Inventor
夏一帆
Original Assignee
浙江禾川科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 浙江禾川科技股份有限公司 filed Critical 浙江禾川科技股份有限公司
Publication of WO2021114419A1 publication Critical patent/WO2021114419A1/fr

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D18/00Testing or calibrating apparatus or arrangements provided for in groups G01D1/00 - G01D15/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D5/00Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable
    • G01D5/12Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means
    • G01D5/14Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage
    • G01D5/142Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices
    • G01D5/147Mechanical means for transferring the output of a sensing member; Means for converting the output of a sensing member to another variable where the form or nature of the sensing member does not constrain the means for converting; Transducers not specially adapted for a specific variable using electric or magnetic means influencing the magnitude of a current or voltage using Hall-effect devices influenced by the movement of a third element, the position of Hall device and the source of magnetic field being fixed in respect to each other

Definitions

  • the present invention relates to the field of rotary magnetoelectric encoders, in particular to a method for calibrating a rotating magnetoelectric encoder.
  • the invention also relates to a calibration device and equipment of a rotating magnetoelectric encoder.
  • the rotary magnetic encoder can detect the rotation angle of the measured shaft, and calculate the position and speed of the object connected to the shaft (such as the shaft of the motor) based on the rotation angle.
  • Huo The Er sensor can output two sinusoidal voltage signals with a phase difference of 90° with the rotation of the magnetic code disc.
  • the present invention provides a method for calibrating a rotary magnetoelectric encoder, which includes:
  • a preset fitting algorithm is used to calculate the two voltage signal values of the Hall sensor and the value of the magnetic code disc.
  • the rotation angle of the rotating shaft where the encoder to be calibrated is located is calculated.
  • the two voltage signal values of the Hall sensor are calculated using a preset fitting algorithm according to the plurality of sampled voltage signal values and the precise rotation angle value corresponding to each sampled voltage signal value
  • the functional expression corresponding to the rotation angle of the magnetic code disc is specifically:
  • a preset fitting algorithm is used to fit the function waveform of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc;
  • the obtaining the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft of the encoder to be calibrated is specifically:
  • the accuracy of the precision encoder is a preset multiple of the accuracy of the encoder to be calibrated.
  • the preset fitting algorithm is a Fourier series interpolation fitting method.
  • the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated sampling at least one cycle are specifically:
  • the preset sampling frequency is greater than 1/16 of the resolution of the encoder to be calibrated.
  • the rotary magnetoelectric encoder After calculating the rotation angle of the shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated, the rotary magnetoelectric encoder
  • the calibration method also includes:
  • the present invention also provides a calibration device for a rotary magnetoelectric encoder, which includes:
  • the sampling module is used to sample at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated;
  • An obtaining module configured to obtain the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft where the encoder to be calibrated is located;
  • the first calculation module is used to calculate the two voltages of the Hall sensor by using a preset fitting algorithm according to the plurality of sampled voltage signal values and the precise rotation angle value corresponding to each sampled voltage signal value
  • the second calculation module is configured to calculate the rotation angle of the rotating shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated.
  • the first calculation module includes:
  • the fitting module is used to fit the function waveform of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc by using a preset fitting algorithm according to the sampled multiple voltage signal values;
  • the third calculation module is used to determine the zero point in the function waveform by using inverse triangulation calculation
  • the determination module is used to determine the function expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disk according to the zero point and the precise rotation angle value corresponding to each sampled voltage signal value formula.
  • the calibration device of the rotary magnetoelectric encoder further includes:
  • the return module is used to return to the step of sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated after the preset period.
  • the present invention also provides a calibration device for a rotary magnetoelectric encoder, which includes:
  • Memory used to store computer programs
  • the processor is used to implement the steps of the method for calibrating the rotary magneto-electric encoder as described in any one of the preceding items when the computer program is executed.
  • the present invention provides a method for calibrating a rotary magnetoelectric encoder.
  • the embodiment of the present invention can fit the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated for at least one cycle obtained by sampling.
  • the function expression of the corresponding relationship between the two voltage signal values of the magnetic code disk and the rotation angle of the magnetic code disk because the function expression expresses the true corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disk Therefore, compared with the preset idealized sine-cosine curve, the accurate function expression fitted in this application can calculate the rotation angle of the rotating shaft more accurately, which improves the measurement accuracy of the rotary magnetoelectric encoder.
  • the present invention also provides a calibration device and equipment for the rotary magnetic encoder, which has the same beneficial effects as the calibration method of the rotary magnetic encoder.
  • Fig. 1 is a schematic flowchart of a calibration method of a rotary magnetic encoder provided by the present invention
  • Figure 2 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention
  • Fig. 3 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention.
  • FIG. 1 is a schematic flowchart of a method for calibrating a rotary magneto-electric encoder provided by the present invention, including:
  • Step S1 Sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated;
  • the two sets of voltage signal values output by the Hall sensor obtained by sampling in the embodiment of the present invention can be used as the data basis in the subsequent steps, so that the two voltage signal values of the Hall sensor and the rotation of the magnetic code disc can be obtained in the subsequent steps.
  • the functional expression of the corresponding relationship of the angle can be used as the data basis in the subsequent steps, so that the two voltage signal values of the Hall sensor and the rotation of the magnetic code disc can be obtained in the subsequent steps.
  • the embodiment of the present invention in order to achieve accurate fitting of the functional expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc, in the embodiment of the present invention, during the rotation of the shaft where the encoder to be calibrated is located, The voltage signal value of at least one cycle of the Hall sensor in the encoder to be calibrated arranged on the rotating shaft is sampled.
  • the sampling amount here may not be at least one cycle, for example, less than one cycle, etc.
  • This embodiment of the present invention does not do it here. limited.
  • Step S2 Obtain the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft where the encoder to be calibrated is located;
  • a variety of measuring instruments can be used to obtain the precise rotation angle value.
  • a high-precision rotary magnetic encoder can be used for measurement.
  • the precise rotation angle value is required to correspond to the voltage signal value output by the Hall sensor on the time axis. .
  • the rotating shaft where the encoder to be calibrated is located may be of multiple types, for example, it may be a rotating shaft of a motor, etc., which is not limited in the embodiment of the present invention.
  • Step S3 According to the sampled multiple voltage signal values and the precise rotation angle value corresponding to each sampled voltage signal value, use a preset fitting algorithm to calculate the two voltage signal values of the Hall sensor and the rotation of the magnetic code disc The functional expression of the corresponding relationship of the angle;
  • the Hole sensor can be fitted.
  • the function expression of the corresponding relationship between the two voltage signal values of the Er sensor and the rotation angle of the magnetic code disc is more true and accurate because it is fitted according to the actual collected data.
  • the function expression of the corresponding relationship between the voltage signal value of the Hall sensor and the rotation angle of the magnetic code disc basically conforms to the function expression of the sine-cosine waveform curve of the trigonometric function, but it is relative to the standard sine-cosine curve. There are some offset errors, gain errors or phase errors.
  • the function expression of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc can basically conform to:
  • Step S4 Calculate the rotation angle of the rotating shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated.
  • the measured function expression can be combined with the code to be calibrated.
  • the two voltage signal values output by the Hall sensor in the device calculate the rotation angle of the shaft where the encoder to be calibrated is located. For example, at the current moment, you can combine the two function expressions and the two voltage signal values currently output by the Hall sensor to calculate Get the rotation angle of the shaft at the current moment.
  • the rotary magnetic encoder will sample the current position through the sampling points of the two Hall resistors with a difference of 90° when the magnetic code disc rotates one circle, and output two phase differences.
  • a complete cycle of the sine voltage waveform curve of 90° usually we call the sin ⁇ curve that is 90° ahead, and the cos ⁇ curve that is 90° behind ( ⁇ is the current rotation angle value of the shaft). Then by reading the current two voltage signal values, use the arctangent function to solve the current angle value of the encoder.
  • the principle is as follows:
  • the output waveform signal may not be the ideal sin ⁇ , cos ⁇ curve waveform.
  • the output waveform curve may not be the ideal sin ⁇ , cos ⁇ curve waveform.
  • the present invention provides a method for calibrating a rotary magnetoelectric encoder.
  • the embodiment of the present invention can fit the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated for at least one cycle obtained by sampling.
  • the function expression of the corresponding relationship between the two voltage signal values and the rotation angle of the magnetic code disc because the function expression expresses the true correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc Therefore, compared with the preset idealized sine-cosine curve, the accurate function expression fitted in this application can calculate the rotation angle of the rotating shaft more accurately, which improves the measurement accuracy of the rotary magnetoelectric encoder.
  • a preset fitting algorithm is used to calculate the two voltage signal values of the Hall sensor and the functional expression of the corresponding relation of the rotation angle of the magnetic code disc is specifically as follows:
  • a preset fitting algorithm is used to fit the function waveform of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc;
  • the functional expression of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc is determined.
  • the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc can be fitted according to the sampled multiple voltage signal values (without corresponding to the exact rotation angle value of the shaft at the same time)
  • the position of the abscissa zero point should be at the abscissa of the maximum y value of the curve waveform, but we cannot use the directly read voltage signal value
  • the abscissa of the maximum point is used as the abscissa zero point.
  • obtaining the precise rotation angle value corresponding to each sampled voltage signal value of the rotating shaft where the encoder to be calibrated is located is specifically:
  • the precision of the precision encoder is a preset multiple of the precision of the encoder to be calibrated.
  • the preset multiple can be independently set, for example, it can be 10 times, etc., which is not limited in the embodiment of the present invention.
  • a high-precision measuring device as a reference for the abscissa ⁇ value, and consider it as an ideal angular position.
  • the first is to collect data.
  • the dual-channel ADC Analog-to-Digital Converter
  • we appropriately use single-point trigger and dual-channel simultaneous sampling and at the same time we need to synchronize Sampling the angle value of high-precision measuring equipment.
  • What we need to ensure is the dual-channel ADC and high-precision device angle synchronous sampling, so that the phase error can be minimized.
  • the collected data points should be distributed in at least one complete cycle, and they should be properly and evenly distributed on the abscissa ⁇ , and the number should be sufficient. Only in this way can we ensure that the fitted function waveform is as close as possible to the ideal curve waveform.
  • the precision encoder has the advantages of high precision and convenient use.
  • the preset fitting algorithm is a Fourier series interpolation fitting method.
  • the preset fitting algorithm may also be of other types, which is not limited in the embodiment of the present invention.
  • the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated sampling at least one cycle are specifically:
  • the preset sampling frequency is greater than 1/16 of the resolution of the encoder to be calibrated.
  • the sampling frequency can be set to a value greater than 1/16 of the resolution of the encoder to be calibrated. In this case, the number of data points sampled It is sufficient to simulate an accurate waveform curve, and the more data points are sampled, that is, the higher the sampling frequency, the more accurate the simulated waveform curve.
  • the calibration method of the rotary magnetoelectric encoder also includes:
  • the function expression of the waveform curve simulated last time will deviate greatly from the actual one. Therefore, in the embodiment of the present invention, it can be returned after a preset period.
  • the step of sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated, so as to re-determine the function expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc It realizes the automatic calibration of the encoder to be calibrated every preset period.
  • the preset period can be independently set according to actual conditions, for example, can be set to 1 month, etc., which is not limited in the embodiment of the present invention.
  • Figure 2 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention, including:
  • Sampling module for sampling at least one cycle of two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated
  • the second calculation module 4 is used to calculate the rotation angle of the rotating shaft where the encoder to be calibrated is located according to the function expression and the two voltage signal values output by the Hall sensor in the encoder to be calibrated.
  • the first calculation module includes:
  • the fitting module is used to fit the function waveform of the corresponding relationship between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc by using a preset fitting algorithm according to the sampled multiple voltage signal values;
  • the third calculation module is used to determine the zero point in the function waveform by using inverse triangulation calculation
  • the determination module is used to determine the function expression of the correspondence between the two voltage signal values of the Hall sensor and the rotation angle of the magnetic code disc according to the zero point and the precise rotation angle value corresponding to each sampled voltage signal value.
  • the return module is used to return to the step of sampling at least one cycle of the two sets of voltage signal values output by the Hall sensor in the encoder to be calibrated after the preset period.
  • FIG. 3 is a schematic structural diagram of a calibration device for a rotary magnetic encoder provided by the present invention, including:
  • the memory 5 is used to store computer programs
  • the processor 6 is used to implement the steps of any one of the calibration methods of the rotary magnetoelectric encoder when executing the computer program.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Transmission And Conversion Of Sensor Element Output (AREA)

Abstract

L'invention concerne un procédé d'étalonnage et un appareil d'étalonnage pour un codeur magnétoélectrique rotatif. Une expression de fonction d'une corrélation entre deux valeurs de signal de tension d'un capteur à effet Hall et l'angle de rotation d'un disque à codage magnétique est ajustée sur la base de deux groupes de valeurs de signal de tension, lesquelles sont obtenues par échantillonnage, délivrées en sortie au sein d'au moins une période par le capteur à effet Hall dans un codeur à étalonner. Du fait que l'expression de fonction exprime la corrélation réelle entre les deux valeurs de signal de tension du capteur à effet Hall et l'angle de rotation du disque à codage magnétique, par comparaison avec des courbes sinusoïdales et cosinusoïdales idéalisées prédéfinies, l'angle de rotation d'un arbre rotatif peut être calculé plus précisément conformément à l'expression de fonction précise ajustée, améliorant ainsi la précision de mesure du codeur magnétoélectrique rotatif.
PCT/CN2019/129078 2019-12-13 2019-12-27 Procédé, appareil et dispositif d'étalonnage pour codeur magnétoélectrique rotatif WO2021114419A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201911283773.4A CN110940371B (zh) 2019-12-13 2019-12-13 一种旋转磁电编码器的校准方法、装置及设备
CN201911283773.4 2019-12-13

Publications (1)

Publication Number Publication Date
WO2021114419A1 true WO2021114419A1 (fr) 2021-06-17

Family

ID=69910799

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/129078 WO2021114419A1 (fr) 2019-12-13 2019-12-27 Procédé, appareil et dispositif d'étalonnage pour codeur magnétoélectrique rotatif

Country Status (2)

Country Link
CN (1) CN110940371B (fr)
WO (1) WO2021114419A1 (fr)

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113758513B (zh) * 2020-06-04 2022-11-04 杭州海康威视数字技术股份有限公司 设备中磁性编码器精度检测方法及电子设备
CN113050699B (zh) * 2020-08-30 2024-01-12 惠州华阳通用电子有限公司 一种基于磁编码器的控制方法及装置
CN112039373A (zh) * 2020-09-03 2020-12-04 苏州臻迪智能科技有限公司 一种基于线性霍尔***的转子角度检测方法及装置
CN112152542B (zh) * 2020-09-24 2022-04-19 深圳市兆威机电股份有限公司 霍尔信号处理方法、装置、电机控制器及存储介质
CN112304210B (zh) * 2020-11-10 2023-03-21 陕西宏星电器有限责任公司 一种霍尔角度传感器角度校准方法
CN114593754B (zh) * 2020-12-04 2024-01-19 小华半导体有限公司 数据的分析/校正/方法及***、存储介质、磁性编码器
CN114665749B (zh) * 2020-12-08 2024-06-18 山东新松工业软件研究院股份有限公司 电机高精度细分控制方法、***、终端设备及存储介质
CN112964164A (zh) * 2021-03-02 2021-06-15 Oppo广东移动通信有限公司 校准方法、装置、计算机可读存储介质及电子设备
CN113029222A (zh) * 2021-03-08 2021-06-25 深圳市昂霸科技有限公司 一种用于磁编码器的校准方法,装置和磁编码器
CN114383495B (zh) * 2021-11-15 2023-11-03 北京诺多科技发展有限公司 一种双霍尔偏航角度测量方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022103A (ja) * 2009-07-21 2011-02-03 Meidensha Corp レゾルバの検出角度誤差の補正方法、レゾルバの検出角度誤差の補正方法を行うr/d変換器およびレゾルバの検出角度誤差の補正方法を行うr/d変換部を有するcpu
CN103837169A (zh) * 2014-02-28 2014-06-04 哈尔滨工业大学 用于磁电编码器的自校正装置和方法以及磁电编码器
KR20160071067A (ko) * 2014-12-11 2016-06-21 현대자동차주식회사 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법
CN107449460A (zh) * 2017-07-07 2017-12-08 银弗(北京)科技有限公司 一种旋转编码器的补偿方法和补偿***
CN107655511A (zh) * 2017-11-03 2018-02-02 常州寻心电子科技有限公司 一种磁性编码器校准装置及方法
CN109163752A (zh) * 2018-09-18 2019-01-08 张明辉 最小二乘法曲线拟合校正磁编码器的初值算法
CN109708681A (zh) * 2019-02-19 2019-05-03 深圳市盛泰奇科技有限公司 编码器校准方法及装置
WO2019142875A1 (fr) * 2018-01-19 2019-07-25 日本精工株式会社 Dispositif de direction assistée électrique et procédé de détection d'angle de rotation

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH01233318A (ja) * 1988-03-15 1989-09-19 Matsushita Electric Ind Co Ltd 位置検出器
GB2243211A (en) * 1990-04-20 1991-10-23 Philips Electronic Associated Analytical instrument and method of calibrating an analytical instrument
JP2000314638A (ja) * 1999-04-28 2000-11-14 Asahi Optical Co Ltd エンコーダ
JP2006250604A (ja) * 2005-03-09 2006-09-21 Tdk Corp 磁気エンコーダ及び磁気エンコーダ用信号処理回路
JP4824635B2 (ja) * 2007-06-15 2011-11-30 株式会社 ソキア・トプコン ロータリエンコーダの角度補正方法
CN101726320B (zh) * 2009-10-30 2012-11-21 大连光洋科技工程有限公司 正余弦输出型编码器本身精度补偿***
EP2920554B1 (fr) * 2012-11-14 2018-11-07 Baumüller Nürnberg GmbH Procédé d'étalonnage d'un résolveur
CN103954316B (zh) * 2014-04-30 2016-04-13 湖南大学 一种角度编码器的标定方法及装置
CN204255287U (zh) * 2014-12-02 2015-04-08 厦门市计量检定测试院 磁性角度传感器标定和校准装置
DE102016101965A1 (de) * 2016-02-04 2017-08-10 Fraba B.V. Verfahren zum Kalibrieren eines Drehgebers und Drehgeber zur Bestimmung einer korrigierten Winkelposition
GB2552385B (en) * 2016-07-22 2021-09-15 Cmr Surgical Ltd Calibrating position sensor readings
CN106679710B (zh) * 2017-02-08 2020-03-10 亿航智能设备(广州)有限公司 一种磁编码器校准方法及***
CN107607037B (zh) * 2017-09-18 2020-05-19 哈尔滨理工大学 一种基于反正切跨区间制表法的磁电编码器标定方法
CN107843227B (zh) * 2017-12-09 2020-04-10 连云港杰瑞电子有限公司 一种基于校准技术提高编码器精度的方法
CN109000702A (zh) * 2018-05-16 2018-12-14 苏州汇川技术有限公司 编码器校正***及方法
CN208635828U (zh) * 2018-07-18 2019-03-22 南通市计量检定测试所(江苏省南通质量技术监督眼镜产品质量检验站、江苏省南通质量技术监督金银珠宝饰品产品质量检验站、江苏省大容量南通计量站、南通市大流量计量中心) 一种编码器校准装置
CN209310837U (zh) * 2019-02-19 2019-08-27 深圳市盛泰奇科技有限公司 编码器校准装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011022103A (ja) * 2009-07-21 2011-02-03 Meidensha Corp レゾルバの検出角度誤差の補正方法、レゾルバの検出角度誤差の補正方法を行うr/d変換器およびレゾルバの検出角度誤差の補正方法を行うr/d変換部を有するcpu
CN103837169A (zh) * 2014-02-28 2014-06-04 哈尔滨工业大学 用于磁电编码器的自校正装置和方法以及磁电编码器
KR20160071067A (ko) * 2014-12-11 2016-06-21 현대자동차주식회사 연료전지차량 공기블로워용 인버터 홀센서의 옵셋 보정방법
CN107449460A (zh) * 2017-07-07 2017-12-08 银弗(北京)科技有限公司 一种旋转编码器的补偿方法和补偿***
CN107655511A (zh) * 2017-11-03 2018-02-02 常州寻心电子科技有限公司 一种磁性编码器校准装置及方法
WO2019142875A1 (fr) * 2018-01-19 2019-07-25 日本精工株式会社 Dispositif de direction assistée électrique et procédé de détection d'angle de rotation
CN109163752A (zh) * 2018-09-18 2019-01-08 张明辉 最小二乘法曲线拟合校正磁编码器的初值算法
CN109708681A (zh) * 2019-02-19 2019-05-03 深圳市盛泰奇科技有限公司 编码器校准方法及装置

Also Published As

Publication number Publication date
CN110940371B (zh) 2020-08-21
CN110940371A (zh) 2020-03-31

Similar Documents

Publication Publication Date Title
WO2021114419A1 (fr) Procédé, appareil et dispositif d'étalonnage pour codeur magnétoélectrique rotatif
CN110793430B (zh) 绝对电角度检测方法、***及计算机可读存储介质
CN108155910B (zh) 一种基于fpga的高速正余弦编码器解码方法
CN101672665B (zh) 编码器输出信号校正设备和方法
AU2006336718B2 (en) Rotary encoder
CN109945819B (zh) 一种永磁同步电机转子位置测量方法
CN105452815B (zh) 用于确定移动装置的位置的位置传感器装置
TW201632837A (zh) 修正表製作裝置、編碼器及修正表製作方法
WO2021017075A1 (fr) Procédé, appareil et dispositif de détermination de position pour codeur hybride, et support d'informations lisible
Just et al. Comparison of angle standards with the aid of a high-resolution angle encoder
CN102597707A (zh) 带复合自校正功能的角度检测器
CN103217139A (zh) 一种基于双测头的角位移传感器在线自标定方法
JP2014025871A (ja) エンコーダ出力信号補正装置
CN1884979A (zh) 运动参数测量仪
CN114636387B (zh) 一种圆光栅编码器双读数头非对称安装偏心误差补偿方法
WO2024113450A1 (fr) Procédé et appareil de correction de codeur magnétique, et codeur magnétique
JPH0643892B2 (ja) 測角誤差の補正装置
CN206773000U (zh) 双轴速率位置转台角速率检定装置
CN108827190B (zh) 基于双自准直仪的高精度测角误差检测装置及其检测方法
WO2021017074A1 (fr) Système codeur hybride optique-magnétique
JP2839340B2 (ja) 位置信号の校正装置
CN110375788B (zh) 一种四路正交差动信号解调仪表校准方法及***
CN107036627B (zh) 环形激光测角装置的地速投影分量误差自校准方法
Ye et al. Development of a digital interpolation module for high-resolution sinusoidal encoders
JP2839341B2 (ja) 位置信号の校正装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19956074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19956074

Country of ref document: EP

Kind code of ref document: A1